Properties

Label 538.3.c.b.187.2
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.2
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.b.351.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(-3.73758 - 3.73758i) q^{3} +2.00000i q^{4} +3.56643 q^{5} +7.47516i q^{6} +(0.891381 - 0.891381i) q^{7} +(2.00000 - 2.00000i) q^{8} +18.9390i q^{9} +(-3.56643 - 3.56643i) q^{10} -2.56603i q^{11} +(7.47516 - 7.47516i) q^{12} -6.86363i q^{13} -1.78276 q^{14} +(-13.3298 - 13.3298i) q^{15} -4.00000 q^{16} +(18.2796 + 18.2796i) q^{17} +(18.9390 - 18.9390i) q^{18} +(19.2264 - 19.2264i) q^{19} +7.13285i q^{20} -6.66321 q^{21} +(-2.56603 + 2.56603i) q^{22} +20.7058 q^{23} -14.9503 q^{24} -12.2806 q^{25} +(-6.86363 + 6.86363i) q^{26} +(37.1478 - 37.1478i) q^{27} +(1.78276 + 1.78276i) q^{28} +(33.1609 - 33.1609i) q^{29} +26.6596i q^{30} +(31.1443 - 31.1443i) q^{31} +(4.00000 + 4.00000i) q^{32} +(-9.59075 + 9.59075i) q^{33} -36.5592i q^{34} +(3.17904 - 3.17904i) q^{35} -37.8780 q^{36} +9.51182 q^{37} -38.4528 q^{38} +(-25.6534 + 25.6534i) q^{39} +(7.13285 - 7.13285i) q^{40} -47.9831 q^{41} +(6.66321 + 6.66321i) q^{42} +27.6003i q^{43} +5.13207 q^{44} +67.5445i q^{45} +(-20.7058 - 20.7058i) q^{46} -83.5411 q^{47} +(14.9503 + 14.9503i) q^{48} +47.4109i q^{49} +(12.2806 + 12.2806i) q^{50} -136.643i q^{51} +13.7273 q^{52} +7.49037 q^{53} -74.2956 q^{54} -9.15157i q^{55} -3.56552i q^{56} -143.720 q^{57} -66.3218 q^{58} +(46.0453 - 46.0453i) q^{59} +(26.6596 - 26.6596i) q^{60} -82.0535 q^{61} -62.2886 q^{62} +(16.8819 + 16.8819i) q^{63} -8.00000i q^{64} -24.4786i q^{65} +19.1815 q^{66} +21.7311 q^{67} +(-36.5592 + 36.5592i) q^{68} +(-77.3896 - 77.3896i) q^{69} -6.35809 q^{70} +(-10.9828 + 10.9828i) q^{71} +(37.8780 + 37.8780i) q^{72} +41.5713i q^{73} +(-9.51182 - 9.51182i) q^{74} +(45.8997 + 45.8997i) q^{75} +(38.4528 + 38.4528i) q^{76} +(-2.28731 - 2.28731i) q^{77} +51.3067 q^{78} -61.7849i q^{79} -14.2657 q^{80} -107.235 q^{81} +(47.9831 + 47.9831i) q^{82} +(29.4236 - 29.4236i) q^{83} -13.3264i q^{84} +(65.1928 + 65.1928i) q^{85} +(27.6003 - 27.6003i) q^{86} -247.883 q^{87} +(-5.13207 - 5.13207i) q^{88} -137.457i q^{89} +(67.5445 - 67.5445i) q^{90} +(-6.11811 - 6.11811i) q^{91} +41.4116i q^{92} -232.808 q^{93} +(83.5411 + 83.5411i) q^{94} +(68.5695 - 68.5695i) q^{95} -29.9006i q^{96} +97.9964i q^{97} +(47.4109 - 47.4109i) q^{98} +48.5981 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) −3.73758 3.73758i −1.24586 1.24586i −0.957532 0.288328i \(-0.906901\pi\)
−0.288328 0.957532i \(-0.593099\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 3.56643 0.713285 0.356643 0.934241i \(-0.383921\pi\)
0.356643 + 0.934241i \(0.383921\pi\)
\(6\) 7.47516i 1.24586i
\(7\) 0.891381 0.891381i 0.127340 0.127340i −0.640564 0.767904i \(-0.721300\pi\)
0.767904 + 0.640564i \(0.221300\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 18.9390i 2.10433i
\(10\) −3.56643 3.56643i −0.356643 0.356643i
\(11\) 2.56603i 0.233276i −0.993175 0.116638i \(-0.962788\pi\)
0.993175 0.116638i \(-0.0372117\pi\)
\(12\) 7.47516 7.47516i 0.622930 0.622930i
\(13\) 6.86363i 0.527971i −0.964527 0.263986i \(-0.914963\pi\)
0.964527 0.263986i \(-0.0850372\pi\)
\(14\) −1.78276 −0.127340
\(15\) −13.3298 13.3298i −0.888654 0.888654i
\(16\) −4.00000 −0.250000
\(17\) 18.2796 + 18.2796i 1.07527 + 1.07527i 0.996926 + 0.0783435i \(0.0249631\pi\)
0.0783435 + 0.996926i \(0.475037\pi\)
\(18\) 18.9390 18.9390i 1.05217 1.05217i
\(19\) 19.2264 19.2264i 1.01191 1.01191i 0.0119866 0.999928i \(-0.496184\pi\)
0.999928 0.0119866i \(-0.00381555\pi\)
\(20\) 7.13285i 0.356643i
\(21\) −6.66321 −0.317296
\(22\) −2.56603 + 2.56603i −0.116638 + 0.116638i
\(23\) 20.7058 0.900252 0.450126 0.892965i \(-0.351379\pi\)
0.450126 + 0.892965i \(0.351379\pi\)
\(24\) −14.9503 −0.622930
\(25\) −12.2806 −0.491224
\(26\) −6.86363 + 6.86363i −0.263986 + 0.263986i
\(27\) 37.1478 37.1478i 1.37584 1.37584i
\(28\) 1.78276 + 1.78276i 0.0636700 + 0.0636700i
\(29\) 33.1609 33.1609i 1.14348 1.14348i 0.155670 0.987809i \(-0.450246\pi\)
0.987809 0.155670i \(-0.0497535\pi\)
\(30\) 26.6596i 0.888654i
\(31\) 31.1443 31.1443i 1.00465 1.00465i 0.00466538 0.999989i \(-0.498515\pi\)
0.999989 0.00466538i \(-0.00148504\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) −9.59075 + 9.59075i −0.290629 + 0.290629i
\(34\) 36.5592i 1.07527i
\(35\) 3.17904 3.17904i 0.0908298 0.0908298i
\(36\) −37.8780 −1.05217
\(37\) 9.51182 0.257076 0.128538 0.991705i \(-0.458972\pi\)
0.128538 + 0.991705i \(0.458972\pi\)
\(38\) −38.4528 −1.01191
\(39\) −25.6534 + 25.6534i −0.657778 + 0.657778i
\(40\) 7.13285 7.13285i 0.178321 0.178321i
\(41\) −47.9831 −1.17032 −0.585159 0.810918i \(-0.698968\pi\)
−0.585159 + 0.810918i \(0.698968\pi\)
\(42\) 6.66321 + 6.66321i 0.158648 + 0.158648i
\(43\) 27.6003i 0.641867i 0.947102 + 0.320933i \(0.103997\pi\)
−0.947102 + 0.320933i \(0.896003\pi\)
\(44\) 5.13207 0.116638
\(45\) 67.5445i 1.50099i
\(46\) −20.7058 20.7058i −0.450126 0.450126i
\(47\) −83.5411 −1.77747 −0.888735 0.458421i \(-0.848415\pi\)
−0.888735 + 0.458421i \(0.848415\pi\)
\(48\) 14.9503 + 14.9503i 0.311465 + 0.311465i
\(49\) 47.4109i 0.967569i
\(50\) 12.2806 + 12.2806i 0.245612 + 0.245612i
\(51\) 136.643i 2.67927i
\(52\) 13.7273 0.263986
\(53\) 7.49037 0.141328 0.0706638 0.997500i \(-0.477488\pi\)
0.0706638 + 0.997500i \(0.477488\pi\)
\(54\) −74.2956 −1.37584
\(55\) 9.15157i 0.166392i
\(56\) 3.56552i 0.0636700i
\(57\) −143.720 −2.52141
\(58\) −66.3218 −1.14348
\(59\) 46.0453 46.0453i 0.780430 0.780430i −0.199474 0.979903i \(-0.563923\pi\)
0.979903 + 0.199474i \(0.0639232\pi\)
\(60\) 26.6596 26.6596i 0.444327 0.444327i
\(61\) −82.0535 −1.34514 −0.672570 0.740034i \(-0.734810\pi\)
−0.672570 + 0.740034i \(0.734810\pi\)
\(62\) −62.2886 −1.00465
\(63\) 16.8819 + 16.8819i 0.267966 + 0.267966i
\(64\) 8.00000i 0.125000i
\(65\) 24.4786i 0.376594i
\(66\) 19.1815 0.290629
\(67\) 21.7311 0.324345 0.162173 0.986762i \(-0.448150\pi\)
0.162173 + 0.986762i \(0.448150\pi\)
\(68\) −36.5592 + 36.5592i −0.537635 + 0.537635i
\(69\) −77.3896 77.3896i −1.12159 1.12159i
\(70\) −6.35809 −0.0908298
\(71\) −10.9828 + 10.9828i −0.154688 + 0.154688i −0.780208 0.625520i \(-0.784887\pi\)
0.625520 + 0.780208i \(0.284887\pi\)
\(72\) 37.8780 + 37.8780i 0.526083 + 0.526083i
\(73\) 41.5713i 0.569469i 0.958606 + 0.284735i \(0.0919055\pi\)
−0.958606 + 0.284735i \(0.908095\pi\)
\(74\) −9.51182 9.51182i −0.128538 0.128538i
\(75\) 45.8997 + 45.8997i 0.611996 + 0.611996i
\(76\) 38.4528 + 38.4528i 0.505957 + 0.505957i
\(77\) −2.28731 2.28731i −0.0297053 0.0297053i
\(78\) 51.3067 0.657778
\(79\) 61.7849i 0.782087i −0.920372 0.391043i \(-0.872114\pi\)
0.920372 0.391043i \(-0.127886\pi\)
\(80\) −14.2657 −0.178321
\(81\) −107.235 −1.32388
\(82\) 47.9831 + 47.9831i 0.585159 + 0.585159i
\(83\) 29.4236 29.4236i 0.354501 0.354501i −0.507280 0.861781i \(-0.669349\pi\)
0.861781 + 0.507280i \(0.169349\pi\)
\(84\) 13.3264i 0.158648i
\(85\) 65.1928 + 65.1928i 0.766974 + 0.766974i
\(86\) 27.6003 27.6003i 0.320933 0.320933i
\(87\) −247.883 −2.84923
\(88\) −5.13207 5.13207i −0.0583189 0.0583189i
\(89\) 137.457i 1.54447i −0.635340 0.772233i \(-0.719140\pi\)
0.635340 0.772233i \(-0.280860\pi\)
\(90\) 67.5445 67.5445i 0.750495 0.750495i
\(91\) −6.11811 6.11811i −0.0672319 0.0672319i
\(92\) 41.4116i 0.450126i
\(93\) −232.808 −2.50332
\(94\) 83.5411 + 83.5411i 0.888735 + 0.888735i
\(95\) 68.5695 68.5695i 0.721784 0.721784i
\(96\) 29.9006i 0.311465i
\(97\) 97.9964i 1.01027i 0.863040 + 0.505136i \(0.168558\pi\)
−0.863040 + 0.505136i \(0.831442\pi\)
\(98\) 47.4109 47.4109i 0.483785 0.483785i
\(99\) 48.5981 0.490890
\(100\) 24.5612i 0.245612i
\(101\) −30.4105 30.4105i −0.301094 0.301094i 0.540348 0.841442i \(-0.318293\pi\)
−0.841442 + 0.540348i \(0.818293\pi\)
\(102\) −136.643 + 136.643i −1.33964 + 1.33964i
\(103\) 53.4784i 0.519208i −0.965715 0.259604i \(-0.916408\pi\)
0.965715 0.259604i \(-0.0835920\pi\)
\(104\) −13.7273 13.7273i −0.131993 0.131993i
\(105\) −23.7639 −0.226322
\(106\) −7.49037 7.49037i −0.0706638 0.0706638i
\(107\) −60.7293 + 60.7293i −0.567563 + 0.567563i −0.931445 0.363882i \(-0.881451\pi\)
0.363882 + 0.931445i \(0.381451\pi\)
\(108\) 74.2956 + 74.2956i 0.687922 + 0.687922i
\(109\) 42.2357 42.2357i 0.387484 0.387484i −0.486305 0.873789i \(-0.661656\pi\)
0.873789 + 0.486305i \(0.161656\pi\)
\(110\) −9.15157 + 9.15157i −0.0831961 + 0.0831961i
\(111\) −35.5512 35.5512i −0.320281 0.320281i
\(112\) −3.56552 + 3.56552i −0.0318350 + 0.0318350i
\(113\) 152.587 152.587i 1.35033 1.35033i 0.465037 0.885291i \(-0.346041\pi\)
0.885291 0.465037i \(-0.153959\pi\)
\(114\) 143.720 + 143.720i 1.26070 + 1.26070i
\(115\) 73.8457 0.642137
\(116\) 66.3218 + 66.3218i 0.571739 + 0.571739i
\(117\) 129.990 1.11103
\(118\) −92.0907 −0.780430
\(119\) 32.5881 0.273850
\(120\) −53.3192 −0.444327
\(121\) 114.415 0.945582
\(122\) 82.0535 + 82.0535i 0.672570 + 0.672570i
\(123\) 179.340 + 179.340i 1.45805 + 1.45805i
\(124\) 62.2886 + 62.2886i 0.502327 + 0.502327i
\(125\) −132.959 −1.06367
\(126\) 33.7637i 0.267966i
\(127\) 73.7961i 0.581072i 0.956864 + 0.290536i \(0.0938336\pi\)
−0.956864 + 0.290536i \(0.906166\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) 103.158 103.158i 0.799676 0.799676i
\(130\) −24.4786 + 24.4786i −0.188297 + 0.188297i
\(131\) 42.9213 0.327644 0.163822 0.986490i \(-0.447618\pi\)
0.163822 + 0.986490i \(0.447618\pi\)
\(132\) −19.1815 19.1815i −0.145314 0.145314i
\(133\) 34.2760i 0.257715i
\(134\) −21.7311 21.7311i −0.162173 0.162173i
\(135\) 132.485 132.485i 0.981369 0.981369i
\(136\) 73.1184 0.537635
\(137\) −78.8845 + 78.8845i −0.575799 + 0.575799i −0.933743 0.357944i \(-0.883478\pi\)
0.357944 + 0.933743i \(0.383478\pi\)
\(138\) 154.779i 1.12159i
\(139\) −81.8983 81.8983i −0.589196 0.589196i 0.348218 0.937414i \(-0.386787\pi\)
−0.937414 + 0.348218i \(0.886787\pi\)
\(140\) 6.35809 + 6.35809i 0.0454149 + 0.0454149i
\(141\) 312.241 + 312.241i 2.21448 + 2.21448i
\(142\) 21.9657 0.154688
\(143\) −17.6123 −0.123163
\(144\) 75.7560i 0.526083i
\(145\) 118.266 118.266i 0.815627 0.815627i
\(146\) 41.5713 41.5713i 0.284735 0.284735i
\(147\) 177.202 177.202i 1.20546 1.20546i
\(148\) 19.0236i 0.128538i
\(149\) 135.917i 0.912192i −0.889931 0.456096i \(-0.849247\pi\)
0.889931 0.456096i \(-0.150753\pi\)
\(150\) 91.7994i 0.611996i
\(151\) 249.028i 1.64919i −0.565724 0.824595i \(-0.691403\pi\)
0.565724 0.824595i \(-0.308597\pi\)
\(152\) 76.9055i 0.505957i
\(153\) −346.197 + 346.197i −2.26273 + 2.26273i
\(154\) 4.57462i 0.0297053i
\(155\) 111.074 111.074i 0.716605 0.716605i
\(156\) −51.3067 51.3067i −0.328889 0.328889i
\(157\) −46.5704 46.5704i −0.296627 0.296627i 0.543064 0.839691i \(-0.317264\pi\)
−0.839691 + 0.543064i \(0.817264\pi\)
\(158\) −61.7849 + 61.7849i −0.391043 + 0.391043i
\(159\) −27.9958 27.9958i −0.176074 0.176074i
\(160\) 14.2657 + 14.2657i 0.0891607 + 0.0891607i
\(161\) 18.4568 18.4568i 0.114638 0.114638i
\(162\) 107.235 + 107.235i 0.661942 + 0.661942i
\(163\) 156.419 156.419i 0.959628 0.959628i −0.0395881 0.999216i \(-0.512605\pi\)
0.999216 + 0.0395881i \(0.0126046\pi\)
\(164\) 95.9661i 0.585159i
\(165\) −34.2047 + 34.2047i −0.207301 + 0.207301i
\(166\) −58.8472 −0.354501
\(167\) −100.759 100.759i −0.603349 0.603349i 0.337850 0.941200i \(-0.390300\pi\)
−0.941200 + 0.337850i \(0.890300\pi\)
\(168\) −13.3264 + 13.3264i −0.0793239 + 0.0793239i
\(169\) 121.891 0.721246
\(170\) 130.386i 0.766974i
\(171\) 364.128 + 364.128i 2.12941 + 2.12941i
\(172\) −55.2006 −0.320933
\(173\) −74.9613 −0.433303 −0.216651 0.976249i \(-0.569513\pi\)
−0.216651 + 0.976249i \(0.569513\pi\)
\(174\) 247.883 + 247.883i 1.42461 + 1.42461i
\(175\) −10.9467 + 10.9467i −0.0625525 + 0.0625525i
\(176\) 10.2641i 0.0583189i
\(177\) −344.196 −1.94461
\(178\) −137.457 + 137.457i −0.772233 + 0.772233i
\(179\) 11.6583 + 11.6583i 0.0651301 + 0.0651301i 0.738922 0.673791i \(-0.235335\pi\)
−0.673791 + 0.738922i \(0.735335\pi\)
\(180\) −135.089 −0.750495
\(181\) −192.374 + 192.374i −1.06284 + 1.06284i −0.0649502 + 0.997889i \(0.520689\pi\)
−0.997889 + 0.0649502i \(0.979311\pi\)
\(182\) 12.2362i 0.0672319i
\(183\) 306.682 + 306.682i 1.67586 + 1.67586i
\(184\) 41.4116 41.4116i 0.225063 0.225063i
\(185\) 33.9232 0.183369
\(186\) 232.808 + 232.808i 1.25166 + 1.25166i
\(187\) 46.9060 46.9060i 0.250834 0.250834i
\(188\) 167.082i 0.888735i
\(189\) 66.2256i 0.350400i
\(190\) −137.139 −0.721784
\(191\) 42.8213i 0.224195i −0.993697 0.112098i \(-0.964243\pi\)
0.993697 0.112098i \(-0.0357570\pi\)
\(192\) −29.9006 + 29.9006i −0.155732 + 0.155732i
\(193\) −224.710 + 224.710i −1.16430 + 1.16430i −0.180775 + 0.983524i \(0.557861\pi\)
−0.983524 + 0.180775i \(0.942139\pi\)
\(194\) 97.9964 97.9964i 0.505136 0.505136i
\(195\) −91.4908 + 91.4908i −0.469184 + 0.469184i
\(196\) −94.8218 −0.483785
\(197\) 40.5886 40.5886i 0.206034 0.206034i −0.596546 0.802579i \(-0.703460\pi\)
0.802579 + 0.596546i \(0.203460\pi\)
\(198\) −48.5981 48.5981i −0.245445 0.245445i
\(199\) 81.1621i 0.407850i −0.978987 0.203925i \(-0.934630\pi\)
0.978987 0.203925i \(-0.0653698\pi\)
\(200\) −24.5612 + 24.5612i −0.122806 + 0.122806i
\(201\) −81.2218 81.2218i −0.404089 0.404089i
\(202\) 60.8210i 0.301094i
\(203\) 59.1179i 0.291221i
\(204\) 273.286 1.33964
\(205\) −171.128 −0.834771
\(206\) −53.4784 + 53.4784i −0.259604 + 0.259604i
\(207\) 392.147i 1.89443i
\(208\) 27.4545i 0.131993i
\(209\) −49.3355 49.3355i −0.236055 0.236055i
\(210\) 23.7639 + 23.7639i 0.113161 + 0.113161i
\(211\) 221.892i 1.05162i 0.850602 + 0.525810i \(0.176238\pi\)
−0.850602 + 0.525810i \(0.823762\pi\)
\(212\) 14.9807i 0.0706638i
\(213\) 82.0984 0.385438
\(214\) 121.459 0.567563
\(215\) 98.4344i 0.457834i
\(216\) 148.591i 0.687922i
\(217\) 55.5228i 0.255866i
\(218\) −84.4714 −0.387484
\(219\) 155.376 155.376i 0.709479 0.709479i
\(220\) 18.3031 0.0831961
\(221\) 125.464 125.464i 0.567712 0.567712i
\(222\) 71.1023i 0.320281i
\(223\) −236.861 + 236.861i −1.06216 + 1.06216i −0.0642236 + 0.997936i \(0.520457\pi\)
−0.997936 + 0.0642236i \(0.979543\pi\)
\(224\) 7.13104 0.0318350
\(225\) 232.582i 1.03370i
\(226\) −305.174 −1.35033
\(227\) 237.886 237.886i 1.04796 1.04796i 0.0491659 0.998791i \(-0.484344\pi\)
0.998791 0.0491659i \(-0.0156563\pi\)
\(228\) 287.440i 1.26070i
\(229\) 106.805 + 106.805i 0.466399 + 0.466399i 0.900746 0.434347i \(-0.143021\pi\)
−0.434347 + 0.900746i \(0.643021\pi\)
\(230\) −73.8457 73.8457i −0.321068 0.321068i
\(231\) 17.0980i 0.0740174i
\(232\) 132.644i 0.571739i
\(233\) 27.8816i 0.119663i 0.998208 + 0.0598317i \(0.0190564\pi\)
−0.998208 + 0.0598317i \(0.980944\pi\)
\(234\) −129.990 129.990i −0.555514 0.555514i
\(235\) −297.943 −1.26784
\(236\) 92.0907 + 92.0907i 0.390215 + 0.390215i
\(237\) −230.926 + 230.926i −0.974370 + 0.974370i
\(238\) −32.5881 32.5881i −0.136925 0.136925i
\(239\) 366.238 1.53237 0.766187 0.642617i \(-0.222151\pi\)
0.766187 + 0.642617i \(0.222151\pi\)
\(240\) 53.3192 + 53.3192i 0.222163 + 0.222163i
\(241\) −20.8243 + 20.8243i −0.0864077 + 0.0864077i −0.748990 0.662582i \(-0.769461\pi\)
0.662582 + 0.748990i \(0.269461\pi\)
\(242\) −114.415 114.415i −0.472791 0.472791i
\(243\) 66.4678 + 66.4678i 0.273530 + 0.273530i
\(244\) 164.107i 0.672570i
\(245\) 169.087i 0.690153i
\(246\) 358.681i 1.45805i
\(247\) −131.963 131.963i −0.534262 0.534262i
\(248\) 124.577i 0.502327i
\(249\) −219.946 −0.883318
\(250\) 132.959 + 132.959i 0.531834 + 0.531834i
\(251\) −169.149 169.149i −0.673902 0.673902i 0.284711 0.958613i \(-0.408102\pi\)
−0.958613 + 0.284711i \(0.908102\pi\)
\(252\) −33.7637 + 33.7637i −0.133983 + 0.133983i
\(253\) 53.1318i 0.210007i
\(254\) 73.7961 73.7961i 0.290536 0.290536i
\(255\) 487.327i 1.91108i
\(256\) 16.0000 0.0625000
\(257\) −53.7468 53.7468i −0.209132 0.209132i 0.594767 0.803898i \(-0.297244\pi\)
−0.803898 + 0.594767i \(0.797244\pi\)
\(258\) −206.316 −0.799676
\(259\) 8.47865 8.47865i 0.0327361 0.0327361i
\(260\) 48.9573 0.188297
\(261\) 628.034 + 628.034i 2.40626 + 2.40626i
\(262\) −42.9213 42.9213i −0.163822 0.163822i
\(263\) −44.7508 −0.170155 −0.0850776 0.996374i \(-0.527114\pi\)
−0.0850776 + 0.996374i \(0.527114\pi\)
\(264\) 38.3630i 0.145314i
\(265\) 26.7138 0.100807
\(266\) −34.2760 + 34.2760i −0.128857 + 0.128857i
\(267\) −513.758 + 513.758i −1.92419 + 1.92419i
\(268\) 43.4623i 0.162173i
\(269\) 240.734 + 120.034i 0.894921 + 0.446225i
\(270\) −264.970 −0.981369
\(271\) 168.597 + 168.597i 0.622131 + 0.622131i 0.946076 0.323945i \(-0.105009\pi\)
−0.323945 + 0.946076i \(0.605009\pi\)
\(272\) −73.1184 73.1184i −0.268817 0.268817i
\(273\) 45.7338i 0.167523i
\(274\) 157.769 0.575799
\(275\) 31.5124i 0.114591i
\(276\) 154.779 154.779i 0.560794 0.560794i
\(277\) 137.561 137.561i 0.496609 0.496609i −0.413771 0.910381i \(-0.635789\pi\)
0.910381 + 0.413771i \(0.135789\pi\)
\(278\) 163.797i 0.589196i
\(279\) 589.842 + 589.842i 2.11413 + 2.11413i
\(280\) 12.7162i 0.0454149i
\(281\) 229.073 229.073i 0.815205 0.815205i −0.170204 0.985409i \(-0.554443\pi\)
0.985409 + 0.170204i \(0.0544427\pi\)
\(282\) 624.483i 2.21448i
\(283\) 11.2423 0.0397254 0.0198627 0.999803i \(-0.493677\pi\)
0.0198627 + 0.999803i \(0.493677\pi\)
\(284\) −21.9657 21.9657i −0.0773439 0.0773439i
\(285\) −512.568 −1.79848
\(286\) 17.6123 + 17.6123i 0.0615815 + 0.0615815i
\(287\) −42.7712 + 42.7712i −0.149028 + 0.149028i
\(288\) −75.7560 + 75.7560i −0.263042 + 0.263042i
\(289\) 379.287i 1.31241i
\(290\) −236.532 −0.815627
\(291\) 366.269 366.269i 1.25866 1.25866i
\(292\) −83.1425 −0.284735
\(293\) 480.569 1.64017 0.820083 0.572244i \(-0.193927\pi\)
0.820083 + 0.572244i \(0.193927\pi\)
\(294\) −354.404 −1.20546
\(295\) 164.217 164.217i 0.556669 0.556669i
\(296\) 19.0236 19.0236i 0.0642690 0.0642690i
\(297\) −95.3224 95.3224i −0.320951 0.320951i
\(298\) −135.917 + 135.917i −0.456096 + 0.456096i
\(299\) 142.117i 0.475308i
\(300\) −91.7994 + 91.7994i −0.305998 + 0.305998i
\(301\) 24.6023 + 24.6023i 0.0817354 + 0.0817354i
\(302\) −249.028 + 249.028i −0.824595 + 0.824595i
\(303\) 227.323i 0.750242i
\(304\) −76.9055 + 76.9055i −0.252979 + 0.252979i
\(305\) −292.638 −0.959469
\(306\) 692.394 2.26273
\(307\) 572.021 1.86326 0.931630 0.363408i \(-0.118387\pi\)
0.931630 + 0.363408i \(0.118387\pi\)
\(308\) 4.57462 4.57462i 0.0148527 0.0148527i
\(309\) −199.880 + 199.880i −0.646860 + 0.646860i
\(310\) −222.148 −0.716605
\(311\) −364.716 364.716i −1.17272 1.17272i −0.981558 0.191163i \(-0.938774\pi\)
−0.191163 0.981558i \(-0.561226\pi\)
\(312\) 102.613i 0.328889i
\(313\) 354.557 1.13277 0.566385 0.824141i \(-0.308341\pi\)
0.566385 + 0.824141i \(0.308341\pi\)
\(314\) 93.1408i 0.296627i
\(315\) 60.2079 + 60.2079i 0.191136 + 0.191136i
\(316\) 123.570 0.391043
\(317\) −239.526 239.526i −0.755603 0.755603i 0.219916 0.975519i \(-0.429422\pi\)
−0.975519 + 0.219916i \(0.929422\pi\)
\(318\) 55.9917i 0.176074i
\(319\) −85.0919 85.0919i −0.266746 0.266746i
\(320\) 28.5314i 0.0891607i
\(321\) 453.961 1.41421
\(322\) −36.9135 −0.114638
\(323\) 702.901 2.17616
\(324\) 214.469i 0.661942i
\(325\) 84.2895i 0.259352i
\(326\) −312.839 −0.959628
\(327\) −315.719 −0.965500
\(328\) −95.9661 + 95.9661i −0.292580 + 0.292580i
\(329\) −74.4669 + 74.4669i −0.226343 + 0.226343i
\(330\) 68.4094 0.207301
\(331\) −521.688 −1.57610 −0.788048 0.615614i \(-0.788908\pi\)
−0.788048 + 0.615614i \(0.788908\pi\)
\(332\) 58.8472 + 58.8472i 0.177251 + 0.177251i
\(333\) 180.144i 0.540974i
\(334\) 201.519i 0.603349i
\(335\) 77.5025 0.231351
\(336\) 26.6528 0.0793239
\(337\) −285.098 + 285.098i −0.845988 + 0.845988i −0.989630 0.143641i \(-0.954119\pi\)
0.143641 + 0.989630i \(0.454119\pi\)
\(338\) −121.891 121.891i −0.360623 0.360623i
\(339\) −1140.61 −3.36464
\(340\) −130.386 + 130.386i −0.383487 + 0.383487i
\(341\) −79.9173 79.9173i −0.234361 0.234361i
\(342\) 728.257i 2.12941i
\(343\) 85.9388 + 85.9388i 0.250550 + 0.250550i
\(344\) 55.2006 + 55.2006i 0.160467 + 0.160467i
\(345\) −276.004 276.004i −0.800012 0.800012i
\(346\) 74.9613 + 74.9613i 0.216651 + 0.216651i
\(347\) −126.473 −0.364475 −0.182238 0.983255i \(-0.558334\pi\)
−0.182238 + 0.983255i \(0.558334\pi\)
\(348\) 495.766i 1.42461i
\(349\) −120.593 −0.345538 −0.172769 0.984962i \(-0.555271\pi\)
−0.172769 + 0.984962i \(0.555271\pi\)
\(350\) 21.8934 0.0625525
\(351\) −254.969 254.969i −0.726406 0.726406i
\(352\) 10.2641 10.2641i 0.0291595 0.0291595i
\(353\) 362.527i 1.02699i −0.858093 0.513494i \(-0.828351\pi\)
0.858093 0.513494i \(-0.171649\pi\)
\(354\) 344.196 + 344.196i 0.972306 + 0.972306i
\(355\) −39.1694 + 39.1694i −0.110336 + 0.110336i
\(356\) 274.915 0.772233
\(357\) −121.801 121.801i −0.341179 0.341179i
\(358\) 23.3166i 0.0651301i
\(359\) −129.816 + 129.816i −0.361606 + 0.361606i −0.864404 0.502798i \(-0.832304\pi\)
0.502798 + 0.864404i \(0.332304\pi\)
\(360\) 135.089 + 135.089i 0.375247 + 0.375247i
\(361\) 378.307i 1.04794i
\(362\) 384.748 1.06284
\(363\) −427.637 427.637i −1.17806 1.17806i
\(364\) 12.2362 12.2362i 0.0336160 0.0336160i
\(365\) 148.261i 0.406194i
\(366\) 613.363i 1.67586i
\(367\) −446.162 + 446.162i −1.21570 + 1.21570i −0.246578 + 0.969123i \(0.579306\pi\)
−0.969123 + 0.246578i \(0.920694\pi\)
\(368\) −82.8232 −0.225063
\(369\) 908.751i 2.46274i
\(370\) −33.9232 33.9232i −0.0916843 0.0916843i
\(371\) 6.67677 6.67677i 0.0179967 0.0179967i
\(372\) 465.617i 1.25166i
\(373\) 239.176 + 239.176i 0.641223 + 0.641223i 0.950856 0.309633i \(-0.100206\pi\)
−0.309633 + 0.950856i \(0.600206\pi\)
\(374\) −93.8120 −0.250834
\(375\) 496.943 + 496.943i 1.32518 + 1.32518i
\(376\) −167.082 + 167.082i −0.444368 + 0.444368i
\(377\) −227.604 227.604i −0.603724 0.603724i
\(378\) −66.2256 + 66.2256i −0.175200 + 0.175200i
\(379\) 127.534 127.534i 0.336502 0.336502i −0.518547 0.855049i \(-0.673527\pi\)
0.855049 + 0.518547i \(0.173527\pi\)
\(380\) 137.139 + 137.139i 0.360892 + 0.360892i
\(381\) 275.819 275.819i 0.723934 0.723934i
\(382\) −42.8213 + 42.8213i −0.112098 + 0.112098i
\(383\) 1.83699 + 1.83699i 0.00479631 + 0.00479631i 0.709501 0.704705i \(-0.248920\pi\)
−0.704705 + 0.709501i \(0.748920\pi\)
\(384\) 59.8013 0.155732
\(385\) −8.15753 8.15753i −0.0211884 0.0211884i
\(386\) 449.420 1.16430
\(387\) −522.722 −1.35070
\(388\) −195.993 −0.505136
\(389\) 185.801 0.477637 0.238819 0.971064i \(-0.423240\pi\)
0.238819 + 0.971064i \(0.423240\pi\)
\(390\) 182.982 0.469184
\(391\) 378.494 + 378.494i 0.968014 + 0.968014i
\(392\) 94.8218 + 94.8218i 0.241892 + 0.241892i
\(393\) −160.422 160.422i −0.408198 0.408198i
\(394\) −81.1773 −0.206034
\(395\) 220.351i 0.557851i
\(396\) 97.1962i 0.245445i
\(397\) 96.1820 96.1820i 0.242272 0.242272i −0.575517 0.817789i \(-0.695199\pi\)
0.817789 + 0.575517i \(0.195199\pi\)
\(398\) −81.1621 + 81.1621i −0.203925 + 0.203925i
\(399\) −128.109 + 128.109i −0.321076 + 0.321076i
\(400\) 49.1224 0.122806
\(401\) 78.5972 + 78.5972i 0.196003 + 0.196003i 0.798284 0.602281i \(-0.205741\pi\)
−0.602281 + 0.798284i \(0.705741\pi\)
\(402\) 162.444i 0.404089i
\(403\) −213.763 213.763i −0.530429 0.530429i
\(404\) 60.8210 60.8210i 0.150547 0.150547i
\(405\) −382.444 −0.944307
\(406\) −59.1179 + 59.1179i −0.145611 + 0.145611i
\(407\) 24.4076i 0.0599696i
\(408\) −273.286 273.286i −0.669818 0.669818i
\(409\) 97.1382 + 97.1382i 0.237502 + 0.237502i 0.815815 0.578313i \(-0.196289\pi\)
−0.578313 + 0.815815i \(0.696289\pi\)
\(410\) 171.128 + 171.128i 0.417386 + 0.417386i
\(411\) 589.674 1.43473
\(412\) 106.957 0.259604
\(413\) 82.0879i 0.198760i
\(414\) 392.147 392.147i 0.947215 0.947215i
\(415\) 104.937 104.937i 0.252861 0.252861i
\(416\) 27.4545 27.4545i 0.0659964 0.0659964i
\(417\) 612.203i 1.46811i
\(418\) 98.6710i 0.236055i
\(419\) 63.9019i 0.152511i −0.997088 0.0762553i \(-0.975704\pi\)
0.997088 0.0762553i \(-0.0242964\pi\)
\(420\) 47.5277i 0.113161i
\(421\) 524.780i 1.24651i 0.782019 + 0.623254i \(0.214190\pi\)
−0.782019 + 0.623254i \(0.785810\pi\)
\(422\) 221.892 221.892i 0.525810 0.525810i
\(423\) 1582.18i 3.74039i
\(424\) 14.9807 14.9807i 0.0353319 0.0353319i
\(425\) −224.484 224.484i −0.528198 0.528198i
\(426\) −82.0984 82.0984i −0.192719 0.192719i
\(427\) −73.1409 + 73.1409i −0.171290 + 0.171290i
\(428\) −121.459 121.459i −0.283782 0.283782i
\(429\) 65.8273 + 65.8273i 0.153444 + 0.153444i
\(430\) 98.4344 98.4344i 0.228917 0.228917i
\(431\) −82.8266 82.8266i −0.192173 0.192173i 0.604461 0.796634i \(-0.293388\pi\)
−0.796634 + 0.604461i \(0.793388\pi\)
\(432\) −148.591 + 148.591i −0.343961 + 0.343961i
\(433\) 200.557i 0.463180i −0.972813 0.231590i \(-0.925607\pi\)
0.972813 0.231590i \(-0.0743928\pi\)
\(434\) −55.5228 + 55.5228i −0.127933 + 0.127933i
\(435\) −884.056 −2.03231
\(436\) 84.4714 + 84.4714i 0.193742 + 0.193742i
\(437\) 398.098 398.098i 0.910979 0.910979i
\(438\) −310.752 −0.709479
\(439\) 51.1340i 0.116478i 0.998303 + 0.0582392i \(0.0185486\pi\)
−0.998303 + 0.0582392i \(0.981451\pi\)
\(440\) −18.3031 18.3031i −0.0415980 0.0415980i
\(441\) −897.915 −2.03609
\(442\) −250.929 −0.567712
\(443\) 307.613 + 307.613i 0.694386 + 0.694386i 0.963194 0.268807i \(-0.0866295\pi\)
−0.268807 + 0.963194i \(0.586630\pi\)
\(444\) 71.1023 71.1023i 0.160140 0.160140i
\(445\) 490.232i 1.10164i
\(446\) 473.723 1.06216
\(447\) −507.999 + 507.999i −1.13646 + 1.13646i
\(448\) −7.13104 7.13104i −0.0159175 0.0159175i
\(449\) −41.1705 −0.0916937 −0.0458468 0.998948i \(-0.514599\pi\)
−0.0458468 + 0.998948i \(0.514599\pi\)
\(450\) −232.582 + 232.582i −0.516849 + 0.516849i
\(451\) 123.126i 0.273007i
\(452\) 305.174 + 305.174i 0.675164 + 0.675164i
\(453\) −930.760 + 930.760i −2.05466 + 2.05466i
\(454\) −475.772 −1.04796
\(455\) −21.8198 21.8198i −0.0479556 0.0479556i
\(456\) −287.440 + 287.440i −0.630352 + 0.630352i
\(457\) 339.800i 0.743545i 0.928324 + 0.371772i \(0.121250\pi\)
−0.928324 + 0.371772i \(0.878750\pi\)
\(458\) 213.611i 0.466399i
\(459\) 1358.09 2.95881
\(460\) 147.691i 0.321068i
\(461\) −214.144 + 214.144i −0.464520 + 0.464520i −0.900134 0.435614i \(-0.856531\pi\)
0.435614 + 0.900134i \(0.356531\pi\)
\(462\) 17.0980 17.0980i 0.0370087 0.0370087i
\(463\) 274.915 274.915i 0.593769 0.593769i −0.344878 0.938647i \(-0.612080\pi\)
0.938647 + 0.344878i \(0.112080\pi\)
\(464\) −132.644 + 132.644i −0.285870 + 0.285870i
\(465\) −830.294 −1.78558
\(466\) 27.8816 27.8816i 0.0598317 0.0598317i
\(467\) −74.6671 74.6671i −0.159887 0.159887i 0.622630 0.782517i \(-0.286064\pi\)
−0.782517 + 0.622630i \(0.786064\pi\)
\(468\) 259.980i 0.555514i
\(469\) 19.3707 19.3707i 0.0413022 0.0413022i
\(470\) 297.943 + 297.943i 0.633922 + 0.633922i
\(471\) 348.121i 0.739111i
\(472\) 184.181i 0.390215i
\(473\) 70.8232 0.149732
\(474\) 461.852 0.974370
\(475\) −236.111 + 236.111i −0.497077 + 0.497077i
\(476\) 65.1763i 0.136925i
\(477\) 141.860i 0.297400i
\(478\) −366.238 366.238i −0.766187 0.766187i
\(479\) −240.022 240.022i −0.501089 0.501089i 0.410687 0.911776i \(-0.365289\pi\)
−0.911776 + 0.410687i \(0.865289\pi\)
\(480\) 106.638i 0.222163i
\(481\) 65.2856i 0.135729i
\(482\) 41.6485 0.0864077
\(483\) −137.967 −0.285646
\(484\) 228.831i 0.472791i
\(485\) 349.497i 0.720613i
\(486\) 132.936i 0.273530i
\(487\) −421.501 −0.865506 −0.432753 0.901513i \(-0.642458\pi\)
−0.432753 + 0.901513i \(0.642458\pi\)
\(488\) −164.107 + 164.107i −0.336285 + 0.336285i
\(489\) −1169.26 −2.39112
\(490\) 169.087 169.087i 0.345076 0.345076i
\(491\) 960.328i 1.95586i 0.208931 + 0.977930i \(0.433002\pi\)
−0.208931 + 0.977930i \(0.566998\pi\)
\(492\) −358.681 + 358.681i −0.729026 + 0.729026i
\(493\) 1212.33 2.45910
\(494\) 263.925i 0.534262i
\(495\) 173.322 0.350144
\(496\) −124.577 + 124.577i −0.251164 + 0.251164i
\(497\) 19.5798i 0.0393959i
\(498\) 219.946 + 219.946i 0.441659 + 0.441659i
\(499\) −144.355 144.355i −0.289289 0.289289i 0.547510 0.836799i \(-0.315576\pi\)
−0.836799 + 0.547510i \(0.815576\pi\)
\(500\) 265.917i 0.531834i
\(501\) 753.192i 1.50338i
\(502\) 338.299i 0.673902i
\(503\) 443.700 + 443.700i 0.882107 + 0.882107i 0.993749 0.111642i \(-0.0356108\pi\)
−0.111642 + 0.993749i \(0.535611\pi\)
\(504\) 67.5274 0.133983
\(505\) −108.457 108.457i −0.214766 0.214766i
\(506\) −53.1318 + 53.1318i −0.105003 + 0.105003i
\(507\) −455.576 455.576i −0.898572 0.898572i
\(508\) −147.592 −0.290536
\(509\) 308.901 + 308.901i 0.606879 + 0.606879i 0.942129 0.335250i \(-0.108821\pi\)
−0.335250 + 0.942129i \(0.608821\pi\)
\(510\) −487.327 + 487.327i −0.955542 + 0.955542i
\(511\) 37.0558 + 37.0558i 0.0725163 + 0.0725163i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 1428.43i 2.78447i
\(514\) 107.494i 0.209132i
\(515\) 190.727i 0.370343i
\(516\) 206.316 + 206.316i 0.399838 + 0.399838i
\(517\) 214.369i 0.414641i
\(518\) −16.9573 −0.0327361
\(519\) 280.174 + 280.174i 0.539834 + 0.539834i
\(520\) −48.9573 48.9573i −0.0941486 0.0941486i
\(521\) 306.825 306.825i 0.588916 0.588916i −0.348422 0.937338i \(-0.613282\pi\)
0.937338 + 0.348422i \(0.113282\pi\)
\(522\) 1256.07i 2.40626i
\(523\) −430.202 + 430.202i −0.822567 + 0.822567i −0.986475 0.163909i \(-0.947590\pi\)
0.163909 + 0.986475i \(0.447590\pi\)
\(524\) 85.8426i 0.163822i
\(525\) 81.8282 0.155863
\(526\) 44.7508 + 44.7508i 0.0850776 + 0.0850776i
\(527\) 1138.61 2.16055
\(528\) 38.3630 38.3630i 0.0726572 0.0726572i
\(529\) −100.270 −0.189546
\(530\) −26.7138 26.7138i −0.0504035 0.0504035i
\(531\) 872.053 + 872.053i 1.64228 + 1.64228i
\(532\) 68.5521 0.128857
\(533\) 329.338i 0.617895i
\(534\) 1027.52 1.92419
\(535\) −216.586 + 216.586i −0.404835 + 0.404835i
\(536\) 43.4623 43.4623i 0.0810863 0.0810863i
\(537\) 87.1476i 0.162286i
\(538\) −120.699 360.768i −0.224348 0.670573i
\(539\) 121.658 0.225710
\(540\) 264.970 + 264.970i 0.490685 + 0.490685i
\(541\) −136.419 136.419i −0.252161 0.252161i 0.569695 0.821856i \(-0.307061\pi\)
−0.821856 + 0.569695i \(0.807061\pi\)
\(542\) 337.195i 0.622131i
\(543\) 1438.02 2.64830
\(544\) 146.237i 0.268817i
\(545\) 150.631 150.631i 0.276386 0.276386i
\(546\) 45.7338 45.7338i 0.0837616 0.0837616i
\(547\) 814.963i 1.48988i 0.667133 + 0.744939i \(0.267521\pi\)
−0.667133 + 0.744939i \(0.732479\pi\)
\(548\) −157.769 157.769i −0.287900 0.287900i
\(549\) 1554.01i 2.83062i
\(550\) 31.5124 31.5124i 0.0572953 0.0572953i
\(551\) 1275.13i 2.31421i
\(552\) −309.558 −0.560794
\(553\) −55.0738 55.0738i −0.0995910 0.0995910i
\(554\) −275.122 −0.496609
\(555\) −126.791 126.791i −0.228452 0.228452i
\(556\) 163.797 163.797i 0.294598 0.294598i
\(557\) 473.160 473.160i 0.849479 0.849479i −0.140589 0.990068i \(-0.544900\pi\)
0.990068 + 0.140589i \(0.0448996\pi\)
\(558\) 1179.68i 2.11413i
\(559\) 189.438 0.338887
\(560\) −12.7162 + 12.7162i −0.0227075 + 0.0227075i
\(561\) −350.630 −0.625009
\(562\) −458.145 −0.815205
\(563\) 103.066 0.183065 0.0915327 0.995802i \(-0.470823\pi\)
0.0915327 + 0.995802i \(0.470823\pi\)
\(564\) −624.483 + 624.483i −1.10724 + 1.10724i
\(565\) 544.191 544.191i 0.963169 0.963169i
\(566\) −11.2423 11.2423i −0.0198627 0.0198627i
\(567\) −95.5869 + 95.5869i −0.168584 + 0.168584i
\(568\) 43.9313i 0.0773439i
\(569\) −403.594 + 403.594i −0.709304 + 0.709304i −0.966389 0.257084i \(-0.917238\pi\)
0.257084 + 0.966389i \(0.417238\pi\)
\(570\) 512.568 + 512.568i 0.899242 + 0.899242i
\(571\) 208.349 208.349i 0.364885 0.364885i −0.500723 0.865608i \(-0.666932\pi\)
0.865608 + 0.500723i \(0.166932\pi\)
\(572\) 35.2246i 0.0615815i
\(573\) −160.048 + 160.048i −0.279316 + 0.279316i
\(574\) 85.5423 0.149028
\(575\) −254.280 −0.442226
\(576\) 151.512 0.263042
\(577\) 710.572 710.572i 1.23149 1.23149i 0.268104 0.963390i \(-0.413603\pi\)
0.963390 0.268104i \(-0.0863972\pi\)
\(578\) 379.287 379.287i 0.656205 0.656205i
\(579\) 1679.74 2.90111
\(580\) 236.532 + 236.532i 0.407813 + 0.407813i
\(581\) 52.4553i 0.0902845i
\(582\) −732.539 −1.25866
\(583\) 19.2205i 0.0329683i
\(584\) 83.1425 + 83.1425i 0.142367 + 0.142367i
\(585\) 463.601 0.792480
\(586\) −480.569 480.569i −0.820083 0.820083i
\(587\) 745.134i 1.26939i 0.772761 + 0.634697i \(0.218875\pi\)
−0.772761 + 0.634697i \(0.781125\pi\)
\(588\) 354.404 + 354.404i 0.602728 + 0.602728i
\(589\) 1197.58i 2.03325i
\(590\) −328.435 −0.556669
\(591\) −303.406 −0.513378
\(592\) −38.0473 −0.0642690
\(593\) 166.041i 0.280002i −0.990151 0.140001i \(-0.955289\pi\)
0.990151 0.140001i \(-0.0447106\pi\)
\(594\) 190.645i 0.320951i
\(595\) 116.223 0.195333
\(596\) 271.833 0.456096
\(597\) −303.350 + 303.350i −0.508124 + 0.508124i
\(598\) −142.117 + 142.117i −0.237654 + 0.237654i
\(599\) −487.490 −0.813839 −0.406919 0.913464i \(-0.633397\pi\)
−0.406919 + 0.913464i \(0.633397\pi\)
\(600\) 183.599 0.305998
\(601\) 556.414 + 556.414i 0.925813 + 0.925813i 0.997432 0.0716191i \(-0.0228166\pi\)
−0.0716191 + 0.997432i \(0.522817\pi\)
\(602\) 49.2047i 0.0817354i
\(603\) 411.566i 0.682530i
\(604\) 498.055 0.824595
\(605\) 408.054 0.674470
\(606\) 227.323 227.323i 0.375121 0.375121i
\(607\) 617.124 + 617.124i 1.01668 + 1.01668i 0.999859 + 0.0168196i \(0.00535409\pi\)
0.0168196 + 0.999859i \(0.494646\pi\)
\(608\) 153.811 0.252979
\(609\) −220.958 + 220.958i −0.362821 + 0.362821i
\(610\) 292.638 + 292.638i 0.479734 + 0.479734i
\(611\) 573.395i 0.938453i
\(612\) −692.394 692.394i −1.13136 1.13136i
\(613\) 586.008 + 586.008i 0.955967 + 0.955967i 0.999071 0.0431036i \(-0.0137246\pi\)
−0.0431036 + 0.999071i \(0.513725\pi\)
\(614\) −572.021 572.021i −0.931630 0.931630i
\(615\) 639.605 + 639.605i 1.04001 + 1.04001i
\(616\) −9.14925 −0.0148527
\(617\) 381.746i 0.618714i 0.950946 + 0.309357i \(0.100114\pi\)
−0.950946 + 0.309357i \(0.899886\pi\)
\(618\) 399.760 0.646860
\(619\) −819.066 −1.32321 −0.661604 0.749853i \(-0.730124\pi\)
−0.661604 + 0.749853i \(0.730124\pi\)
\(620\) 222.148 + 222.148i 0.358303 + 0.358303i
\(621\) 769.175 769.175i 1.23861 1.23861i
\(622\) 729.433i 1.17272i
\(623\) −122.527 122.527i −0.196672 0.196672i
\(624\) 102.613 102.613i 0.164445 0.164445i
\(625\) −167.172 −0.267475
\(626\) −354.557 354.557i −0.566385 0.566385i
\(627\) 368.791i 0.588183i
\(628\) 93.1408 93.1408i 0.148313 0.148313i
\(629\) 173.872 + 173.872i 0.276426 + 0.276426i
\(630\) 120.416i 0.191136i
\(631\) 917.988 1.45481 0.727407 0.686206i \(-0.240725\pi\)
0.727407 + 0.686206i \(0.240725\pi\)
\(632\) −123.570 123.570i −0.195522 0.195522i
\(633\) 829.338 829.338i 1.31017 1.31017i
\(634\) 479.052i 0.755603i
\(635\) 263.189i 0.414470i
\(636\) 55.9917 55.9917i 0.0880372 0.0880372i
\(637\) 325.411 0.510849
\(638\) 170.184i 0.266746i
\(639\) −208.004 208.004i −0.325514 0.325514i
\(640\) −28.5314 + 28.5314i −0.0445803 + 0.0445803i
\(641\) 1021.28i 1.59326i 0.604467 + 0.796630i \(0.293386\pi\)
−0.604467 + 0.796630i \(0.706614\pi\)
\(642\) −453.961 453.961i −0.707104 0.707104i
\(643\) −671.534 −1.04438 −0.522188 0.852830i \(-0.674884\pi\)
−0.522188 + 0.852830i \(0.674884\pi\)
\(644\) 36.9135 + 36.9135i 0.0573191 + 0.0573191i
\(645\) 367.906 367.906i 0.570397 0.570397i
\(646\) −702.901 702.901i −1.08808 1.08808i
\(647\) 407.848 407.848i 0.630368 0.630368i −0.317792 0.948160i \(-0.602941\pi\)
0.948160 + 0.317792i \(0.102941\pi\)
\(648\) −214.469 + 214.469i −0.330971 + 0.330971i
\(649\) −118.154 118.154i −0.182055 0.182055i
\(650\) 84.2895 84.2895i 0.129676 0.129676i
\(651\) −207.521 + 207.521i −0.318773 + 0.318773i
\(652\) 312.839 + 312.839i 0.479814 + 0.479814i
\(653\) 395.816 0.606150 0.303075 0.952967i \(-0.401987\pi\)
0.303075 + 0.952967i \(0.401987\pi\)
\(654\) 315.719 + 315.719i 0.482750 + 0.482750i
\(655\) 153.076 0.233703
\(656\) 191.932 0.292580
\(657\) −787.318 −1.19835
\(658\) 148.934 0.226343
\(659\) −981.691 −1.48967 −0.744834 0.667250i \(-0.767471\pi\)
−0.744834 + 0.667250i \(0.767471\pi\)
\(660\) −68.4094 68.4094i −0.103651 0.103651i
\(661\) 32.1231 + 32.1231i 0.0485978 + 0.0485978i 0.730988 0.682390i \(-0.239060\pi\)
−0.682390 + 0.730988i \(0.739060\pi\)
\(662\) 521.688 + 521.688i 0.788048 + 0.788048i
\(663\) −937.866 −1.41458
\(664\) 117.694i 0.177251i
\(665\) 122.243i 0.183824i
\(666\) 180.144 180.144i 0.270487 0.270487i
\(667\) 686.623 686.623i 1.02942 1.02942i
\(668\) 201.519 201.519i 0.301675 0.301675i
\(669\) 1770.58 2.64660
\(670\) −77.5025 77.5025i −0.115675 0.115675i
\(671\) 210.552i 0.313788i
\(672\) −26.6528 26.6528i −0.0396620 0.0396620i
\(673\) −777.793 + 777.793i −1.15571 + 1.15571i −0.170321 + 0.985389i \(0.554481\pi\)
−0.985389 + 0.170321i \(0.945519\pi\)
\(674\) 570.196 0.845988
\(675\) −456.197 + 456.197i −0.675847 + 0.675847i
\(676\) 243.781i 0.360623i
\(677\) −903.696 903.696i −1.33485 1.33485i −0.900968 0.433886i \(-0.857142\pi\)
−0.433886 0.900968i \(-0.642858\pi\)
\(678\) 1140.61 + 1140.61i 1.68232 + 1.68232i
\(679\) 87.3521 + 87.3521i 0.128648 + 0.128648i
\(680\) 260.771 0.383487
\(681\) −1778.24 −2.61121
\(682\) 159.835i 0.234361i
\(683\) −628.247 + 628.247i −0.919835 + 0.919835i −0.997017 0.0771823i \(-0.975408\pi\)
0.0771823 + 0.997017i \(0.475408\pi\)
\(684\) −728.257 + 728.257i −1.06470 + 1.06470i
\(685\) −281.336 + 281.336i −0.410709 + 0.410709i
\(686\) 171.878i 0.250550i
\(687\) 798.388i 1.16214i
\(688\) 110.401i 0.160467i
\(689\) 51.4111i 0.0746170i
\(690\) 552.009i 0.800012i
\(691\) 467.326 467.326i 0.676304 0.676304i −0.282858 0.959162i \(-0.591282\pi\)
0.959162 + 0.282858i \(0.0912825\pi\)
\(692\) 149.923i 0.216651i
\(693\) 43.3194 43.3194i 0.0625099 0.0625099i
\(694\) 126.473 + 126.473i 0.182238 + 0.182238i
\(695\) −292.084 292.084i −0.420265 0.420265i
\(696\) −495.766 + 495.766i −0.712307 + 0.712307i
\(697\) −877.110 877.110i −1.25841 1.25841i
\(698\) 120.593 + 120.593i 0.172769 + 0.172769i
\(699\) 104.210 104.210i 0.149084 0.149084i
\(700\) −21.8934 21.8934i −0.0312763 0.0312763i
\(701\) −713.369 + 713.369i −1.01764 + 1.01764i −0.0178035 + 0.999842i \(0.505667\pi\)
−0.999842 + 0.0178035i \(0.994333\pi\)
\(702\) 509.937i 0.726406i
\(703\) 182.878 182.878i 0.260139 0.260139i
\(704\) −20.5283 −0.0291595
\(705\) 1113.59 + 1113.59i 1.57956 + 1.57956i
\(706\) −362.527 + 362.527i −0.513494 + 0.513494i
\(707\) −54.2146 −0.0766827
\(708\) 688.393i 0.972306i
\(709\) 417.364 + 417.364i 0.588665 + 0.588665i 0.937270 0.348605i \(-0.113344\pi\)
−0.348605 + 0.937270i \(0.613344\pi\)
\(710\) 78.3389 0.110336
\(711\) 1170.14 1.64577
\(712\) −274.915 274.915i −0.386116 0.386116i
\(713\) 644.868 644.868i 0.904443 0.904443i
\(714\) 243.602i 0.341179i
\(715\) −62.8130 −0.0878503
\(716\) −23.3166 + 23.3166i −0.0325651 + 0.0325651i
\(717\) −1368.84 1368.84i −1.90912 1.90912i
\(718\) 259.633 0.361606
\(719\) −308.569 + 308.569i −0.429164 + 0.429164i −0.888343 0.459180i \(-0.848143\pi\)
0.459180 + 0.888343i \(0.348143\pi\)
\(720\) 270.178i 0.375247i
\(721\) −47.6696 47.6696i −0.0661160 0.0661160i
\(722\) −378.307 + 378.307i −0.523972 + 0.523972i
\(723\) 155.665 0.215304
\(724\) −384.748 384.748i −0.531419 0.531419i
\(725\) −407.236 + 407.236i −0.561704 + 0.561704i
\(726\) 855.274i 1.17806i
\(727\) 230.505i 0.317063i 0.987354 + 0.158532i \(0.0506760\pi\)
−0.987354 + 0.158532i \(0.949324\pi\)
\(728\) −24.4724 −0.0336160
\(729\) 468.254i 0.642324i
\(730\) 148.261 148.261i 0.203097 0.203097i
\(731\) −504.522 + 504.522i −0.690180 + 0.690180i
\(732\) −613.363 + 613.363i −0.837928 + 0.837928i
\(733\) −715.564 + 715.564i −0.976213 + 0.976213i −0.999724 0.0235111i \(-0.992516\pi\)
0.0235111 + 0.999724i \(0.492516\pi\)
\(734\) 892.325 1.21570
\(735\) 631.978 631.978i 0.859834 0.859834i
\(736\) 82.8232 + 82.8232i 0.112532 + 0.112532i
\(737\) 55.7628i 0.0756619i
\(738\) −908.751 + 908.751i −1.23137 + 1.23137i
\(739\) −195.309 195.309i −0.264288 0.264288i 0.562505 0.826794i \(-0.309838\pi\)
−0.826794 + 0.562505i \(0.809838\pi\)
\(740\) 67.8464i 0.0916843i
\(741\) 986.442i 1.33123i
\(742\) −13.3535 −0.0179967
\(743\) 149.544 0.201271 0.100635 0.994923i \(-0.467912\pi\)
0.100635 + 0.994923i \(0.467912\pi\)
\(744\) −465.617 + 465.617i −0.625829 + 0.625829i
\(745\) 484.737i 0.650653i
\(746\) 478.352i 0.641223i
\(747\) 557.254 + 557.254i 0.745989 + 0.745989i
\(748\) 93.8120 + 93.8120i 0.125417 + 0.125417i
\(749\) 108.266i 0.144547i
\(750\) 993.886i 1.32518i
\(751\) 1082.37 1.44124 0.720622 0.693328i \(-0.243856\pi\)
0.720622 + 0.693328i \(0.243856\pi\)
\(752\) 334.164 0.444368
\(753\) 1264.42i 1.67917i
\(754\) 455.208i 0.603724i
\(755\) 888.139i 1.17634i
\(756\) 132.451 0.175200
\(757\) −662.151 + 662.151i −0.874704 + 0.874704i −0.992981 0.118277i \(-0.962263\pi\)
0.118277 + 0.992981i \(0.462263\pi\)
\(758\) −255.069 −0.336502
\(759\) −198.584 + 198.584i −0.261639 + 0.261639i
\(760\) 274.278i 0.360892i
\(761\) 206.058 206.058i 0.270773 0.270773i −0.558639 0.829411i \(-0.688676\pi\)
0.829411 + 0.558639i \(0.188676\pi\)
\(762\) −551.638 −0.723934
\(763\) 75.2962i 0.0986844i
\(764\) 85.6426 0.112098
\(765\) −1234.69 + 1234.69i −1.61397 + 1.61397i
\(766\) 3.67397i 0.00479631i
\(767\) −316.038 316.038i −0.412045 0.412045i
\(768\) −59.8013 59.8013i −0.0778662 0.0778662i
\(769\) 914.612i 1.18935i −0.803965 0.594676i \(-0.797280\pi\)
0.803965 0.594676i \(-0.202720\pi\)
\(770\) 16.3151i 0.0211884i
\(771\) 401.766i 0.521097i
\(772\) −449.420 449.420i −0.582150 0.582150i
\(773\) −854.338 −1.10522 −0.552612 0.833439i \(-0.686369\pi\)
−0.552612 + 0.833439i \(0.686369\pi\)
\(774\) 522.722 + 522.722i 0.675351 + 0.675351i
\(775\) −382.471 + 382.471i −0.493510 + 0.493510i
\(776\) 195.993 + 195.993i 0.252568 + 0.252568i
\(777\) −63.3792 −0.0815692
\(778\) −185.801 185.801i −0.238819 0.238819i
\(779\) −922.540 + 922.540i −1.18426 + 1.18426i
\(780\) −182.982 182.982i −0.234592 0.234592i
\(781\) 28.1823 + 28.1823i 0.0360849 + 0.0360849i
\(782\) 756.987i 0.968014i
\(783\) 2463.71i 3.14650i
\(784\) 189.644i 0.241892i
\(785\) −166.090 166.090i −0.211580 0.211580i
\(786\) 320.844i 0.408198i
\(787\) 315.408 0.400773 0.200386 0.979717i \(-0.435780\pi\)
0.200386 + 0.979717i \(0.435780\pi\)
\(788\) 81.1773 + 81.1773i 0.103017 + 0.103017i
\(789\) 167.260 + 167.260i 0.211989 + 0.211989i
\(790\) −220.351 + 220.351i −0.278926 + 0.278926i
\(791\) 272.026i 0.343902i
\(792\) 97.1962 97.1962i 0.122722 0.122722i
\(793\) 563.185i 0.710195i
\(794\) −192.364 −0.242272
\(795\) −99.8451 99.8451i −0.125591 0.125591i
\(796\) 162.324 0.203925
\(797\) 434.738 434.738i 0.545468 0.545468i −0.379658 0.925127i \(-0.623958\pi\)
0.925127 + 0.379658i \(0.123958\pi\)
\(798\) 256.219 0.321076
\(799\) −1527.10 1527.10i −1.91126 1.91126i
\(800\) −49.1224 49.1224i −0.0614030 0.0614030i
\(801\) 2603.31 3.25007
\(802\) 157.194i 0.196003i
\(803\) 106.673 0.132843
\(804\) 162.444 162.444i 0.202044 0.202044i
\(805\) 65.8247 65.8247i 0.0817698 0.0817698i
\(806\) 427.526i 0.530429i
\(807\) −451.123 1348.40i −0.559012 1.67088i
\(808\) −121.642 −0.150547
\(809\) 424.674 + 424.674i 0.524937 + 0.524937i 0.919058 0.394121i \(-0.128951\pi\)
−0.394121 + 0.919058i \(0.628951\pi\)
\(810\) 382.444 + 382.444i 0.472154 + 0.472154i
\(811\) 119.913i 0.147858i −0.997263 0.0739292i \(-0.976446\pi\)
0.997263 0.0739292i \(-0.0235539\pi\)
\(812\) 118.236 0.145611
\(813\) 1260.29i 1.55018i
\(814\) −24.4076 + 24.4076i −0.0299848 + 0.0299848i
\(815\) 557.858 557.858i 0.684489 0.684489i
\(816\) 546.571i 0.669818i
\(817\) 530.653 + 530.653i 0.649515 + 0.649515i
\(818\) 194.276i 0.237502i
\(819\) 115.871 115.871i 0.141478 0.141478i
\(820\) 342.256i 0.417386i
\(821\) 1398.26 1.70311 0.851557 0.524262i \(-0.175659\pi\)
0.851557 + 0.524262i \(0.175659\pi\)
\(822\) −589.674 589.674i −0.717365 0.717365i
\(823\) −278.835 −0.338804 −0.169402 0.985547i \(-0.554184\pi\)
−0.169402 + 0.985547i \(0.554184\pi\)
\(824\) −106.957 106.957i −0.129802 0.129802i
\(825\) 117.780 117.780i 0.142764 0.142764i
\(826\) −82.0879 + 82.0879i −0.0993800 + 0.0993800i
\(827\) 132.422i 0.160124i 0.996790 + 0.0800618i \(0.0255118\pi\)
−0.996790 + 0.0800618i \(0.974488\pi\)
\(828\) −784.294 −0.947215
\(829\) 51.8265 51.8265i 0.0625169 0.0625169i −0.675157 0.737674i \(-0.735924\pi\)
0.737674 + 0.675157i \(0.235924\pi\)
\(830\) −209.874 −0.252861
\(831\) −1028.29 −1.23741
\(832\) −54.9090 −0.0659964
\(833\) −866.651 + 866.651i −1.04040 + 1.04040i
\(834\) 612.203 612.203i 0.734056 0.734056i
\(835\) −359.351 359.351i −0.430360 0.430360i
\(836\) 98.6710 98.6710i 0.118028 0.118028i
\(837\) 2313.88i 2.76450i
\(838\) −63.9019 + 63.9019i −0.0762553 + 0.0762553i
\(839\) −326.817 326.817i −0.389531 0.389531i 0.484989 0.874520i \(-0.338824\pi\)
−0.874520 + 0.484989i \(0.838824\pi\)
\(840\) −47.5277 + 47.5277i −0.0565806 + 0.0565806i
\(841\) 1358.29i 1.61509i
\(842\) 524.780 524.780i 0.623254 0.623254i
\(843\) −1712.35 −2.03126
\(844\) −443.784 −0.525810
\(845\) 434.714 0.514454
\(846\) −1582.18 + 1582.18i −1.87019 + 1.87019i
\(847\) 101.988 101.988i 0.120411 0.120411i
\(848\) −29.9615 −0.0353319
\(849\) −42.0190 42.0190i −0.0494923 0.0494923i
\(850\) 448.969i 0.528198i
\(851\) 196.950 0.231433
\(852\) 164.197i 0.192719i
\(853\) 663.796 + 663.796i 0.778190 + 0.778190i 0.979523 0.201333i \(-0.0645273\pi\)
−0.201333 + 0.979523i \(0.564527\pi\)
\(854\) 146.282 0.171290
\(855\) 1298.64 + 1298.64i 1.51887 + 1.51887i
\(856\) 242.917i 0.283782i
\(857\) 176.448 + 176.448i 0.205890 + 0.205890i 0.802518 0.596628i \(-0.203493\pi\)
−0.596628 + 0.802518i \(0.703493\pi\)
\(858\) 131.655i 0.153444i
\(859\) 1508.88 1.75656 0.878278 0.478151i \(-0.158693\pi\)
0.878278 + 0.478151i \(0.158693\pi\)
\(860\) −196.869 −0.228917
\(861\) 319.721 0.371337
\(862\) 165.653i 0.192173i
\(863\) 699.998i 0.811121i −0.914068 0.405561i \(-0.867076\pi\)
0.914068 0.405561i \(-0.132924\pi\)
\(864\) 297.182 0.343961
\(865\) −267.344 −0.309068
\(866\) −200.557 + 200.557i −0.231590 + 0.231590i
\(867\) 1417.61 1417.61i 1.63508 1.63508i
\(868\) 111.046 0.127933
\(869\) −158.542 −0.182442
\(870\) 884.056 + 884.056i 1.01616 + 1.01616i
\(871\) 149.154i 0.171245i
\(872\) 168.943i 0.193742i
\(873\) −1855.95 −2.12595
\(874\) −796.195 −0.910979
\(875\) −118.517 + 118.517i −0.135448 + 0.135448i
\(876\) 310.752 + 310.752i 0.354739 + 0.354739i
\(877\) −1280.46 −1.46004 −0.730021 0.683424i \(-0.760490\pi\)
−0.730021 + 0.683424i \(0.760490\pi\)
\(878\) 51.1340 51.1340i 0.0582392 0.0582392i
\(879\) −1796.16 1796.16i −2.04342 2.04342i
\(880\) 36.6063i 0.0415980i
\(881\) 1094.10 + 1094.10i 1.24188 + 1.24188i 0.959218 + 0.282667i \(0.0912191\pi\)
0.282667 + 0.959218i \(0.408781\pi\)
\(882\) 897.915 + 897.915i 1.01804 + 1.01804i
\(883\) 636.432 + 636.432i 0.720761 + 0.720761i 0.968760 0.247999i \(-0.0797730\pi\)
−0.247999 + 0.968760i \(0.579773\pi\)
\(884\) 250.929 + 250.929i 0.283856 + 0.283856i
\(885\) −1227.55 −1.38706
\(886\) 615.226i 0.694386i
\(887\) −961.847 −1.08438 −0.542191 0.840255i \(-0.682405\pi\)
−0.542191 + 0.840255i \(0.682405\pi\)
\(888\) −142.205 −0.160140
\(889\) 65.7804 + 65.7804i 0.0739938 + 0.0739938i
\(890\) −490.232 + 490.232i −0.550822 + 0.550822i
\(891\) 275.168i 0.308830i
\(892\) −473.723 473.723i −0.531080 0.531080i
\(893\) −1606.19 + 1606.19i −1.79865 + 1.79865i
\(894\) 1016.00 1.13646
\(895\) 41.5784 + 41.5784i 0.0464564 + 0.0464564i
\(896\) 14.2621i 0.0159175i
\(897\) −531.173 + 531.173i −0.592167 + 0.592167i
\(898\) 41.1705 + 41.1705i 0.0458468 + 0.0458468i
\(899\) 2065.54i 2.29760i
\(900\) 465.164 0.516849
\(901\) 136.921 + 136.921i 0.151965 + 0.151965i
\(902\) 123.126 123.126i 0.136503 0.136503i
\(903\) 183.906i 0.203662i
\(904\) 610.348i 0.675164i
\(905\) −686.087 + 686.087i −0.758107 + 0.758107i
\(906\) 1861.52 2.05466
\(907\) 74.5646i 0.0822102i −0.999155 0.0411051i \(-0.986912\pi\)
0.999155 0.0411051i \(-0.0130878\pi\)
\(908\) 475.772 + 475.772i 0.523978 + 0.523978i
\(909\) 575.944 575.944i 0.633602 0.633602i
\(910\) 43.6396i 0.0479556i
\(911\) −968.971 968.971i −1.06363 1.06363i −0.997833 0.0658019i \(-0.979039\pi\)
−0.0658019 0.997833i \(-0.520961\pi\)
\(912\) 574.881 0.630352
\(913\) −75.5020 75.5020i −0.0826966 0.0826966i
\(914\) 339.800 339.800i 0.371772 0.371772i
\(915\) 1093.76 + 1093.76i 1.19536 + 1.19536i
\(916\) −213.611 + 213.611i −0.233200 + 0.233200i
\(917\) 38.2592 38.2592i 0.0417222 0.0417222i
\(918\) −1358.09 1358.09i −1.47940 1.47940i
\(919\) 529.117 529.117i 0.575753 0.575753i −0.357977 0.933730i \(-0.616533\pi\)
0.933730 + 0.357977i \(0.116533\pi\)
\(920\) 147.691 147.691i 0.160534 0.160534i
\(921\) −2137.97 2137.97i −2.32136 2.32136i
\(922\) 428.287 0.464520
\(923\) 75.3820 + 75.3820i 0.0816707 + 0.0816707i
\(924\) −34.1960 −0.0370087
\(925\) −116.811 −0.126282
\(926\) −549.830 −0.593769
\(927\) 1012.83 1.09259
\(928\) 265.287 0.285870
\(929\) 690.119 + 690.119i 0.742862 + 0.742862i 0.973128 0.230265i \(-0.0739595\pi\)
−0.230265 + 0.973128i \(0.573959\pi\)
\(930\) 830.294 + 830.294i 0.892790 + 0.892790i
\(931\) 911.540 + 911.540i 0.979097 + 0.979097i
\(932\) −55.7632 −0.0598317
\(933\) 2726.31i 2.92209i
\(934\) 149.334i 0.159887i
\(935\) 167.287 167.287i 0.178916 0.178916i
\(936\) 259.980 259.980i 0.277757 0.277757i
\(937\) 313.024 313.024i 0.334071 0.334071i −0.520060 0.854130i \(-0.674090\pi\)
0.854130 + 0.520060i \(0.174090\pi\)
\(938\) −38.7414 −0.0413022
\(939\) −1325.19 1325.19i −1.41127 1.41127i
\(940\) 595.886i 0.633922i
\(941\) −235.189 235.189i −0.249935 0.249935i 0.571009 0.820944i \(-0.306552\pi\)
−0.820944 + 0.571009i \(0.806552\pi\)
\(942\) 348.121 348.121i 0.369555 0.369555i
\(943\) −993.528 −1.05358
\(944\) −184.181 + 184.181i −0.195107 + 0.195107i
\(945\) 236.189i 0.249935i
\(946\) −70.8232 70.8232i −0.0748660 0.0748660i
\(947\) 268.643 + 268.643i 0.283678 + 0.283678i 0.834574 0.550896i \(-0.185714\pi\)
−0.550896 + 0.834574i \(0.685714\pi\)
\(948\) −461.852 461.852i −0.487185 0.487185i
\(949\) 285.330 0.300664
\(950\) 472.223 0.497077
\(951\) 1790.50i 1.88275i
\(952\) 65.1763 65.1763i 0.0684625 0.0684625i
\(953\) 956.368 956.368i 1.00353 1.00353i 0.00354000 0.999994i \(-0.498873\pi\)
0.999994 0.00354000i \(-0.00112682\pi\)
\(954\) 141.860 141.860i 0.148700 0.148700i
\(955\) 152.719i 0.159915i
\(956\) 732.475i 0.766187i
\(957\) 636.076i 0.664656i
\(958\) 480.043i 0.501089i
\(959\) 140.632i 0.146645i
\(960\) −106.638 + 106.638i −0.111082 + 0.111082i
\(961\) 978.934i 1.01866i
\(962\) −65.2856 + 65.2856i −0.0678644 + 0.0678644i
\(963\) −1150.15 1150.15i −1.19434 1.19434i
\(964\) −41.6485 41.6485i −0.0432038 0.0432038i
\(965\) −801.411 + 801.411i −0.830478 + 0.830478i
\(966\) 137.967 + 137.967i 0.142823 + 0.142823i
\(967\) −545.790 545.790i −0.564415 0.564415i 0.366143 0.930559i \(-0.380678\pi\)
−0.930559 + 0.366143i \(0.880678\pi\)
\(968\) 228.831 228.831i 0.236396 0.236396i
\(969\) −2627.15 2627.15i −2.71119 2.71119i
\(970\) 349.497 349.497i 0.360306 0.360306i
\(971\) 14.0166i 0.0144352i −0.999974 0.00721760i \(-0.997703\pi\)
0.999974 0.00721760i \(-0.00229745\pi\)
\(972\) −132.936 + 132.936i −0.136765 + 0.136765i
\(973\) −146.005 −0.150057
\(974\) 421.501 + 421.501i 0.432753 + 0.432753i
\(975\) 315.039 315.039i 0.323117 0.323117i
\(976\) 328.214 0.336285
\(977\) 1638.23i 1.67680i −0.545057 0.838399i \(-0.683492\pi\)
0.545057 0.838399i \(-0.316508\pi\)
\(978\) 1169.26 + 1169.26i 1.19556 + 1.19556i
\(979\) −352.720 −0.360286
\(980\) −338.175 −0.345076
\(981\) 799.902 + 799.902i 0.815394 + 0.815394i
\(982\) 960.328 960.328i 0.977930 0.977930i
\(983\) 385.358i 0.392022i −0.980602 0.196011i \(-0.937201\pi\)
0.980602 0.196011i \(-0.0627989\pi\)
\(984\) 717.362 0.729026
\(985\) 144.756 144.756i 0.146961 0.146961i
\(986\) −1212.33 1212.33i −1.22955 1.22955i
\(987\) 556.652 0.563984
\(988\) 263.925 263.925i 0.267131 0.267131i
\(989\) 571.486i 0.577842i
\(990\) −173.322 173.322i −0.175072 0.175072i
\(991\) 359.520 359.520i 0.362785 0.362785i −0.502052 0.864837i \(-0.667422\pi\)
0.864837 + 0.502052i \(0.167422\pi\)
\(992\) 249.154 0.251164
\(993\) 1949.85 + 1949.85i 1.96359 + 1.96359i
\(994\) 19.5798 19.5798i 0.0196979 0.0196979i
\(995\) 289.459i 0.290913i
\(996\) 439.892i 0.441659i
\(997\) 592.073 0.593854 0.296927 0.954900i \(-0.404038\pi\)
0.296927 + 0.954900i \(0.404038\pi\)
\(998\) 288.711i 0.289289i
\(999\) 353.343 353.343i 0.353697 0.353697i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.187.2 46
269.82 odd 4 inner 538.3.c.b.351.2 yes 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.2 46 1.1 even 1 trivial
538.3.c.b.351.2 yes 46 269.82 odd 4 inner