Properties

Label 538.3.c.a.187.5
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $44$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(44\)
Relative dimension: \(22\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.5
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.a.351.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 + 1.00000i) q^{2} +(-2.64193 - 2.64193i) q^{3} +2.00000i q^{4} -4.20274 q^{5} -5.28386i q^{6} +(-7.77918 + 7.77918i) q^{7} +(-2.00000 + 2.00000i) q^{8} +4.95961i q^{9} +(-4.20274 - 4.20274i) q^{10} -15.6994i q^{11} +(5.28386 - 5.28386i) q^{12} +1.21471i q^{13} -15.5584 q^{14} +(11.1034 + 11.1034i) q^{15} -4.00000 q^{16} +(20.3774 + 20.3774i) q^{17} +(-4.95961 + 4.95961i) q^{18} +(8.76306 - 8.76306i) q^{19} -8.40548i q^{20} +41.1041 q^{21} +(15.6994 - 15.6994i) q^{22} +16.0177 q^{23} +10.5677 q^{24} -7.33697 q^{25} +(-1.21471 + 1.21471i) q^{26} +(-10.6744 + 10.6744i) q^{27} +(-15.5584 - 15.5584i) q^{28} +(2.23825 - 2.23825i) q^{29} +22.2067i q^{30} +(26.4098 - 26.4098i) q^{31} +(-4.00000 - 4.00000i) q^{32} +(-41.4767 + 41.4767i) q^{33} +40.7548i q^{34} +(32.6939 - 32.6939i) q^{35} -9.91922 q^{36} +60.3191 q^{37} +17.5261 q^{38} +(3.20918 - 3.20918i) q^{39} +(8.40548 - 8.40548i) q^{40} -34.5733 q^{41} +(41.1041 + 41.1041i) q^{42} +12.6497i q^{43} +31.3988 q^{44} -20.8439i q^{45} +(16.0177 + 16.0177i) q^{46} +59.4417 q^{47} +(10.5677 + 10.5677i) q^{48} -72.0312i q^{49} +(-7.33697 - 7.33697i) q^{50} -107.671i q^{51} -2.42942 q^{52} +43.5333 q^{53} -21.3489 q^{54} +65.9805i q^{55} -31.1167i q^{56} -46.3028 q^{57} +4.47651 q^{58} +(63.7548 - 63.7548i) q^{59} +(-22.2067 + 22.2067i) q^{60} +22.1208 q^{61} +52.8197 q^{62} +(-38.5817 - 38.5817i) q^{63} -8.00000i q^{64} -5.10510i q^{65} -82.9535 q^{66} -108.610 q^{67} +(-40.7548 + 40.7548i) q^{68} +(-42.3177 - 42.3177i) q^{69} +65.3877 q^{70} +(8.33321 - 8.33321i) q^{71} +(-9.91922 - 9.91922i) q^{72} -45.3971i q^{73} +(60.3191 + 60.3191i) q^{74} +(19.3838 + 19.3838i) q^{75} +(17.5261 + 17.5261i) q^{76} +(122.128 + 122.128i) q^{77} +6.41835 q^{78} +115.012i q^{79} +16.8110 q^{80} +101.039 q^{81} +(-34.5733 - 34.5733i) q^{82} +(-17.6073 + 17.6073i) q^{83} +82.2082i q^{84} +(-85.6408 - 85.6408i) q^{85} +(-12.6497 + 12.6497i) q^{86} -11.8266 q^{87} +(31.3988 + 31.3988i) q^{88} +168.396i q^{89} +(20.8439 - 20.8439i) q^{90} +(-9.44943 - 9.44943i) q^{91} +32.0354i q^{92} -139.546 q^{93} +(59.4417 + 59.4417i) q^{94} +(-36.8289 + 36.8289i) q^{95} +21.1355i q^{96} +45.2003i q^{97} +(72.0312 - 72.0312i) q^{98} +77.8629 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 44 q + 44 q^{2} + 2 q^{3} + 4 q^{7} - 88 q^{8} - 4 q^{12} + 8 q^{14} + 38 q^{15} - 176 q^{16} - 120 q^{18} + 18 q^{19} - 16 q^{21} + 68 q^{23} - 8 q^{24} + 196 q^{25} + 16 q^{26} - 22 q^{27} + 8 q^{28}+ \cdots - 188 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 + 1.00000i 0.500000 + 0.500000i
\(3\) −2.64193 2.64193i −0.880644 0.880644i 0.112956 0.993600i \(-0.463968\pi\)
−0.993600 + 0.112956i \(0.963968\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −4.20274 −0.840548 −0.420274 0.907397i \(-0.638066\pi\)
−0.420274 + 0.907397i \(0.638066\pi\)
\(6\) 5.28386i 0.880644i
\(7\) −7.77918 + 7.77918i −1.11131 + 1.11131i −0.118338 + 0.992973i \(0.537757\pi\)
−0.992973 + 0.118338i \(0.962243\pi\)
\(8\) −2.00000 + 2.00000i −0.250000 + 0.250000i
\(9\) 4.95961i 0.551068i
\(10\) −4.20274 4.20274i −0.420274 0.420274i
\(11\) 15.6994i 1.42722i −0.700544 0.713609i \(-0.747059\pi\)
0.700544 0.713609i \(-0.252941\pi\)
\(12\) 5.28386 5.28386i 0.440322 0.440322i
\(13\) 1.21471i 0.0934391i 0.998908 + 0.0467195i \(0.0148767\pi\)
−0.998908 + 0.0467195i \(0.985123\pi\)
\(14\) −15.5584 −1.11131
\(15\) 11.1034 + 11.1034i 0.740224 + 0.740224i
\(16\) −4.00000 −0.250000
\(17\) 20.3774 + 20.3774i 1.19867 + 1.19867i 0.974565 + 0.224104i \(0.0719456\pi\)
0.224104 + 0.974565i \(0.428054\pi\)
\(18\) −4.95961 + 4.95961i −0.275534 + 0.275534i
\(19\) 8.76306 8.76306i 0.461214 0.461214i −0.437839 0.899053i \(-0.644256\pi\)
0.899053 + 0.437839i \(0.144256\pi\)
\(20\) 8.40548i 0.420274i
\(21\) 41.1041 1.95734
\(22\) 15.6994 15.6994i 0.713609 0.713609i
\(23\) 16.0177 0.696423 0.348211 0.937416i \(-0.386789\pi\)
0.348211 + 0.937416i \(0.386789\pi\)
\(24\) 10.5677 0.440322
\(25\) −7.33697 −0.293479
\(26\) −1.21471 + 1.21471i −0.0467195 + 0.0467195i
\(27\) −10.6744 + 10.6744i −0.395350 + 0.395350i
\(28\) −15.5584 15.5584i −0.555656 0.555656i
\(29\) 2.23825 2.23825i 0.0771812 0.0771812i −0.667462 0.744644i \(-0.732619\pi\)
0.744644 + 0.667462i \(0.232619\pi\)
\(30\) 22.2067i 0.740224i
\(31\) 26.4098 26.4098i 0.851930 0.851930i −0.138441 0.990371i \(-0.544209\pi\)
0.990371 + 0.138441i \(0.0442091\pi\)
\(32\) −4.00000 4.00000i −0.125000 0.125000i
\(33\) −41.4767 + 41.4767i −1.25687 + 1.25687i
\(34\) 40.7548i 1.19867i
\(35\) 32.6939 32.6939i 0.934110 0.934110i
\(36\) −9.91922 −0.275534
\(37\) 60.3191 1.63025 0.815123 0.579288i \(-0.196669\pi\)
0.815123 + 0.579288i \(0.196669\pi\)
\(38\) 17.5261 0.461214
\(39\) 3.20918 3.20918i 0.0822866 0.0822866i
\(40\) 8.40548 8.40548i 0.210137 0.210137i
\(41\) −34.5733 −0.843251 −0.421625 0.906770i \(-0.638540\pi\)
−0.421625 + 0.906770i \(0.638540\pi\)
\(42\) 41.1041 + 41.1041i 0.978669 + 0.978669i
\(43\) 12.6497i 0.294178i 0.989123 + 0.147089i \(0.0469904\pi\)
−0.989123 + 0.147089i \(0.953010\pi\)
\(44\) 31.3988 0.713609
\(45\) 20.8439i 0.463199i
\(46\) 16.0177 + 16.0177i 0.348211 + 0.348211i
\(47\) 59.4417 1.26472 0.632359 0.774676i \(-0.282087\pi\)
0.632359 + 0.774676i \(0.282087\pi\)
\(48\) 10.5677 + 10.5677i 0.220161 + 0.220161i
\(49\) 72.0312i 1.47002i
\(50\) −7.33697 7.33697i −0.146739 0.146739i
\(51\) 107.671i 2.11120i
\(52\) −2.42942 −0.0467195
\(53\) 43.5333 0.821383 0.410692 0.911774i \(-0.365287\pi\)
0.410692 + 0.911774i \(0.365287\pi\)
\(54\) −21.3489 −0.395350
\(55\) 65.9805i 1.19965i
\(56\) 31.1167i 0.555656i
\(57\) −46.3028 −0.812330
\(58\) 4.47651 0.0771812
\(59\) 63.7548 63.7548i 1.08059 1.08059i 0.0841356 0.996454i \(-0.473187\pi\)
0.996454 0.0841356i \(-0.0268129\pi\)
\(60\) −22.2067 + 22.2067i −0.370112 + 0.370112i
\(61\) 22.1208 0.362637 0.181318 0.983424i \(-0.441964\pi\)
0.181318 + 0.983424i \(0.441964\pi\)
\(62\) 52.8197 0.851930
\(63\) −38.5817 38.5817i −0.612408 0.612408i
\(64\) 8.00000i 0.125000i
\(65\) 5.10510i 0.0785400i
\(66\) −82.9535 −1.25687
\(67\) −108.610 −1.62104 −0.810520 0.585710i \(-0.800816\pi\)
−0.810520 + 0.585710i \(0.800816\pi\)
\(68\) −40.7548 + 40.7548i −0.599335 + 0.599335i
\(69\) −42.3177 42.3177i −0.613300 0.613300i
\(70\) 65.3877 0.934110
\(71\) 8.33321 8.33321i 0.117369 0.117369i −0.645983 0.763352i \(-0.723552\pi\)
0.763352 + 0.645983i \(0.223552\pi\)
\(72\) −9.91922 9.91922i −0.137767 0.137767i
\(73\) 45.3971i 0.621879i −0.950430 0.310939i \(-0.899356\pi\)
0.950430 0.310939i \(-0.100644\pi\)
\(74\) 60.3191 + 60.3191i 0.815123 + 0.815123i
\(75\) 19.3838 + 19.3838i 0.258450 + 0.258450i
\(76\) 17.5261 + 17.5261i 0.230607 + 0.230607i
\(77\) 122.128 + 122.128i 1.58608 + 1.58608i
\(78\) 6.41835 0.0822866
\(79\) 115.012i 1.45585i 0.685656 + 0.727926i \(0.259515\pi\)
−0.685656 + 0.727926i \(0.740485\pi\)
\(80\) 16.8110 0.210137
\(81\) 101.039 1.24739
\(82\) −34.5733 34.5733i −0.421625 0.421625i
\(83\) −17.6073 + 17.6073i −0.212136 + 0.212136i −0.805174 0.593038i \(-0.797928\pi\)
0.593038 + 0.805174i \(0.297928\pi\)
\(84\) 82.2082i 0.978669i
\(85\) −85.6408 85.6408i −1.00754 1.00754i
\(86\) −12.6497 + 12.6497i −0.147089 + 0.147089i
\(87\) −11.8266 −0.135938
\(88\) 31.3988 + 31.3988i 0.356804 + 0.356804i
\(89\) 168.396i 1.89209i 0.324033 + 0.946046i \(0.394961\pi\)
−0.324033 + 0.946046i \(0.605039\pi\)
\(90\) 20.8439 20.8439i 0.231599 0.231599i
\(91\) −9.44943 9.44943i −0.103840 0.103840i
\(92\) 32.0354i 0.348211i
\(93\) −139.546 −1.50049
\(94\) 59.4417 + 59.4417i 0.632359 + 0.632359i
\(95\) −36.8289 + 36.8289i −0.387672 + 0.387672i
\(96\) 21.1355i 0.220161i
\(97\) 45.2003i 0.465982i 0.972479 + 0.232991i \(0.0748513\pi\)
−0.972479 + 0.232991i \(0.925149\pi\)
\(98\) 72.0312 72.0312i 0.735012 0.735012i
\(99\) 77.8629 0.786493
\(100\) 14.6739i 0.146739i
\(101\) −104.348 104.348i −1.03315 1.03315i −0.999431 0.0337191i \(-0.989265\pi\)
−0.0337191 0.999431i \(-0.510735\pi\)
\(102\) 107.671 107.671i 1.05560 1.05560i
\(103\) 42.0822i 0.408565i −0.978912 0.204283i \(-0.934514\pi\)
0.978912 0.204283i \(-0.0654861\pi\)
\(104\) −2.42942 2.42942i −0.0233598 0.0233598i
\(105\) −172.750 −1.64524
\(106\) 43.5333 + 43.5333i 0.410692 + 0.410692i
\(107\) 92.8106 92.8106i 0.867389 0.867389i −0.124794 0.992183i \(-0.539827\pi\)
0.992183 + 0.124794i \(0.0398269\pi\)
\(108\) −21.3489 21.3489i −0.197675 0.197675i
\(109\) −7.74003 + 7.74003i −0.0710094 + 0.0710094i −0.741720 0.670710i \(-0.765989\pi\)
0.670710 + 0.741720i \(0.265989\pi\)
\(110\) −65.9805 + 65.9805i −0.599823 + 0.599823i
\(111\) −159.359 159.359i −1.43567 1.43567i
\(112\) 31.1167 31.1167i 0.277828 0.277828i
\(113\) −52.3685 + 52.3685i −0.463438 + 0.463438i −0.899781 0.436343i \(-0.856274\pi\)
0.436343 + 0.899781i \(0.356274\pi\)
\(114\) −46.3028 46.3028i −0.406165 0.406165i
\(115\) −67.3183 −0.585377
\(116\) 4.47651 + 4.47651i 0.0385906 + 0.0385906i
\(117\) −6.02448 −0.0514913
\(118\) 127.510 1.08059
\(119\) −317.039 −2.66419
\(120\) −44.4134 −0.370112
\(121\) −125.471 −1.03695
\(122\) 22.1208 + 22.1208i 0.181318 + 0.181318i
\(123\) 91.3403 + 91.3403i 0.742604 + 0.742604i
\(124\) 52.8197 + 52.8197i 0.425965 + 0.425965i
\(125\) 135.904 1.08723
\(126\) 77.1634i 0.612408i
\(127\) 135.667i 1.06825i −0.845406 0.534124i \(-0.820642\pi\)
0.845406 0.534124i \(-0.179358\pi\)
\(128\) 8.00000 8.00000i 0.0625000 0.0625000i
\(129\) 33.4196 33.4196i 0.259066 0.259066i
\(130\) 5.10510 5.10510i 0.0392700 0.0392700i
\(131\) 203.219 1.55129 0.775645 0.631169i \(-0.217425\pi\)
0.775645 + 0.631169i \(0.217425\pi\)
\(132\) −82.9535 82.9535i −0.628435 0.628435i
\(133\) 136.339i 1.02510i
\(134\) −108.610 108.610i −0.810520 0.810520i
\(135\) 44.8619 44.8619i 0.332310 0.332310i
\(136\) −81.5095 −0.599335
\(137\) −164.074 + 164.074i −1.19762 + 1.19762i −0.222744 + 0.974877i \(0.571501\pi\)
−0.974877 + 0.222744i \(0.928499\pi\)
\(138\) 84.6355i 0.613300i
\(139\) 76.8463 + 76.8463i 0.552851 + 0.552851i 0.927263 0.374411i \(-0.122155\pi\)
−0.374411 + 0.927263i \(0.622155\pi\)
\(140\) 65.3877 + 65.3877i 0.467055 + 0.467055i
\(141\) −157.041 157.041i −1.11377 1.11377i
\(142\) 16.6664 0.117369
\(143\) 19.0702 0.133358
\(144\) 19.8384i 0.137767i
\(145\) −9.40680 + 9.40680i −0.0648745 + 0.0648745i
\(146\) 45.3971 45.3971i 0.310939 0.310939i
\(147\) −190.302 + 190.302i −1.29457 + 1.29457i
\(148\) 120.638i 0.815123i
\(149\) 57.3202i 0.384700i 0.981326 + 0.192350i \(0.0616108\pi\)
−0.981326 + 0.192350i \(0.938389\pi\)
\(150\) 38.7676i 0.258450i
\(151\) 80.7973i 0.535082i −0.963547 0.267541i \(-0.913789\pi\)
0.963547 0.267541i \(-0.0862110\pi\)
\(152\) 35.0522i 0.230607i
\(153\) −101.064 + 101.064i −0.660548 + 0.660548i
\(154\) 244.257i 1.58608i
\(155\) −110.994 + 110.994i −0.716088 + 0.716088i
\(156\) 6.41835 + 6.41835i 0.0411433 + 0.0411433i
\(157\) −2.73260 2.73260i −0.0174051 0.0174051i 0.698351 0.715756i \(-0.253918\pi\)
−0.715756 + 0.698351i \(0.753918\pi\)
\(158\) −115.012 + 115.012i −0.727926 + 0.727926i
\(159\) −115.012 115.012i −0.723346 0.723346i
\(160\) 16.8110 + 16.8110i 0.105069 + 0.105069i
\(161\) −124.605 + 124.605i −0.773942 + 0.773942i
\(162\) 101.039 + 101.039i 0.623696 + 0.623696i
\(163\) 124.364 124.364i 0.762969 0.762969i −0.213889 0.976858i \(-0.568613\pi\)
0.976858 + 0.213889i \(0.0686131\pi\)
\(164\) 69.1466i 0.421625i
\(165\) 174.316 174.316i 1.05646 1.05646i
\(166\) −35.2146 −0.212136
\(167\) 63.3114 + 63.3114i 0.379110 + 0.379110i 0.870781 0.491671i \(-0.163614\pi\)
−0.491671 + 0.870781i \(0.663614\pi\)
\(168\) −82.2082 + 82.2082i −0.489335 + 0.489335i
\(169\) 167.524 0.991269
\(170\) 171.282i 1.00754i
\(171\) 43.4614 + 43.4614i 0.254160 + 0.254160i
\(172\) −25.2993 −0.147089
\(173\) 260.069 1.50329 0.751645 0.659568i \(-0.229261\pi\)
0.751645 + 0.659568i \(0.229261\pi\)
\(174\) −11.8266 11.8266i −0.0679692 0.0679692i
\(175\) 57.0756 57.0756i 0.326146 0.326146i
\(176\) 62.7976i 0.356804i
\(177\) −336.872 −1.90323
\(178\) −168.396 + 168.396i −0.946046 + 0.946046i
\(179\) −1.26822 1.26822i −0.00708502 0.00708502i 0.703555 0.710640i \(-0.251595\pi\)
−0.710640 + 0.703555i \(0.751595\pi\)
\(180\) 41.6879 0.231599
\(181\) 80.4184 80.4184i 0.444301 0.444301i −0.449154 0.893455i \(-0.648274\pi\)
0.893455 + 0.449154i \(0.148274\pi\)
\(182\) 18.8989i 0.103840i
\(183\) −58.4418 58.4418i −0.319354 0.319354i
\(184\) −32.0354 + 32.0354i −0.174106 + 0.174106i
\(185\) −253.506 −1.37030
\(186\) −139.546 139.546i −0.750247 0.750247i
\(187\) 319.912 319.912i 1.71076 1.71076i
\(188\) 118.883i 0.632359i
\(189\) 166.077i 0.878713i
\(190\) −73.6578 −0.387672
\(191\) 358.860i 1.87885i −0.342756 0.939424i \(-0.611361\pi\)
0.342756 0.939424i \(-0.388639\pi\)
\(192\) −21.1355 + 21.1355i −0.110080 + 0.110080i
\(193\) −30.4979 + 30.4979i −0.158020 + 0.158020i −0.781689 0.623669i \(-0.785642\pi\)
0.623669 + 0.781689i \(0.285642\pi\)
\(194\) −45.2003 + 45.2003i −0.232991 + 0.232991i
\(195\) −13.4873 + 13.4873i −0.0691658 + 0.0691658i
\(196\) 144.062 0.735012
\(197\) −67.9508 + 67.9508i −0.344928 + 0.344928i −0.858216 0.513288i \(-0.828427\pi\)
0.513288 + 0.858216i \(0.328427\pi\)
\(198\) 77.8629 + 77.8629i 0.393247 + 0.393247i
\(199\) 91.9764i 0.462193i 0.972931 + 0.231097i \(0.0742313\pi\)
−0.972931 + 0.231097i \(0.925769\pi\)
\(200\) 14.6739 14.6739i 0.0733697 0.0733697i
\(201\) 286.940 + 286.940i 1.42756 + 1.42756i
\(202\) 208.696i 1.03315i
\(203\) 34.8236i 0.171545i
\(204\) 215.343 1.05560
\(205\) 145.303 0.708793
\(206\) 42.0822 42.0822i 0.204283 0.204283i
\(207\) 79.4416i 0.383776i
\(208\) 4.85883i 0.0233598i
\(209\) −137.575 137.575i −0.658252 0.658252i
\(210\) −172.750 172.750i −0.822619 0.822619i
\(211\) 281.631i 1.33474i −0.744725 0.667372i \(-0.767419\pi\)
0.744725 0.667372i \(-0.232581\pi\)
\(212\) 87.0666i 0.410692i
\(213\) −44.0316 −0.206721
\(214\) 185.621 0.867389
\(215\) 53.1633i 0.247271i
\(216\) 42.6978i 0.197675i
\(217\) 410.893i 1.89352i
\(218\) −15.4801 −0.0710094
\(219\) −119.936 + 119.936i −0.547654 + 0.547654i
\(220\) −131.961 −0.599823
\(221\) −24.7526 + 24.7526i −0.112003 + 0.112003i
\(222\) 318.718i 1.43567i
\(223\) 204.071 204.071i 0.915115 0.915115i −0.0815541 0.996669i \(-0.525988\pi\)
0.996669 + 0.0815541i \(0.0259883\pi\)
\(224\) 62.2334 0.277828
\(225\) 36.3885i 0.161727i
\(226\) −104.737 −0.463438
\(227\) −178.918 + 178.918i −0.788184 + 0.788184i −0.981196 0.193012i \(-0.938174\pi\)
0.193012 + 0.981196i \(0.438174\pi\)
\(228\) 92.6057i 0.406165i
\(229\) −13.0595 13.0595i −0.0570283 0.0570283i 0.678017 0.735046i \(-0.262839\pi\)
−0.735046 + 0.678017i \(0.762839\pi\)
\(230\) −67.3183 67.3183i −0.292688 0.292688i
\(231\) 645.310i 2.79355i
\(232\) 8.95302i 0.0385906i
\(233\) 50.7731i 0.217910i −0.994047 0.108955i \(-0.965250\pi\)
0.994047 0.108955i \(-0.0347505\pi\)
\(234\) −6.02448 6.02448i −0.0257456 0.0257456i
\(235\) −249.818 −1.06306
\(236\) 127.510 + 127.510i 0.540295 + 0.540295i
\(237\) 303.855 303.855i 1.28209 1.28209i
\(238\) −317.039 317.039i −1.33209 1.33209i
\(239\) −306.969 −1.28439 −0.642195 0.766541i \(-0.721976\pi\)
−0.642195 + 0.766541i \(0.721976\pi\)
\(240\) −44.4134 44.4134i −0.185056 0.185056i
\(241\) 257.200 257.200i 1.06722 1.06722i 0.0696504 0.997571i \(-0.477812\pi\)
0.997571 0.0696504i \(-0.0221884\pi\)
\(242\) −125.471 125.471i −0.518475 0.518475i
\(243\) −170.868 170.868i −0.703159 0.703159i
\(244\) 44.2417i 0.181318i
\(245\) 302.729i 1.23563i
\(246\) 182.681i 0.742604i
\(247\) 10.6446 + 10.6446i 0.0430954 + 0.0430954i
\(248\) 105.639i 0.425965i
\(249\) 93.0345 0.373632
\(250\) 135.904 + 135.904i 0.543616 + 0.543616i
\(251\) 180.395 + 180.395i 0.718707 + 0.718707i 0.968340 0.249634i \(-0.0803102\pi\)
−0.249634 + 0.968340i \(0.580310\pi\)
\(252\) 77.1634 77.1634i 0.306204 0.306204i
\(253\) 251.469i 0.993947i
\(254\) 135.667 135.667i 0.534124 0.534124i
\(255\) 452.514i 1.77457i
\(256\) 16.0000 0.0625000
\(257\) 227.649 + 227.649i 0.885794 + 0.885794i 0.994116 0.108322i \(-0.0345476\pi\)
−0.108322 + 0.994116i \(0.534548\pi\)
\(258\) 66.8391 0.259066
\(259\) −469.233 + 469.233i −1.81171 + 1.81171i
\(260\) 10.2102 0.0392700
\(261\) 11.1009 + 11.1009i 0.0425321 + 0.0425321i
\(262\) 203.219 + 203.219i 0.775645 + 0.775645i
\(263\) 289.446 1.10055 0.550277 0.834982i \(-0.314522\pi\)
0.550277 + 0.834982i \(0.314522\pi\)
\(264\) 165.907i 0.628435i
\(265\) −182.959 −0.690412
\(266\) −136.339 + 136.339i −0.512552 + 0.512552i
\(267\) 444.891 444.891i 1.66626 1.66626i
\(268\) 217.219i 0.810520i
\(269\) 131.967 + 234.405i 0.490582 + 0.871395i
\(270\) 89.7238 0.332310
\(271\) −99.5676 99.5676i −0.367408 0.367408i 0.499123 0.866531i \(-0.333656\pi\)
−0.866531 + 0.499123i \(0.833656\pi\)
\(272\) −81.5095 81.5095i −0.299667 0.299667i
\(273\) 49.9295i 0.182892i
\(274\) −328.148 −1.19762
\(275\) 115.186i 0.418858i
\(276\) 84.6355 84.6355i 0.306650 0.306650i
\(277\) −86.2116 + 86.2116i −0.311233 + 0.311233i −0.845387 0.534154i \(-0.820630\pi\)
0.534154 + 0.845387i \(0.320630\pi\)
\(278\) 153.693i 0.552851i
\(279\) 130.982 + 130.982i 0.469471 + 0.469471i
\(280\) 130.775i 0.467055i
\(281\) −263.133 + 263.133i −0.936415 + 0.936415i −0.998096 0.0616810i \(-0.980354\pi\)
0.0616810 + 0.998096i \(0.480354\pi\)
\(282\) 314.082i 1.11377i
\(283\) 339.372 1.19919 0.599597 0.800302i \(-0.295328\pi\)
0.599597 + 0.800302i \(0.295328\pi\)
\(284\) 16.6664 + 16.6664i 0.0586846 + 0.0586846i
\(285\) 194.599 0.682803
\(286\) 19.0702 + 19.0702i 0.0666790 + 0.0666790i
\(287\) 268.952 268.952i 0.937114 0.937114i
\(288\) 19.8384 19.8384i 0.0688835 0.0688835i
\(289\) 541.475i 1.87362i
\(290\) −18.8136 −0.0648745
\(291\) 119.416 119.416i 0.410365 0.410365i
\(292\) 90.7943 0.310939
\(293\) −295.679 −1.00914 −0.504572 0.863370i \(-0.668350\pi\)
−0.504572 + 0.863370i \(0.668350\pi\)
\(294\) −380.603 −1.29457
\(295\) −267.945 + 267.945i −0.908288 + 0.908288i
\(296\) −120.638 + 120.638i −0.407562 + 0.407562i
\(297\) 167.582 + 167.582i 0.564250 + 0.564250i
\(298\) −57.3202 + 57.3202i −0.192350 + 0.192350i
\(299\) 19.4569i 0.0650731i
\(300\) −38.7676 + 38.7676i −0.129225 + 0.129225i
\(301\) −98.4040 98.4040i −0.326924 0.326924i
\(302\) 80.7973 80.7973i 0.267541 0.267541i
\(303\) 551.362i 1.81968i
\(304\) −35.0522 + 35.0522i −0.115303 + 0.115303i
\(305\) −92.9682 −0.304814
\(306\) −202.128 −0.660548
\(307\) 239.609 0.780487 0.390243 0.920712i \(-0.372391\pi\)
0.390243 + 0.920712i \(0.372391\pi\)
\(308\) −244.257 + 244.257i −0.793041 + 0.793041i
\(309\) −111.178 + 111.178i −0.359800 + 0.359800i
\(310\) −221.987 −0.716088
\(311\) −163.604 163.604i −0.526059 0.526059i 0.393336 0.919395i \(-0.371321\pi\)
−0.919395 + 0.393336i \(0.871321\pi\)
\(312\) 12.8367i 0.0411433i
\(313\) 224.705 0.717908 0.358954 0.933355i \(-0.383134\pi\)
0.358954 + 0.933355i \(0.383134\pi\)
\(314\) 5.46519i 0.0174051i
\(315\) 162.149 + 162.149i 0.514758 + 0.514758i
\(316\) −230.025 −0.727926
\(317\) −278.202 278.202i −0.877608 0.877608i 0.115679 0.993287i \(-0.463096\pi\)
−0.993287 + 0.115679i \(0.963096\pi\)
\(318\) 230.024i 0.723346i
\(319\) −35.1392 35.1392i −0.110154 0.110154i
\(320\) 33.6219i 0.105069i
\(321\) −490.399 −1.52772
\(322\) −249.209 −0.773942
\(323\) 357.136 1.10569
\(324\) 202.078i 0.623696i
\(325\) 8.91228i 0.0274224i
\(326\) 248.728 0.762969
\(327\) 40.8972 0.125068
\(328\) 69.1466 69.1466i 0.210813 0.210813i
\(329\) −462.408 + 462.408i −1.40549 + 1.40549i
\(330\) 348.632 1.05646
\(331\) 108.806 0.328718 0.164359 0.986401i \(-0.447444\pi\)
0.164359 + 0.986401i \(0.447444\pi\)
\(332\) −35.2146 35.2146i −0.106068 0.106068i
\(333\) 299.159i 0.898376i
\(334\) 126.623i 0.379110i
\(335\) 456.459 1.36256
\(336\) −164.416 −0.489335
\(337\) 290.704 290.704i 0.862625 0.862625i −0.129018 0.991642i \(-0.541182\pi\)
0.991642 + 0.129018i \(0.0411824\pi\)
\(338\) 167.524 + 167.524i 0.495635 + 0.495635i
\(339\) 276.708 0.816248
\(340\) 171.282 171.282i 0.503770 0.503770i
\(341\) −414.618 414.618i −1.21589 1.21589i
\(342\) 86.9227i 0.254160i
\(343\) 179.164 + 179.164i 0.522344 + 0.522344i
\(344\) −25.2993 25.2993i −0.0735446 0.0735446i
\(345\) 177.850 + 177.850i 0.515509 + 0.515509i
\(346\) 260.069 + 260.069i 0.751645 + 0.751645i
\(347\) −143.691 −0.414095 −0.207048 0.978331i \(-0.566386\pi\)
−0.207048 + 0.978331i \(0.566386\pi\)
\(348\) 23.6533i 0.0679692i
\(349\) 300.144 0.860012 0.430006 0.902826i \(-0.358512\pi\)
0.430006 + 0.902826i \(0.358512\pi\)
\(350\) 114.151 0.326146
\(351\) −12.9663 12.9663i −0.0369411 0.0369411i
\(352\) −62.7976 + 62.7976i −0.178402 + 0.178402i
\(353\) 541.225i 1.53322i −0.642115 0.766608i \(-0.721943\pi\)
0.642115 0.766608i \(-0.278057\pi\)
\(354\) −336.872 336.872i −0.951615 0.951615i
\(355\) −35.0223 + 35.0223i −0.0986545 + 0.0986545i
\(356\) −336.792 −0.946046
\(357\) 837.594 + 837.594i 2.34620 + 2.34620i
\(358\) 2.53644i 0.00708502i
\(359\) −48.0321 + 48.0321i −0.133794 + 0.133794i −0.770832 0.637038i \(-0.780159\pi\)
0.637038 + 0.770832i \(0.280159\pi\)
\(360\) 41.6879 + 41.6879i 0.115800 + 0.115800i
\(361\) 207.417i 0.574564i
\(362\) 160.837 0.444301
\(363\) 331.486 + 331.486i 0.913184 + 0.913184i
\(364\) 18.8989 18.8989i 0.0519200 0.0519200i
\(365\) 190.792i 0.522719i
\(366\) 116.884i 0.319354i
\(367\) −15.3631 + 15.3631i −0.0418613 + 0.0418613i −0.727728 0.685866i \(-0.759423\pi\)
0.685866 + 0.727728i \(0.259423\pi\)
\(368\) −64.0709 −0.174106
\(369\) 171.470i 0.464688i
\(370\) −253.506 253.506i −0.685150 0.685150i
\(371\) −338.653 + 338.653i −0.912812 + 0.912812i
\(372\) 279.092i 0.750247i
\(373\) 86.2389 + 86.2389i 0.231203 + 0.231203i 0.813195 0.581991i \(-0.197726\pi\)
−0.581991 + 0.813195i \(0.697726\pi\)
\(374\) 639.825 1.71076
\(375\) −359.049 359.049i −0.957464 0.957464i
\(376\) −118.883 + 118.883i −0.316179 + 0.316179i
\(377\) 2.71883 + 2.71883i 0.00721174 + 0.00721174i
\(378\) 166.077 166.077i 0.439356 0.439356i
\(379\) 326.883 326.883i 0.862489 0.862489i −0.129137 0.991627i \(-0.541221\pi\)
0.991627 + 0.129137i \(0.0412208\pi\)
\(380\) −73.6578 73.6578i −0.193836 0.193836i
\(381\) −358.424 + 358.424i −0.940746 + 0.940746i
\(382\) 358.860 358.860i 0.939424 0.939424i
\(383\) 167.177 + 167.177i 0.436493 + 0.436493i 0.890830 0.454337i \(-0.150124\pi\)
−0.454337 + 0.890830i \(0.650124\pi\)
\(384\) −42.2709 −0.110080
\(385\) −513.274 513.274i −1.33318 1.33318i
\(386\) −60.9959 −0.158020
\(387\) −62.7374 −0.162112
\(388\) −90.4006 −0.232991
\(389\) −156.002 −0.401033 −0.200516 0.979690i \(-0.564262\pi\)
−0.200516 + 0.979690i \(0.564262\pi\)
\(390\) −26.9747 −0.0691658
\(391\) 326.399 + 326.399i 0.834781 + 0.834781i
\(392\) 144.062 + 144.062i 0.367506 + 0.367506i
\(393\) −536.891 536.891i −1.36613 1.36613i
\(394\) −135.902 −0.344928
\(395\) 483.367i 1.22371i
\(396\) 155.726i 0.393247i
\(397\) −190.062 + 190.062i −0.478746 + 0.478746i −0.904730 0.425985i \(-0.859928\pi\)
0.425985 + 0.904730i \(0.359928\pi\)
\(398\) −91.9764 + 91.9764i −0.231097 + 0.231097i
\(399\) 360.198 360.198i 0.902752 0.902752i
\(400\) 29.3479 0.0733697
\(401\) 439.773 + 439.773i 1.09669 + 1.09669i 0.994795 + 0.101896i \(0.0324910\pi\)
0.101896 + 0.994795i \(0.467509\pi\)
\(402\) 573.879i 1.42756i
\(403\) 32.0802 + 32.0802i 0.0796036 + 0.0796036i
\(404\) 208.696 208.696i 0.516575 0.516575i
\(405\) −424.640 −1.04849
\(406\) −34.8236 + 34.8236i −0.0857723 + 0.0857723i
\(407\) 946.973i 2.32672i
\(408\) 215.343 + 215.343i 0.527800 + 0.527800i
\(409\) 163.157 + 163.157i 0.398916 + 0.398916i 0.877851 0.478935i \(-0.158977\pi\)
−0.478935 + 0.877851i \(0.658977\pi\)
\(410\) 145.303 + 145.303i 0.354396 + 0.354396i
\(411\) 866.945 2.10936
\(412\) 84.1644 0.204283
\(413\) 991.920i 2.40174i
\(414\) −79.4416 + 79.4416i −0.191888 + 0.191888i
\(415\) 73.9988 73.9988i 0.178310 0.178310i
\(416\) 4.85883 4.85883i 0.0116799 0.0116799i
\(417\) 406.046i 0.973730i
\(418\) 275.150i 0.658252i
\(419\) 157.994i 0.377075i −0.982066 0.188538i \(-0.939625\pi\)
0.982066 0.188538i \(-0.0603747\pi\)
\(420\) 345.500i 0.822619i
\(421\) 94.7762i 0.225122i −0.993645 0.112561i \(-0.964095\pi\)
0.993645 0.112561i \(-0.0359053\pi\)
\(422\) 281.631 281.631i 0.667372 0.667372i
\(423\) 294.808i 0.696945i
\(424\) −87.0666 + 87.0666i −0.205346 + 0.205346i
\(425\) −149.508 149.508i −0.351784 0.351784i
\(426\) −44.0316 44.0316i −0.103360 0.103360i
\(427\) −172.082 + 172.082i −0.403002 + 0.403002i
\(428\) 185.621 + 185.621i 0.433695 + 0.433695i
\(429\) −50.3821 50.3821i −0.117441 0.117441i
\(430\) 53.1633 53.1633i 0.123636 0.123636i
\(431\) −432.658 432.658i −1.00385 1.00385i −0.999993 0.00385457i \(-0.998773\pi\)
−0.00385457 0.999993i \(-0.501227\pi\)
\(432\) 42.6978 42.6978i 0.0988374 0.0988374i
\(433\) 174.247i 0.402417i −0.979548 0.201209i \(-0.935513\pi\)
0.979548 0.201209i \(-0.0644869\pi\)
\(434\) −410.893 + 410.893i −0.946759 + 0.946759i
\(435\) 49.7043 0.114263
\(436\) −15.4801 15.4801i −0.0355047 0.0355047i
\(437\) 140.364 140.364i 0.321200 0.321200i
\(438\) −239.872 −0.547654
\(439\) 57.0370i 0.129925i −0.997888 0.0649625i \(-0.979307\pi\)
0.997888 0.0649625i \(-0.0206928\pi\)
\(440\) −131.961 131.961i −0.299911 0.299911i
\(441\) 357.247 0.810083
\(442\) −49.5051 −0.112003
\(443\) −344.142 344.142i −0.776844 0.776844i 0.202449 0.979293i \(-0.435110\pi\)
−0.979293 + 0.202449i \(0.935110\pi\)
\(444\) 318.718 318.718i 0.717833 0.717833i
\(445\) 707.725i 1.59039i
\(446\) 408.141 0.915115
\(447\) 151.436 151.436i 0.338783 0.338783i
\(448\) 62.2334 + 62.2334i 0.138914 + 0.138914i
\(449\) 56.1655 0.125090 0.0625451 0.998042i \(-0.480078\pi\)
0.0625451 + 0.998042i \(0.480078\pi\)
\(450\) 36.3885 36.3885i 0.0808634 0.0808634i
\(451\) 542.780i 1.20350i
\(452\) −104.737 104.737i −0.231719 0.231719i
\(453\) −213.461 + 213.461i −0.471216 + 0.471216i
\(454\) −357.836 −0.788184
\(455\) 39.7135 + 39.7135i 0.0872824 + 0.0872824i
\(456\) 92.6057 92.6057i 0.203083 0.203083i
\(457\) 838.647i 1.83511i −0.397603 0.917557i \(-0.630158\pi\)
0.397603 0.917557i \(-0.369842\pi\)
\(458\) 26.1190i 0.0570283i
\(459\) −435.034 −0.947787
\(460\) 134.637i 0.292688i
\(461\) −301.956 + 301.956i −0.655003 + 0.655003i −0.954193 0.299190i \(-0.903283\pi\)
0.299190 + 0.954193i \(0.403283\pi\)
\(462\) 645.310 645.310i 1.39677 1.39677i
\(463\) −78.4692 + 78.4692i −0.169480 + 0.169480i −0.786751 0.617271i \(-0.788238\pi\)
0.617271 + 0.786751i \(0.288238\pi\)
\(464\) −8.95302 + 8.95302i −0.0192953 + 0.0192953i
\(465\) 586.475 1.26124
\(466\) 50.7731 50.7731i 0.108955 0.108955i
\(467\) 538.949 + 538.949i 1.15407 + 1.15407i 0.985730 + 0.168337i \(0.0538396\pi\)
0.168337 + 0.985730i \(0.446160\pi\)
\(468\) 12.0490i 0.0257456i
\(469\) 844.894 844.894i 1.80148 1.80148i
\(470\) −249.818 249.818i −0.531528 0.531528i
\(471\) 14.4387i 0.0306553i
\(472\) 255.019i 0.540295i
\(473\) 198.592 0.419857
\(474\) 607.709 1.28209
\(475\) −64.2944 + 64.2944i −0.135357 + 0.135357i
\(476\) 634.077i 1.33209i
\(477\) 215.908i 0.452638i
\(478\) −306.969 306.969i −0.642195 0.642195i
\(479\) 560.930 + 560.930i 1.17104 + 1.17104i 0.981961 + 0.189084i \(0.0605518\pi\)
0.189084 + 0.981961i \(0.439448\pi\)
\(480\) 88.8268i 0.185056i
\(481\) 73.2701i 0.152329i
\(482\) 514.401 1.06722
\(483\) 658.394 1.36314
\(484\) 250.942i 0.518475i
\(485\) 189.965i 0.391681i
\(486\) 341.735i 0.703159i
\(487\) 805.074 1.65313 0.826565 0.562842i \(-0.190292\pi\)
0.826565 + 0.562842i \(0.190292\pi\)
\(488\) −44.2417 + 44.2417i −0.0906592 + 0.0906592i
\(489\) −657.122 −1.34381
\(490\) −302.729 + 302.729i −0.617813 + 0.617813i
\(491\) 146.377i 0.298119i −0.988828 0.149060i \(-0.952375\pi\)
0.988828 0.149060i \(-0.0476246\pi\)
\(492\) −182.681 + 182.681i −0.371302 + 0.371302i
\(493\) 91.2195 0.185029
\(494\) 21.2891i 0.0430954i
\(495\) −327.237 −0.661086
\(496\) −105.639 + 105.639i −0.212982 + 0.212982i
\(497\) 129.651i 0.260867i
\(498\) 93.0345 + 93.0345i 0.186816 + 0.186816i
\(499\) 431.944 + 431.944i 0.865620 + 0.865620i 0.991984 0.126364i \(-0.0403308\pi\)
−0.126364 + 0.991984i \(0.540331\pi\)
\(500\) 271.808i 0.543616i
\(501\) 334.529i 0.667722i
\(502\) 360.791i 0.718707i
\(503\) 630.830 + 630.830i 1.25413 + 1.25413i 0.953849 + 0.300285i \(0.0970819\pi\)
0.300285 + 0.953849i \(0.402918\pi\)
\(504\) 154.327 0.306204
\(505\) 438.548 + 438.548i 0.868413 + 0.868413i
\(506\) 251.469 251.469i 0.496973 0.496973i
\(507\) −442.588 442.588i −0.872955 0.872955i
\(508\) 271.335 0.534124
\(509\) 119.843 + 119.843i 0.235448 + 0.235448i 0.814962 0.579514i \(-0.196758\pi\)
−0.579514 + 0.814962i \(0.696758\pi\)
\(510\) −452.514 + 452.514i −0.887283 + 0.887283i
\(511\) 353.152 + 353.152i 0.691101 + 0.691101i
\(512\) 16.0000 + 16.0000i 0.0312500 + 0.0312500i
\(513\) 187.082i 0.364681i
\(514\) 455.298i 0.885794i
\(515\) 176.861i 0.343419i
\(516\) 66.8391 + 66.8391i 0.129533 + 0.129533i
\(517\) 933.199i 1.80503i
\(518\) −938.466 −1.81171
\(519\) −687.085 687.085i −1.32386 1.32386i
\(520\) 10.2102 + 10.2102i 0.0196350 + 0.0196350i
\(521\) 89.9902 89.9902i 0.172726 0.172726i −0.615450 0.788176i \(-0.711026\pi\)
0.788176 + 0.615450i \(0.211026\pi\)
\(522\) 22.2017i 0.0425321i
\(523\) −265.015 + 265.015i −0.506720 + 0.506720i −0.913518 0.406798i \(-0.866645\pi\)
0.406798 + 0.913518i \(0.366645\pi\)
\(524\) 406.438i 0.775645i
\(525\) −301.580 −0.574438
\(526\) 289.446 + 289.446i 0.550277 + 0.550277i
\(527\) 1076.33 2.04236
\(528\) 165.907 165.907i 0.314218 0.314218i
\(529\) −272.433 −0.514995
\(530\) −182.959 182.959i −0.345206 0.345206i
\(531\) 316.199 + 316.199i 0.595478 + 0.595478i
\(532\) −272.678 −0.512552
\(533\) 41.9964i 0.0787926i
\(534\) 889.782 1.66626
\(535\) −390.059 + 390.059i −0.729082 + 0.729082i
\(536\) 217.219 217.219i 0.405260 0.405260i
\(537\) 6.70110i 0.0124788i
\(538\) −102.439 + 366.372i −0.190406 + 0.680989i
\(539\) −1130.85 −2.09805
\(540\) 89.7238 + 89.7238i 0.166155 + 0.166155i
\(541\) 53.8416 + 53.8416i 0.0995223 + 0.0995223i 0.755115 0.655593i \(-0.227581\pi\)
−0.655593 + 0.755115i \(0.727581\pi\)
\(542\) 199.135i 0.367408i
\(543\) −424.920 −0.782542
\(544\) 163.019i 0.299667i
\(545\) 32.5293 32.5293i 0.0596868 0.0596868i
\(546\) −49.9295 + 49.9295i −0.0914460 + 0.0914460i
\(547\) 714.572i 1.30635i −0.757208 0.653174i \(-0.773437\pi\)
0.757208 0.653174i \(-0.226563\pi\)
\(548\) −328.148 328.148i −0.598811 0.598811i
\(549\) 109.711i 0.199837i
\(550\) −115.186 + 115.186i −0.209429 + 0.209429i
\(551\) 39.2279i 0.0711941i
\(552\) 169.271 0.306650
\(553\) −894.701 894.701i −1.61790 1.61790i
\(554\) −172.423 −0.311233
\(555\) 669.744 + 669.744i 1.20675 + 1.20675i
\(556\) −153.693 + 153.693i −0.276426 + 0.276426i
\(557\) −327.709 + 327.709i −0.588346 + 0.588346i −0.937183 0.348837i \(-0.886577\pi\)
0.348837 + 0.937183i \(0.386577\pi\)
\(558\) 261.965i 0.469471i
\(559\) −15.3657 −0.0274878
\(560\) −130.775 + 130.775i −0.233528 + 0.233528i
\(561\) −1690.37 −3.01314
\(562\) −526.265 −0.936415
\(563\) −976.122 −1.73379 −0.866893 0.498494i \(-0.833887\pi\)
−0.866893 + 0.498494i \(0.833887\pi\)
\(564\) 314.082 314.082i 0.556883 0.556883i
\(565\) 220.091 220.091i 0.389542 0.389542i
\(566\) 339.372 + 339.372i 0.599597 + 0.599597i
\(567\) −785.999 + 785.999i −1.38624 + 1.38624i
\(568\) 33.3329i 0.0586846i
\(569\) 3.78604 3.78604i 0.00665384 0.00665384i −0.703772 0.710426i \(-0.748502\pi\)
0.710426 + 0.703772i \(0.248502\pi\)
\(570\) 194.599 + 194.599i 0.341401 + 0.341401i
\(571\) −351.098 + 351.098i −0.614883 + 0.614883i −0.944214 0.329331i \(-0.893177\pi\)
0.329331 + 0.944214i \(0.393177\pi\)
\(572\) 38.1404i 0.0666790i
\(573\) −948.084 + 948.084i −1.65460 + 1.65460i
\(574\) 537.903 0.937114
\(575\) −117.522 −0.204385
\(576\) 39.6769 0.0688835
\(577\) 335.104 335.104i 0.580769 0.580769i −0.354346 0.935115i \(-0.615296\pi\)
0.935115 + 0.354346i \(0.115296\pi\)
\(578\) −541.475 + 541.475i −0.936808 + 0.936808i
\(579\) 161.147 0.278319
\(580\) −18.8136 18.8136i −0.0324373 0.0324373i
\(581\) 273.940i 0.471498i
\(582\) 238.832 0.410365
\(583\) 683.447i 1.17229i
\(584\) 90.7943 + 90.7943i 0.155470 + 0.155470i
\(585\) 25.3193 0.0432809
\(586\) −295.679 295.679i −0.504572 0.504572i
\(587\) 769.243i 1.31047i 0.755427 + 0.655233i \(0.227429\pi\)
−0.755427 + 0.655233i \(0.772571\pi\)
\(588\) −380.603 380.603i −0.647284 0.647284i
\(589\) 462.862i 0.785844i
\(590\) −535.890 −0.908288
\(591\) 359.043 0.607517
\(592\) −241.276 −0.407562
\(593\) 71.0043i 0.119737i 0.998206 + 0.0598687i \(0.0190682\pi\)
−0.998206 + 0.0598687i \(0.980932\pi\)
\(594\) 335.164i 0.564250i
\(595\) 1332.43 2.23938
\(596\) −114.640 −0.192350
\(597\) 242.995 242.995i 0.407028 0.407028i
\(598\) −19.4569 + 19.4569i −0.0325366 + 0.0325366i
\(599\) −1076.73 −1.79755 −0.898776 0.438408i \(-0.855542\pi\)
−0.898776 + 0.438408i \(0.855542\pi\)
\(600\) −77.5351 −0.129225
\(601\) −175.605 175.605i −0.292188 0.292188i 0.545756 0.837944i \(-0.316242\pi\)
−0.837944 + 0.545756i \(0.816242\pi\)
\(602\) 196.808i 0.326924i
\(603\) 538.662i 0.893303i
\(604\) 161.595 0.267541
\(605\) 527.322 0.871607
\(606\) −551.362 + 551.362i −0.909838 + 0.909838i
\(607\) 259.740 + 259.740i 0.427908 + 0.427908i 0.887915 0.460007i \(-0.152153\pi\)
−0.460007 + 0.887915i \(0.652153\pi\)
\(608\) −70.1045 −0.115303
\(609\) 92.0015 92.0015i 0.151070 0.151070i
\(610\) −92.9682 92.9682i −0.152407 0.152407i
\(611\) 72.2044i 0.118174i
\(612\) −202.128 202.128i −0.330274 0.330274i
\(613\) −379.063 379.063i −0.618374 0.618374i 0.326740 0.945114i \(-0.394050\pi\)
−0.945114 + 0.326740i \(0.894050\pi\)
\(614\) 239.609 + 239.609i 0.390243 + 0.390243i
\(615\) −383.879 383.879i −0.624194 0.624194i
\(616\) −488.514 −0.793041
\(617\) 1216.75i 1.97204i −0.166617 0.986022i \(-0.553284\pi\)
0.166617 0.986022i \(-0.446716\pi\)
\(618\) −222.357 −0.359800
\(619\) −279.546 −0.451609 −0.225804 0.974173i \(-0.572501\pi\)
−0.225804 + 0.974173i \(0.572501\pi\)
\(620\) −221.987 221.987i −0.358044 0.358044i
\(621\) −170.980 + 170.980i −0.275330 + 0.275330i
\(622\) 327.209i 0.526059i
\(623\) −1309.98 1309.98i −2.10270 2.10270i
\(624\) −12.8367 + 12.8367i −0.0205716 + 0.0205716i
\(625\) −387.745 −0.620391
\(626\) 224.705 + 224.705i 0.358954 + 0.358954i
\(627\) 726.926i 1.15937i
\(628\) 5.46519 5.46519i 0.00870253 0.00870253i
\(629\) 1229.15 + 1229.15i 1.95413 + 1.95413i
\(630\) 324.298i 0.514758i
\(631\) −316.272 −0.501223 −0.250611 0.968088i \(-0.580632\pi\)
−0.250611 + 0.968088i \(0.580632\pi\)
\(632\) −230.025 230.025i −0.363963 0.363963i
\(633\) −744.050 + 744.050i −1.17543 + 1.17543i
\(634\) 556.403i 0.877608i
\(635\) 570.175i 0.897913i
\(636\) 230.024 230.024i 0.361673 0.361673i
\(637\) 87.4969 0.137358
\(638\) 70.2785i 0.110154i
\(639\) 41.3295 + 41.3295i 0.0646784 + 0.0646784i
\(640\) −33.6219 + 33.6219i −0.0525343 + 0.0525343i
\(641\) 1028.78i 1.60496i 0.596682 + 0.802478i \(0.296486\pi\)
−0.596682 + 0.802478i \(0.703514\pi\)
\(642\) −490.399 490.399i −0.763861 0.763861i
\(643\) −509.410 −0.792239 −0.396119 0.918199i \(-0.629643\pi\)
−0.396119 + 0.918199i \(0.629643\pi\)
\(644\) −249.209 249.209i −0.386971 0.386971i
\(645\) −140.454 + 140.454i −0.217758 + 0.217758i
\(646\) 357.136 + 357.136i 0.552843 + 0.552843i
\(647\) −471.689 + 471.689i −0.729040 + 0.729040i −0.970429 0.241388i \(-0.922397\pi\)
0.241388 + 0.970429i \(0.422397\pi\)
\(648\) −202.078 + 202.078i −0.311848 + 0.311848i
\(649\) −1000.91 1000.91i −1.54224 1.54224i
\(650\) 8.91228 8.91228i 0.0137112 0.0137112i
\(651\) 1085.55 1085.55i 1.66752 1.66752i
\(652\) 248.728 + 248.728i 0.381485 + 0.381485i
\(653\) 790.921 1.21121 0.605606 0.795765i \(-0.292931\pi\)
0.605606 + 0.795765i \(0.292931\pi\)
\(654\) 40.8972 + 40.8972i 0.0625340 + 0.0625340i
\(655\) −854.077 −1.30393
\(656\) 138.293 0.210813
\(657\) 225.152 0.342697
\(658\) −924.816 −1.40549
\(659\) −435.242 −0.660458 −0.330229 0.943901i \(-0.607126\pi\)
−0.330229 + 0.943901i \(0.607126\pi\)
\(660\) 348.632 + 348.632i 0.528230 + 0.528230i
\(661\) −78.4982 78.4982i −0.118757 0.118757i 0.645231 0.763988i \(-0.276761\pi\)
−0.763988 + 0.645231i \(0.776761\pi\)
\(662\) 108.806 + 108.806i 0.164359 + 0.164359i
\(663\) 130.789 0.197269
\(664\) 70.4291i 0.106068i
\(665\) 572.997i 0.861649i
\(666\) −299.159 + 299.159i −0.449188 + 0.449188i
\(667\) 35.8517 35.8517i 0.0537507 0.0537507i
\(668\) −126.623 + 126.623i −0.189555 + 0.189555i
\(669\) −1078.28 −1.61178
\(670\) 456.459 + 456.459i 0.681281 + 0.681281i
\(671\) 347.284i 0.517562i
\(672\) −164.416 164.416i −0.244667 0.244667i
\(673\) −769.203 + 769.203i −1.14295 + 1.14295i −0.155038 + 0.987909i \(0.549550\pi\)
−0.987909 + 0.155038i \(0.950450\pi\)
\(674\) 581.409 0.862625
\(675\) 78.3181 78.3181i 0.116027 0.116027i
\(676\) 335.049i 0.495635i
\(677\) 494.417 + 494.417i 0.730305 + 0.730305i 0.970680 0.240375i \(-0.0772704\pi\)
−0.240375 + 0.970680i \(0.577270\pi\)
\(678\) 276.708 + 276.708i 0.408124 + 0.408124i
\(679\) −351.621 351.621i −0.517851 0.517851i
\(680\) 342.563 0.503770
\(681\) 945.378 1.38822
\(682\) 829.237i 1.21589i
\(683\) −516.786 + 516.786i −0.756642 + 0.756642i −0.975710 0.219068i \(-0.929698\pi\)
0.219068 + 0.975710i \(0.429698\pi\)
\(684\) −86.9227 + 86.9227i −0.127080 + 0.127080i
\(685\) 689.561 689.561i 1.00666 1.00666i
\(686\) 358.328i 0.522344i
\(687\) 69.0045i 0.100443i
\(688\) 50.5987i 0.0735446i
\(689\) 52.8803i 0.0767493i
\(690\) 355.701i 0.515509i
\(691\) −142.498 + 142.498i −0.206221 + 0.206221i −0.802659 0.596438i \(-0.796582\pi\)
0.596438 + 0.802659i \(0.296582\pi\)
\(692\) 520.138i 0.751645i
\(693\) −605.709 + 605.709i −0.874039 + 0.874039i
\(694\) −143.691 143.691i −0.207048 0.207048i
\(695\) −322.965 322.965i −0.464698 0.464698i
\(696\) 23.6533 23.6533i 0.0339846 0.0339846i
\(697\) −704.513 704.513i −1.01078 1.01078i
\(698\) 300.144 + 300.144i 0.430006 + 0.430006i
\(699\) −134.139 + 134.139i −0.191901 + 0.191901i
\(700\) 114.151 + 114.151i 0.163073 + 0.163073i
\(701\) 467.417 467.417i 0.666786 0.666786i −0.290185 0.956971i \(-0.593717\pi\)
0.956971 + 0.290185i \(0.0937167\pi\)
\(702\) 25.9327i 0.0369411i
\(703\) 528.580 528.580i 0.751892 0.751892i
\(704\) −125.595 −0.178402
\(705\) 660.003 + 660.003i 0.936174 + 0.936174i
\(706\) 541.225 541.225i 0.766608 0.766608i
\(707\) 1623.49 2.29630
\(708\) 673.743i 0.951615i
\(709\) 367.429 + 367.429i 0.518236 + 0.518236i 0.917037 0.398801i \(-0.130574\pi\)
−0.398801 + 0.917037i \(0.630574\pi\)
\(710\) −70.0447 −0.0986545
\(711\) −570.416 −0.802273
\(712\) −336.792 336.792i −0.473023 0.473023i
\(713\) 423.025 423.025i 0.593303 0.593303i
\(714\) 1675.19i 2.34620i
\(715\) −80.1470 −0.112094
\(716\) 2.53644 2.53644i 0.00354251 0.00354251i
\(717\) 810.992 + 810.992i 1.13109 + 1.13109i
\(718\) −96.0643 −0.133794
\(719\) 621.212 621.212i 0.863995 0.863995i −0.127805 0.991799i \(-0.540793\pi\)
0.991799 + 0.127805i \(0.0407931\pi\)
\(720\) 83.3758i 0.115800i
\(721\) 327.365 + 327.365i 0.454043 + 0.454043i
\(722\) −207.417 + 207.417i −0.287282 + 0.287282i
\(723\) −1359.01 −1.87968
\(724\) 160.837 + 160.837i 0.222150 + 0.222150i
\(725\) −16.4220 + 16.4220i −0.0226511 + 0.0226511i
\(726\) 662.972i 0.913184i
\(727\) 378.499i 0.520632i −0.965523 0.260316i \(-0.916173\pi\)
0.965523 0.260316i \(-0.0838267\pi\)
\(728\) 37.7977 0.0519200
\(729\) 6.50783i 0.00892707i
\(730\) −190.792 + 190.792i −0.261359 + 0.261359i
\(731\) −257.767 + 257.767i −0.352623 + 0.352623i
\(732\) 116.884 116.884i 0.159677 0.159677i
\(733\) −199.192 + 199.192i −0.271748 + 0.271748i −0.829804 0.558055i \(-0.811548\pi\)
0.558055 + 0.829804i \(0.311548\pi\)
\(734\) −30.7262 −0.0418613
\(735\) 799.788 799.788i 1.08815 1.08815i
\(736\) −64.0709 64.0709i −0.0870528 0.0870528i
\(737\) 1705.11i 2.31358i
\(738\) 171.470 171.470i 0.232344 0.232344i
\(739\) −626.498 626.498i −0.847764 0.847764i 0.142089 0.989854i \(-0.454618\pi\)
−0.989854 + 0.142089i \(0.954618\pi\)
\(740\) 507.011i 0.685150i
\(741\) 56.2444i 0.0759034i
\(742\) −677.307 −0.912812
\(743\) 214.623 0.288860 0.144430 0.989515i \(-0.453865\pi\)
0.144430 + 0.989515i \(0.453865\pi\)
\(744\) 279.092 279.092i 0.375123 0.375123i
\(745\) 240.902i 0.323358i
\(746\) 172.478i 0.231203i
\(747\) −87.3252 87.3252i −0.116901 0.116901i
\(748\) 639.825 + 639.825i 0.855381 + 0.855381i
\(749\) 1443.98i 1.92788i
\(750\) 718.098i 0.957464i
\(751\) −1224.27 −1.63019 −0.815093 0.579330i \(-0.803314\pi\)
−0.815093 + 0.579330i \(0.803314\pi\)
\(752\) −237.767 −0.316179
\(753\) 953.185i 1.26585i
\(754\) 5.43765i 0.00721174i
\(755\) 339.570i 0.449762i
\(756\) 332.153 0.439356
\(757\) 614.004 614.004i 0.811102 0.811102i −0.173697 0.984799i \(-0.555571\pi\)
0.984799 + 0.173697i \(0.0555713\pi\)
\(758\) 653.767 0.862489
\(759\) −664.363 + 664.363i −0.875313 + 0.875313i
\(760\) 147.316i 0.193836i
\(761\) −882.566 + 882.566i −1.15975 + 1.15975i −0.175215 + 0.984530i \(0.556062\pi\)
−0.984530 + 0.175215i \(0.943938\pi\)
\(762\) −716.848 −0.940746
\(763\) 120.422i 0.157827i
\(764\) 717.720 0.939424
\(765\) 424.745 424.745i 0.555222 0.555222i
\(766\) 334.354i 0.436493i
\(767\) 77.4435 + 77.4435i 0.100969 + 0.100969i
\(768\) −42.2709 42.2709i −0.0550402 0.0550402i
\(769\) 855.059i 1.11191i −0.831212 0.555955i \(-0.812353\pi\)
0.831212 0.555955i \(-0.187647\pi\)
\(770\) 1026.55i 1.33318i
\(771\) 1202.87i 1.56014i
\(772\) −60.9959 60.9959i −0.0790102 0.0790102i
\(773\) 1194.00 1.54464 0.772318 0.635236i \(-0.219097\pi\)
0.772318 + 0.635236i \(0.219097\pi\)
\(774\) −62.7374 62.7374i −0.0810561 0.0810561i
\(775\) −193.768 + 193.768i −0.250023 + 0.250023i
\(776\) −90.4006 90.4006i −0.116496 0.116496i
\(777\) 2479.36 3.19094
\(778\) −156.002 156.002i −0.200516 0.200516i
\(779\) −302.968 + 302.968i −0.388919 + 0.388919i
\(780\) −26.9747 26.9747i −0.0345829 0.0345829i
\(781\) −130.826 130.826i −0.167511 0.167511i
\(782\) 652.798i 0.834781i
\(783\) 47.7842i 0.0610271i
\(784\) 288.125i 0.367506i
\(785\) 11.4844 + 11.4844i 0.0146298 + 0.0146298i
\(786\) 1073.78i 1.36613i
\(787\) −381.334 −0.484541 −0.242271 0.970209i \(-0.577892\pi\)
−0.242271 + 0.970209i \(0.577892\pi\)
\(788\) −135.902 135.902i −0.172464 0.172464i
\(789\) −764.695 764.695i −0.969196 0.969196i
\(790\) 483.367 483.367i 0.611857 0.611857i
\(791\) 814.768i 1.03005i
\(792\) −155.726 + 155.726i −0.196623 + 0.196623i
\(793\) 26.8704i 0.0338845i
\(794\) −380.124 −0.478746
\(795\) 483.366 + 483.366i 0.608007 + 0.608007i
\(796\) −183.953 −0.231097
\(797\) −654.333 + 654.333i −0.820994 + 0.820994i −0.986251 0.165256i \(-0.947155\pi\)
0.165256 + 0.986251i \(0.447155\pi\)
\(798\) 720.396 0.902752
\(799\) 1211.27 + 1211.27i 1.51598 + 1.51598i
\(800\) 29.3479 + 29.3479i 0.0366849 + 0.0366849i
\(801\) −835.179 −1.04267
\(802\) 879.546i 1.09669i
\(803\) −712.708 −0.887556
\(804\) −573.879 + 573.879i −0.713780 + 0.713780i
\(805\) 523.681 523.681i 0.650536 0.650536i
\(806\) 64.1605i 0.0796036i
\(807\) 270.636 967.930i 0.335360 1.19942i
\(808\) 417.393 0.516575
\(809\) 290.607 + 290.607i 0.359217 + 0.359217i 0.863524 0.504307i \(-0.168252\pi\)
−0.504307 + 0.863524i \(0.668252\pi\)
\(810\) −424.640 424.640i −0.524247 0.524247i
\(811\) 1290.54i 1.59130i −0.605757 0.795650i \(-0.707130\pi\)
0.605757 0.795650i \(-0.292870\pi\)
\(812\) −69.6471 −0.0857723
\(813\) 526.101i 0.647111i
\(814\) 946.973 946.973i 1.16336 1.16336i
\(815\) −522.669 + 522.669i −0.641312 + 0.641312i
\(816\) 430.685i 0.527800i
\(817\) 110.850 + 110.850i 0.135679 + 0.135679i
\(818\) 326.313i 0.398916i
\(819\) 46.8655 46.8655i 0.0572228 0.0572228i
\(820\) 290.605i 0.354396i
\(821\) −553.997 −0.674783 −0.337392 0.941364i \(-0.609545\pi\)
−0.337392 + 0.941364i \(0.609545\pi\)
\(822\) 866.945 + 866.945i 1.05468 + 1.05468i
\(823\) 98.6980 0.119925 0.0599623 0.998201i \(-0.480902\pi\)
0.0599623 + 0.998201i \(0.480902\pi\)
\(824\) 84.1644 + 84.1644i 0.102141 + 0.102141i
\(825\) 304.314 304.314i 0.368865 0.368865i
\(826\) −991.920 + 991.920i −1.20087 + 1.20087i
\(827\) 217.735i 0.263283i 0.991297 + 0.131642i \(0.0420248\pi\)
−0.991297 + 0.131642i \(0.957975\pi\)
\(828\) −158.883 −0.191888
\(829\) 28.3525 28.3525i 0.0342009 0.0342009i −0.689800 0.724000i \(-0.742301\pi\)
0.724000 + 0.689800i \(0.242301\pi\)
\(830\) 147.998 0.178310
\(831\) 455.530 0.548171
\(832\) 9.71767 0.0116799
\(833\) 1467.81 1467.81i 1.76207 1.76207i
\(834\) 406.046 406.046i 0.486865 0.486865i
\(835\) −266.081 266.081i −0.318660 0.318660i
\(836\) 275.150 275.150i 0.329126 0.329126i
\(837\) 563.820i 0.673620i
\(838\) 157.994 157.994i 0.188538 0.188538i
\(839\) −885.287 885.287i −1.05517 1.05517i −0.998387 0.0567830i \(-0.981916\pi\)
−0.0567830 0.998387i \(-0.518084\pi\)
\(840\) 345.500 345.500i 0.411309 0.411309i
\(841\) 830.980i 0.988086i
\(842\) 94.7762 94.7762i 0.112561 0.112561i
\(843\) 1390.36 1.64930
\(844\) 563.262 0.667372
\(845\) −704.062 −0.833209
\(846\) −294.808 + 294.808i −0.348472 + 0.348472i
\(847\) 976.061 976.061i 1.15237 1.15237i
\(848\) −174.133 −0.205346
\(849\) −896.597 896.597i −1.05606 1.05606i
\(850\) 299.017i 0.351784i
\(851\) 966.175 1.13534
\(852\) 88.0631i 0.103360i
\(853\) −575.775 575.775i −0.675001 0.675001i 0.283864 0.958865i \(-0.408384\pi\)
−0.958865 + 0.283864i \(0.908384\pi\)
\(854\) −344.164 −0.403002
\(855\) −182.657 182.657i −0.213634 0.213634i
\(856\) 371.243i 0.433695i
\(857\) −492.516 492.516i −0.574698 0.574698i 0.358740 0.933438i \(-0.383207\pi\)
−0.933438 + 0.358740i \(0.883207\pi\)
\(858\) 100.764i 0.117441i
\(859\) −289.429 −0.336937 −0.168469 0.985707i \(-0.553882\pi\)
−0.168469 + 0.985707i \(0.553882\pi\)
\(860\) 106.327 0.123636
\(861\) −1421.10 −1.65053
\(862\) 865.316i 1.00385i
\(863\) 672.153i 0.778856i −0.921057 0.389428i \(-0.872673\pi\)
0.921057 0.389428i \(-0.127327\pi\)
\(864\) 85.3955 0.0988374
\(865\) −1093.00 −1.26359
\(866\) 174.247 174.247i 0.201209 0.201209i
\(867\) 1430.54 1430.54i 1.64999 1.64999i
\(868\) −821.787 −0.946759
\(869\) 1805.62 2.07782
\(870\) 49.7043 + 49.7043i 0.0571313 + 0.0571313i
\(871\) 131.929i 0.151469i
\(872\) 30.9601i 0.0355047i
\(873\) −224.176 −0.256788
\(874\) 280.729 0.321200
\(875\) −1057.22 + 1057.22i −1.20825 + 1.20825i
\(876\) −239.872 239.872i −0.273827 0.273827i
\(877\) −1179.69 −1.34514 −0.672572 0.740031i \(-0.734811\pi\)
−0.672572 + 0.740031i \(0.734811\pi\)
\(878\) 57.0370 57.0370i 0.0649625 0.0649625i
\(879\) 781.164 + 781.164i 0.888697 + 0.888697i
\(880\) 263.922i 0.299911i
\(881\) −777.782 777.782i −0.882840 0.882840i 0.110983 0.993822i \(-0.464600\pi\)
−0.993822 + 0.110983i \(0.964600\pi\)
\(882\) 357.247 + 357.247i 0.405042 + 0.405042i
\(883\) 4.54482 + 4.54482i 0.00514703 + 0.00514703i 0.709676 0.704529i \(-0.248842\pi\)
−0.704529 + 0.709676i \(0.748842\pi\)
\(884\) −49.5051 49.5051i −0.0560013 0.0560013i
\(885\) 1415.78 1.59976
\(886\) 688.284i 0.776844i
\(887\) 31.3090 0.0352977 0.0176488 0.999844i \(-0.494382\pi\)
0.0176488 + 0.999844i \(0.494382\pi\)
\(888\) 637.436 0.717833
\(889\) 1055.38 + 1055.38i 1.18716 + 1.18716i
\(890\) 707.725 707.725i 0.795197 0.795197i
\(891\) 1586.25i 1.78030i
\(892\) 408.141 + 408.141i 0.457557 + 0.457557i
\(893\) 520.892 520.892i 0.583305 0.583305i
\(894\) 302.872 0.338783
\(895\) 5.33000 + 5.33000i 0.00595530 + 0.00595530i
\(896\) 124.467i 0.138914i
\(897\) 51.4037 51.4037i 0.0573062 0.0573062i
\(898\) 56.1655 + 56.1655i 0.0625451 + 0.0625451i
\(899\) 118.224i 0.131506i
\(900\) 72.7770 0.0808634
\(901\) 887.095 + 887.095i 0.984567 + 0.984567i
\(902\) −542.780 + 542.780i −0.601751 + 0.601751i
\(903\) 519.954i 0.575807i
\(904\) 209.474i 0.231719i
\(905\) −337.978 + 337.978i −0.373456 + 0.373456i
\(906\) −426.922 −0.471216
\(907\) 860.206i 0.948408i 0.880415 + 0.474204i \(0.157264\pi\)
−0.880415 + 0.474204i \(0.842736\pi\)
\(908\) −357.836 357.836i −0.394092 0.394092i
\(909\) 517.526 517.526i 0.569336 0.569336i
\(910\) 79.4270i 0.0872824i
\(911\) −484.640 484.640i −0.531987 0.531987i 0.389176 0.921163i \(-0.372760\pi\)
−0.921163 + 0.389176i \(0.872760\pi\)
\(912\) 185.211 0.203083
\(913\) 276.424 + 276.424i 0.302764 + 0.302764i
\(914\) 838.647 838.647i 0.917557 0.917557i
\(915\) 245.616 + 245.616i 0.268432 + 0.268432i
\(916\) 26.1190 26.1190i 0.0285142 0.0285142i
\(917\) −1580.88 + 1580.88i −1.72397 + 1.72397i
\(918\) −435.034 435.034i −0.473893 0.473893i
\(919\) −1029.09 + 1029.09i −1.11980 + 1.11980i −0.128026 + 0.991771i \(0.540864\pi\)
−0.991771 + 0.128026i \(0.959136\pi\)
\(920\) 134.637 134.637i 0.146344 0.146344i
\(921\) −633.032 633.032i −0.687331 0.687331i
\(922\) −603.913 −0.655003
\(923\) 10.1224 + 10.1224i 0.0109669 + 0.0109669i
\(924\) 1290.62 1.39677
\(925\) −442.560 −0.478443
\(926\) −156.938 −0.169480
\(927\) 208.711 0.225147
\(928\) −17.9060 −0.0192953
\(929\) 650.854 + 650.854i 0.700597 + 0.700597i 0.964539 0.263942i \(-0.0850227\pi\)
−0.263942 + 0.964539i \(0.585023\pi\)
\(930\) 586.475 + 586.475i 0.630619 + 0.630619i
\(931\) −631.214 631.214i −0.677996 0.677996i
\(932\) 101.546 0.108955
\(933\) 864.463i 0.926542i
\(934\) 1077.90i 1.15407i
\(935\) −1344.51 + 1344.51i −1.43798 + 1.43798i
\(936\) 12.0490 12.0490i 0.0128728 0.0128728i
\(937\) −456.155 + 456.155i −0.486825 + 0.486825i −0.907303 0.420478i \(-0.861862\pi\)
0.420478 + 0.907303i \(0.361862\pi\)
\(938\) 1689.79 1.80148
\(939\) −593.655 593.655i −0.632221 0.632221i
\(940\) 499.636i 0.531528i
\(941\) 355.514 + 355.514i 0.377805 + 0.377805i 0.870310 0.492505i \(-0.163919\pi\)
−0.492505 + 0.870310i \(0.663919\pi\)
\(942\) −14.4387 + 14.4387i −0.0153277 + 0.0153277i
\(943\) −553.785 −0.587259
\(944\) −255.019 + 255.019i −0.270147 + 0.270147i
\(945\) 697.977i 0.738600i
\(946\) 198.592 + 198.592i 0.209928 + 0.209928i
\(947\) 11.0708 + 11.0708i 0.0116904 + 0.0116904i 0.712928 0.701237i \(-0.247369\pi\)
−0.701237 + 0.712928i \(0.747369\pi\)
\(948\) 607.709 + 607.709i 0.641043 + 0.641043i
\(949\) 55.1443 0.0581078
\(950\) −128.589 −0.135357
\(951\) 1469.98i 1.54572i
\(952\) 634.077 634.077i 0.666047 0.666047i
\(953\) −435.136 + 435.136i −0.456596 + 0.456596i −0.897537 0.440940i \(-0.854645\pi\)
0.440940 + 0.897537i \(0.354645\pi\)
\(954\) −215.908 + 215.908i −0.226319 + 0.226319i
\(955\) 1508.20i 1.57926i
\(956\) 613.939i 0.642195i
\(957\) 185.671i 0.194014i
\(958\) 1121.86i 1.17104i
\(959\) 2552.72i 2.66186i
\(960\) 88.8268 88.8268i 0.0925280 0.0925280i
\(961\) 433.958i 0.451569i
\(962\) −73.2701 + 73.2701i −0.0761644 + 0.0761644i
\(963\) 460.304 + 460.304i 0.477990 + 0.477990i
\(964\) 514.401 + 514.401i 0.533611 + 0.533611i
\(965\) 128.175 128.175i 0.132824 0.132824i
\(966\) 658.394 + 658.394i 0.681568 + 0.681568i
\(967\) −460.220 460.220i −0.475926 0.475926i 0.427900 0.903826i \(-0.359253\pi\)
−0.903826 + 0.427900i \(0.859253\pi\)
\(968\) 250.942 250.942i 0.259238 0.259238i
\(969\) −943.530 943.530i −0.973715 0.973715i
\(970\) 189.965 189.965i 0.195840 0.195840i
\(971\) 1541.61i 1.58765i 0.608144 + 0.793827i \(0.291914\pi\)
−0.608144 + 0.793827i \(0.708086\pi\)
\(972\) 341.735 341.735i 0.351579 0.351579i
\(973\) −1195.60 −1.22878
\(974\) 805.074 + 805.074i 0.826565 + 0.826565i
\(975\) −23.5456 + 23.5456i −0.0241494 + 0.0241494i
\(976\) −88.4834 −0.0906592
\(977\) 62.2311i 0.0636961i −0.999493 0.0318481i \(-0.989861\pi\)
0.999493 0.0318481i \(-0.0101393\pi\)
\(978\) −657.122 657.122i −0.671904 0.671904i
\(979\) 2643.72 2.70043
\(980\) −605.457 −0.617813
\(981\) −38.3875 38.3875i −0.0391310 0.0391310i
\(982\) 146.377 146.377i 0.149060 0.149060i
\(983\) 54.3113i 0.0552506i −0.999618 0.0276253i \(-0.991205\pi\)
0.999618 0.0276253i \(-0.00879453\pi\)
\(984\) −365.361 −0.371302
\(985\) 285.579 285.579i 0.289928 0.289928i
\(986\) 91.2195 + 91.2195i 0.0925147 + 0.0925147i
\(987\) 2443.30 2.47548
\(988\) −21.2891 + 21.2891i −0.0215477 + 0.0215477i
\(989\) 202.619i 0.204873i
\(990\) −327.237 327.237i −0.330543 0.330543i
\(991\) 881.235 881.235i 0.889238 0.889238i −0.105212 0.994450i \(-0.533552\pi\)
0.994450 + 0.105212i \(0.0335520\pi\)
\(992\) −211.279 −0.212982
\(993\) −287.457 287.457i −0.289483 0.289483i
\(994\) −129.651 + 129.651i −0.130434 + 0.130434i
\(995\) 386.553i 0.388495i
\(996\) 186.069i 0.186816i
\(997\) 543.463 0.545099 0.272549 0.962142i \(-0.412133\pi\)
0.272549 + 0.962142i \(0.412133\pi\)
\(998\) 863.888i 0.865620i
\(999\) −643.873 + 643.873i −0.644517 + 0.644517i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.a.187.5 44
269.82 odd 4 inner 538.3.c.a.351.5 yes 44
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.a.187.5 44 1.1 even 1 trivial
538.3.c.a.351.5 yes 44 269.82 odd 4 inner