Properties

Label 538.3.c.b.187.17
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.17
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.b.351.17

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(1.35493 + 1.35493i) q^{3} +2.00000i q^{4} +4.13408 q^{5} -2.70986i q^{6} +(1.20624 - 1.20624i) q^{7} +(2.00000 - 2.00000i) q^{8} -5.32832i q^{9} +(-4.13408 - 4.13408i) q^{10} -19.3005i q^{11} +(-2.70986 + 2.70986i) q^{12} +6.76777i q^{13} -2.41248 q^{14} +(5.60140 + 5.60140i) q^{15} -4.00000 q^{16} +(-16.6705 - 16.6705i) q^{17} +(-5.32832 + 5.32832i) q^{18} +(1.42205 - 1.42205i) q^{19} +8.26816i q^{20} +3.26874 q^{21} +(-19.3005 + 19.3005i) q^{22} -16.5872 q^{23} +5.41973 q^{24} -7.90939 q^{25} +(6.76777 - 6.76777i) q^{26} +(19.4139 - 19.4139i) q^{27} +(2.41248 + 2.41248i) q^{28} +(15.5072 - 15.5072i) q^{29} -11.2028i q^{30} +(-4.83725 + 4.83725i) q^{31} +(4.00000 + 4.00000i) q^{32} +(26.1509 - 26.1509i) q^{33} +33.3410i q^{34} +(4.98668 - 4.98668i) q^{35} +10.6566 q^{36} +70.2767 q^{37} -2.84410 q^{38} +(-9.16986 + 9.16986i) q^{39} +(8.26816 - 8.26816i) q^{40} -70.2396 q^{41} +(-3.26874 - 3.26874i) q^{42} -8.53548i q^{43} +38.6011 q^{44} -22.0277i q^{45} +(16.5872 + 16.5872i) q^{46} +42.1035 q^{47} +(-5.41973 - 5.41973i) q^{48} +46.0900i q^{49} +(7.90939 + 7.90939i) q^{50} -45.1748i q^{51} -13.5355 q^{52} -14.6327 q^{53} -38.8278 q^{54} -79.7899i q^{55} -4.82495i q^{56} +3.85356 q^{57} -31.0143 q^{58} +(73.5545 - 73.5545i) q^{59} +(-11.2028 + 11.2028i) q^{60} +9.57289 q^{61} +9.67450 q^{62} +(-6.42722 - 6.42722i) q^{63} -8.00000i q^{64} +27.9785i q^{65} -52.3018 q^{66} +46.8008 q^{67} +(33.3410 - 33.3410i) q^{68} +(-22.4745 - 22.4745i) q^{69} -9.97337 q^{70} +(-55.1124 + 55.1124i) q^{71} +(-10.6566 - 10.6566i) q^{72} -140.193i q^{73} +(-70.2767 - 70.2767i) q^{74} +(-10.7167 - 10.7167i) q^{75} +(2.84410 + 2.84410i) q^{76} +(-23.2810 - 23.2810i) q^{77} +18.3397 q^{78} +138.548i q^{79} -16.5363 q^{80} +4.65415 q^{81} +(70.2396 + 70.2396i) q^{82} +(-31.5887 + 31.5887i) q^{83} +6.53748i q^{84} +(-68.9172 - 68.9172i) q^{85} +(-8.53548 + 8.53548i) q^{86} +42.0223 q^{87} +(-38.6011 - 38.6011i) q^{88} -90.2303i q^{89} +(-22.0277 + 22.0277i) q^{90} +(8.16354 + 8.16354i) q^{91} -33.1744i q^{92} -13.1083 q^{93} +(-42.1035 - 42.1035i) q^{94} +(5.87887 - 5.87887i) q^{95} +10.8395i q^{96} -70.9662i q^{97} +(46.0900 - 46.0900i) q^{98} -102.839 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 1.35493 + 1.35493i 0.451644 + 0.451644i 0.895900 0.444256i \(-0.146532\pi\)
−0.444256 + 0.895900i \(0.646532\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 4.13408 0.826816 0.413408 0.910546i \(-0.364338\pi\)
0.413408 + 0.910546i \(0.364338\pi\)
\(6\) 2.70986i 0.451644i
\(7\) 1.20624 1.20624i 0.172320 0.172320i −0.615678 0.787998i \(-0.711118\pi\)
0.787998 + 0.615678i \(0.211118\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 5.32832i 0.592035i
\(10\) −4.13408 4.13408i −0.413408 0.413408i
\(11\) 19.3005i 1.75459i −0.479948 0.877297i \(-0.659345\pi\)
0.479948 0.877297i \(-0.340655\pi\)
\(12\) −2.70986 + 2.70986i −0.225822 + 0.225822i
\(13\) 6.76777i 0.520597i 0.965528 + 0.260299i \(0.0838210\pi\)
−0.965528 + 0.260299i \(0.916179\pi\)
\(14\) −2.41248 −0.172320
\(15\) 5.60140 + 5.60140i 0.373426 + 0.373426i
\(16\) −4.00000 −0.250000
\(17\) −16.6705 16.6705i −0.980618 0.980618i 0.0191973 0.999816i \(-0.493889\pi\)
−0.999816 + 0.0191973i \(0.993889\pi\)
\(18\) −5.32832 + 5.32832i −0.296018 + 0.296018i
\(19\) 1.42205 1.42205i 0.0748448 0.0748448i −0.668693 0.743538i \(-0.733146\pi\)
0.743538 + 0.668693i \(0.233146\pi\)
\(20\) 8.26816i 0.413408i
\(21\) 3.26874 0.155654
\(22\) −19.3005 + 19.3005i −0.877297 + 0.877297i
\(23\) −16.5872 −0.721182 −0.360591 0.932724i \(-0.617425\pi\)
−0.360591 + 0.932724i \(0.617425\pi\)
\(24\) 5.41973 0.225822
\(25\) −7.90939 −0.316376
\(26\) 6.76777 6.76777i 0.260299 0.260299i
\(27\) 19.4139 19.4139i 0.719033 0.719033i
\(28\) 2.41248 + 2.41248i 0.0861599 + 0.0861599i
\(29\) 15.5072 15.5072i 0.534730 0.534730i −0.387247 0.921976i \(-0.626574\pi\)
0.921976 + 0.387247i \(0.126574\pi\)
\(30\) 11.2028i 0.373426i
\(31\) −4.83725 + 4.83725i −0.156040 + 0.156040i −0.780810 0.624769i \(-0.785193\pi\)
0.624769 + 0.780810i \(0.285193\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 26.1509 26.1509i 0.792452 0.792452i
\(34\) 33.3410i 0.980618i
\(35\) 4.98668 4.98668i 0.142477 0.142477i
\(36\) 10.6566 0.296018
\(37\) 70.2767 1.89937 0.949685 0.313206i \(-0.101403\pi\)
0.949685 + 0.313206i \(0.101403\pi\)
\(38\) −2.84410 −0.0748448
\(39\) −9.16986 + 9.16986i −0.235125 + 0.235125i
\(40\) 8.26816 8.26816i 0.206704 0.206704i
\(41\) −70.2396 −1.71316 −0.856581 0.516013i \(-0.827416\pi\)
−0.856581 + 0.516013i \(0.827416\pi\)
\(42\) −3.26874 3.26874i −0.0778272 0.0778272i
\(43\) 8.53548i 0.198500i −0.995063 0.0992498i \(-0.968356\pi\)
0.995063 0.0992498i \(-0.0316443\pi\)
\(44\) 38.6011 0.877297
\(45\) 22.0277i 0.489504i
\(46\) 16.5872 + 16.5872i 0.360591 + 0.360591i
\(47\) 42.1035 0.895819 0.447909 0.894079i \(-0.352169\pi\)
0.447909 + 0.894079i \(0.352169\pi\)
\(48\) −5.41973 5.41973i −0.112911 0.112911i
\(49\) 46.0900i 0.940612i
\(50\) 7.90939 + 7.90939i 0.158188 + 0.158188i
\(51\) 45.1748i 0.885781i
\(52\) −13.5355 −0.260299
\(53\) −14.6327 −0.276089 −0.138044 0.990426i \(-0.544082\pi\)
−0.138044 + 0.990426i \(0.544082\pi\)
\(54\) −38.8278 −0.719033
\(55\) 79.7899i 1.45073i
\(56\) 4.82495i 0.0861599i
\(57\) 3.85356 0.0676064
\(58\) −31.0143 −0.534730
\(59\) 73.5545 73.5545i 1.24669 1.24669i 0.289511 0.957175i \(-0.406507\pi\)
0.957175 0.289511i \(-0.0934927\pi\)
\(60\) −11.2028 + 11.2028i −0.186713 + 0.186713i
\(61\) 9.57289 0.156933 0.0784663 0.996917i \(-0.474998\pi\)
0.0784663 + 0.996917i \(0.474998\pi\)
\(62\) 9.67450 0.156040
\(63\) −6.42722 6.42722i −0.102019 0.102019i
\(64\) 8.00000i 0.125000i
\(65\) 27.9785i 0.430438i
\(66\) −52.3018 −0.792452
\(67\) 46.8008 0.698519 0.349260 0.937026i \(-0.386433\pi\)
0.349260 + 0.937026i \(0.386433\pi\)
\(68\) 33.3410 33.3410i 0.490309 0.490309i
\(69\) −22.4745 22.4745i −0.325718 0.325718i
\(70\) −9.97337 −0.142477
\(71\) −55.1124 + 55.1124i −0.776231 + 0.776231i −0.979188 0.202957i \(-0.934945\pi\)
0.202957 + 0.979188i \(0.434945\pi\)
\(72\) −10.6566 10.6566i −0.148009 0.148009i
\(73\) 140.193i 1.92045i −0.279225 0.960226i \(-0.590078\pi\)
0.279225 0.960226i \(-0.409922\pi\)
\(74\) −70.2767 70.2767i −0.949685 0.949685i
\(75\) −10.7167 10.7167i −0.142889 0.142889i
\(76\) 2.84410 + 2.84410i 0.0374224 + 0.0374224i
\(77\) −23.2810 23.2810i −0.302351 0.302351i
\(78\) 18.3397 0.235125
\(79\) 138.548i 1.75377i 0.480697 + 0.876887i \(0.340384\pi\)
−0.480697 + 0.876887i \(0.659616\pi\)
\(80\) −16.5363 −0.206704
\(81\) 4.65415 0.0574586
\(82\) 70.2396 + 70.2396i 0.856581 + 0.856581i
\(83\) −31.5887 + 31.5887i −0.380587 + 0.380587i −0.871314 0.490727i \(-0.836731\pi\)
0.490727 + 0.871314i \(0.336731\pi\)
\(84\) 6.53748i 0.0778272i
\(85\) −68.9172 68.9172i −0.810791 0.810791i
\(86\) −8.53548 + 8.53548i −0.0992498 + 0.0992498i
\(87\) 42.0223 0.483015
\(88\) −38.6011 38.6011i −0.438648 0.438648i
\(89\) 90.2303i 1.01382i −0.861998 0.506912i \(-0.830787\pi\)
0.861998 0.506912i \(-0.169213\pi\)
\(90\) −22.0277 + 22.0277i −0.244752 + 0.244752i
\(91\) 8.16354 + 8.16354i 0.0897092 + 0.0897092i
\(92\) 33.1744i 0.360591i
\(93\) −13.1083 −0.140949
\(94\) −42.1035 42.1035i −0.447909 0.447909i
\(95\) 5.87887 5.87887i 0.0618828 0.0618828i
\(96\) 10.8395i 0.112911i
\(97\) 70.9662i 0.731610i −0.930691 0.365805i \(-0.880794\pi\)
0.930691 0.365805i \(-0.119206\pi\)
\(98\) 46.0900 46.0900i 0.470306 0.470306i
\(99\) −102.839 −1.03878
\(100\) 15.8188i 0.158188i
\(101\) 117.416 + 117.416i 1.16253 + 1.16253i 0.983920 + 0.178611i \(0.0571603\pi\)
0.178611 + 0.983920i \(0.442840\pi\)
\(102\) −45.1748 + 45.1748i −0.442890 + 0.442890i
\(103\) 118.609i 1.15154i 0.817612 + 0.575770i \(0.195297\pi\)
−0.817612 + 0.575770i \(0.804703\pi\)
\(104\) 13.5355 + 13.5355i 0.130149 + 0.130149i
\(105\) 13.5132 0.128697
\(106\) 14.6327 + 14.6327i 0.138044 + 0.138044i
\(107\) 84.5300 84.5300i 0.790000 0.790000i −0.191494 0.981494i \(-0.561333\pi\)
0.981494 + 0.191494i \(0.0613333\pi\)
\(108\) 38.8278 + 38.8278i 0.359517 + 0.359517i
\(109\) 77.6544 77.6544i 0.712426 0.712426i −0.254616 0.967042i \(-0.581949\pi\)
0.967042 + 0.254616i \(0.0819492\pi\)
\(110\) −79.7899 + 79.7899i −0.725363 + 0.725363i
\(111\) 95.2202 + 95.2202i 0.857839 + 0.857839i
\(112\) −4.82495 + 4.82495i −0.0430799 + 0.0430799i
\(113\) 91.0299 91.0299i 0.805574 0.805574i −0.178387 0.983960i \(-0.557088\pi\)
0.983960 + 0.178387i \(0.0570877\pi\)
\(114\) −3.85356 3.85356i −0.0338032 0.0338032i
\(115\) −68.5727 −0.596285
\(116\) 31.0143 + 31.0143i 0.267365 + 0.267365i
\(117\) 36.0608 0.308212
\(118\) −147.109 −1.24669
\(119\) −40.2172 −0.337960
\(120\) 22.4056 0.186713
\(121\) −251.510 −2.07860
\(122\) −9.57289 9.57289i −0.0784663 0.0784663i
\(123\) −95.1699 95.1699i −0.773739 0.773739i
\(124\) −9.67450 9.67450i −0.0780202 0.0780202i
\(125\) −136.050 −1.08840
\(126\) 12.8544i 0.102019i
\(127\) 90.4399i 0.712125i 0.934462 + 0.356063i \(0.115881\pi\)
−0.934462 + 0.356063i \(0.884119\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 11.5650 11.5650i 0.0896511 0.0896511i
\(130\) 27.9785 27.9785i 0.215219 0.215219i
\(131\) −128.918 −0.984107 −0.492053 0.870565i \(-0.663754\pi\)
−0.492053 + 0.870565i \(0.663754\pi\)
\(132\) 52.3018 + 52.3018i 0.396226 + 0.396226i
\(133\) 3.43066i 0.0257945i
\(134\) −46.8008 46.8008i −0.349260 0.349260i
\(135\) 80.2586 80.2586i 0.594508 0.594508i
\(136\) −66.6820 −0.490309
\(137\) −62.2079 + 62.2079i −0.454072 + 0.454072i −0.896704 0.442631i \(-0.854045\pi\)
0.442631 + 0.896704i \(0.354045\pi\)
\(138\) 44.9490i 0.325718i
\(139\) 116.711 + 116.711i 0.839645 + 0.839645i 0.988812 0.149167i \(-0.0476591\pi\)
−0.149167 + 0.988812i \(0.547659\pi\)
\(140\) 9.97337 + 9.97337i 0.0712383 + 0.0712383i
\(141\) 57.0474 + 57.0474i 0.404591 + 0.404591i
\(142\) 110.225 0.776231
\(143\) 130.621 0.913437
\(144\) 21.3133i 0.148009i
\(145\) 64.1078 64.1078i 0.442123 0.442123i
\(146\) −140.193 + 140.193i −0.960226 + 0.960226i
\(147\) −62.4488 + 62.4488i −0.424822 + 0.424822i
\(148\) 140.553i 0.949685i
\(149\) 112.362i 0.754109i 0.926191 + 0.377055i \(0.123063\pi\)
−0.926191 + 0.377055i \(0.876937\pi\)
\(150\) 21.4334i 0.142889i
\(151\) 214.710i 1.42192i −0.703233 0.710959i \(-0.748261\pi\)
0.703233 0.710959i \(-0.251739\pi\)
\(152\) 5.68820i 0.0374224i
\(153\) −88.8258 + 88.8258i −0.580561 + 0.580561i
\(154\) 46.5621i 0.302351i
\(155\) −19.9976 + 19.9976i −0.129017 + 0.129017i
\(156\) −18.3397 18.3397i −0.117562 0.117562i
\(157\) 161.118 + 161.118i 1.02623 + 1.02623i 0.999647 + 0.0265836i \(0.00846281\pi\)
0.0265836 + 0.999647i \(0.491537\pi\)
\(158\) 138.548 138.548i 0.876887 0.876887i
\(159\) −19.8263 19.8263i −0.124694 0.124694i
\(160\) 16.5363 + 16.5363i 0.103352 + 0.103352i
\(161\) −20.0081 + 20.0081i −0.124274 + 0.124274i
\(162\) −4.65415 4.65415i −0.0287293 0.0287293i
\(163\) 36.1819 36.1819i 0.221975 0.221975i −0.587355 0.809330i \(-0.699831\pi\)
0.809330 + 0.587355i \(0.199831\pi\)
\(164\) 140.479i 0.856581i
\(165\) 108.110 108.110i 0.655211 0.655211i
\(166\) 63.1774 0.380587
\(167\) 118.814 + 118.814i 0.711459 + 0.711459i 0.966840 0.255381i \(-0.0822010\pi\)
−0.255381 + 0.966840i \(0.582201\pi\)
\(168\) 6.53748 6.53748i 0.0389136 0.0389136i
\(169\) 123.197 0.728978
\(170\) 137.834i 0.810791i
\(171\) −7.57714 7.57714i −0.0443108 0.0443108i
\(172\) 17.0710 0.0992498
\(173\) 135.664 0.784186 0.392093 0.919926i \(-0.371751\pi\)
0.392093 + 0.919926i \(0.371751\pi\)
\(174\) −42.0223 42.0223i −0.241507 0.241507i
\(175\) −9.54061 + 9.54061i −0.0545178 + 0.0545178i
\(176\) 77.2021i 0.438648i
\(177\) 199.323 1.12612
\(178\) −90.2303 + 90.2303i −0.506912 + 0.506912i
\(179\) 215.551 + 215.551i 1.20419 + 1.20419i 0.972879 + 0.231315i \(0.0743029\pi\)
0.231315 + 0.972879i \(0.425697\pi\)
\(180\) 44.0554 0.244752
\(181\) −17.9617 + 17.9617i −0.0992359 + 0.0992359i −0.754982 0.655746i \(-0.772354\pi\)
0.655746 + 0.754982i \(0.272354\pi\)
\(182\) 16.3271i 0.0897092i
\(183\) 12.9706 + 12.9706i 0.0708777 + 0.0708777i
\(184\) −33.1744 + 33.1744i −0.180296 + 0.180296i
\(185\) 290.529 1.57043
\(186\) 13.1083 + 13.1083i 0.0704747 + 0.0704747i
\(187\) −321.750 + 321.750i −1.72059 + 1.72059i
\(188\) 84.2070i 0.447909i
\(189\) 46.8356i 0.247807i
\(190\) −11.7577 −0.0618828
\(191\) 0.142693i 0.000747085i 1.00000 0.000373543i \(0.000118902\pi\)
−1.00000 0.000373543i \(0.999881\pi\)
\(192\) 10.8395 10.8395i 0.0564555 0.0564555i
\(193\) −142.103 + 142.103i −0.736286 + 0.736286i −0.971857 0.235571i \(-0.924304\pi\)
0.235571 + 0.971857i \(0.424304\pi\)
\(194\) −70.9662 + 70.9662i −0.365805 + 0.365805i
\(195\) −37.9089 + 37.9089i −0.194405 + 0.194405i
\(196\) −92.1800 −0.470306
\(197\) 97.0567 97.0567i 0.492674 0.492674i −0.416474 0.909148i \(-0.636734\pi\)
0.909148 + 0.416474i \(0.136734\pi\)
\(198\) 102.839 + 102.839i 0.519391 + 0.519391i
\(199\) 271.148i 1.36255i 0.732025 + 0.681277i \(0.238575\pi\)
−0.732025 + 0.681277i \(0.761425\pi\)
\(200\) −15.8188 + 15.8188i −0.0790939 + 0.0790939i
\(201\) 63.4119 + 63.4119i 0.315482 + 0.315482i
\(202\) 234.831i 1.16253i
\(203\) 37.4107i 0.184289i
\(204\) 90.3496 0.442890
\(205\) −290.376 −1.41647
\(206\) 118.609 118.609i 0.575770 0.575770i
\(207\) 88.3818i 0.426965i
\(208\) 27.0711i 0.130149i
\(209\) −27.4463 27.4463i −0.131322 0.131322i
\(210\) −13.5132 13.5132i −0.0643487 0.0643487i
\(211\) 37.2983i 0.176769i −0.996086 0.0883845i \(-0.971830\pi\)
0.996086 0.0883845i \(-0.0281704\pi\)
\(212\) 29.2654i 0.138044i
\(213\) −149.347 −0.701160
\(214\) −169.060 −0.790000
\(215\) 35.2864i 0.164123i
\(216\) 77.6556i 0.359517i
\(217\) 11.6698i 0.0537777i
\(218\) −155.309 −0.712426
\(219\) 189.952 189.952i 0.867360 0.867360i
\(220\) 159.580 0.725363
\(221\) 112.822 112.822i 0.510507 0.510507i
\(222\) 190.440i 0.857839i
\(223\) −225.529 + 225.529i −1.01134 + 1.01134i −0.0114070 + 0.999935i \(0.503631\pi\)
−0.999935 + 0.0114070i \(0.996369\pi\)
\(224\) 9.64990 0.0430799
\(225\) 42.1438i 0.187306i
\(226\) −182.060 −0.805574
\(227\) 1.39544 1.39544i 0.00614733 0.00614733i −0.704026 0.710174i \(-0.748616\pi\)
0.710174 + 0.704026i \(0.248616\pi\)
\(228\) 7.70713i 0.0338032i
\(229\) −254.395 254.395i −1.11090 1.11090i −0.993029 0.117867i \(-0.962394\pi\)
−0.117867 0.993029i \(-0.537606\pi\)
\(230\) 68.5727 + 68.5727i 0.298142 + 0.298142i
\(231\) 63.0884i 0.273110i
\(232\) 62.0286i 0.267365i
\(233\) 189.112i 0.811638i −0.913954 0.405819i \(-0.866986\pi\)
0.913954 0.405819i \(-0.133014\pi\)
\(234\) −36.0608 36.0608i −0.154106 0.154106i
\(235\) 174.059 0.740677
\(236\) 147.109 + 147.109i 0.623343 + 0.623343i
\(237\) −187.723 + 187.723i −0.792081 + 0.792081i
\(238\) 40.2172 + 40.2172i 0.168980 + 0.168980i
\(239\) 183.675 0.768517 0.384258 0.923226i \(-0.374457\pi\)
0.384258 + 0.923226i \(0.374457\pi\)
\(240\) −22.4056 22.4056i −0.0933566 0.0933566i
\(241\) −320.027 + 320.027i −1.32791 + 1.32791i −0.420726 + 0.907188i \(0.638225\pi\)
−0.907188 + 0.420726i \(0.861775\pi\)
\(242\) 251.510 + 251.510i 1.03930 + 1.03930i
\(243\) −168.419 168.419i −0.693082 0.693082i
\(244\) 19.1458i 0.0784663i
\(245\) 190.540i 0.777713i
\(246\) 190.340i 0.773739i
\(247\) 9.62411 + 9.62411i 0.0389640 + 0.0389640i
\(248\) 19.3490i 0.0780202i
\(249\) −85.6011 −0.343780
\(250\) 136.050 + 136.050i 0.544200 + 0.544200i
\(251\) 281.315 + 281.315i 1.12078 + 1.12078i 0.991625 + 0.129154i \(0.0412261\pi\)
0.129154 + 0.991625i \(0.458774\pi\)
\(252\) 12.8544 12.8544i 0.0510097 0.0510097i
\(253\) 320.142i 1.26538i
\(254\) 90.4399 90.4399i 0.356063 0.356063i
\(255\) 186.756i 0.732377i
\(256\) 16.0000 0.0625000
\(257\) −187.404 187.404i −0.729198 0.729198i 0.241262 0.970460i \(-0.422439\pi\)
−0.970460 + 0.241262i \(0.922439\pi\)
\(258\) −23.1300 −0.0896511
\(259\) 84.7704 84.7704i 0.327299 0.327299i
\(260\) −55.9570 −0.215219
\(261\) −82.6271 82.6271i −0.316579 0.316579i
\(262\) 128.918 + 128.918i 0.492053 + 0.492053i
\(263\) −169.518 −0.644555 −0.322278 0.946645i \(-0.604448\pi\)
−0.322278 + 0.946645i \(0.604448\pi\)
\(264\) 104.604i 0.396226i
\(265\) −60.4927 −0.228274
\(266\) −3.43066 + 3.43066i −0.0128972 + 0.0128972i
\(267\) 122.256 122.256i 0.457887 0.457887i
\(268\) 93.6016i 0.349260i
\(269\) 242.167 117.115i 0.900250 0.435372i
\(270\) −160.517 −0.594508
\(271\) −268.648 268.648i −0.991321 0.991321i 0.00864200 0.999963i \(-0.497249\pi\)
−0.999963 + 0.00864200i \(0.997249\pi\)
\(272\) 66.6820 + 66.6820i 0.245155 + 0.245155i
\(273\) 22.1221i 0.0810332i
\(274\) 124.416 0.454072
\(275\) 152.655i 0.555111i
\(276\) 44.9490 44.9490i 0.162859 0.162859i
\(277\) −210.411 + 210.411i −0.759606 + 0.759606i −0.976251 0.216645i \(-0.930489\pi\)
0.216645 + 0.976251i \(0.430489\pi\)
\(278\) 233.421i 0.839645i
\(279\) 25.7744 + 25.7744i 0.0923814 + 0.0923814i
\(280\) 19.9467i 0.0712383i
\(281\) 232.733 232.733i 0.828232 0.828232i −0.159040 0.987272i \(-0.550840\pi\)
0.987272 + 0.159040i \(0.0508399\pi\)
\(282\) 114.095i 0.404591i
\(283\) 125.573 0.443721 0.221860 0.975078i \(-0.428787\pi\)
0.221860 + 0.975078i \(0.428787\pi\)
\(284\) −110.225 110.225i −0.388115 0.388115i
\(285\) 15.9309 0.0558980
\(286\) −130.621 130.621i −0.456718 0.456718i
\(287\) −84.7257 + 84.7257i −0.295211 + 0.295211i
\(288\) 21.3133 21.3133i 0.0740044 0.0740044i
\(289\) 266.812i 0.923225i
\(290\) −128.216 −0.442123
\(291\) 96.1544 96.1544i 0.330427 0.330427i
\(292\) 280.386 0.960226
\(293\) −217.883 −0.743628 −0.371814 0.928307i \(-0.621264\pi\)
−0.371814 + 0.928307i \(0.621264\pi\)
\(294\) 124.898 0.424822
\(295\) 304.080 304.080i 1.03078 1.03078i
\(296\) 140.553 140.553i 0.474843 0.474843i
\(297\) −374.698 374.698i −1.26161 1.26161i
\(298\) 112.362 112.362i 0.377055 0.377055i
\(299\) 112.258i 0.375446i
\(300\) 21.4334 21.4334i 0.0714446 0.0714446i
\(301\) −10.2958 10.2958i −0.0342054 0.0342054i
\(302\) −214.710 + 214.710i −0.710959 + 0.710959i
\(303\) 318.180i 1.05010i
\(304\) −5.68820 + 5.68820i −0.0187112 + 0.0187112i
\(305\) 39.5751 0.129754
\(306\) 177.652 0.580561
\(307\) −347.530 −1.13202 −0.566010 0.824399i \(-0.691513\pi\)
−0.566010 + 0.824399i \(0.691513\pi\)
\(308\) 46.5621 46.5621i 0.151176 0.151176i
\(309\) −160.706 + 160.706i −0.520086 + 0.520086i
\(310\) 39.9951 0.129017
\(311\) −71.6354 71.6354i −0.230339 0.230339i 0.582495 0.812834i \(-0.302076\pi\)
−0.812834 + 0.582495i \(0.802076\pi\)
\(312\) 36.6795i 0.117562i
\(313\) 151.473 0.483938 0.241969 0.970284i \(-0.422207\pi\)
0.241969 + 0.970284i \(0.422207\pi\)
\(314\) 322.236i 1.02623i
\(315\) −26.5706 26.5706i −0.0843512 0.0843512i
\(316\) −277.096 −0.876887
\(317\) −406.287 406.287i −1.28166 1.28166i −0.939722 0.341939i \(-0.888916\pi\)
−0.341939 0.939722i \(-0.611084\pi\)
\(318\) 39.6526i 0.124694i
\(319\) −299.296 299.296i −0.938233 0.938233i
\(320\) 33.0726i 0.103352i
\(321\) 229.065 0.713597
\(322\) 40.0162 0.124274
\(323\) −47.4126 −0.146788
\(324\) 9.30830i 0.0287293i
\(325\) 53.5289i 0.164704i
\(326\) −72.3638 −0.221975
\(327\) 210.433 0.643526
\(328\) −140.479 + 140.479i −0.428290 + 0.428290i
\(329\) 50.7868 50.7868i 0.154367 0.154367i
\(330\) −216.220 −0.655211
\(331\) −23.3131 −0.0704322 −0.0352161 0.999380i \(-0.511212\pi\)
−0.0352161 + 0.999380i \(0.511212\pi\)
\(332\) −63.1774 63.1774i −0.190293 0.190293i
\(333\) 374.457i 1.12449i
\(334\) 237.627i 0.711459i
\(335\) 193.478 0.577547
\(336\) −13.0750 −0.0389136
\(337\) −213.864 + 213.864i −0.634610 + 0.634610i −0.949221 0.314611i \(-0.898126\pi\)
0.314611 + 0.949221i \(0.398126\pi\)
\(338\) −123.197 123.197i −0.364489 0.364489i
\(339\) 246.679 0.727665
\(340\) 137.834 137.834i 0.405395 0.405395i
\(341\) 93.3615 + 93.3615i 0.273787 + 0.273787i
\(342\) 15.1543i 0.0443108i
\(343\) 114.701 + 114.701i 0.334406 + 0.334406i
\(344\) −17.0710 17.0710i −0.0496249 0.0496249i
\(345\) −92.9114 92.9114i −0.269308 0.269308i
\(346\) −135.664 135.664i −0.392093 0.392093i
\(347\) 394.336 1.13642 0.568208 0.822885i \(-0.307637\pi\)
0.568208 + 0.822885i \(0.307637\pi\)
\(348\) 84.0446i 0.241507i
\(349\) 152.225 0.436176 0.218088 0.975929i \(-0.430018\pi\)
0.218088 + 0.975929i \(0.430018\pi\)
\(350\) 19.0812 0.0545178
\(351\) 131.389 + 131.389i 0.374327 + 0.374327i
\(352\) 77.2021 77.2021i 0.219324 0.219324i
\(353\) 293.430i 0.831246i −0.909537 0.415623i \(-0.863564\pi\)
0.909537 0.415623i \(-0.136436\pi\)
\(354\) −199.323 199.323i −0.563058 0.563058i
\(355\) −227.839 + 227.839i −0.641800 + 0.641800i
\(356\) 180.461 0.506912
\(357\) −54.4916 54.4916i −0.152637 0.152637i
\(358\) 431.102i 1.20419i
\(359\) −393.911 + 393.911i −1.09725 + 1.09725i −0.102514 + 0.994732i \(0.532688\pi\)
−0.994732 + 0.102514i \(0.967312\pi\)
\(360\) −44.0554 44.0554i −0.122376 0.122376i
\(361\) 356.956i 0.988797i
\(362\) 35.9234 0.0992359
\(363\) −340.779 340.779i −0.938786 0.938786i
\(364\) −16.3271 + 16.3271i −0.0448546 + 0.0448546i
\(365\) 579.569i 1.58786i
\(366\) 25.9412i 0.0708777i
\(367\) −46.3660 + 46.3660i −0.126338 + 0.126338i −0.767448 0.641111i \(-0.778474\pi\)
0.641111 + 0.767448i \(0.278474\pi\)
\(368\) 66.3488 0.180296
\(369\) 374.259i 1.01425i
\(370\) −290.529 290.529i −0.785215 0.785215i
\(371\) −17.6505 + 17.6505i −0.0475755 + 0.0475755i
\(372\) 26.2166i 0.0704747i
\(373\) −373.447 373.447i −1.00120 1.00120i −0.999999 0.00119810i \(-0.999619\pi\)
−0.00119810 0.999999i \(-0.500381\pi\)
\(374\) 643.499 1.72059
\(375\) −184.339 184.339i −0.491569 0.491569i
\(376\) 84.2070 84.2070i 0.223955 0.223955i
\(377\) 104.949 + 104.949i 0.278379 + 0.278379i
\(378\) −46.8356 + 46.8356i −0.123904 + 0.123904i
\(379\) 437.082 437.082i 1.15325 1.15325i 0.167353 0.985897i \(-0.446478\pi\)
0.985897 0.167353i \(-0.0535218\pi\)
\(380\) 11.7577 + 11.7577i 0.0309414 + 0.0309414i
\(381\) −122.540 + 122.540i −0.321627 + 0.321627i
\(382\) 0.142693 0.142693i 0.000373543 0.000373543i
\(383\) 208.459 + 208.459i 0.544280 + 0.544280i 0.924781 0.380501i \(-0.124248\pi\)
−0.380501 + 0.924781i \(0.624248\pi\)
\(384\) −21.6789 −0.0564555
\(385\) −96.2456 96.2456i −0.249989 0.249989i
\(386\) 284.206 0.736286
\(387\) −45.4798 −0.117519
\(388\) 141.932 0.365805
\(389\) −204.658 −0.526112 −0.263056 0.964781i \(-0.584730\pi\)
−0.263056 + 0.964781i \(0.584730\pi\)
\(390\) 75.8179 0.194405
\(391\) 276.517 + 276.517i 0.707205 + 0.707205i
\(392\) 92.1800 + 92.1800i 0.235153 + 0.235153i
\(393\) −174.675 174.675i −0.444466 0.444466i
\(394\) −194.113 −0.492674
\(395\) 572.769i 1.45005i
\(396\) 205.679i 0.519391i
\(397\) 408.960 408.960i 1.03013 1.03013i 0.0305950 0.999532i \(-0.490260\pi\)
0.999532 0.0305950i \(-0.00974021\pi\)
\(398\) 271.148 271.148i 0.681277 0.681277i
\(399\) 4.64832 4.64832i 0.0116499 0.0116499i
\(400\) 31.6376 0.0790939
\(401\) 146.930 + 146.930i 0.366409 + 0.366409i 0.866166 0.499757i \(-0.166577\pi\)
−0.499757 + 0.866166i \(0.666577\pi\)
\(402\) 126.824i 0.315482i
\(403\) −32.7374 32.7374i −0.0812342 0.0812342i
\(404\) −234.831 + 234.831i −0.581265 + 0.581265i
\(405\) 19.2406 0.0475077
\(406\) −37.4107 + 37.4107i −0.0921445 + 0.0921445i
\(407\) 1356.38i 3.33262i
\(408\) −90.3496 90.3496i −0.221445 0.221445i
\(409\) −460.109 460.109i −1.12496 1.12496i −0.990985 0.133976i \(-0.957226\pi\)
−0.133976 0.990985i \(-0.542774\pi\)
\(410\) 290.376 + 290.376i 0.708234 + 0.708234i
\(411\) −168.575 −0.410158
\(412\) −237.217 −0.575770
\(413\) 177.448i 0.429657i
\(414\) 88.3818 88.3818i 0.213483 0.213483i
\(415\) −130.590 + 130.590i −0.314675 + 0.314675i
\(416\) −27.0711 + 27.0711i −0.0650747 + 0.0650747i
\(417\) 316.270i 0.758442i
\(418\) 54.8927i 0.131322i
\(419\) 211.254i 0.504185i 0.967703 + 0.252093i \(0.0811188\pi\)
−0.967703 + 0.252093i \(0.918881\pi\)
\(420\) 27.0265i 0.0643487i
\(421\) 322.049i 0.764963i −0.923963 0.382482i \(-0.875070\pi\)
0.923963 0.382482i \(-0.124930\pi\)
\(422\) −37.2983 + 37.2983i −0.0883845 + 0.0883845i
\(423\) 224.341i 0.530356i
\(424\) −29.2654 + 29.2654i −0.0690222 + 0.0690222i
\(425\) 131.854 + 131.854i 0.310244 + 0.310244i
\(426\) 149.347 + 149.347i 0.350580 + 0.350580i
\(427\) 11.5472 11.5472i 0.0270426 0.0270426i
\(428\) 169.060 + 169.060i 0.395000 + 0.395000i
\(429\) 176.983 + 176.983i 0.412548 + 0.412548i
\(430\) −35.2864 + 35.2864i −0.0820613 + 0.0820613i
\(431\) 477.829 + 477.829i 1.10865 + 1.10865i 0.993328 + 0.115325i \(0.0367909\pi\)
0.115325 + 0.993328i \(0.463209\pi\)
\(432\) −77.6556 + 77.6556i −0.179758 + 0.179758i
\(433\) 289.332i 0.668204i −0.942537 0.334102i \(-0.891567\pi\)
0.942537 0.334102i \(-0.108433\pi\)
\(434\) 11.6698 11.6698i 0.0268888 0.0268888i
\(435\) 173.723 0.399364
\(436\) 155.309 + 155.309i 0.356213 + 0.356213i
\(437\) −23.5878 + 23.5878i −0.0539767 + 0.0539767i
\(438\) −379.904 −0.867360
\(439\) 381.467i 0.868946i 0.900685 + 0.434473i \(0.143065\pi\)
−0.900685 + 0.434473i \(0.856935\pi\)
\(440\) −159.580 159.580i −0.362681 0.362681i
\(441\) 245.582 0.556876
\(442\) −225.644 −0.510507
\(443\) 94.1250 + 94.1250i 0.212472 + 0.212472i 0.805317 0.592845i \(-0.201995\pi\)
−0.592845 + 0.805317i \(0.701995\pi\)
\(444\) −190.440 + 190.440i −0.428920 + 0.428920i
\(445\) 373.019i 0.838245i
\(446\) 451.058 1.01134
\(447\) −152.243 + 152.243i −0.340589 + 0.340589i
\(448\) −9.64990 9.64990i −0.0215400 0.0215400i
\(449\) −386.968 −0.861844 −0.430922 0.902389i \(-0.641812\pi\)
−0.430922 + 0.902389i \(0.641812\pi\)
\(450\) 42.1438 42.1438i 0.0936528 0.0936528i
\(451\) 1355.66i 3.00590i
\(452\) 182.060 + 182.060i 0.402787 + 0.402787i
\(453\) 290.917 290.917i 0.642201 0.642201i
\(454\) −2.79089 −0.00614733
\(455\) 33.7487 + 33.7487i 0.0741730 + 0.0741730i
\(456\) 7.70713 7.70713i 0.0169016 0.0169016i
\(457\) 260.561i 0.570156i 0.958504 + 0.285078i \(0.0920195\pi\)
−0.958504 + 0.285078i \(0.907981\pi\)
\(458\) 508.791i 1.11090i
\(459\) −647.279 −1.41019
\(460\) 137.145i 0.298142i
\(461\) −140.515 + 140.515i −0.304806 + 0.304806i −0.842891 0.538085i \(-0.819148\pi\)
0.538085 + 0.842891i \(0.319148\pi\)
\(462\) −63.0884 + 63.0884i −0.136555 + 0.136555i
\(463\) 13.7465 13.7465i 0.0296900 0.0296900i −0.692106 0.721796i \(-0.743317\pi\)
0.721796 + 0.692106i \(0.243317\pi\)
\(464\) −62.0286 + 62.0286i −0.133682 + 0.133682i
\(465\) −54.1907 −0.116539
\(466\) −189.112 + 189.112i −0.405819 + 0.405819i
\(467\) 379.509 + 379.509i 0.812654 + 0.812654i 0.985031 0.172377i \(-0.0551448\pi\)
−0.172377 + 0.985031i \(0.555145\pi\)
\(468\) 72.1216i 0.154106i
\(469\) 56.4529 56.4529i 0.120369 0.120369i
\(470\) −174.059 174.059i −0.370339 0.370339i
\(471\) 436.608i 0.926981i
\(472\) 294.218i 0.623343i
\(473\) −164.739 −0.348286
\(474\) 375.446 0.792081
\(475\) −11.2476 + 11.2476i −0.0236791 + 0.0236791i
\(476\) 80.4344i 0.168980i
\(477\) 77.9677i 0.163454i
\(478\) −183.675 183.675i −0.384258 0.384258i
\(479\) −106.505 106.505i −0.222348 0.222348i 0.587139 0.809486i \(-0.300254\pi\)
−0.809486 + 0.587139i \(0.800254\pi\)
\(480\) 44.8112i 0.0933566i
\(481\) 475.616i 0.988807i
\(482\) 640.054 1.32791
\(483\) −54.2192 −0.112255
\(484\) 503.021i 1.03930i
\(485\) 293.380i 0.604907i
\(486\) 336.838i 0.693082i
\(487\) 734.709 1.50864 0.754322 0.656505i \(-0.227966\pi\)
0.754322 + 0.656505i \(0.227966\pi\)
\(488\) 19.1458 19.1458i 0.0392332 0.0392332i
\(489\) 98.0480 0.200507
\(490\) 190.540 190.540i 0.388856 0.388856i
\(491\) 93.2662i 0.189952i 0.995480 + 0.0949758i \(0.0302774\pi\)
−0.995480 + 0.0949758i \(0.969723\pi\)
\(492\) 190.340 190.340i 0.386869 0.386869i
\(493\) −517.025 −1.04873
\(494\) 19.2482i 0.0389640i
\(495\) −425.146 −0.858881
\(496\) 19.3490 19.3490i 0.0390101 0.0390101i
\(497\) 132.957i 0.267520i
\(498\) 85.6011 + 85.6011i 0.171890 + 0.171890i
\(499\) −53.3635 53.3635i −0.106941 0.106941i 0.651612 0.758553i \(-0.274093\pi\)
−0.758553 + 0.651612i \(0.774093\pi\)
\(500\) 272.100i 0.544200i
\(501\) 321.969i 0.642652i
\(502\) 562.631i 1.12078i
\(503\) −305.574 305.574i −0.607504 0.607504i 0.334789 0.942293i \(-0.391335\pi\)
−0.942293 + 0.334789i \(0.891335\pi\)
\(504\) −25.7089 −0.0510097
\(505\) 485.405 + 485.405i 0.961198 + 0.961198i
\(506\) 320.142 320.142i 0.632691 0.632691i
\(507\) 166.924 + 166.924i 0.329239 + 0.329239i
\(508\) −180.880 −0.356063
\(509\) 578.603 + 578.603i 1.13674 + 1.13674i 0.989030 + 0.147714i \(0.0471915\pi\)
0.147714 + 0.989030i \(0.452808\pi\)
\(510\) −186.756 + 186.756i −0.366189 + 0.366189i
\(511\) −169.106 169.106i −0.330932 0.330932i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 55.2151i 0.107632i
\(514\) 374.808i 0.729198i
\(515\) 490.337i 0.952111i
\(516\) 23.1300 + 23.1300i 0.0448256 + 0.0448256i
\(517\) 812.619i 1.57180i
\(518\) −169.541 −0.327299
\(519\) 183.816 + 183.816i 0.354173 + 0.354173i
\(520\) 55.9570 + 55.9570i 0.107610 + 0.107610i
\(521\) −394.206 + 394.206i −0.756634 + 0.756634i −0.975708 0.219075i \(-0.929696\pi\)
0.219075 + 0.975708i \(0.429696\pi\)
\(522\) 165.254i 0.316579i
\(523\) −250.522 + 250.522i −0.479010 + 0.479010i −0.904815 0.425805i \(-0.859991\pi\)
0.425805 + 0.904815i \(0.359991\pi\)
\(524\) 257.836i 0.492053i
\(525\) −25.8538 −0.0492453
\(526\) 169.518 + 169.518i 0.322278 + 0.322278i
\(527\) 161.279 0.306032
\(528\) −104.604 + 104.604i −0.198113 + 0.198113i
\(529\) −253.865 −0.479896
\(530\) 60.4927 + 60.4927i 0.114137 + 0.114137i
\(531\) −391.922 391.922i −0.738082 0.738082i
\(532\) 6.86133 0.0128972
\(533\) 475.365i 0.891867i
\(534\) −244.512 −0.457887
\(535\) 349.453 349.453i 0.653184 0.653184i
\(536\) 93.6016 93.6016i 0.174630 0.174630i
\(537\) 584.113i 1.08773i
\(538\) −359.283 125.052i −0.667811 0.232439i
\(539\) 889.561 1.65039
\(540\) 160.517 + 160.517i 0.297254 + 0.297254i
\(541\) 197.420 + 197.420i 0.364917 + 0.364917i 0.865619 0.500702i \(-0.166925\pi\)
−0.500702 + 0.865619i \(0.666925\pi\)
\(542\) 537.296i 0.991321i
\(543\) −48.6738 −0.0896386
\(544\) 133.364i 0.245155i
\(545\) 321.029 321.029i 0.589045 0.589045i
\(546\) 22.1221 22.1221i 0.0405166 0.0405166i
\(547\) 207.786i 0.379865i −0.981797 0.189933i \(-0.939173\pi\)
0.981797 0.189933i \(-0.0608270\pi\)
\(548\) −124.416 124.416i −0.227036 0.227036i
\(549\) 51.0074i 0.0929097i
\(550\) 152.655 152.655i 0.277555 0.277555i
\(551\) 44.1039i 0.0800434i
\(552\) −89.8981 −0.162859
\(553\) 167.122 + 167.122i 0.302210 + 0.302210i
\(554\) 420.822 0.759606
\(555\) 393.648 + 393.648i 0.709275 + 0.709275i
\(556\) −233.421 + 233.421i −0.419823 + 0.419823i
\(557\) −184.731 + 184.731i −0.331653 + 0.331653i −0.853214 0.521561i \(-0.825350\pi\)
0.521561 + 0.853214i \(0.325350\pi\)
\(558\) 51.5488i 0.0923814i
\(559\) 57.7662 0.103338
\(560\) −19.9467 + 19.9467i −0.0356192 + 0.0356192i
\(561\) −871.898 −1.55419
\(562\) −465.466 −0.828232
\(563\) −45.2885 −0.0804413 −0.0402207 0.999191i \(-0.512806\pi\)
−0.0402207 + 0.999191i \(0.512806\pi\)
\(564\) −114.095 + 114.095i −0.202296 + 0.202296i
\(565\) 376.325 376.325i 0.666061 0.666061i
\(566\) −125.573 125.573i −0.221860 0.221860i
\(567\) 5.61401 5.61401i 0.00990125 0.00990125i
\(568\) 220.449i 0.388115i
\(569\) 170.994 170.994i 0.300517 0.300517i −0.540699 0.841216i \(-0.681840\pi\)
0.841216 + 0.540699i \(0.181840\pi\)
\(570\) −15.9309 15.9309i −0.0279490 0.0279490i
\(571\) 604.531 604.531i 1.05872 1.05872i 0.0605590 0.998165i \(-0.480712\pi\)
0.998165 0.0605590i \(-0.0192883\pi\)
\(572\) 261.243i 0.456718i
\(573\) −0.193340 + 0.193340i −0.000337416 + 0.000337416i
\(574\) 169.451 0.295211
\(575\) 131.195 0.228165
\(576\) −42.6266 −0.0740044
\(577\) 431.928 431.928i 0.748575 0.748575i −0.225636 0.974212i \(-0.572446\pi\)
0.974212 + 0.225636i \(0.0724462\pi\)
\(578\) 266.812 266.812i 0.461612 0.461612i
\(579\) −385.080 −0.665078
\(580\) 128.216 + 128.216i 0.221061 + 0.221061i
\(581\) 76.2070i 0.131165i
\(582\) −192.309 −0.330427
\(583\) 282.419i 0.484423i
\(584\) −280.386 280.386i −0.480113 0.480113i
\(585\) 149.078 0.254835
\(586\) 217.883 + 217.883i 0.371814 + 0.371814i
\(587\) 165.837i 0.282515i −0.989973 0.141258i \(-0.954885\pi\)
0.989973 0.141258i \(-0.0451146\pi\)
\(588\) −124.898 124.898i −0.212411 0.212411i
\(589\) 13.7576i 0.0233576i
\(590\) −608.160 −1.03078
\(591\) 263.010 0.445026
\(592\) −281.107 −0.474843
\(593\) 420.098i 0.708428i 0.935164 + 0.354214i \(0.115252\pi\)
−0.935164 + 0.354214i \(0.884748\pi\)
\(594\) 749.397i 1.26161i
\(595\) −166.261 −0.279430
\(596\) −224.725 −0.377055
\(597\) −367.388 + 367.388i −0.615390 + 0.615390i
\(598\) −112.258 + 112.258i −0.187723 + 0.187723i
\(599\) 52.4767 0.0876071 0.0438036 0.999040i \(-0.486052\pi\)
0.0438036 + 0.999040i \(0.486052\pi\)
\(600\) −42.8668 −0.0714446
\(601\) 404.839 + 404.839i 0.673608 + 0.673608i 0.958546 0.284938i \(-0.0919729\pi\)
−0.284938 + 0.958546i \(0.591973\pi\)
\(602\) 20.5916i 0.0342054i
\(603\) 249.370i 0.413548i
\(604\) 429.419 0.710959
\(605\) −1039.76 −1.71862
\(606\) 318.180 318.180i 0.525050 0.525050i
\(607\) 19.7360 + 19.7360i 0.0325140 + 0.0325140i 0.723177 0.690663i \(-0.242681\pi\)
−0.690663 + 0.723177i \(0.742681\pi\)
\(608\) 11.3764 0.0187112
\(609\) 50.6889 50.6889i 0.0832330 0.0832330i
\(610\) −39.5751 39.5751i −0.0648772 0.0648772i
\(611\) 284.947i 0.466361i
\(612\) −177.652 177.652i −0.290280 0.290280i
\(613\) −515.187 515.187i −0.840435 0.840435i 0.148480 0.988915i \(-0.452562\pi\)
−0.988915 + 0.148480i \(0.952562\pi\)
\(614\) 347.530 + 347.530i 0.566010 + 0.566010i
\(615\) −393.440 393.440i −0.639740 0.639740i
\(616\) −93.1241 −0.151176
\(617\) 1001.26i 1.62278i 0.584504 + 0.811391i \(0.301289\pi\)
−0.584504 + 0.811391i \(0.698711\pi\)
\(618\) 321.413 0.520086
\(619\) 506.265 0.817875 0.408937 0.912562i \(-0.365899\pi\)
0.408937 + 0.912562i \(0.365899\pi\)
\(620\) −39.9951 39.9951i −0.0645083 0.0645083i
\(621\) −322.022 + 322.022i −0.518554 + 0.518554i
\(622\) 143.271i 0.230339i
\(623\) −108.839 108.839i −0.174702 0.174702i
\(624\) 36.6795 36.6795i 0.0587812 0.0587812i
\(625\) −364.707 −0.583531
\(626\) −151.473 151.473i −0.241969 0.241969i
\(627\) 74.3758i 0.118622i
\(628\) −322.236 + 322.236i −0.513115 + 0.513115i
\(629\) −1171.55 1171.55i −1.86256 1.86256i
\(630\) 53.1413i 0.0843512i
\(631\) 1228.46 1.94685 0.973426 0.229003i \(-0.0735466\pi\)
0.973426 + 0.229003i \(0.0735466\pi\)
\(632\) 277.096 + 277.096i 0.438443 + 0.438443i
\(633\) 50.5366 50.5366i 0.0798366 0.0798366i
\(634\) 812.573i 1.28166i
\(635\) 373.886i 0.588796i
\(636\) 39.6526 39.6526i 0.0623469 0.0623469i
\(637\) −311.926 −0.489680
\(638\) 598.593i 0.938233i
\(639\) 293.656 + 293.656i 0.459556 + 0.459556i
\(640\) −33.0726 + 33.0726i −0.0516760 + 0.0516760i
\(641\) 806.884i 1.25879i −0.777086 0.629394i \(-0.783303\pi\)
0.777086 0.629394i \(-0.216697\pi\)
\(642\) −229.065 229.065i −0.356799 0.356799i
\(643\) −164.483 −0.255806 −0.127903 0.991787i \(-0.540825\pi\)
−0.127903 + 0.991787i \(0.540825\pi\)
\(644\) −40.0162 40.0162i −0.0621370 0.0621370i
\(645\) 47.8106 47.8106i 0.0741250 0.0741250i
\(646\) 47.4126 + 47.4126i 0.0733942 + 0.0733942i
\(647\) 297.797 297.797i 0.460274 0.460274i −0.438471 0.898745i \(-0.644480\pi\)
0.898745 + 0.438471i \(0.144480\pi\)
\(648\) 9.30830 9.30830i 0.0143647 0.0143647i
\(649\) −1419.64 1419.64i −2.18743 2.18743i
\(650\) −53.5289 + 53.5289i −0.0823522 + 0.0823522i
\(651\) −15.8117 + 15.8117i −0.0242884 + 0.0242884i
\(652\) 72.3638 + 72.3638i 0.110987 + 0.110987i
\(653\) 203.101 0.311027 0.155514 0.987834i \(-0.450297\pi\)
0.155514 + 0.987834i \(0.450297\pi\)
\(654\) −210.433 210.433i −0.321763 0.321763i
\(655\) −532.957 −0.813675
\(656\) 280.958 0.428290
\(657\) −746.993 −1.13698
\(658\) −101.574 −0.154367
\(659\) 1116.98 1.69496 0.847478 0.530831i \(-0.178120\pi\)
0.847478 + 0.530831i \(0.178120\pi\)
\(660\) 216.220 + 216.220i 0.327606 + 0.327606i
\(661\) 256.482 + 256.482i 0.388021 + 0.388021i 0.873981 0.485960i \(-0.161530\pi\)
−0.485960 + 0.873981i \(0.661530\pi\)
\(662\) 23.3131 + 23.3131i 0.0352161 + 0.0352161i
\(663\) 305.733 0.461135
\(664\) 126.355i 0.190293i
\(665\) 14.1826i 0.0213273i
\(666\) −374.457 + 374.457i −0.562247 + 0.562247i
\(667\) −257.220 + 257.220i −0.385638 + 0.385638i
\(668\) −237.627 + 237.627i −0.355730 + 0.355730i
\(669\) −611.154 −0.913533
\(670\) −193.478 193.478i −0.288773 0.288773i
\(671\) 184.762i 0.275353i
\(672\) 13.0750 + 13.0750i 0.0194568 + 0.0194568i
\(673\) 419.313 419.313i 0.623051 0.623051i −0.323260 0.946310i \(-0.604779\pi\)
0.946310 + 0.323260i \(0.104779\pi\)
\(674\) 427.727 0.634610
\(675\) −153.552 + 153.552i −0.227485 + 0.227485i
\(676\) 246.395i 0.364489i
\(677\) −167.928 167.928i −0.248047 0.248047i 0.572122 0.820169i \(-0.306120\pi\)
−0.820169 + 0.572122i \(0.806120\pi\)
\(678\) −246.679 246.679i −0.363833 0.363833i
\(679\) −85.6021 85.6021i −0.126071 0.126071i
\(680\) −275.669 −0.405395
\(681\) 3.78146 0.00555281
\(682\) 186.723i 0.273787i
\(683\) −130.637 + 130.637i −0.191270 + 0.191270i −0.796245 0.604975i \(-0.793183\pi\)
0.604975 + 0.796245i \(0.293183\pi\)
\(684\) 15.1543 15.1543i 0.0221554 0.0221554i
\(685\) −257.172 + 257.172i −0.375434 + 0.375434i
\(686\) 229.402i 0.334406i
\(687\) 689.377i 1.00346i
\(688\) 34.1419i 0.0496249i
\(689\) 99.0307i 0.143731i
\(690\) 185.823i 0.269308i
\(691\) −440.968 + 440.968i −0.638160 + 0.638160i −0.950101 0.311942i \(-0.899021\pi\)
0.311942 + 0.950101i \(0.399021\pi\)
\(692\) 271.328i 0.392093i
\(693\) −124.049 + 124.049i −0.179003 + 0.179003i
\(694\) −394.336 394.336i −0.568208 0.568208i
\(695\) 482.491 + 482.491i 0.694232 + 0.694232i
\(696\) 84.0446 84.0446i 0.120754 0.120754i
\(697\) 1170.93 + 1170.93i 1.67996 + 1.67996i
\(698\) −152.225 152.225i −0.218088 0.218088i
\(699\) 256.233 256.233i 0.366571 0.366571i
\(700\) −19.0812 19.0812i −0.0272589 0.0272589i
\(701\) −199.862 + 199.862i −0.285110 + 0.285110i −0.835143 0.550033i \(-0.814615\pi\)
0.550033 + 0.835143i \(0.314615\pi\)
\(702\) 262.777i 0.374327i
\(703\) 99.9370 99.9370i 0.142158 0.142158i
\(704\) −154.404 −0.219324
\(705\) 235.838 + 235.838i 0.334522 + 0.334522i
\(706\) −293.430 + 293.430i −0.415623 + 0.415623i
\(707\) 283.262 0.400654
\(708\) 398.645i 0.563058i
\(709\) 50.4814 + 50.4814i 0.0712009 + 0.0712009i 0.741810 0.670610i \(-0.233967\pi\)
−0.670610 + 0.741810i \(0.733967\pi\)
\(710\) 455.678 0.641800
\(711\) 738.228 1.03830
\(712\) −180.461 180.461i −0.253456 0.253456i
\(713\) 80.2364 80.2364i 0.112534 0.112534i
\(714\) 108.983i 0.152637i
\(715\) 539.999 0.755244
\(716\) −431.102 + 431.102i −0.602097 + 0.602097i
\(717\) 248.868 + 248.868i 0.347096 + 0.347096i
\(718\) 787.822 1.09725
\(719\) 27.8704 27.8704i 0.0387627 0.0387627i −0.687460 0.726222i \(-0.741274\pi\)
0.726222 + 0.687460i \(0.241274\pi\)
\(720\) 88.1108i 0.122376i
\(721\) 143.070 + 143.070i 0.198433 + 0.198433i
\(722\) 356.956 356.956i 0.494398 0.494398i
\(723\) −867.230 −1.19949
\(724\) −35.9234 35.9234i −0.0496180 0.0496180i
\(725\) −122.652 + 122.652i −0.169176 + 0.169176i
\(726\) 681.559i 0.938786i
\(727\) 520.753i 0.716305i 0.933663 + 0.358152i \(0.116593\pi\)
−0.933663 + 0.358152i \(0.883407\pi\)
\(728\) 32.6542 0.0448546
\(729\) 498.280i 0.683512i
\(730\) −579.569 + 579.569i −0.793930 + 0.793930i
\(731\) −142.291 + 142.291i −0.194652 + 0.194652i
\(732\) −25.9412 + 25.9412i −0.0354388 + 0.0354388i
\(733\) 200.793 200.793i 0.273934 0.273934i −0.556748 0.830681i \(-0.687951\pi\)
0.830681 + 0.556748i \(0.187951\pi\)
\(734\) 92.7319 0.126338
\(735\) −258.168 + 258.168i −0.351249 + 0.351249i
\(736\) −66.3488 66.3488i −0.0901478 0.0901478i
\(737\) 903.280i 1.22562i
\(738\) 374.259 374.259i 0.507126 0.507126i
\(739\) 632.167 + 632.167i 0.855436 + 0.855436i 0.990796 0.135360i \(-0.0432193\pi\)
−0.135360 + 0.990796i \(0.543219\pi\)
\(740\) 581.059i 0.785215i
\(741\) 26.0800i 0.0351957i
\(742\) 35.3010 0.0475755
\(743\) −57.7485 −0.0777234 −0.0388617 0.999245i \(-0.512373\pi\)
−0.0388617 + 0.999245i \(0.512373\pi\)
\(744\) −26.2166 + 26.2166i −0.0352373 + 0.0352373i
\(745\) 464.515i 0.623510i
\(746\) 746.893i 1.00120i
\(747\) 168.315 + 168.315i 0.225321 + 0.225321i
\(748\) −643.499 643.499i −0.860293 0.860293i
\(749\) 203.926i 0.272265i
\(750\) 368.677i 0.491569i
\(751\) −248.434 −0.330805 −0.165402 0.986226i \(-0.552892\pi\)
−0.165402 + 0.986226i \(0.552892\pi\)
\(752\) −168.414 −0.223955
\(753\) 762.326i 1.01239i
\(754\) 209.898i 0.278379i
\(755\) 887.627i 1.17566i
\(756\) 93.6711 0.123904
\(757\) 842.600 842.600i 1.11308 1.11308i 0.120345 0.992732i \(-0.461600\pi\)
0.992732 0.120345i \(-0.0384001\pi\)
\(758\) −874.163 −1.15325
\(759\) −433.770 + 433.770i −0.571502 + 0.571502i
\(760\) 23.5155i 0.0309414i
\(761\) 547.919 547.919i 0.719998 0.719998i −0.248606 0.968605i \(-0.579973\pi\)
0.968605 + 0.248606i \(0.0799725\pi\)
\(762\) 245.080 0.321627
\(763\) 187.339i 0.245530i
\(764\) −0.285386 −0.000373543
\(765\) −367.213 + 367.213i −0.480017 + 0.480017i
\(766\) 416.919i 0.544280i
\(767\) 497.799 + 497.799i 0.649021 + 0.649021i
\(768\) 21.6789 + 21.6789i 0.0282277 + 0.0282277i
\(769\) 786.986i 1.02339i −0.859167 0.511695i \(-0.829018\pi\)
0.859167 0.511695i \(-0.170982\pi\)
\(770\) 192.491i 0.249989i
\(771\) 507.839i 0.658676i
\(772\) −284.206 284.206i −0.368143 0.368143i
\(773\) 918.105 1.18772 0.593859 0.804569i \(-0.297604\pi\)
0.593859 + 0.804569i \(0.297604\pi\)
\(774\) 45.4798 + 45.4798i 0.0587594 + 0.0587594i
\(775\) 38.2597 38.2597i 0.0493674 0.0493674i
\(776\) −141.932 141.932i −0.182903 0.182903i
\(777\) 229.716 0.295645
\(778\) 204.658 + 204.658i 0.263056 + 0.263056i
\(779\) −99.8843 + 99.8843i −0.128221 + 0.128221i
\(780\) −75.8179 75.8179i −0.0972024 0.0972024i
\(781\) 1063.70 + 1063.70i 1.36197 + 1.36197i
\(782\) 553.034i 0.707205i
\(783\) 602.109i 0.768977i
\(784\) 184.360i 0.235153i
\(785\) 666.075 + 666.075i 0.848503 + 0.848503i
\(786\) 349.350i 0.444466i
\(787\) 904.951 1.14987 0.574937 0.818198i \(-0.305026\pi\)
0.574937 + 0.818198i \(0.305026\pi\)
\(788\) 194.113 + 194.113i 0.246337 + 0.246337i
\(789\) −229.685 229.685i −0.291110 0.291110i
\(790\) 572.769 572.769i 0.725024 0.725024i
\(791\) 219.607i 0.277633i
\(792\) −205.679 + 205.679i −0.259695 + 0.259695i
\(793\) 64.7871i 0.0816987i
\(794\) −817.921 −1.03013
\(795\) −81.9635 81.9635i −0.103099 0.103099i
\(796\) −542.297 −0.681277
\(797\) −839.661 + 839.661i −1.05353 + 1.05353i −0.0550428 + 0.998484i \(0.517530\pi\)
−0.998484 + 0.0550428i \(0.982470\pi\)
\(798\) −9.29663 −0.0116499
\(799\) −701.887 701.887i −0.878456 0.878456i
\(800\) −31.6376 31.6376i −0.0395470 0.0395470i
\(801\) −480.776 −0.600219
\(802\) 293.860i 0.366409i
\(803\) −2705.80 −3.36961
\(804\) −126.824 + 126.824i −0.157741 + 0.157741i
\(805\) −82.7151 + 82.7151i −0.102752 + 0.102752i
\(806\) 65.4748i 0.0812342i
\(807\) 486.803 + 169.437i 0.603226 + 0.209959i
\(808\) 469.662 0.581265
\(809\) −265.986 265.986i −0.328783 0.328783i 0.523340 0.852124i \(-0.324686\pi\)
−0.852124 + 0.523340i \(0.824686\pi\)
\(810\) −19.2406 19.2406i −0.0237538 0.0237538i
\(811\) 656.818i 0.809887i 0.914342 + 0.404943i \(0.132709\pi\)
−0.914342 + 0.404943i \(0.867291\pi\)
\(812\) 74.8213 0.0921445
\(813\) 727.999i 0.895448i
\(814\) −1356.38 + 1356.38i −1.66631 + 1.66631i
\(815\) 149.579 149.579i 0.183532 0.183532i
\(816\) 180.699i 0.221445i
\(817\) −12.1379 12.1379i −0.0148567 0.0148567i
\(818\) 920.218i 1.12496i
\(819\) 43.4979 43.4979i 0.0531110 0.0531110i
\(820\) 580.752i 0.708234i
\(821\) 40.4097 0.0492202 0.0246101 0.999697i \(-0.492166\pi\)
0.0246101 + 0.999697i \(0.492166\pi\)
\(822\) 168.575 + 168.575i 0.205079 + 0.205079i
\(823\) 1024.68 1.24506 0.622529 0.782597i \(-0.286105\pi\)
0.622529 + 0.782597i \(0.286105\pi\)
\(824\) 237.217 + 237.217i 0.287885 + 0.287885i
\(825\) −206.838 + 206.838i −0.250712 + 0.250712i
\(826\) −177.448 + 177.448i −0.214829 + 0.214829i
\(827\) 1592.90i 1.92611i −0.269299 0.963057i \(-0.586792\pi\)
0.269299 0.963057i \(-0.413208\pi\)
\(828\) −176.764 −0.213483
\(829\) 81.5564 81.5564i 0.0983792 0.0983792i −0.656204 0.754583i \(-0.727839\pi\)
0.754583 + 0.656204i \(0.227839\pi\)
\(830\) 261.180 0.314675
\(831\) −570.185 −0.686143
\(832\) 54.1421 0.0650747
\(833\) 768.344 768.344i 0.922381 0.922381i
\(834\) 316.270 316.270i 0.379221 0.379221i
\(835\) 491.185 + 491.185i 0.588246 + 0.588246i
\(836\) 54.8927 54.8927i 0.0656611 0.0656611i
\(837\) 187.820i 0.224396i
\(838\) 211.254 211.254i 0.252093 0.252093i
\(839\) −309.574 309.574i −0.368979 0.368979i 0.498125 0.867105i \(-0.334022\pi\)
−0.867105 + 0.498125i \(0.834022\pi\)
\(840\) 27.0265 27.0265i 0.0321744 0.0321744i
\(841\) 360.056i 0.428128i
\(842\) −322.049 + 322.049i −0.382482 + 0.382482i
\(843\) 630.675 0.748132
\(844\) 74.5965 0.0883845
\(845\) 509.307 0.602731
\(846\) −224.341 + 224.341i −0.265178 + 0.265178i
\(847\) −303.381 + 303.381i −0.358183 + 0.358183i
\(848\) 58.5308 0.0690222
\(849\) 170.143 + 170.143i 0.200404 + 0.200404i
\(850\) 263.707i 0.310244i
\(851\) −1165.69 −1.36979
\(852\) 298.694i 0.350580i
\(853\) 602.946 + 602.946i 0.706853 + 0.706853i 0.965872 0.259019i \(-0.0833993\pi\)
−0.259019 + 0.965872i \(0.583399\pi\)
\(854\) −23.0944 −0.0270426
\(855\) −31.3245 31.3245i −0.0366368 0.0366368i
\(856\) 338.120i 0.395000i
\(857\) −1071.10 1071.10i −1.24983 1.24983i −0.955795 0.294035i \(-0.905002\pi\)
−0.294035 0.955795i \(-0.594998\pi\)
\(858\) 353.966i 0.412548i
\(859\) −1305.37 −1.51964 −0.759819 0.650135i \(-0.774712\pi\)
−0.759819 + 0.650135i \(0.774712\pi\)
\(860\) 70.5727 0.0820613
\(861\) −229.595 −0.266661
\(862\) 955.659i 1.10865i
\(863\) 992.682i 1.15027i −0.818059 0.575134i \(-0.804950\pi\)
0.818059 0.575134i \(-0.195050\pi\)
\(864\) 155.311 0.179758
\(865\) 560.846 0.648377
\(866\) −289.332 + 289.332i −0.334102 + 0.334102i
\(867\) −361.512 + 361.512i −0.416969 + 0.416969i
\(868\) −23.3395 −0.0268888
\(869\) 2674.05 3.07716
\(870\) −173.723 173.723i −0.199682 0.199682i
\(871\) 316.737i 0.363647i
\(872\) 310.618i 0.356213i
\(873\) −378.131 −0.433139
\(874\) 47.1757 0.0539767
\(875\) −164.109 + 164.109i −0.187553 + 0.187553i
\(876\) 379.904 + 379.904i 0.433680 + 0.433680i
\(877\) 1229.53 1.40197 0.700986 0.713175i \(-0.252744\pi\)
0.700986 + 0.713175i \(0.252744\pi\)
\(878\) 381.467 381.467i 0.434473 0.434473i
\(879\) −295.217 295.217i −0.335855 0.335855i
\(880\) 319.160i 0.362681i
\(881\) −598.057 598.057i −0.678839 0.678839i 0.280898 0.959738i \(-0.409368\pi\)
−0.959738 + 0.280898i \(0.909368\pi\)
\(882\) −245.582 245.582i −0.278438 0.278438i
\(883\) −425.379 425.379i −0.481743 0.481743i 0.423945 0.905688i \(-0.360645\pi\)
−0.905688 + 0.423945i \(0.860645\pi\)
\(884\) 225.644 + 225.644i 0.255254 + 0.255254i
\(885\) 824.015 0.931091
\(886\) 188.250i 0.212472i
\(887\) −481.156 −0.542453 −0.271226 0.962516i \(-0.587429\pi\)
−0.271226 + 0.962516i \(0.587429\pi\)
\(888\) 380.881 0.428920
\(889\) 109.092 + 109.092i 0.122713 + 0.122713i
\(890\) −373.019 + 373.019i −0.419123 + 0.419123i
\(891\) 89.8275i 0.100817i
\(892\) −451.058 451.058i −0.505671 0.505671i
\(893\) 59.8733 59.8733i 0.0670474 0.0670474i
\(894\) 304.487 0.340589
\(895\) 891.104 + 891.104i 0.995647 + 0.995647i
\(896\) 19.2998i 0.0215400i
\(897\) 152.102 152.102i 0.169568 0.169568i
\(898\) 386.968 + 386.968i 0.430922 + 0.430922i
\(899\) 150.024i 0.166879i
\(900\) −84.2876 −0.0936528
\(901\) 243.935 + 243.935i 0.270738 + 0.270738i
\(902\) 1355.66 1355.66i 1.50295 1.50295i
\(903\) 27.9003i 0.0308973i
\(904\) 364.119i 0.402787i
\(905\) −74.2551 + 74.2551i −0.0820498 + 0.0820498i
\(906\) −581.834 −0.642201
\(907\) 1536.20i 1.69371i −0.531821 0.846857i \(-0.678492\pi\)
0.531821 0.846857i \(-0.321508\pi\)
\(908\) 2.79089 + 2.79089i 0.00307367 + 0.00307367i
\(909\) 625.628 625.628i 0.688259 0.688259i
\(910\) 67.4974i 0.0741730i
\(911\) 87.5534 + 87.5534i 0.0961070 + 0.0961070i 0.753526 0.657419i \(-0.228352\pi\)
−0.657419 + 0.753526i \(0.728352\pi\)
\(912\) −15.4143 −0.0169016
\(913\) 609.679 + 609.679i 0.667775 + 0.667775i
\(914\) 260.561 260.561i 0.285078 0.285078i
\(915\) 53.6215 + 53.6215i 0.0586028 + 0.0586028i
\(916\) 508.791 508.791i 0.555448 0.555448i
\(917\) −155.506 + 155.506i −0.169581 + 0.169581i
\(918\) 647.279 + 647.279i 0.705097 + 0.705097i
\(919\) 6.03185 6.03185i 0.00656349 0.00656349i −0.703817 0.710381i \(-0.748523\pi\)
0.710381 + 0.703817i \(0.248523\pi\)
\(920\) −137.145 + 137.145i −0.149071 + 0.149071i
\(921\) −470.879 470.879i −0.511270 0.511270i
\(922\) 281.031 0.304806
\(923\) −372.988 372.988i −0.404104 0.404104i
\(924\) 126.177 0.136555
\(925\) −555.846 −0.600915
\(926\) −27.4930 −0.0296900
\(927\) 631.984 0.681752
\(928\) 124.057 0.133682
\(929\) 536.793 + 536.793i 0.577818 + 0.577818i 0.934302 0.356484i \(-0.116024\pi\)
−0.356484 + 0.934302i \(0.616024\pi\)
\(930\) 54.1907 + 54.1907i 0.0582696 + 0.0582696i
\(931\) 65.5423 + 65.5423i 0.0703999 + 0.0703999i
\(932\) 378.223 0.405819
\(933\) 194.122i 0.208062i
\(934\) 759.019i 0.812654i
\(935\) −1330.14 + 1330.14i −1.42261 + 1.42261i
\(936\) 72.1216 72.1216i 0.0770530 0.0770530i
\(937\) −97.2104 + 97.2104i −0.103746 + 0.103746i −0.757075 0.653328i \(-0.773372\pi\)
0.653328 + 0.757075i \(0.273372\pi\)
\(938\) −112.906 −0.120369
\(939\) 205.235 + 205.235i 0.218568 + 0.218568i
\(940\) 348.118i 0.370339i
\(941\) −217.936 217.936i −0.231600 0.231600i 0.581760 0.813360i \(-0.302364\pi\)
−0.813360 + 0.581760i \(0.802364\pi\)
\(942\) 436.608 436.608i 0.463491 0.463491i
\(943\) 1165.08 1.23550
\(944\) −294.218 + 294.218i −0.311671 + 0.311671i
\(945\) 193.622i 0.204891i
\(946\) 164.739 + 164.739i 0.174143 + 0.174143i
\(947\) 519.946 + 519.946i 0.549045 + 0.549045i 0.926165 0.377119i \(-0.123085\pi\)
−0.377119 + 0.926165i \(0.623085\pi\)
\(948\) −375.446 375.446i −0.396041 0.396041i
\(949\) 948.793 0.999782
\(950\) 22.4951 0.0236791
\(951\) 1100.98i 1.15771i
\(952\) −80.4344 + 80.4344i −0.0844899 + 0.0844899i
\(953\) 558.260 558.260i 0.585792 0.585792i −0.350697 0.936489i \(-0.614055\pi\)
0.936489 + 0.350697i \(0.114055\pi\)
\(954\) 77.9677 77.9677i 0.0817271 0.0817271i
\(955\) 0.589905i 0.000617702i
\(956\) 367.351i 0.384258i
\(957\) 811.053i 0.847495i
\(958\) 213.009i 0.222348i
\(959\) 150.075i 0.156491i
\(960\) 44.8112 44.8112i 0.0466783 0.0466783i
\(961\) 914.202i 0.951303i
\(962\) 475.616 475.616i 0.494404 0.494404i
\(963\) −450.403 450.403i −0.467708 0.467708i
\(964\) −640.054 640.054i −0.663957 0.663957i
\(965\) −587.466 + 587.466i −0.608773 + 0.608773i
\(966\) 54.2192 + 54.2192i 0.0561276 + 0.0561276i
\(967\) −1080.62 1080.62i −1.11749 1.11749i −0.992108 0.125385i \(-0.959984\pi\)
−0.125385 0.992108i \(-0.540016\pi\)
\(968\) −503.021 + 503.021i −0.519650 + 0.519650i
\(969\) −64.2409 64.2409i −0.0662961 0.0662961i
\(970\) −293.380 + 293.380i −0.302453 + 0.302453i
\(971\) 1129.10i 1.16282i 0.813611 + 0.581410i \(0.197499\pi\)
−0.813611 + 0.581410i \(0.802501\pi\)
\(972\) 336.838 336.838i 0.346541 0.346541i
\(973\) 281.562 0.289375
\(974\) −734.709 734.709i −0.754322 0.754322i
\(975\) 72.5281 72.5281i 0.0743878 0.0743878i
\(976\) −38.2916 −0.0392332
\(977\) 1569.15i 1.60609i 0.595919 + 0.803045i \(0.296788\pi\)
−0.595919 + 0.803045i \(0.703212\pi\)
\(978\) −98.0480 98.0480i −0.100254 0.100254i
\(979\) −1741.49 −1.77885
\(980\) −381.079 −0.388856
\(981\) −413.767 413.767i −0.421781 0.421781i
\(982\) 93.2662 93.2662i 0.0949758 0.0949758i
\(983\) 481.288i 0.489611i −0.969572 0.244806i \(-0.921276\pi\)
0.969572 0.244806i \(-0.0787242\pi\)
\(984\) −380.680 −0.386869
\(985\) 401.240 401.240i 0.407350 0.407350i
\(986\) 517.025 + 517.025i 0.524366 + 0.524366i
\(987\) 137.625 0.139438
\(988\) −19.2482 + 19.2482i −0.0194820 + 0.0194820i
\(989\) 141.580i 0.143154i
\(990\) 425.146 + 425.146i 0.429440 + 0.429440i
\(991\) 1126.22 1126.22i 1.13645 1.13645i 0.147364 0.989082i \(-0.452921\pi\)
0.989082 0.147364i \(-0.0470790\pi\)
\(992\) −38.6980 −0.0390101
\(993\) −31.5876 31.5876i −0.0318103 0.0318103i
\(994\) 132.957 132.957i 0.133760 0.133760i
\(995\) 1120.95i 1.12658i
\(996\) 171.202i 0.171890i
\(997\) −1588.31 −1.59309 −0.796547 0.604577i \(-0.793342\pi\)
−0.796547 + 0.604577i \(0.793342\pi\)
\(998\) 106.727i 0.106941i
\(999\) 1364.34 1364.34i 1.36571 1.36571i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.187.17 46
269.82 odd 4 inner 538.3.c.b.351.17 yes 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.17 46 1.1 even 1 trivial
538.3.c.b.351.17 yes 46 269.82 odd 4 inner