Properties

Label 538.3.c.b.187.19
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.19
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.b.351.19

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(2.50903 + 2.50903i) q^{3} +2.00000i q^{4} -9.33859 q^{5} -5.01806i q^{6} +(7.56973 - 7.56973i) q^{7} +(2.00000 - 2.00000i) q^{8} +3.59045i q^{9} +(9.33859 + 9.33859i) q^{10} -2.77741i q^{11} +(-5.01806 + 5.01806i) q^{12} +21.9868i q^{13} -15.1395 q^{14} +(-23.4308 - 23.4308i) q^{15} -4.00000 q^{16} +(5.95995 + 5.95995i) q^{17} +(3.59045 - 3.59045i) q^{18} +(-11.5053 + 11.5053i) q^{19} -18.6772i q^{20} +37.9854 q^{21} +(-2.77741 + 2.77741i) q^{22} -38.8588 q^{23} +10.0361 q^{24} +62.2093 q^{25} +(21.9868 - 21.9868i) q^{26} +(13.5727 - 13.5727i) q^{27} +(15.1395 + 15.1395i) q^{28} +(-33.4036 + 33.4036i) q^{29} +46.8616i q^{30} +(-0.994331 + 0.994331i) q^{31} +(4.00000 + 4.00000i) q^{32} +(6.96860 - 6.96860i) q^{33} -11.9199i q^{34} +(-70.6907 + 70.6907i) q^{35} -7.18090 q^{36} -37.3683 q^{37} +23.0106 q^{38} +(-55.1656 + 55.1656i) q^{39} +(-18.6772 + 18.6772i) q^{40} -73.7321 q^{41} +(-37.9854 - 37.9854i) q^{42} -3.77063i q^{43} +5.55482 q^{44} -33.5298i q^{45} +(38.8588 + 38.8588i) q^{46} +5.27937 q^{47} +(-10.0361 - 10.0361i) q^{48} -65.6017i q^{49} +(-62.2093 - 62.2093i) q^{50} +29.9074i q^{51} -43.9736 q^{52} +30.4928 q^{53} -27.1454 q^{54} +25.9371i q^{55} -30.2789i q^{56} -57.7343 q^{57} +66.8072 q^{58} +(-13.9942 + 13.9942i) q^{59} +(46.8616 - 46.8616i) q^{60} +13.1154 q^{61} +1.98866 q^{62} +(27.1788 + 27.1788i) q^{63} -8.00000i q^{64} -205.326i q^{65} -13.9372 q^{66} -109.169 q^{67} +(-11.9199 + 11.9199i) q^{68} +(-97.4979 - 97.4979i) q^{69} +141.381 q^{70} +(-59.9574 + 59.9574i) q^{71} +(7.18090 + 7.18090i) q^{72} -22.8934i q^{73} +(37.3683 + 37.3683i) q^{74} +(156.085 + 156.085i) q^{75} +(-23.0106 - 23.0106i) q^{76} +(-21.0242 - 21.0242i) q^{77} +110.331 q^{78} -15.5383i q^{79} +37.3544 q^{80} +100.423 q^{81} +(73.7321 + 73.7321i) q^{82} +(-1.13888 + 1.13888i) q^{83} +75.9707i q^{84} +(-55.6576 - 55.6576i) q^{85} +(-3.77063 + 3.77063i) q^{86} -167.621 q^{87} +(-5.55482 - 5.55482i) q^{88} +5.33762i q^{89} +(-33.5298 + 33.5298i) q^{90} +(166.434 + 166.434i) q^{91} -77.7177i q^{92} -4.98961 q^{93} +(-5.27937 - 5.27937i) q^{94} +(107.443 - 107.443i) q^{95} +20.0722i q^{96} +133.029i q^{97} +(-65.6017 + 65.6017i) q^{98} +9.97215 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) 2.50903 + 2.50903i 0.836343 + 0.836343i 0.988375 0.152033i \(-0.0485819\pi\)
−0.152033 + 0.988375i \(0.548582\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −9.33859 −1.86772 −0.933859 0.357640i \(-0.883581\pi\)
−0.933859 + 0.357640i \(0.883581\pi\)
\(6\) 5.01806i 0.836343i
\(7\) 7.56973 7.56973i 1.08139 1.08139i 0.0850105 0.996380i \(-0.472908\pi\)
0.996380 0.0850105i \(-0.0270924\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 3.59045i 0.398939i
\(10\) 9.33859 + 9.33859i 0.933859 + 0.933859i
\(11\) 2.77741i 0.252492i −0.991999 0.126246i \(-0.959707\pi\)
0.991999 0.126246i \(-0.0402928\pi\)
\(12\) −5.01806 + 5.01806i −0.418171 + 0.418171i
\(13\) 21.9868i 1.69129i 0.533743 + 0.845647i \(0.320785\pi\)
−0.533743 + 0.845647i \(0.679215\pi\)
\(14\) −15.1395 −1.08139
\(15\) −23.4308 23.4308i −1.56205 1.56205i
\(16\) −4.00000 −0.250000
\(17\) 5.95995 + 5.95995i 0.350586 + 0.350586i 0.860327 0.509742i \(-0.170259\pi\)
−0.509742 + 0.860327i \(0.670259\pi\)
\(18\) 3.59045 3.59045i 0.199470 0.199470i
\(19\) −11.5053 + 11.5053i −0.605543 + 0.605543i −0.941778 0.336235i \(-0.890846\pi\)
0.336235 + 0.941778i \(0.390846\pi\)
\(20\) 18.6772i 0.933859i
\(21\) 37.9854 1.80883
\(22\) −2.77741 + 2.77741i −0.126246 + 0.126246i
\(23\) −38.8588 −1.68951 −0.844757 0.535150i \(-0.820255\pi\)
−0.844757 + 0.535150i \(0.820255\pi\)
\(24\) 10.0361 0.418171
\(25\) 62.2093 2.48837
\(26\) 21.9868 21.9868i 0.845647 0.845647i
\(27\) 13.5727 13.5727i 0.502693 0.502693i
\(28\) 15.1395 + 15.1395i 0.540695 + 0.540695i
\(29\) −33.4036 + 33.4036i −1.15185 + 1.15185i −0.165667 + 0.986182i \(0.552978\pi\)
−0.986182 + 0.165667i \(0.947022\pi\)
\(30\) 46.8616i 1.56205i
\(31\) −0.994331 + 0.994331i −0.0320752 + 0.0320752i −0.722962 0.690887i \(-0.757220\pi\)
0.690887 + 0.722962i \(0.257220\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 6.96860 6.96860i 0.211170 0.211170i
\(34\) 11.9199i 0.350586i
\(35\) −70.6907 + 70.6907i −2.01973 + 2.01973i
\(36\) −7.18090 −0.199470
\(37\) −37.3683 −1.00995 −0.504977 0.863133i \(-0.668499\pi\)
−0.504977 + 0.863133i \(0.668499\pi\)
\(38\) 23.0106 0.605543
\(39\) −55.1656 + 55.1656i −1.41450 + 1.41450i
\(40\) −18.6772 + 18.6772i −0.466930 + 0.466930i
\(41\) −73.7321 −1.79834 −0.899172 0.437595i \(-0.855830\pi\)
−0.899172 + 0.437595i \(0.855830\pi\)
\(42\) −37.9854 37.9854i −0.904413 0.904413i
\(43\) 3.77063i 0.0876891i −0.999038 0.0438445i \(-0.986039\pi\)
0.999038 0.0438445i \(-0.0139606\pi\)
\(44\) 5.55482 0.126246
\(45\) 33.5298i 0.745106i
\(46\) 38.8588 + 38.8588i 0.844757 + 0.844757i
\(47\) 5.27937 0.112327 0.0561635 0.998422i \(-0.482113\pi\)
0.0561635 + 0.998422i \(0.482113\pi\)
\(48\) −10.0361 10.0361i −0.209086 0.209086i
\(49\) 65.6017i 1.33881i
\(50\) −62.2093 62.2093i −1.24419 1.24419i
\(51\) 29.9074i 0.586420i
\(52\) −43.9736 −0.845647
\(53\) 30.4928 0.575336 0.287668 0.957730i \(-0.407120\pi\)
0.287668 + 0.957730i \(0.407120\pi\)
\(54\) −27.1454 −0.502693
\(55\) 25.9371i 0.471584i
\(56\) 30.2789i 0.540695i
\(57\) −57.7343 −1.01288
\(58\) 66.8072 1.15185
\(59\) −13.9942 + 13.9942i −0.237189 + 0.237189i −0.815685 0.578496i \(-0.803640\pi\)
0.578496 + 0.815685i \(0.303640\pi\)
\(60\) 46.8616 46.8616i 0.781027 0.781027i
\(61\) 13.1154 0.215006 0.107503 0.994205i \(-0.465714\pi\)
0.107503 + 0.994205i \(0.465714\pi\)
\(62\) 1.98866 0.0320752
\(63\) 27.1788 + 27.1788i 0.431409 + 0.431409i
\(64\) 8.00000i 0.125000i
\(65\) 205.326i 3.15886i
\(66\) −13.9372 −0.211170
\(67\) −109.169 −1.62939 −0.814694 0.579891i \(-0.803095\pi\)
−0.814694 + 0.579891i \(0.803095\pi\)
\(68\) −11.9199 + 11.9199i −0.175293 + 0.175293i
\(69\) −97.4979 97.4979i −1.41301 1.41301i
\(70\) 141.381 2.01973
\(71\) −59.9574 + 59.9574i −0.844470 + 0.844470i −0.989437 0.144966i \(-0.953693\pi\)
0.144966 + 0.989437i \(0.453693\pi\)
\(72\) 7.18090 + 7.18090i 0.0997348 + 0.0997348i
\(73\) 22.8934i 0.313609i −0.987630 0.156804i \(-0.949881\pi\)
0.987630 0.156804i \(-0.0501192\pi\)
\(74\) 37.3683 + 37.3683i 0.504977 + 0.504977i
\(75\) 156.085 + 156.085i 2.08113 + 2.08113i
\(76\) −23.0106 23.0106i −0.302771 0.302771i
\(77\) −21.0242 21.0242i −0.273042 0.273042i
\(78\) 110.331 1.41450
\(79\) 15.5383i 0.196687i −0.995153 0.0983437i \(-0.968646\pi\)
0.995153 0.0983437i \(-0.0313544\pi\)
\(80\) 37.3544 0.466930
\(81\) 100.423 1.23979
\(82\) 73.7321 + 73.7321i 0.899172 + 0.899172i
\(83\) −1.13888 + 1.13888i −0.0137214 + 0.0137214i −0.713934 0.700213i \(-0.753088\pi\)
0.700213 + 0.713934i \(0.253088\pi\)
\(84\) 75.9707i 0.904413i
\(85\) −55.6576 55.6576i −0.654795 0.654795i
\(86\) −3.77063 + 3.77063i −0.0438445 + 0.0438445i
\(87\) −167.621 −1.92668
\(88\) −5.55482 5.55482i −0.0631229 0.0631229i
\(89\) 5.33762i 0.0599732i 0.999550 + 0.0299866i \(0.00954647\pi\)
−0.999550 + 0.0299866i \(0.990454\pi\)
\(90\) −33.5298 + 33.5298i −0.372553 + 0.372553i
\(91\) 166.434 + 166.434i 1.82895 + 1.82895i
\(92\) 77.7177i 0.844757i
\(93\) −4.98961 −0.0536517
\(94\) −5.27937 5.27937i −0.0561635 0.0561635i
\(95\) 107.443 107.443i 1.13098 1.13098i
\(96\) 20.0722i 0.209086i
\(97\) 133.029i 1.37143i 0.727871 + 0.685715i \(0.240510\pi\)
−0.727871 + 0.685715i \(0.759490\pi\)
\(98\) −65.6017 + 65.6017i −0.669406 + 0.669406i
\(99\) 9.97215 0.100729
\(100\) 124.419i 1.24419i
\(101\) 101.492 + 101.492i 1.00487 + 1.00487i 0.999988 + 0.00487932i \(0.00155314\pi\)
0.00487932 + 0.999988i \(0.498447\pi\)
\(102\) 29.9074 29.9074i 0.293210 0.293210i
\(103\) 185.242i 1.79847i 0.437468 + 0.899234i \(0.355875\pi\)
−0.437468 + 0.899234i \(0.644125\pi\)
\(104\) 43.9736 + 43.9736i 0.422823 + 0.422823i
\(105\) −354.730 −3.37838
\(106\) −30.4928 30.4928i −0.287668 0.287668i
\(107\) −27.9295 + 27.9295i −0.261024 + 0.261024i −0.825470 0.564446i \(-0.809090\pi\)
0.564446 + 0.825470i \(0.309090\pi\)
\(108\) 27.1454 + 27.1454i 0.251347 + 0.251347i
\(109\) −110.515 + 110.515i −1.01390 + 1.01390i −0.0139955 + 0.999902i \(0.504455\pi\)
−0.999902 + 0.0139955i \(0.995545\pi\)
\(110\) 25.9371 25.9371i 0.235792 0.235792i
\(111\) −93.7582 93.7582i −0.844668 0.844668i
\(112\) −30.2789 + 30.2789i −0.270348 + 0.270348i
\(113\) 158.480 158.480i 1.40248 1.40248i 0.610346 0.792135i \(-0.291030\pi\)
0.792135 0.610346i \(-0.208970\pi\)
\(114\) 57.7343 + 57.7343i 0.506441 + 0.506441i
\(115\) 362.887 3.15554
\(116\) −66.8072 66.8072i −0.575924 0.575924i
\(117\) −78.9426 −0.674723
\(118\) 27.9884 0.237189
\(119\) 90.2305 0.758240
\(120\) −93.7232 −0.781027
\(121\) 113.286 0.936248
\(122\) −13.1154 13.1154i −0.107503 0.107503i
\(123\) −184.996 184.996i −1.50403 1.50403i
\(124\) −1.98866 1.98866i −0.0160376 0.0160376i
\(125\) −347.483 −2.77986
\(126\) 54.3575i 0.431409i
\(127\) 137.028i 1.07896i −0.841999 0.539479i \(-0.818621\pi\)
0.841999 0.539479i \(-0.181379\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 9.46062 9.46062i 0.0733381 0.0733381i
\(130\) −205.326 + 205.326i −1.57943 + 1.57943i
\(131\) 3.72007 0.0283975 0.0141987 0.999899i \(-0.495480\pi\)
0.0141987 + 0.999899i \(0.495480\pi\)
\(132\) 13.9372 + 13.9372i 0.105585 + 0.105585i
\(133\) 174.184i 1.30966i
\(134\) 109.169 + 109.169i 0.814694 + 0.814694i
\(135\) −126.750 + 126.750i −0.938889 + 0.938889i
\(136\) 23.8398 0.175293
\(137\) 165.955 165.955i 1.21135 1.21135i 0.240764 0.970584i \(-0.422602\pi\)
0.970584 0.240764i \(-0.0773979\pi\)
\(138\) 194.996i 1.41301i
\(139\) −55.4492 55.4492i −0.398915 0.398915i 0.478935 0.877850i \(-0.341023\pi\)
−0.877850 + 0.478935i \(0.841023\pi\)
\(140\) −141.381 141.381i −1.00987 1.00987i
\(141\) 13.2461 + 13.2461i 0.0939439 + 0.0939439i
\(142\) 119.915 0.844470
\(143\) 61.0664 0.427038
\(144\) 14.3618i 0.0997348i
\(145\) 311.943 311.943i 2.15133 2.15133i
\(146\) −22.8934 + 22.8934i −0.156804 + 0.156804i
\(147\) 164.597 164.597i 1.11971 1.11971i
\(148\) 74.7366i 0.504977i
\(149\) 215.861i 1.44873i 0.689417 + 0.724365i \(0.257867\pi\)
−0.689417 + 0.724365i \(0.742133\pi\)
\(150\) 312.170i 2.08113i
\(151\) 17.4767i 0.115740i 0.998324 + 0.0578698i \(0.0184308\pi\)
−0.998324 + 0.0578698i \(0.981569\pi\)
\(152\) 46.0213i 0.302771i
\(153\) −21.3989 + 21.3989i −0.139862 + 0.139862i
\(154\) 42.0485i 0.273042i
\(155\) 9.28565 9.28565i 0.0599074 0.0599074i
\(156\) −110.331 110.331i −0.707251 0.707251i
\(157\) 127.982 + 127.982i 0.815175 + 0.815175i 0.985404 0.170230i \(-0.0544510\pi\)
−0.170230 + 0.985404i \(0.554451\pi\)
\(158\) −15.5383 + 15.5383i −0.0983437 + 0.0983437i
\(159\) 76.5073 + 76.5073i 0.481178 + 0.481178i
\(160\) −37.3544 37.3544i −0.233465 0.233465i
\(161\) −294.151 + 294.151i −1.82702 + 1.82702i
\(162\) −100.423 100.423i −0.619893 0.619893i
\(163\) 48.9605 48.9605i 0.300371 0.300371i −0.540788 0.841159i \(-0.681874\pi\)
0.841159 + 0.540788i \(0.181874\pi\)
\(164\) 147.464i 0.899172i
\(165\) −65.0769 + 65.0769i −0.394406 + 0.394406i
\(166\) 2.27776 0.0137214
\(167\) −102.936 102.936i −0.616386 0.616386i 0.328217 0.944603i \(-0.393552\pi\)
−0.944603 + 0.328217i \(0.893552\pi\)
\(168\) 75.9707 75.9707i 0.452207 0.452207i
\(169\) −314.420 −1.86047
\(170\) 111.315i 0.654795i
\(171\) −41.3093 41.3093i −0.241575 0.241575i
\(172\) 7.54126 0.0438445
\(173\) 103.881 0.600467 0.300234 0.953866i \(-0.402935\pi\)
0.300234 + 0.953866i \(0.402935\pi\)
\(174\) 167.621 + 167.621i 0.963340 + 0.963340i
\(175\) 470.908 470.908i 2.69090 2.69090i
\(176\) 11.1096i 0.0631229i
\(177\) −70.2236 −0.396743
\(178\) 5.33762 5.33762i 0.0299866 0.0299866i
\(179\) −175.102 175.102i −0.978223 0.978223i 0.0215452 0.999768i \(-0.493141\pi\)
−0.999768 + 0.0215452i \(0.993141\pi\)
\(180\) 67.0595 0.372553
\(181\) 109.980 109.980i 0.607624 0.607624i −0.334700 0.942325i \(-0.608635\pi\)
0.942325 + 0.334700i \(0.108635\pi\)
\(182\) 332.869i 1.82895i
\(183\) 32.9069 + 32.9069i 0.179819 + 0.179819i
\(184\) −77.7177 + 77.7177i −0.422379 + 0.422379i
\(185\) 348.967 1.88631
\(186\) 4.98961 + 4.98961i 0.0268259 + 0.0268259i
\(187\) 16.5532 16.5532i 0.0885199 0.0885199i
\(188\) 10.5587i 0.0561635i
\(189\) 205.484i 1.08722i
\(190\) −214.887 −1.13098
\(191\) 188.656i 0.987726i 0.869540 + 0.493863i \(0.164416\pi\)
−0.869540 + 0.493863i \(0.835584\pi\)
\(192\) 20.0722 20.0722i 0.104543 0.104543i
\(193\) −88.6898 + 88.6898i −0.459533 + 0.459533i −0.898502 0.438969i \(-0.855344\pi\)
0.438969 + 0.898502i \(0.355344\pi\)
\(194\) 133.029 133.029i 0.685715 0.685715i
\(195\) 515.169 515.169i 2.64189 2.64189i
\(196\) 131.203 0.669406
\(197\) 123.136 123.136i 0.625057 0.625057i −0.321763 0.946820i \(-0.604275\pi\)
0.946820 + 0.321763i \(0.104275\pi\)
\(198\) −9.97215 9.97215i −0.0503644 0.0503644i
\(199\) 278.717i 1.40059i −0.713855 0.700294i \(-0.753052\pi\)
0.713855 0.700294i \(-0.246948\pi\)
\(200\) 124.419 124.419i 0.622093 0.622093i
\(201\) −273.908 273.908i −1.36273 1.36273i
\(202\) 202.983i 1.00487i
\(203\) 505.713i 2.49120i
\(204\) −59.8148 −0.293210
\(205\) 688.554 3.35880
\(206\) 185.242 185.242i 0.899234 0.899234i
\(207\) 139.521i 0.674013i
\(208\) 87.9473i 0.422823i
\(209\) 31.9550 + 31.9550i 0.152895 + 0.152895i
\(210\) 354.730 + 354.730i 1.68919 + 1.68919i
\(211\) 135.519i 0.642270i 0.947033 + 0.321135i \(0.104064\pi\)
−0.947033 + 0.321135i \(0.895936\pi\)
\(212\) 60.9856i 0.287668i
\(213\) −300.870 −1.41253
\(214\) 55.8591 0.261024
\(215\) 35.2124i 0.163779i
\(216\) 54.2909i 0.251347i
\(217\) 15.0536i 0.0693716i
\(218\) 221.030 1.01390
\(219\) 57.4403 57.4403i 0.262284 0.262284i
\(220\) −51.8742 −0.235792
\(221\) −131.040 + 131.040i −0.592943 + 0.592943i
\(222\) 187.516i 0.844668i
\(223\) −28.1268 + 28.1268i −0.126129 + 0.126129i −0.767353 0.641224i \(-0.778427\pi\)
0.641224 + 0.767353i \(0.278427\pi\)
\(224\) 60.5579 0.270348
\(225\) 223.360i 0.992710i
\(226\) −316.961 −1.40248
\(227\) 104.606 104.606i 0.460818 0.460818i −0.438105 0.898924i \(-0.644350\pi\)
0.898924 + 0.438105i \(0.144350\pi\)
\(228\) 115.469i 0.506441i
\(229\) −79.7578 79.7578i −0.348287 0.348287i 0.511184 0.859471i \(-0.329207\pi\)
−0.859471 + 0.511184i \(0.829207\pi\)
\(230\) −362.887 362.887i −1.57777 1.57777i
\(231\) 105.501i 0.456714i
\(232\) 133.614i 0.575924i
\(233\) 64.4090i 0.276433i −0.990402 0.138217i \(-0.955863\pi\)
0.990402 0.138217i \(-0.0441370\pi\)
\(234\) 78.9426 + 78.9426i 0.337362 + 0.337362i
\(235\) −49.3019 −0.209795
\(236\) −27.9884 27.9884i −0.118595 0.118595i
\(237\) 38.9860 38.9860i 0.164498 0.164498i
\(238\) −90.2305 90.2305i −0.379120 0.379120i
\(239\) −263.585 −1.10286 −0.551432 0.834220i \(-0.685919\pi\)
−0.551432 + 0.834220i \(0.685919\pi\)
\(240\) 93.7232 + 93.7232i 0.390513 + 0.390513i
\(241\) 131.894 131.894i 0.547280 0.547280i −0.378373 0.925653i \(-0.623516\pi\)
0.925653 + 0.378373i \(0.123516\pi\)
\(242\) −113.286 113.286i −0.468124 0.468124i
\(243\) 129.809 + 129.809i 0.534194 + 0.534194i
\(244\) 26.2308i 0.107503i
\(245\) 612.628i 2.50052i
\(246\) 369.992i 1.50403i
\(247\) −252.965 252.965i −1.02415 1.02415i
\(248\) 3.97732i 0.0160376i
\(249\) −5.71496 −0.0229517
\(250\) 347.483 + 347.483i 1.38993 + 1.38993i
\(251\) −120.640 120.640i −0.480639 0.480639i 0.424696 0.905336i \(-0.360381\pi\)
−0.905336 + 0.424696i \(0.860381\pi\)
\(252\) −54.3575 + 54.3575i −0.215704 + 0.215704i
\(253\) 107.927i 0.426588i
\(254\) −137.028 + 137.028i −0.539479 + 0.539479i
\(255\) 279.293i 1.09527i
\(256\) 16.0000 0.0625000
\(257\) −21.7398 21.7398i −0.0845905 0.0845905i 0.663545 0.748136i \(-0.269051\pi\)
−0.748136 + 0.663545i \(0.769051\pi\)
\(258\) −18.9212 −0.0733381
\(259\) −282.868 + 282.868i −1.09216 + 1.09216i
\(260\) 410.652 1.57943
\(261\) −119.934 119.934i −0.459517 0.459517i
\(262\) −3.72007 3.72007i −0.0141987 0.0141987i
\(263\) −320.777 −1.21968 −0.609842 0.792523i \(-0.708767\pi\)
−0.609842 + 0.792523i \(0.708767\pi\)
\(264\) 27.8744i 0.105585i
\(265\) −284.760 −1.07457
\(266\) 174.184 174.184i 0.654828 0.654828i
\(267\) −13.3922 + 13.3922i −0.0501582 + 0.0501582i
\(268\) 218.338i 0.814694i
\(269\) −65.5521 + 260.891i −0.243688 + 0.969854i
\(270\) 253.500 0.938889
\(271\) −183.006 183.006i −0.675298 0.675298i 0.283634 0.958932i \(-0.408460\pi\)
−0.958932 + 0.283634i \(0.908460\pi\)
\(272\) −23.8398 23.8398i −0.0876464 0.0876464i
\(273\) 835.177i 3.05926i
\(274\) −331.909 −1.21135
\(275\) 172.781i 0.628294i
\(276\) 194.996 194.996i 0.706507 0.706507i
\(277\) 154.379 154.379i 0.557323 0.557323i −0.371221 0.928545i \(-0.621061\pi\)
0.928545 + 0.371221i \(0.121061\pi\)
\(278\) 110.898i 0.398915i
\(279\) −3.57010 3.57010i −0.0127960 0.0127960i
\(280\) 282.763i 1.00987i
\(281\) −175.992 + 175.992i −0.626305 + 0.626305i −0.947136 0.320831i \(-0.896038\pi\)
0.320831 + 0.947136i \(0.396038\pi\)
\(282\) 26.4922i 0.0939439i
\(283\) −4.04793 −0.0143037 −0.00715183 0.999974i \(-0.502277\pi\)
−0.00715183 + 0.999974i \(0.502277\pi\)
\(284\) −119.915 119.915i −0.422235 0.422235i
\(285\) 539.157 1.89178
\(286\) −61.0664 61.0664i −0.213519 0.213519i
\(287\) −558.133 + 558.133i −1.94471 + 1.94471i
\(288\) −14.3618 + 14.3618i −0.0498674 + 0.0498674i
\(289\) 217.958i 0.754180i
\(290\) −623.886 −2.15133
\(291\) −333.773 + 333.773i −1.14699 + 1.14699i
\(292\) 45.7869 0.156804
\(293\) 161.191 0.550141 0.275071 0.961424i \(-0.411299\pi\)
0.275071 + 0.961424i \(0.411299\pi\)
\(294\) −329.193 −1.11971
\(295\) 130.686 130.686i 0.443003 0.443003i
\(296\) −74.7366 + 74.7366i −0.252489 + 0.252489i
\(297\) −37.6970 37.6970i −0.126926 0.126926i
\(298\) 215.861 215.861i 0.724365 0.724365i
\(299\) 854.382i 2.85746i
\(300\) −312.170 + 312.170i −1.04057 + 1.04057i
\(301\) −28.5427 28.5427i −0.0948261 0.0948261i
\(302\) 17.4767 17.4767i 0.0578698 0.0578698i
\(303\) 509.291i 1.68083i
\(304\) 46.0213 46.0213i 0.151386 0.151386i
\(305\) −122.479 −0.401571
\(306\) 42.7979 0.139862
\(307\) 142.393 0.463820 0.231910 0.972737i \(-0.425503\pi\)
0.231910 + 0.972737i \(0.425503\pi\)
\(308\) 42.0485 42.0485i 0.136521 0.136521i
\(309\) −464.778 + 464.778i −1.50414 + 1.50414i
\(310\) −18.5713 −0.0599074
\(311\) 275.032 + 275.032i 0.884347 + 0.884347i 0.993973 0.109626i \(-0.0349653\pi\)
−0.109626 + 0.993973i \(0.534965\pi\)
\(312\) 220.662i 0.707251i
\(313\) 102.897 0.328743 0.164372 0.986398i \(-0.447440\pi\)
0.164372 + 0.986398i \(0.447440\pi\)
\(314\) 255.965i 0.815175i
\(315\) −253.811 253.811i −0.805751 0.805751i
\(316\) 31.0766 0.0983437
\(317\) −276.703 276.703i −0.872879 0.872879i 0.119906 0.992785i \(-0.461741\pi\)
−0.992785 + 0.119906i \(0.961741\pi\)
\(318\) 153.015i 0.481178i
\(319\) 92.7755 + 92.7755i 0.290832 + 0.290832i
\(320\) 74.7088i 0.233465i
\(321\) −140.152 −0.436611
\(322\) 588.302 1.82702
\(323\) −137.142 −0.424589
\(324\) 200.845i 0.619893i
\(325\) 1367.79i 4.20857i
\(326\) −97.9209 −0.300371
\(327\) −554.570 −1.69593
\(328\) −147.464 + 147.464i −0.449586 + 0.449586i
\(329\) 39.9634 39.9634i 0.121469 0.121469i
\(330\) 130.154 0.394406
\(331\) 338.119 1.02151 0.510754 0.859727i \(-0.329366\pi\)
0.510754 + 0.859727i \(0.329366\pi\)
\(332\) −2.27776 2.27776i −0.00686072 0.00686072i
\(333\) 134.169i 0.402910i
\(334\) 205.873i 0.616386i
\(335\) 1019.49 3.04324
\(336\) −151.941 −0.452207
\(337\) −103.394 + 103.394i −0.306808 + 0.306808i −0.843670 0.536862i \(-0.819609\pi\)
0.536862 + 0.843670i \(0.319609\pi\)
\(338\) 314.420 + 314.420i 0.930237 + 0.930237i
\(339\) 795.264 2.34591
\(340\) 111.315 111.315i 0.327398 0.327398i
\(341\) 2.76166 + 2.76166i 0.00809872 + 0.00809872i
\(342\) 82.6185i 0.241575i
\(343\) −125.671 125.671i −0.366387 0.366387i
\(344\) −7.54126 7.54126i −0.0219223 0.0219223i
\(345\) 910.494 + 910.494i 2.63911 + 2.63911i
\(346\) −103.881 103.881i −0.300234 0.300234i
\(347\) −102.188 −0.294489 −0.147245 0.989100i \(-0.547040\pi\)
−0.147245 + 0.989100i \(0.547040\pi\)
\(348\) 335.242i 0.963340i
\(349\) −59.7928 −0.171326 −0.0856631 0.996324i \(-0.527301\pi\)
−0.0856631 + 0.996324i \(0.527301\pi\)
\(350\) −941.816 −2.69090
\(351\) 298.421 + 298.421i 0.850202 + 0.850202i
\(352\) 11.1096 11.1096i 0.0315615 0.0315615i
\(353\) 267.041i 0.756489i −0.925706 0.378244i \(-0.876528\pi\)
0.925706 0.378244i \(-0.123472\pi\)
\(354\) 70.2236 + 70.2236i 0.198372 + 0.198372i
\(355\) 559.918 559.918i 1.57723 1.57723i
\(356\) −10.6752 −0.0299866
\(357\) 226.391 + 226.391i 0.634149 + 0.634149i
\(358\) 350.204i 0.978223i
\(359\) 21.6116 21.6116i 0.0601993 0.0601993i −0.676366 0.736566i \(-0.736446\pi\)
0.736566 + 0.676366i \(0.236446\pi\)
\(360\) −67.0595 67.0595i −0.186277 0.186277i
\(361\) 96.2555i 0.266636i
\(362\) −219.960 −0.607624
\(363\) 284.238 + 284.238i 0.783024 + 0.783024i
\(364\) −332.869 + 332.869i −0.914474 + 0.914474i
\(365\) 213.793i 0.585733i
\(366\) 65.8138i 0.179819i
\(367\) 66.8642 66.8642i 0.182191 0.182191i −0.610119 0.792310i \(-0.708878\pi\)
0.792310 + 0.610119i \(0.208878\pi\)
\(368\) 155.435 0.422379
\(369\) 264.732i 0.717430i
\(370\) −348.967 348.967i −0.943155 0.943155i
\(371\) 230.822 230.822i 0.622163 0.622163i
\(372\) 9.97922i 0.0268259i
\(373\) 53.7768 + 53.7768i 0.144174 + 0.144174i 0.775510 0.631336i \(-0.217493\pi\)
−0.631336 + 0.775510i \(0.717493\pi\)
\(374\) −33.1065 −0.0885199
\(375\) −871.845 871.845i −2.32492 2.32492i
\(376\) 10.5587 10.5587i 0.0280818 0.0280818i
\(377\) −734.439 734.439i −1.94811 1.94811i
\(378\) −205.484 + 205.484i −0.543608 + 0.543608i
\(379\) 264.542 264.542i 0.697999 0.697999i −0.265979 0.963979i \(-0.585695\pi\)
0.963979 + 0.265979i \(0.0856953\pi\)
\(380\) 214.887 + 214.887i 0.565492 + 0.565492i
\(381\) 343.806 343.806i 0.902379 0.902379i
\(382\) 188.656 188.656i 0.493863 0.493863i
\(383\) −258.722 258.722i −0.675514 0.675514i 0.283467 0.958982i \(-0.408515\pi\)
−0.958982 + 0.283467i \(0.908515\pi\)
\(384\) −40.1445 −0.104543
\(385\) 196.337 + 196.337i 0.509966 + 0.509966i
\(386\) 177.380 0.459533
\(387\) 13.5383 0.0349826
\(388\) −266.057 −0.685715
\(389\) 345.517 0.888219 0.444110 0.895972i \(-0.353520\pi\)
0.444110 + 0.895972i \(0.353520\pi\)
\(390\) −1030.34 −2.64189
\(391\) −231.597 231.597i −0.592319 0.592319i
\(392\) −131.203 131.203i −0.334703 0.334703i
\(393\) 9.33377 + 9.33377i 0.0237500 + 0.0237500i
\(394\) −246.272 −0.625057
\(395\) 145.106i 0.367357i
\(396\) 19.9443i 0.0503644i
\(397\) −260.780 + 260.780i −0.656876 + 0.656876i −0.954640 0.297763i \(-0.903759\pi\)
0.297763 + 0.954640i \(0.403759\pi\)
\(398\) −278.717 + 278.717i −0.700294 + 0.700294i
\(399\) −437.034 + 437.034i −1.09532 + 1.09532i
\(400\) −248.837 −0.622093
\(401\) 288.615 + 288.615i 0.719738 + 0.719738i 0.968551 0.248814i \(-0.0800407\pi\)
−0.248814 + 0.968551i \(0.580041\pi\)
\(402\) 547.816i 1.36273i
\(403\) −21.8622 21.8622i −0.0542486 0.0542486i
\(404\) −202.983 + 202.983i −0.502434 + 0.502434i
\(405\) −937.807 −2.31557
\(406\) 505.713 505.713i 1.24560 1.24560i
\(407\) 103.787i 0.255005i
\(408\) 59.8148 + 59.8148i 0.146605 + 0.146605i
\(409\) 162.708 + 162.708i 0.397819 + 0.397819i 0.877463 0.479644i \(-0.159234\pi\)
−0.479644 + 0.877463i \(0.659234\pi\)
\(410\) −688.554 688.554i −1.67940 1.67940i
\(411\) 832.770 2.02620
\(412\) −370.484 −0.899234
\(413\) 211.864i 0.512989i
\(414\) −139.521 + 139.521i −0.337007 + 0.337007i
\(415\) 10.6355 10.6355i 0.0256278 0.0256278i
\(416\) −87.9473 + 87.9473i −0.211412 + 0.211412i
\(417\) 278.247i 0.667260i
\(418\) 63.9099i 0.152895i
\(419\) 24.0825i 0.0574762i −0.999587 0.0287381i \(-0.990851\pi\)
0.999587 0.0287381i \(-0.00914888\pi\)
\(420\) 709.460i 1.68919i
\(421\) 76.3924i 0.181455i 0.995876 + 0.0907274i \(0.0289192\pi\)
−0.995876 + 0.0907274i \(0.971081\pi\)
\(422\) 135.519 135.519i 0.321135 0.321135i
\(423\) 18.9553i 0.0448116i
\(424\) 60.9856 60.9856i 0.143834 0.143834i
\(425\) 370.765 + 370.765i 0.872388 + 0.872388i
\(426\) 300.870 + 300.870i 0.706267 + 0.706267i
\(427\) 99.2800 99.2800i 0.232506 0.232506i
\(428\) −55.8591 55.8591i −0.130512 0.130512i
\(429\) 153.217 + 153.217i 0.357150 + 0.357150i
\(430\) 35.2124 35.2124i 0.0818893 0.0818893i
\(431\) −590.726 590.726i −1.37060 1.37060i −0.859560 0.511035i \(-0.829262\pi\)
−0.511035 0.859560i \(-0.670738\pi\)
\(432\) −54.2909 + 54.2909i −0.125673 + 0.125673i
\(433\) 193.848i 0.447686i −0.974625 0.223843i \(-0.928140\pi\)
0.974625 0.223843i \(-0.0718603\pi\)
\(434\) 15.0536 15.0536i 0.0346858 0.0346858i
\(435\) 1565.35 3.59850
\(436\) −221.030 221.030i −0.506949 0.506949i
\(437\) 447.083 447.083i 1.02307 1.02307i
\(438\) −114.881 −0.262284
\(439\) 368.874i 0.840260i −0.907464 0.420130i \(-0.861984\pi\)
0.907464 0.420130i \(-0.138016\pi\)
\(440\) 51.8742 + 51.8742i 0.117896 + 0.117896i
\(441\) 235.540 0.534104
\(442\) 262.081 0.592943
\(443\) 527.286 + 527.286i 1.19026 + 1.19026i 0.976994 + 0.213267i \(0.0684103\pi\)
0.213267 + 0.976994i \(0.431590\pi\)
\(444\) 187.516 187.516i 0.422334 0.422334i
\(445\) 49.8459i 0.112013i
\(446\) 56.2536 0.126129
\(447\) −541.601 + 541.601i −1.21164 + 1.21164i
\(448\) −60.5579 60.5579i −0.135174 0.135174i
\(449\) 54.8607 0.122184 0.0610921 0.998132i \(-0.480542\pi\)
0.0610921 + 0.998132i \(0.480542\pi\)
\(450\) 223.360 223.360i 0.496355 0.496355i
\(451\) 204.784i 0.454067i
\(452\) 316.961 + 316.961i 0.701240 + 0.701240i
\(453\) −43.8495 + 43.8495i −0.0967980 + 0.0967980i
\(454\) −209.211 −0.460818
\(455\) −1554.26 1554.26i −3.41596 3.41596i
\(456\) −115.469 + 115.469i −0.253221 + 0.253221i
\(457\) 866.664i 1.89642i 0.317645 + 0.948210i \(0.397108\pi\)
−0.317645 + 0.948210i \(0.602892\pi\)
\(458\) 159.516i 0.348287i
\(459\) 161.786 0.352474
\(460\) 725.774i 1.57777i
\(461\) 371.947 371.947i 0.806827 0.806827i −0.177325 0.984152i \(-0.556744\pi\)
0.984152 + 0.177325i \(0.0567443\pi\)
\(462\) −105.501 + 105.501i −0.228357 + 0.228357i
\(463\) −357.605 + 357.605i −0.772365 + 0.772365i −0.978520 0.206154i \(-0.933905\pi\)
0.206154 + 0.978520i \(0.433905\pi\)
\(464\) 133.614 133.614i 0.287962 0.287962i
\(465\) 46.5959 0.100206
\(466\) −64.4090 + 64.4090i −0.138217 + 0.138217i
\(467\) 559.522 + 559.522i 1.19812 + 1.19812i 0.974729 + 0.223392i \(0.0717130\pi\)
0.223392 + 0.974729i \(0.428287\pi\)
\(468\) 157.885i 0.337362i
\(469\) −826.381 + 826.381i −1.76201 + 1.76201i
\(470\) 49.3019 + 49.3019i 0.104898 + 0.104898i
\(471\) 642.223i 1.36353i
\(472\) 55.9767i 0.118595i
\(473\) −10.4726 −0.0221408
\(474\) −77.9721 −0.164498
\(475\) −715.738 + 715.738i −1.50682 + 1.50682i
\(476\) 180.461i 0.379120i
\(477\) 109.483i 0.229524i
\(478\) 263.585 + 263.585i 0.551432 + 0.551432i
\(479\) 348.719 + 348.719i 0.728016 + 0.728016i 0.970224 0.242209i \(-0.0778718\pi\)
−0.242209 + 0.970224i \(0.577872\pi\)
\(480\) 187.446i 0.390513i
\(481\) 821.610i 1.70813i
\(482\) −263.789 −0.547280
\(483\) −1476.07 −3.05604
\(484\) 226.572i 0.468124i
\(485\) 1242.30i 2.56144i
\(486\) 259.618i 0.534194i
\(487\) −383.219 −0.786897 −0.393448 0.919347i \(-0.628718\pi\)
−0.393448 + 0.919347i \(0.628718\pi\)
\(488\) 26.2308 26.2308i 0.0537516 0.0537516i
\(489\) 245.686 0.502426
\(490\) 612.628 612.628i 1.25026 1.25026i
\(491\) 63.1198i 0.128554i 0.997932 + 0.0642768i \(0.0204740\pi\)
−0.997932 + 0.0642768i \(0.979526\pi\)
\(492\) 369.992 369.992i 0.752016 0.752016i
\(493\) −398.168 −0.807643
\(494\) 505.930i 1.02415i
\(495\) −93.1259 −0.188133
\(496\) 3.97732 3.97732i 0.00801880 0.00801880i
\(497\) 907.723i 1.82640i
\(498\) 5.71496 + 5.71496i 0.0114758 + 0.0114758i
\(499\) −228.174 228.174i −0.457262 0.457262i 0.440494 0.897756i \(-0.354803\pi\)
−0.897756 + 0.440494i \(0.854803\pi\)
\(500\) 694.966i 1.38993i
\(501\) 516.541i 1.03102i
\(502\) 241.281i 0.480639i
\(503\) 536.557 + 536.557i 1.06671 + 1.06671i 0.997609 + 0.0691036i \(0.0220139\pi\)
0.0691036 + 0.997609i \(0.477986\pi\)
\(504\) 108.715 0.215704
\(505\) −947.789 947.789i −1.87681 1.87681i
\(506\) 107.927 107.927i 0.213294 0.213294i
\(507\) −788.889 788.889i −1.55599 1.55599i
\(508\) 274.055 0.539479
\(509\) 374.080 + 374.080i 0.734932 + 0.734932i 0.971592 0.236660i \(-0.0760529\pi\)
−0.236660 + 0.971592i \(0.576053\pi\)
\(510\) −279.293 + 279.293i −0.547633 + 0.547633i
\(511\) −173.297 173.297i −0.339134 0.339134i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 312.317i 0.608804i
\(514\) 43.4795i 0.0845905i
\(515\) 1729.90i 3.35903i
\(516\) 18.9212 + 18.9212i 0.0366691 + 0.0366691i
\(517\) 14.6630i 0.0283616i
\(518\) 565.736 1.09216
\(519\) 260.640 + 260.640i 0.502196 + 0.502196i
\(520\) −410.652 410.652i −0.789715 0.789715i
\(521\) 15.1103 15.1103i 0.0290024 0.0290024i −0.692457 0.721459i \(-0.743472\pi\)
0.721459 + 0.692457i \(0.243472\pi\)
\(522\) 239.868i 0.459517i
\(523\) −140.109 + 140.109i −0.267895 + 0.267895i −0.828251 0.560357i \(-0.810664\pi\)
0.560357 + 0.828251i \(0.310664\pi\)
\(524\) 7.44014i 0.0141987i
\(525\) 2363.04 4.50104
\(526\) 320.777 + 320.777i 0.609842 + 0.609842i
\(527\) −11.8523 −0.0224902
\(528\) −27.8744 + 27.8744i −0.0527924 + 0.0527924i
\(529\) 981.009 1.85446
\(530\) 284.760 + 284.760i 0.537283 + 0.537283i
\(531\) −50.2454 50.2454i −0.0946241 0.0946241i
\(532\) −348.369 −0.654828
\(533\) 1621.13i 3.04153i
\(534\) 26.7845 0.0501582
\(535\) 260.823 260.823i 0.487519 0.487519i
\(536\) −218.338 + 218.338i −0.407347 + 0.407347i
\(537\) 878.671i 1.63626i
\(538\) 326.443 195.338i 0.606771 0.363083i
\(539\) −182.203 −0.338039
\(540\) −253.500 253.500i −0.469445 0.469445i
\(541\) −30.6541 30.6541i −0.0566620 0.0566620i 0.678208 0.734870i \(-0.262757\pi\)
−0.734870 + 0.678208i \(0.762757\pi\)
\(542\) 366.012i 0.675298i
\(543\) 551.886 1.01636
\(544\) 47.6796i 0.0876464i
\(545\) 1032.05 1032.05i 1.89368 1.89368i
\(546\) 835.177 835.177i 1.52963 1.52963i
\(547\) 279.861i 0.511629i −0.966726 0.255814i \(-0.917656\pi\)
0.966726 0.255814i \(-0.0823436\pi\)
\(548\) 331.909 + 331.909i 0.605674 + 0.605674i
\(549\) 47.0901i 0.0857744i
\(550\) −172.781 + 172.781i −0.314147 + 0.314147i
\(551\) 768.638i 1.39499i
\(552\) −389.992 −0.706507
\(553\) −117.621 117.621i −0.212696 0.212696i
\(554\) −308.757 −0.557323
\(555\) 875.569 + 875.569i 1.57760 + 1.57760i
\(556\) 110.898 110.898i 0.199458 0.199458i
\(557\) −536.790 + 536.790i −0.963716 + 0.963716i −0.999364 0.0356484i \(-0.988650\pi\)
0.0356484 + 0.999364i \(0.488650\pi\)
\(558\) 7.14019i 0.0127960i
\(559\) 82.9041 0.148308
\(560\) 282.763 282.763i 0.504933 0.504933i
\(561\) 83.0651 0.148066
\(562\) 351.983 0.626305
\(563\) −602.327 −1.06985 −0.534926 0.844899i \(-0.679661\pi\)
−0.534926 + 0.844899i \(0.679661\pi\)
\(564\) −26.4922 + 26.4922i −0.0469719 + 0.0469719i
\(565\) −1479.98 + 1479.98i −2.61944 + 2.61944i
\(566\) 4.04793 + 4.04793i 0.00715183 + 0.00715183i
\(567\) 760.173 760.173i 1.34069 1.34069i
\(568\) 239.830i 0.422235i
\(569\) 425.615 425.615i 0.748005 0.748005i −0.226100 0.974104i \(-0.572598\pi\)
0.974104 + 0.226100i \(0.0725975\pi\)
\(570\) −539.157 539.157i −0.945890 0.945890i
\(571\) −44.0568 + 44.0568i −0.0771573 + 0.0771573i −0.744632 0.667475i \(-0.767375\pi\)
0.667475 + 0.744632i \(0.267375\pi\)
\(572\) 122.133i 0.213519i
\(573\) −473.343 + 473.343i −0.826078 + 0.826078i
\(574\) 1116.27 1.94471
\(575\) −2417.38 −4.20414
\(576\) 28.7236 0.0498674
\(577\) −236.020 + 236.020i −0.409048 + 0.409048i −0.881406 0.472359i \(-0.843403\pi\)
0.472359 + 0.881406i \(0.343403\pi\)
\(578\) −217.958 + 217.958i −0.377090 + 0.377090i
\(579\) −445.051 −0.768654
\(580\) 623.886 + 623.886i 1.07566 + 1.07566i
\(581\) 17.2420i 0.0296765i
\(582\) 667.545 1.14699
\(583\) 84.6910i 0.145268i
\(584\) −45.7869 45.7869i −0.0784022 0.0784022i
\(585\) 737.213 1.26019
\(586\) −161.191 161.191i −0.275071 0.275071i
\(587\) 214.417i 0.365275i −0.983180 0.182638i \(-0.941536\pi\)
0.983180 0.182638i \(-0.0584635\pi\)
\(588\) 329.193 + 329.193i 0.559853 + 0.559853i
\(589\) 22.8802i 0.0388458i
\(590\) −261.372 −0.443003
\(591\) 617.905 1.04552
\(592\) 149.473 0.252489
\(593\) 56.2579i 0.0948700i 0.998874 + 0.0474350i \(0.0151047\pi\)
−0.998874 + 0.0474350i \(0.984895\pi\)
\(594\) 75.3939i 0.126926i
\(595\) −842.626 −1.41618
\(596\) −431.722 −0.724365
\(597\) 699.309 699.309i 1.17137 1.17137i
\(598\) −854.382 + 854.382i −1.42873 + 1.42873i
\(599\) −386.191 −0.644727 −0.322363 0.946616i \(-0.604477\pi\)
−0.322363 + 0.946616i \(0.604477\pi\)
\(600\) 624.340 1.04057
\(601\) 137.404 + 137.404i 0.228626 + 0.228626i 0.812119 0.583492i \(-0.198314\pi\)
−0.583492 + 0.812119i \(0.698314\pi\)
\(602\) 57.0853i 0.0948261i
\(603\) 391.966i 0.650027i
\(604\) −34.9533 −0.0578698
\(605\) −1057.93 −1.74865
\(606\) 509.291 509.291i 0.840414 0.840414i
\(607\) −67.1390 67.1390i −0.110608 0.110608i 0.649637 0.760245i \(-0.274921\pi\)
−0.760245 + 0.649637i \(0.774921\pi\)
\(608\) −92.0425 −0.151386
\(609\) −1268.85 + 1268.85i −2.08349 + 2.08349i
\(610\) 122.479 + 122.479i 0.200786 + 0.200786i
\(611\) 116.077i 0.189978i
\(612\) −42.7979 42.7979i −0.0699311 0.0699311i
\(613\) 412.459 + 412.459i 0.672853 + 0.672853i 0.958373 0.285520i \(-0.0921663\pi\)
−0.285520 + 0.958373i \(0.592166\pi\)
\(614\) −142.393 142.393i −0.231910 0.231910i
\(615\) 1727.60 + 1727.60i 2.80911 + 2.80911i
\(616\) −84.0970 −0.136521
\(617\) 1059.74i 1.71757i 0.512336 + 0.858785i \(0.328780\pi\)
−0.512336 + 0.858785i \(0.671220\pi\)
\(618\) 929.556 1.50414
\(619\) −246.774 −0.398665 −0.199332 0.979932i \(-0.563877\pi\)
−0.199332 + 0.979932i \(0.563877\pi\)
\(620\) 18.5713 + 18.5713i 0.0299537 + 0.0299537i
\(621\) −527.420 + 527.420i −0.849307 + 0.849307i
\(622\) 550.064i 0.884347i
\(623\) 40.4044 + 40.4044i 0.0648545 + 0.0648545i
\(624\) 220.662 220.662i 0.353625 0.353625i
\(625\) 1689.77 2.70363
\(626\) −102.897 102.897i −0.164372 0.164372i
\(627\) 160.352i 0.255745i
\(628\) −255.965 + 255.965i −0.407587 + 0.407587i
\(629\) −222.713 222.713i −0.354075 0.354075i
\(630\) 507.623i 0.805751i
\(631\) 837.046 1.32654 0.663269 0.748381i \(-0.269168\pi\)
0.663269 + 0.748381i \(0.269168\pi\)
\(632\) −31.0766 31.0766i −0.0491718 0.0491718i
\(633\) −340.021 + 340.021i −0.537158 + 0.537158i
\(634\) 553.406i 0.872879i
\(635\) 1279.65i 2.01519i
\(636\) −153.015 + 153.015i −0.240589 + 0.240589i
\(637\) 1442.37 2.26432
\(638\) 185.551i 0.290832i
\(639\) −215.274 215.274i −0.336892 0.336892i
\(640\) 74.7088 74.7088i 0.116732 0.116732i
\(641\) 381.912i 0.595806i 0.954596 + 0.297903i \(0.0962872\pi\)
−0.954596 + 0.297903i \(0.903713\pi\)
\(642\) 140.152 + 140.152i 0.218305 + 0.218305i
\(643\) −784.767 −1.22048 −0.610239 0.792217i \(-0.708927\pi\)
−0.610239 + 0.792217i \(0.708927\pi\)
\(644\) −588.302 588.302i −0.913512 0.913512i
\(645\) −88.3489 + 88.3489i −0.136975 + 0.136975i
\(646\) 137.142 + 137.142i 0.212295 + 0.212295i
\(647\) 370.127 370.127i 0.572066 0.572066i −0.360639 0.932705i \(-0.617442\pi\)
0.932705 + 0.360639i \(0.117442\pi\)
\(648\) 200.845 200.845i 0.309947 0.309947i
\(649\) 38.8676 + 38.8676i 0.0598884 + 0.0598884i
\(650\) 1367.79 1367.79i 2.10429 2.10429i
\(651\) −37.7700 + 37.7700i −0.0580185 + 0.0580185i
\(652\) 97.9209 + 97.9209i 0.150185 + 0.150185i
\(653\) −573.066 −0.877589 −0.438795 0.898587i \(-0.644594\pi\)
−0.438795 + 0.898587i \(0.644594\pi\)
\(654\) 554.570 + 554.570i 0.847966 + 0.847966i
\(655\) −34.7402 −0.0530385
\(656\) 294.928 0.449586
\(657\) 82.1978 0.125111
\(658\) −79.9268 −0.121469
\(659\) −752.512 −1.14190 −0.570950 0.820985i \(-0.693425\pi\)
−0.570950 + 0.820985i \(0.693425\pi\)
\(660\) −130.154 130.154i −0.197203 0.197203i
\(661\) −509.520 509.520i −0.770833 0.770833i 0.207419 0.978252i \(-0.433494\pi\)
−0.978252 + 0.207419i \(0.933494\pi\)
\(662\) −338.119 338.119i −0.510754 0.510754i
\(663\) −657.568 −0.991808
\(664\) 4.55552i 0.00686072i
\(665\) 1626.64i 2.44607i
\(666\) −134.169 + 134.169i −0.201455 + 0.201455i
\(667\) 1298.03 1298.03i 1.94606 1.94606i
\(668\) 205.873 205.873i 0.308193 0.308193i
\(669\) −141.142 −0.210974
\(670\) −1019.49 1019.49i −1.52162 1.52162i
\(671\) 36.4268i 0.0542873i
\(672\) 151.941 + 151.941i 0.226103 + 0.226103i
\(673\) −58.1658 + 58.1658i −0.0864277 + 0.0864277i −0.748999 0.662571i \(-0.769465\pi\)
0.662571 + 0.748999i \(0.269465\pi\)
\(674\) 206.788 0.306808
\(675\) 844.350 844.350i 1.25089 1.25089i
\(676\) 628.840i 0.930237i
\(677\) −226.391 226.391i −0.334404 0.334404i 0.519852 0.854256i \(-0.325987\pi\)
−0.854256 + 0.519852i \(0.825987\pi\)
\(678\) −795.264 795.264i −1.17296 1.17296i
\(679\) 1006.99 + 1006.99i 1.48305 + 1.48305i
\(680\) −222.630 −0.327398
\(681\) 524.918 0.770804
\(682\) 5.52333i 0.00809872i
\(683\) 79.6760 79.6760i 0.116656 0.116656i −0.646369 0.763025i \(-0.723713\pi\)
0.763025 + 0.646369i \(0.223713\pi\)
\(684\) 82.6185 82.6185i 0.120787 0.120787i
\(685\) −1549.78 + 1549.78i −2.26246 + 2.26246i
\(686\) 251.342i 0.366387i
\(687\) 400.229i 0.582575i
\(688\) 15.0825i 0.0219223i
\(689\) 670.440i 0.973062i
\(690\) 1820.99i 2.63911i
\(691\) −15.6743 + 15.6743i −0.0226835 + 0.0226835i −0.718358 0.695674i \(-0.755106\pi\)
0.695674 + 0.718358i \(0.255106\pi\)
\(692\) 207.762i 0.300234i
\(693\) 75.4865 75.4865i 0.108927 0.108927i
\(694\) 102.188 + 102.188i 0.147245 + 0.147245i
\(695\) 517.818 + 517.818i 0.745062 + 0.745062i
\(696\) −335.242 + 335.242i −0.481670 + 0.481670i
\(697\) −439.440 439.440i −0.630474 0.630474i
\(698\) 59.7928 + 59.7928i 0.0856631 + 0.0856631i
\(699\) 161.604 161.604i 0.231193 0.231193i
\(700\) 941.816 + 941.816i 1.34545 + 1.34545i
\(701\) −749.863 + 749.863i −1.06971 + 1.06971i −0.0723238 + 0.997381i \(0.523042\pi\)
−0.997381 + 0.0723238i \(0.976958\pi\)
\(702\) 596.842i 0.850202i
\(703\) 429.934 429.934i 0.611571 0.611571i
\(704\) −22.2193 −0.0315615
\(705\) −123.700 123.700i −0.175461 0.175461i
\(706\) −267.041 + 267.041i −0.378244 + 0.378244i
\(707\) 1536.53 2.17331
\(708\) 140.447i 0.198372i
\(709\) −175.119 175.119i −0.246994 0.246994i 0.572742 0.819736i \(-0.305880\pi\)
−0.819736 + 0.572742i \(0.805880\pi\)
\(710\) −1119.84 −1.57723
\(711\) 55.7895 0.0784663
\(712\) 10.6752 + 10.6752i 0.0149933 + 0.0149933i
\(713\) 38.6385 38.6385i 0.0541915 0.0541915i
\(714\) 452.782i 0.634149i
\(715\) −570.274 −0.797586
\(716\) 350.204 350.204i 0.489111 0.489111i
\(717\) −661.341 661.341i −0.922373 0.922373i
\(718\) −43.2231 −0.0601993
\(719\) −11.1479 + 11.1479i −0.0155048 + 0.0155048i −0.714817 0.699312i \(-0.753490\pi\)
0.699312 + 0.714817i \(0.253490\pi\)
\(720\) 134.119i 0.186277i
\(721\) 1402.23 + 1402.23i 1.94485 + 1.94485i
\(722\) 96.2555 96.2555i 0.133318 0.133318i
\(723\) 661.854 0.915427
\(724\) 219.960 + 219.960i 0.303812 + 0.303812i
\(725\) −2078.02 + 2078.02i −2.86623 + 2.86623i
\(726\) 568.476i 0.783024i
\(727\) 679.096i 0.934107i −0.884229 0.467054i \(-0.845316\pi\)
0.884229 0.467054i \(-0.154684\pi\)
\(728\) 665.737 0.914474
\(729\) 252.415i 0.346248i
\(730\) 213.793 213.793i 0.292867 0.292867i
\(731\) 22.4728 22.4728i 0.0307425 0.0307425i
\(732\) −65.8138 + 65.8138i −0.0899095 + 0.0899095i
\(733\) −512.015 + 512.015i −0.698520 + 0.698520i −0.964091 0.265571i \(-0.914439\pi\)
0.265571 + 0.964091i \(0.414439\pi\)
\(734\) −133.728 −0.182191
\(735\) −1537.10 + 1537.10i −2.09129 + 2.09129i
\(736\) −155.435 155.435i −0.211189 0.211189i
\(737\) 303.207i 0.411407i
\(738\) −264.732 + 264.732i −0.358715 + 0.358715i
\(739\) 665.613 + 665.613i 0.900694 + 0.900694i 0.995496 0.0948019i \(-0.0302218\pi\)
−0.0948019 + 0.995496i \(0.530222\pi\)
\(740\) 697.935i 0.943155i
\(741\) 1269.39i 1.71308i
\(742\) −461.645 −0.622163
\(743\) 613.884 0.826224 0.413112 0.910680i \(-0.364442\pi\)
0.413112 + 0.910680i \(0.364442\pi\)
\(744\) −9.97922 + 9.97922i −0.0134129 + 0.0134129i
\(745\) 2015.84i 2.70582i
\(746\) 107.554i 0.144174i
\(747\) −4.08909 4.08909i −0.00547402 0.00547402i
\(748\) 33.1065 + 33.1065i 0.0442600 + 0.0442600i
\(749\) 422.839i 0.564537i
\(750\) 1743.69i 2.32492i
\(751\) −55.4038 −0.0737733 −0.0368867 0.999319i \(-0.511744\pi\)
−0.0368867 + 0.999319i \(0.511744\pi\)
\(752\) −21.1175 −0.0280818
\(753\) 605.381i 0.803959i
\(754\) 1468.88i 1.94811i
\(755\) 163.208i 0.216169i
\(756\) 410.967 0.543608
\(757\) 228.069 228.069i 0.301280 0.301280i −0.540234 0.841515i \(-0.681664\pi\)
0.841515 + 0.540234i \(0.181664\pi\)
\(758\) −529.083 −0.697999
\(759\) −270.792 + 270.792i −0.356774 + 0.356774i
\(760\) 429.774i 0.565492i
\(761\) 481.277 481.277i 0.632427 0.632427i −0.316249 0.948676i \(-0.602424\pi\)
0.948676 + 0.316249i \(0.102424\pi\)
\(762\) −687.613 −0.902379
\(763\) 1673.14i 2.19284i
\(764\) −377.311 −0.493863
\(765\) 199.836 199.836i 0.261223 0.261223i
\(766\) 517.444i 0.675514i
\(767\) −307.687 307.687i −0.401157 0.401157i
\(768\) 40.1445 + 40.1445i 0.0522714 + 0.0522714i
\(769\) 378.421i 0.492095i 0.969258 + 0.246048i \(0.0791320\pi\)
−0.969258 + 0.246048i \(0.920868\pi\)
\(770\) 392.674i 0.509966i
\(771\) 109.091i 0.141493i
\(772\) −177.380 177.380i −0.229766 0.229766i
\(773\) 835.121 1.08036 0.540182 0.841548i \(-0.318355\pi\)
0.540182 + 0.841548i \(0.318355\pi\)
\(774\) −13.5383 13.5383i −0.0174913 0.0174913i
\(775\) −61.8567 + 61.8567i −0.0798151 + 0.0798151i
\(776\) 266.057 + 266.057i 0.342857 + 0.342857i
\(777\) −1419.45 −1.82683
\(778\) −345.517 345.517i −0.444110 0.444110i
\(779\) 848.311 848.311i 1.08897 1.08897i
\(780\) 1030.34 + 1030.34i 1.32095 + 1.32095i
\(781\) 166.526 + 166.526i 0.213222 + 0.213222i
\(782\) 463.194i 0.592319i
\(783\) 906.755i 1.15805i
\(784\) 262.407i 0.334703i
\(785\) −1195.18 1195.18i −1.52252 1.52252i
\(786\) 18.6675i 0.0237500i
\(787\) −16.2916 −0.0207009 −0.0103504 0.999946i \(-0.503295\pi\)
−0.0103504 + 0.999946i \(0.503295\pi\)
\(788\) 246.272 + 246.272i 0.312529 + 0.312529i
\(789\) −804.839 804.839i −1.02007 1.02007i
\(790\) 145.106 145.106i 0.183678 0.183678i
\(791\) 2399.31i 3.03326i
\(792\) 19.9443 19.9443i 0.0251822 0.0251822i
\(793\) 288.366i 0.363639i
\(794\) 521.560 0.656876
\(795\) −714.471 714.471i −0.898706 0.898706i
\(796\) 557.434 0.700294
\(797\) −718.419 + 718.419i −0.901403 + 0.901403i −0.995558 0.0941541i \(-0.969985\pi\)
0.0941541 + 0.995558i \(0.469985\pi\)
\(798\) 874.067 1.09532
\(799\) 31.4648 + 31.4648i 0.0393802 + 0.0393802i
\(800\) 248.837 + 248.837i 0.311047 + 0.311047i
\(801\) −19.1645 −0.0239257
\(802\) 577.230i 0.719738i
\(803\) −63.5844 −0.0791836
\(804\) 547.816 547.816i 0.681364 0.681364i
\(805\) 2746.96 2746.96i 3.41237 3.41237i
\(806\) 43.7243i 0.0542486i
\(807\) −819.054 + 490.110i −1.01494 + 0.607323i
\(808\) 405.966 0.502434
\(809\) 480.518 + 480.518i 0.593965 + 0.593965i 0.938700 0.344735i \(-0.112031\pi\)
−0.344735 + 0.938700i \(0.612031\pi\)
\(810\) 937.807 + 937.807i 1.15779 + 1.15779i
\(811\) 1238.79i 1.52749i −0.645521 0.763743i \(-0.723360\pi\)
0.645521 0.763743i \(-0.276640\pi\)
\(812\) −1011.43 −1.24560
\(813\) 918.334i 1.12956i
\(814\) 103.787 103.787i 0.127503 0.127503i
\(815\) −457.222 + 457.222i −0.561008 + 0.561008i
\(816\) 119.630i 0.146605i
\(817\) 43.3823 + 43.3823i 0.0530995 + 0.0530995i
\(818\) 325.416i 0.397819i
\(819\) −597.574 + 597.574i −0.729639 + 0.729639i
\(820\) 1377.11i 1.67940i
\(821\) 542.158 0.660363 0.330182 0.943917i \(-0.392890\pi\)
0.330182 + 0.943917i \(0.392890\pi\)
\(822\) −832.770 832.770i −1.01310 1.01310i
\(823\) −1303.64 −1.58401 −0.792007 0.610512i \(-0.790964\pi\)
−0.792007 + 0.610512i \(0.790964\pi\)
\(824\) 370.484 + 370.484i 0.449617 + 0.449617i
\(825\) 433.512 433.512i 0.525469 0.525469i
\(826\) 211.864 211.864i 0.256494 0.256494i
\(827\) 1491.06i 1.80298i 0.432803 + 0.901489i \(0.357525\pi\)
−0.432803 + 0.901489i \(0.642475\pi\)
\(828\) 279.041 0.337007
\(829\) −197.949 + 197.949i −0.238780 + 0.238780i −0.816345 0.577565i \(-0.804003\pi\)
0.577565 + 0.816345i \(0.304003\pi\)
\(830\) −21.2711 −0.0256278
\(831\) 774.681 0.932227
\(832\) 175.895 0.211412
\(833\) 390.983 390.983i 0.469368 0.469368i
\(834\) −278.247 + 278.247i −0.333630 + 0.333630i
\(835\) 961.282 + 961.282i 1.15124 + 1.15124i
\(836\) −63.9099 + 63.9099i −0.0764473 + 0.0764473i
\(837\) 26.9915i 0.0322479i
\(838\) −24.0825 + 24.0825i −0.0287381 + 0.0287381i
\(839\) −256.308 256.308i −0.305493 0.305493i 0.537665 0.843158i \(-0.319306\pi\)
−0.843158 + 0.537665i \(0.819306\pi\)
\(840\) −709.460 + 709.460i −0.844595 + 0.844595i
\(841\) 1390.60i 1.65351i
\(842\) 76.3924 76.3924i 0.0907274 0.0907274i
\(843\) −883.137 −1.04761
\(844\) −271.038 −0.321135
\(845\) 2936.24 3.47484
\(846\) 18.9553 18.9553i 0.0224058 0.0224058i
\(847\) 857.545 857.545i 1.01245 1.01245i
\(848\) −121.971 −0.143834
\(849\) −10.1564 10.1564i −0.0119628 0.0119628i
\(850\) 741.530i 0.872388i
\(851\) 1452.09 1.70633
\(852\) 601.739i 0.706267i
\(853\) −1063.16 1063.16i −1.24638 1.24638i −0.957307 0.289072i \(-0.906653\pi\)
−0.289072 0.957307i \(-0.593347\pi\)
\(854\) −198.560 −0.232506
\(855\) 385.771 + 385.771i 0.451194 + 0.451194i
\(856\) 111.718i 0.130512i
\(857\) 758.076 + 758.076i 0.884569 + 0.884569i 0.993995 0.109426i \(-0.0349013\pi\)
−0.109426 + 0.993995i \(0.534901\pi\)
\(858\) 306.435i 0.357150i
\(859\) −241.707 −0.281382 −0.140691 0.990054i \(-0.544932\pi\)
−0.140691 + 0.990054i \(0.544932\pi\)
\(860\) −70.4248 −0.0818893
\(861\) −2800.74 −3.25289
\(862\) 1181.45i 1.37060i
\(863\) 658.396i 0.762915i 0.924386 + 0.381458i \(0.124578\pi\)
−0.924386 + 0.381458i \(0.875422\pi\)
\(864\) 108.582 0.125673
\(865\) −970.101 −1.12150
\(866\) −193.848 + 193.848i −0.223843 + 0.223843i
\(867\) 546.863 546.863i 0.630753 0.630753i
\(868\) −30.1073 −0.0346858
\(869\) −43.1562 −0.0496619
\(870\) −1565.35 1565.35i −1.79925 1.79925i
\(871\) 2400.28i 2.75577i
\(872\) 442.059i 0.506949i
\(873\) −477.633 −0.547117
\(874\) −894.166 −1.02307
\(875\) −2630.35 + 2630.35i −3.00612 + 3.00612i
\(876\) 114.881 + 114.881i 0.131142 + 0.131142i
\(877\) −806.066 −0.919118 −0.459559 0.888147i \(-0.651992\pi\)
−0.459559 + 0.888147i \(0.651992\pi\)
\(878\) −368.874 + 368.874i −0.420130 + 0.420130i
\(879\) 404.434 + 404.434i 0.460107 + 0.460107i
\(880\) 103.748i 0.117896i
\(881\) 399.262 + 399.262i 0.453192 + 0.453192i 0.896413 0.443221i \(-0.146164\pi\)
−0.443221 + 0.896413i \(0.646164\pi\)
\(882\) −235.540 235.540i −0.267052 0.267052i
\(883\) −1121.00 1121.00i −1.26954 1.26954i −0.946326 0.323212i \(-0.895237\pi\)
−0.323212 0.946326i \(-0.604763\pi\)
\(884\) −262.081 262.081i −0.296472 0.296472i
\(885\) 655.790 0.741005
\(886\) 1054.57i 1.19026i
\(887\) −397.616 −0.448271 −0.224136 0.974558i \(-0.571956\pi\)
−0.224136 + 0.974558i \(0.571956\pi\)
\(888\) −375.033 −0.422334
\(889\) −1037.26 1037.26i −1.16678 1.16678i
\(890\) −49.8459 + 49.8459i −0.0560066 + 0.0560066i
\(891\) 278.915i 0.313036i
\(892\) −56.2536 56.2536i −0.0630645 0.0630645i
\(893\) −60.7408 + 60.7408i −0.0680188 + 0.0680188i
\(894\) 1083.20 1.21164
\(895\) 1635.21 + 1635.21i 1.82704 + 1.82704i
\(896\) 121.116i 0.135174i
\(897\) 2143.67 2143.67i 2.38982 2.38982i
\(898\) −54.8607 54.8607i −0.0610921 0.0610921i
\(899\) 66.4285i 0.0738915i
\(900\) −446.719 −0.496355
\(901\) 181.736 + 181.736i 0.201704 + 0.201704i
\(902\) 204.784 204.784i 0.227034 0.227034i
\(903\) 143.229i 0.158614i
\(904\) 633.921i 0.701240i
\(905\) −1027.06 + 1027.06i −1.13487 + 1.13487i
\(906\) 87.6990 0.0967980
\(907\) 1666.19i 1.83703i 0.395384 + 0.918516i \(0.370612\pi\)
−0.395384 + 0.918516i \(0.629388\pi\)
\(908\) 209.211 + 209.211i 0.230409 + 0.230409i
\(909\) −364.401 + 364.401i −0.400881 + 0.400881i
\(910\) 3108.53i 3.41596i
\(911\) −417.642 417.642i −0.458443 0.458443i 0.439701 0.898144i \(-0.355084\pi\)
−0.898144 + 0.439701i \(0.855084\pi\)
\(912\) 230.937 0.253221
\(913\) 3.16313 + 3.16313i 0.00346455 + 0.00346455i
\(914\) 866.664 866.664i 0.948210 0.948210i
\(915\) −307.304 307.304i −0.335851 0.335851i
\(916\) 159.516 159.516i 0.174144 0.174144i
\(917\) 28.1600 28.1600i 0.0307088 0.0307088i
\(918\) −161.786 161.786i −0.176237 0.176237i
\(919\) 1185.31 1185.31i 1.28979 1.28979i 0.354870 0.934916i \(-0.384525\pi\)
0.934916 0.354870i \(-0.115475\pi\)
\(920\) 725.774 725.774i 0.788885 0.788885i
\(921\) 357.267 + 357.267i 0.387912 + 0.387912i
\(922\) −743.895 −0.806827
\(923\) −1318.27 1318.27i −1.42825 1.42825i
\(924\) 211.002 0.228357
\(925\) −2324.66 −2.51314
\(926\) 715.210 0.772365
\(927\) −665.103 −0.717479
\(928\) −267.229 −0.287962
\(929\) −718.204 718.204i −0.773094 0.773094i 0.205552 0.978646i \(-0.434101\pi\)
−0.978646 + 0.205552i \(0.934101\pi\)
\(930\) −46.5959 46.5959i −0.0501032 0.0501032i
\(931\) 754.769 + 754.769i 0.810708 + 0.810708i
\(932\) 128.818 0.138217
\(933\) 1380.13i 1.47923i
\(934\) 1119.04i 1.19812i
\(935\) −154.584 + 154.584i −0.165330 + 0.165330i
\(936\) −157.885 + 157.885i −0.168681 + 0.168681i
\(937\) −1136.39 + 1136.39i −1.21280 + 1.21280i −0.242694 + 0.970103i \(0.578031\pi\)
−0.970103 + 0.242694i \(0.921969\pi\)
\(938\) 1652.76 1.76201
\(939\) 258.171 + 258.171i 0.274942 + 0.274942i
\(940\) 98.6038i 0.104898i
\(941\) 786.546 + 786.546i 0.835862 + 0.835862i 0.988311 0.152449i \(-0.0487161\pi\)
−0.152449 + 0.988311i \(0.548716\pi\)
\(942\) 642.223 642.223i 0.681766 0.681766i
\(943\) 2865.14 3.03833
\(944\) 55.9767 55.9767i 0.0592974 0.0592974i
\(945\) 1918.93i 2.03061i
\(946\) 10.4726 + 10.4726i 0.0110704 + 0.0110704i
\(947\) 15.1563 + 15.1563i 0.0160045 + 0.0160045i 0.715064 0.699059i \(-0.246398\pi\)
−0.699059 + 0.715064i \(0.746398\pi\)
\(948\) 77.9721 + 77.9721i 0.0822490 + 0.0822490i
\(949\) 503.354 0.530405
\(950\) 1431.48 1.50682
\(951\) 1388.51i 1.46005i
\(952\) 180.461 180.461i 0.189560 0.189560i
\(953\) −676.964 + 676.964i −0.710351 + 0.710351i −0.966609 0.256258i \(-0.917510\pi\)
0.256258 + 0.966609i \(0.417510\pi\)
\(954\) 109.483 109.483i 0.114762 0.114762i
\(955\) 1761.78i 1.84479i
\(956\) 527.169i 0.551432i
\(957\) 465.553i 0.486471i
\(958\) 697.439i 0.728016i
\(959\) 2512.46i 2.61988i
\(960\) −187.446 + 187.446i −0.195257 + 0.195257i
\(961\) 959.023i 0.997942i
\(962\) −821.610 + 821.610i −0.854065 + 0.854065i
\(963\) −100.280 100.280i −0.104133 0.104133i
\(964\) 263.789 + 263.789i 0.273640 + 0.273640i
\(965\) 828.238 828.238i 0.858278 0.858278i
\(966\) 1476.07 + 1476.07i 1.52802 + 1.52802i
\(967\) −31.4827 31.4827i −0.0325571 0.0325571i 0.690641 0.723198i \(-0.257329\pi\)
−0.723198 + 0.690641i \(0.757329\pi\)
\(968\) 226.572 226.572i 0.234062 0.234062i
\(969\) −344.094 344.094i −0.355102 0.355102i
\(970\) −1242.30 + 1242.30i −1.28072 + 1.28072i
\(971\) 788.282i 0.811825i −0.913912 0.405912i \(-0.866954\pi\)
0.913912 0.405912i \(-0.133046\pi\)
\(972\) −259.618 + 259.618i −0.267097 + 0.267097i
\(973\) −839.472 −0.862766
\(974\) 383.219 + 383.219i 0.393448 + 0.393448i
\(975\) −3431.81 + 3431.81i −3.51981 + 3.51981i
\(976\) −52.4615 −0.0537516
\(977\) 769.724i 0.787844i 0.919144 + 0.393922i \(0.128882\pi\)
−0.919144 + 0.393922i \(0.871118\pi\)
\(978\) −245.686 245.686i −0.251213 0.251213i
\(979\) 14.8247 0.0151427
\(980\) −1225.26 −1.25026
\(981\) −396.798 396.798i −0.404483 0.404483i
\(982\) 63.1198 63.1198i 0.0642768 0.0642768i
\(983\) 259.726i 0.264218i −0.991235 0.132109i \(-0.957825\pi\)
0.991235 0.132109i \(-0.0421749\pi\)
\(984\) −739.984 −0.752016
\(985\) −1149.92 + 1149.92i −1.16743 + 1.16743i
\(986\) 398.168 + 398.168i 0.403821 + 0.403821i
\(987\) 200.539 0.203180
\(988\) 505.930 505.930i 0.512075 0.512075i
\(989\) 146.522i 0.148152i
\(990\) 93.1259 + 93.1259i 0.0940665 + 0.0940665i
\(991\) −514.744 + 514.744i −0.519419 + 0.519419i −0.917395 0.397977i \(-0.869712\pi\)
0.397977 + 0.917395i \(0.369712\pi\)
\(992\) −7.95465 −0.00801880
\(993\) 848.351 + 848.351i 0.854331 + 0.854331i
\(994\) 907.723 907.723i 0.913202 0.913202i
\(995\) 2602.82i 2.61590i
\(996\) 11.4299i 0.0114758i
\(997\) −1495.10 −1.49960 −0.749799 0.661666i \(-0.769850\pi\)
−0.749799 + 0.661666i \(0.769850\pi\)
\(998\) 456.348i 0.457262i
\(999\) −507.189 + 507.189i −0.507697 + 0.507697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.187.19 46
269.82 odd 4 inner 538.3.c.b.351.19 yes 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.19 46 1.1 even 1 trivial
538.3.c.b.351.19 yes 46 269.82 odd 4 inner