Properties

Label 538.3.c.b.187.3
Level $538$
Weight $3$
Character 538.187
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 187.3
Character \(\chi\) \(=\) 538.187
Dual form 538.3.c.b.351.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.00000i) q^{2} +(-3.24321 - 3.24321i) q^{3} +2.00000i q^{4} +4.65083 q^{5} +6.48641i q^{6} +(4.88017 - 4.88017i) q^{7} +(2.00000 - 2.00000i) q^{8} +12.0368i q^{9} +(-4.65083 - 4.65083i) q^{10} +17.7265i q^{11} +(6.48641 - 6.48641i) q^{12} +4.34344i q^{13} -9.76035 q^{14} +(-15.0836 - 15.0836i) q^{15} -4.00000 q^{16} +(-11.3436 - 11.3436i) q^{17} +(12.0368 - 12.0368i) q^{18} +(-7.80386 + 7.80386i) q^{19} +9.30167i q^{20} -31.6548 q^{21} +(17.7265 - 17.7265i) q^{22} -40.0305 q^{23} -12.9728 q^{24} -3.36973 q^{25} +(4.34344 - 4.34344i) q^{26} +(9.84884 - 9.84884i) q^{27} +(9.76035 + 9.76035i) q^{28} +(-3.41094 + 3.41094i) q^{29} +30.1672i q^{30} +(-41.6217 + 41.6217i) q^{31} +(4.00000 + 4.00000i) q^{32} +(57.4906 - 57.4906i) q^{33} +22.6871i q^{34} +(22.6969 - 22.6969i) q^{35} -24.0735 q^{36} -3.25116 q^{37} +15.6077 q^{38} +(14.0867 - 14.0867i) q^{39} +(9.30167 - 9.30167i) q^{40} +11.4842 q^{41} +(31.6548 + 31.6548i) q^{42} -8.80977i q^{43} -35.4530 q^{44} +55.9810i q^{45} +(40.0305 + 40.0305i) q^{46} -41.4763 q^{47} +(12.9728 + 12.9728i) q^{48} +1.36783i q^{49} +(3.36973 + 3.36973i) q^{50} +73.5790i q^{51} -8.68688 q^{52} -17.5716 q^{53} -19.6977 q^{54} +82.4429i q^{55} -19.5207i q^{56} +50.6191 q^{57} +6.82188 q^{58} +(-5.47396 + 5.47396i) q^{59} +(30.1672 - 30.1672i) q^{60} +27.1650 q^{61} +83.2434 q^{62} +(58.7415 + 58.7415i) q^{63} -8.00000i q^{64} +20.2006i q^{65} -114.981 q^{66} +2.74007 q^{67} +(22.6871 - 22.6871i) q^{68} +(129.827 + 129.827i) q^{69} -45.3938 q^{70} +(-61.4762 + 61.4762i) q^{71} +(24.0735 + 24.0735i) q^{72} -79.1820i q^{73} +(3.25116 + 3.25116i) q^{74} +(10.9287 + 10.9287i) q^{75} +(-15.6077 - 15.6077i) q^{76} +(86.5083 + 86.5083i) q^{77} -28.1734 q^{78} +6.12702i q^{79} -18.6033 q^{80} +44.4472 q^{81} +(-11.4842 - 11.4842i) q^{82} +(58.7815 - 58.7815i) q^{83} -63.3096i q^{84} +(-52.7570 - 52.7570i) q^{85} +(-8.80977 + 8.80977i) q^{86} +22.1247 q^{87} +(35.4530 + 35.4530i) q^{88} +113.961i q^{89} +(55.9810 - 55.9810i) q^{90} +(21.1967 + 21.1967i) q^{91} -80.0610i q^{92} +269.975 q^{93} +(41.4763 + 41.4763i) q^{94} +(-36.2945 + 36.2945i) q^{95} -25.9456i q^{96} -9.11196i q^{97} +(1.36783 - 1.36783i) q^{98} -213.369 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.00000i −0.500000 0.500000i
\(3\) −3.24321 3.24321i −1.08107 1.08107i −0.996410 0.0846584i \(-0.973020\pi\)
−0.0846584 0.996410i \(-0.526980\pi\)
\(4\) 2.00000i 0.500000i
\(5\) 4.65083 0.930167 0.465083 0.885267i \(-0.346024\pi\)
0.465083 + 0.885267i \(0.346024\pi\)
\(6\) 6.48641i 1.08107i
\(7\) 4.88017 4.88017i 0.697168 0.697168i −0.266631 0.963799i \(-0.585911\pi\)
0.963799 + 0.266631i \(0.0859105\pi\)
\(8\) 2.00000 2.00000i 0.250000 0.250000i
\(9\) 12.0368i 1.33742i
\(10\) −4.65083 4.65083i −0.465083 0.465083i
\(11\) 17.7265i 1.61150i 0.592257 + 0.805749i \(0.298237\pi\)
−0.592257 + 0.805749i \(0.701763\pi\)
\(12\) 6.48641 6.48641i 0.540534 0.540534i
\(13\) 4.34344i 0.334111i 0.985947 + 0.167055i \(0.0534259\pi\)
−0.985947 + 0.167055i \(0.946574\pi\)
\(14\) −9.76035 −0.697168
\(15\) −15.0836 15.0836i −1.00557 1.00557i
\(16\) −4.00000 −0.250000
\(17\) −11.3436 11.3436i −0.667268 0.667268i 0.289815 0.957083i \(-0.406406\pi\)
−0.957083 + 0.289815i \(0.906406\pi\)
\(18\) 12.0368 12.0368i 0.668709 0.668709i
\(19\) −7.80386 + 7.80386i −0.410730 + 0.410730i −0.881993 0.471263i \(-0.843798\pi\)
0.471263 + 0.881993i \(0.343798\pi\)
\(20\) 9.30167i 0.465083i
\(21\) −31.6548 −1.50737
\(22\) 17.7265 17.7265i 0.805749 0.805749i
\(23\) −40.0305 −1.74046 −0.870229 0.492648i \(-0.836029\pi\)
−0.870229 + 0.492648i \(0.836029\pi\)
\(24\) −12.9728 −0.540534
\(25\) −3.36973 −0.134789
\(26\) 4.34344 4.34344i 0.167055 0.167055i
\(27\) 9.84884 9.84884i 0.364772 0.364772i
\(28\) 9.76035 + 9.76035i 0.348584 + 0.348584i
\(29\) −3.41094 + 3.41094i −0.117619 + 0.117619i −0.763466 0.645848i \(-0.776504\pi\)
0.645848 + 0.763466i \(0.276504\pi\)
\(30\) 30.1672i 1.00557i
\(31\) −41.6217 + 41.6217i −1.34263 + 1.34263i −0.449208 + 0.893427i \(0.648294\pi\)
−0.893427 + 0.449208i \(0.851706\pi\)
\(32\) 4.00000 + 4.00000i 0.125000 + 0.125000i
\(33\) 57.4906 57.4906i 1.74214 1.74214i
\(34\) 22.6871i 0.667268i
\(35\) 22.6969 22.6969i 0.648482 0.648482i
\(36\) −24.0735 −0.668709
\(37\) −3.25116 −0.0878691 −0.0439346 0.999034i \(-0.513989\pi\)
−0.0439346 + 0.999034i \(0.513989\pi\)
\(38\) 15.6077 0.410730
\(39\) 14.0867 14.0867i 0.361197 0.361197i
\(40\) 9.30167 9.30167i 0.232542 0.232542i
\(41\) 11.4842 0.280103 0.140052 0.990144i \(-0.455273\pi\)
0.140052 + 0.990144i \(0.455273\pi\)
\(42\) 31.6548 + 31.6548i 0.753686 + 0.753686i
\(43\) 8.80977i 0.204878i −0.994739 0.102439i \(-0.967335\pi\)
0.994739 0.102439i \(-0.0326647\pi\)
\(44\) −35.4530 −0.805749
\(45\) 55.9810i 1.24402i
\(46\) 40.0305 + 40.0305i 0.870229 + 0.870229i
\(47\) −41.4763 −0.882475 −0.441237 0.897390i \(-0.645460\pi\)
−0.441237 + 0.897390i \(0.645460\pi\)
\(48\) 12.9728 + 12.9728i 0.270267 + 0.270267i
\(49\) 1.36783i 0.0279148i
\(50\) 3.36973 + 3.36973i 0.0673947 + 0.0673947i
\(51\) 73.5790i 1.44272i
\(52\) −8.68688 −0.167055
\(53\) −17.5716 −0.331540 −0.165770 0.986164i \(-0.553011\pi\)
−0.165770 + 0.986164i \(0.553011\pi\)
\(54\) −19.6977 −0.364772
\(55\) 82.4429i 1.49896i
\(56\) 19.5207i 0.348584i
\(57\) 50.6191 0.888054
\(58\) 6.82188 0.117619
\(59\) −5.47396 + 5.47396i −0.0927790 + 0.0927790i −0.751973 0.659194i \(-0.770898\pi\)
0.659194 + 0.751973i \(0.270898\pi\)
\(60\) 30.1672 30.1672i 0.502787 0.502787i
\(61\) 27.1650 0.445329 0.222664 0.974895i \(-0.428525\pi\)
0.222664 + 0.974895i \(0.428525\pi\)
\(62\) 83.2434 1.34263
\(63\) 58.7415 + 58.7415i 0.932404 + 0.932404i
\(64\) 8.00000i 0.125000i
\(65\) 20.2006i 0.310779i
\(66\) −114.981 −1.74214
\(67\) 2.74007 0.0408965 0.0204483 0.999791i \(-0.493491\pi\)
0.0204483 + 0.999791i \(0.493491\pi\)
\(68\) 22.6871 22.6871i 0.333634 0.333634i
\(69\) 129.827 + 129.827i 1.88155 + 1.88155i
\(70\) −45.3938 −0.648482
\(71\) −61.4762 + 61.4762i −0.865863 + 0.865863i −0.992011 0.126149i \(-0.959738\pi\)
0.126149 + 0.992011i \(0.459738\pi\)
\(72\) 24.0735 + 24.0735i 0.334355 + 0.334355i
\(73\) 79.1820i 1.08468i −0.840158 0.542342i \(-0.817538\pi\)
0.840158 0.542342i \(-0.182462\pi\)
\(74\) 3.25116 + 3.25116i 0.0439346 + 0.0439346i
\(75\) 10.9287 + 10.9287i 0.145717 + 0.145717i
\(76\) −15.6077 15.6077i −0.205365 0.205365i
\(77\) 86.5083 + 86.5083i 1.12348 + 1.12348i
\(78\) −28.1734 −0.361197
\(79\) 6.12702i 0.0775572i 0.999248 + 0.0387786i \(0.0123467\pi\)
−0.999248 + 0.0387786i \(0.987653\pi\)
\(80\) −18.6033 −0.232542
\(81\) 44.4472 0.548731
\(82\) −11.4842 11.4842i −0.140052 0.140052i
\(83\) 58.7815 58.7815i 0.708210 0.708210i −0.257948 0.966159i \(-0.583046\pi\)
0.966159 + 0.257948i \(0.0830464\pi\)
\(84\) 63.3096i 0.753686i
\(85\) −52.7570 52.7570i −0.620671 0.620671i
\(86\) −8.80977 + 8.80977i −0.102439 + 0.102439i
\(87\) 22.1247 0.254307
\(88\) 35.4530 + 35.4530i 0.402875 + 0.402875i
\(89\) 113.961i 1.28046i 0.768181 + 0.640232i \(0.221162\pi\)
−0.768181 + 0.640232i \(0.778838\pi\)
\(90\) 55.9810 55.9810i 0.622011 0.622011i
\(91\) 21.1967 + 21.1967i 0.232931 + 0.232931i
\(92\) 80.0610i 0.870229i
\(93\) 269.975 2.90296
\(94\) 41.4763 + 41.4763i 0.441237 + 0.441237i
\(95\) −36.2945 + 36.2945i −0.382047 + 0.382047i
\(96\) 25.9456i 0.270267i
\(97\) 9.11196i 0.0939378i −0.998896 0.0469689i \(-0.985044\pi\)
0.998896 0.0469689i \(-0.0149562\pi\)
\(98\) 1.36783 1.36783i 0.0139574 0.0139574i
\(99\) −213.369 −2.15525
\(100\) 6.73947i 0.0673947i
\(101\) 2.08356 + 2.08356i 0.0206293 + 0.0206293i 0.717346 0.696717i \(-0.245357\pi\)
−0.696717 + 0.717346i \(0.745357\pi\)
\(102\) 73.5790 73.5790i 0.721362 0.721362i
\(103\) 45.5958i 0.442677i −0.975197 0.221339i \(-0.928957\pi\)
0.975197 0.221339i \(-0.0710426\pi\)
\(104\) 8.68688 + 8.68688i 0.0835277 + 0.0835277i
\(105\) −147.221 −1.40211
\(106\) 17.5716 + 17.5716i 0.165770 + 0.165770i
\(107\) −83.6935 + 83.6935i −0.782182 + 0.782182i −0.980199 0.198016i \(-0.936550\pi\)
0.198016 + 0.980199i \(0.436550\pi\)
\(108\) 19.6977 + 19.6977i 0.182386 + 0.182386i
\(109\) 17.4640 17.4640i 0.160220 0.160220i −0.622444 0.782664i \(-0.713860\pi\)
0.782664 + 0.622444i \(0.213860\pi\)
\(110\) 82.4429 82.4429i 0.749481 0.749481i
\(111\) 10.5442 + 10.5442i 0.0949925 + 0.0949925i
\(112\) −19.5207 + 19.5207i −0.174292 + 0.174292i
\(113\) 90.7656 90.7656i 0.803236 0.803236i −0.180364 0.983600i \(-0.557728\pi\)
0.983600 + 0.180364i \(0.0577276\pi\)
\(114\) −50.6191 50.6191i −0.444027 0.444027i
\(115\) −186.175 −1.61892
\(116\) −6.82188 6.82188i −0.0588093 0.0588093i
\(117\) −52.2810 −0.446846
\(118\) 10.9479 0.0927790
\(119\) −110.717 −0.930395
\(120\) −60.3345 −0.502787
\(121\) −193.228 −1.59693
\(122\) −27.1650 27.1650i −0.222664 0.222664i
\(123\) −37.2457 37.2457i −0.302811 0.302811i
\(124\) −83.2434 83.2434i −0.671317 0.671317i
\(125\) −131.943 −1.05554
\(126\) 117.483i 0.932404i
\(127\) 195.393i 1.53853i −0.638930 0.769265i \(-0.720623\pi\)
0.638930 0.769265i \(-0.279377\pi\)
\(128\) −8.00000 + 8.00000i −0.0625000 + 0.0625000i
\(129\) −28.5719 + 28.5719i −0.221488 + 0.221488i
\(130\) 20.2006 20.2006i 0.155389 0.155389i
\(131\) −51.8047 −0.395455 −0.197728 0.980257i \(-0.563356\pi\)
−0.197728 + 0.980257i \(0.563356\pi\)
\(132\) 114.981 + 114.981i 0.871070 + 0.871070i
\(133\) 76.1684i 0.572695i
\(134\) −2.74007 2.74007i −0.0204483 0.0204483i
\(135\) 45.8053 45.8053i 0.339299 0.339299i
\(136\) −45.3742 −0.333634
\(137\) −110.932 + 110.932i −0.809726 + 0.809726i −0.984592 0.174866i \(-0.944051\pi\)
0.174866 + 0.984592i \(0.444051\pi\)
\(138\) 259.654i 1.88155i
\(139\) −64.5863 64.5863i −0.464650 0.464650i 0.435526 0.900176i \(-0.356562\pi\)
−0.900176 + 0.435526i \(0.856562\pi\)
\(140\) 45.3938 + 45.3938i 0.324241 + 0.324241i
\(141\) 134.516 + 134.516i 0.954015 + 0.954015i
\(142\) 122.952 0.865863
\(143\) −76.9939 −0.538419
\(144\) 48.1470i 0.334355i
\(145\) −15.8637 + 15.8637i −0.109405 + 0.109405i
\(146\) −79.1820 + 79.1820i −0.542342 + 0.542342i
\(147\) 4.43614 4.43614i 0.0301778 0.0301778i
\(148\) 6.50231i 0.0439346i
\(149\) 230.957i 1.55005i −0.631932 0.775024i \(-0.717738\pi\)
0.631932 0.775024i \(-0.282262\pi\)
\(150\) 21.8575i 0.145717i
\(151\) 251.195i 1.66354i −0.555120 0.831770i \(-0.687328\pi\)
0.555120 0.831770i \(-0.312672\pi\)
\(152\) 31.2155i 0.205365i
\(153\) 136.540 136.540i 0.892416 0.892416i
\(154\) 173.017i 1.12348i
\(155\) −193.576 + 193.576i −1.24887 + 1.24887i
\(156\) 28.1734 + 28.1734i 0.180598 + 0.180598i
\(157\) 192.662 + 192.662i 1.22714 + 1.22714i 0.965040 + 0.262104i \(0.0844165\pi\)
0.262104 + 0.965040i \(0.415583\pi\)
\(158\) 6.12702 6.12702i 0.0387786 0.0387786i
\(159\) 56.9884 + 56.9884i 0.358417 + 0.358417i
\(160\) 18.6033 + 18.6033i 0.116271 + 0.116271i
\(161\) −195.356 + 195.356i −1.21339 + 1.21339i
\(162\) −44.4472 44.4472i −0.274366 0.274366i
\(163\) −128.235 + 128.235i −0.786715 + 0.786715i −0.980954 0.194239i \(-0.937776\pi\)
0.194239 + 0.980954i \(0.437776\pi\)
\(164\) 22.9685i 0.140052i
\(165\) 267.379 267.379i 1.62048 1.62048i
\(166\) −117.563 −0.708210
\(167\) 203.727 + 203.727i 1.21992 + 1.21992i 0.967659 + 0.252262i \(0.0811745\pi\)
0.252262 + 0.967659i \(0.418826\pi\)
\(168\) −63.3096 + 63.3096i −0.376843 + 0.376843i
\(169\) 150.135 0.888370
\(170\) 105.514i 0.620671i
\(171\) −93.9332 93.9332i −0.549317 0.549317i
\(172\) 17.6195 0.102439
\(173\) −300.872 −1.73914 −0.869571 0.493808i \(-0.835605\pi\)
−0.869571 + 0.493808i \(0.835605\pi\)
\(174\) −22.1247 22.1247i −0.127154 0.127154i
\(175\) −16.4449 + 16.4449i −0.0939708 + 0.0939708i
\(176\) 70.9059i 0.402875i
\(177\) 35.5064 0.200601
\(178\) 113.961 113.961i 0.640232 0.640232i
\(179\) 7.39567 + 7.39567i 0.0413166 + 0.0413166i 0.727463 0.686147i \(-0.240699\pi\)
−0.686147 + 0.727463i \(0.740699\pi\)
\(180\) −111.962 −0.622011
\(181\) 200.292 200.292i 1.10659 1.10659i 0.112991 0.993596i \(-0.463957\pi\)
0.993596 0.112991i \(-0.0360432\pi\)
\(182\) 42.3935i 0.232931i
\(183\) −88.1018 88.1018i −0.481431 0.481431i
\(184\) −80.0610 + 80.0610i −0.435114 + 0.435114i
\(185\) −15.1206 −0.0817329
\(186\) −269.975 269.975i −1.45148 1.45148i
\(187\) 201.081 201.081i 1.07530 1.07530i
\(188\) 82.9526i 0.441237i
\(189\) 96.1281i 0.508614i
\(190\) 72.5890 0.382047
\(191\) 89.3960i 0.468042i 0.972232 + 0.234021i \(0.0751884\pi\)
−0.972232 + 0.234021i \(0.924812\pi\)
\(192\) −25.9456 + 25.9456i −0.135134 + 0.135134i
\(193\) 151.033 151.033i 0.782554 0.782554i −0.197707 0.980261i \(-0.563350\pi\)
0.980261 + 0.197707i \(0.0633496\pi\)
\(194\) −9.11196 + 9.11196i −0.0469689 + 0.0469689i
\(195\) 65.5148 65.5148i 0.335973 0.335973i
\(196\) −2.73565 −0.0139574
\(197\) −53.3615 + 53.3615i −0.270871 + 0.270871i −0.829451 0.558580i \(-0.811346\pi\)
0.558580 + 0.829451i \(0.311346\pi\)
\(198\) 213.369 + 213.369i 1.07762 + 1.07762i
\(199\) 97.4643i 0.489770i 0.969552 + 0.244885i \(0.0787503\pi\)
−0.969552 + 0.244885i \(0.921250\pi\)
\(200\) −6.73947 + 6.73947i −0.0336973 + 0.0336973i
\(201\) −8.88660 8.88660i −0.0442120 0.0442120i
\(202\) 4.16713i 0.0206293i
\(203\) 33.2919i 0.164000i
\(204\) −147.158 −0.721362
\(205\) 53.4113 0.260543
\(206\) −45.5958 + 45.5958i −0.221339 + 0.221339i
\(207\) 481.838i 2.32772i
\(208\) 17.3738i 0.0835277i
\(209\) −138.335 138.335i −0.661890 0.661890i
\(210\) 147.221 + 147.221i 0.701054 + 0.701054i
\(211\) 186.048i 0.881745i −0.897570 0.440872i \(-0.854669\pi\)
0.897570 0.440872i \(-0.145331\pi\)
\(212\) 35.1432i 0.165770i
\(213\) 398.760 1.87211
\(214\) 167.387 0.782182
\(215\) 40.9728i 0.190571i
\(216\) 39.3954i 0.182386i
\(217\) 406.242i 1.87208i
\(218\) −34.9279 −0.160220
\(219\) −256.803 + 256.803i −1.17262 + 1.17262i
\(220\) −164.886 −0.749481
\(221\) 49.2701 49.2701i 0.222942 0.222942i
\(222\) 21.0883i 0.0949925i
\(223\) −164.625 + 164.625i −0.738230 + 0.738230i −0.972235 0.234005i \(-0.924817\pi\)
0.234005 + 0.972235i \(0.424817\pi\)
\(224\) 39.0414 0.174292
\(225\) 40.5607i 0.180270i
\(226\) −181.531 −0.803236
\(227\) 49.7130 49.7130i 0.219000 0.219000i −0.589077 0.808077i \(-0.700509\pi\)
0.808077 + 0.589077i \(0.200509\pi\)
\(228\) 101.238i 0.444027i
\(229\) 255.416 + 255.416i 1.11535 + 1.11535i 0.992414 + 0.122938i \(0.0392318\pi\)
0.122938 + 0.992414i \(0.460768\pi\)
\(230\) 186.175 + 186.175i 0.809458 + 0.809458i
\(231\) 561.128i 2.42913i
\(232\) 13.6438i 0.0588093i
\(233\) 417.135i 1.79028i 0.445786 + 0.895140i \(0.352924\pi\)
−0.445786 + 0.895140i \(0.647076\pi\)
\(234\) 52.2810 + 52.2810i 0.223423 + 0.223423i
\(235\) −192.899 −0.820849
\(236\) −10.9479 10.9479i −0.0463895 0.0463895i
\(237\) 19.8712 19.8712i 0.0838447 0.0838447i
\(238\) 110.717 + 110.717i 0.465198 + 0.465198i
\(239\) 361.322 1.51181 0.755904 0.654683i \(-0.227198\pi\)
0.755904 + 0.654683i \(0.227198\pi\)
\(240\) 60.3345 + 60.3345i 0.251394 + 0.251394i
\(241\) −146.401 + 146.401i −0.607472 + 0.607472i −0.942285 0.334813i \(-0.891327\pi\)
0.334813 + 0.942285i \(0.391327\pi\)
\(242\) 193.228 + 193.228i 0.798463 + 0.798463i
\(243\) −232.791 232.791i −0.957988 0.957988i
\(244\) 54.3301i 0.222664i
\(245\) 6.36153i 0.0259654i
\(246\) 74.4915i 0.302811i
\(247\) −33.8956 33.8956i −0.137229 0.137229i
\(248\) 166.487i 0.671317i
\(249\) −381.281 −1.53125
\(250\) 131.943 + 131.943i 0.527772 + 0.527772i
\(251\) −156.154 156.154i −0.622127 0.622127i 0.323948 0.946075i \(-0.394990\pi\)
−0.946075 + 0.323948i \(0.894990\pi\)
\(252\) −117.483 + 117.483i −0.466202 + 0.466202i
\(253\) 709.600i 2.80474i
\(254\) −195.393 + 195.393i −0.769265 + 0.769265i
\(255\) 342.204i 1.34198i
\(256\) 16.0000 0.0625000
\(257\) 128.944 + 128.944i 0.501726 + 0.501726i 0.911974 0.410248i \(-0.134558\pi\)
−0.410248 + 0.911974i \(0.634558\pi\)
\(258\) 57.1438 0.221488
\(259\) −15.8662 + 15.8662i −0.0612595 + 0.0612595i
\(260\) −40.4013 −0.155389
\(261\) −41.0566 41.0566i −0.157305 0.157305i
\(262\) 51.8047 + 51.8047i 0.197728 + 0.197728i
\(263\) 9.95329 0.0378452 0.0189226 0.999821i \(-0.493976\pi\)
0.0189226 + 0.999821i \(0.493976\pi\)
\(264\) 229.962i 0.871070i
\(265\) −81.7227 −0.308388
\(266\) 76.1684 76.1684i 0.286347 0.286347i
\(267\) 369.600 369.600i 1.38427 1.38427i
\(268\) 5.48014i 0.0204483i
\(269\) −263.956 + 51.8506i −0.981247 + 0.192753i
\(270\) −91.6107 −0.339299
\(271\) 190.256 + 190.256i 0.702051 + 0.702051i 0.964851 0.262799i \(-0.0846457\pi\)
−0.262799 + 0.964851i \(0.584646\pi\)
\(272\) 45.3742 + 45.3742i 0.166817 + 0.166817i
\(273\) 137.491i 0.503629i
\(274\) 221.865 0.809726
\(275\) 59.7335i 0.217213i
\(276\) −259.654 + 259.654i −0.940777 + 0.940777i
\(277\) 172.223 172.223i 0.621745 0.621745i −0.324232 0.945977i \(-0.605106\pi\)
0.945977 + 0.324232i \(0.105106\pi\)
\(278\) 129.173i 0.464650i
\(279\) −500.990 500.990i −1.79566 1.79566i
\(280\) 90.7875i 0.324241i
\(281\) 69.4108 69.4108i 0.247014 0.247014i −0.572730 0.819744i \(-0.694116\pi\)
0.819744 + 0.572730i \(0.194116\pi\)
\(282\) 269.032i 0.954015i
\(283\) 75.3669 0.266314 0.133157 0.991095i \(-0.457489\pi\)
0.133157 + 0.991095i \(0.457489\pi\)
\(284\) −122.952 122.952i −0.432931 0.432931i
\(285\) 235.421 0.826038
\(286\) 76.9939 + 76.9939i 0.269210 + 0.269210i
\(287\) 56.0450 56.0450i 0.195279 0.195279i
\(288\) −48.1470 + 48.1470i −0.167177 + 0.167177i
\(289\) 31.6474i 0.109507i
\(290\) 31.7274 0.109405
\(291\) −29.5520 + 29.5520i −0.101553 + 0.101553i
\(292\) 158.364 0.542342
\(293\) −52.8258 −0.180293 −0.0901463 0.995929i \(-0.528733\pi\)
−0.0901463 + 0.995929i \(0.528733\pi\)
\(294\) −8.87228 −0.0301778
\(295\) −25.4585 + 25.4585i −0.0862999 + 0.0862999i
\(296\) −6.50231 + 6.50231i −0.0219673 + 0.0219673i
\(297\) 174.585 + 174.585i 0.587829 + 0.587829i
\(298\) −230.957 + 230.957i −0.775024 + 0.775024i
\(299\) 173.870i 0.581506i
\(300\) −21.8575 + 21.8575i −0.0728583 + 0.0728583i
\(301\) −42.9932 42.9932i −0.142835 0.142835i
\(302\) −251.195 + 251.195i −0.831770 + 0.831770i
\(303\) 13.5149i 0.0446035i
\(304\) 31.2155 31.2155i 0.102682 0.102682i
\(305\) 126.340 0.414230
\(306\) −273.079 −0.892416
\(307\) −71.2554 −0.232102 −0.116051 0.993243i \(-0.537024\pi\)
−0.116051 + 0.993243i \(0.537024\pi\)
\(308\) −173.017 + 173.017i −0.561742 + 0.561742i
\(309\) −147.876 + 147.876i −0.478564 + 0.478564i
\(310\) 387.151 1.24887
\(311\) 357.948 + 357.948i 1.15096 + 1.15096i 0.986361 + 0.164595i \(0.0526319\pi\)
0.164595 + 0.986361i \(0.447368\pi\)
\(312\) 56.3467i 0.180598i
\(313\) −325.811 −1.04093 −0.520465 0.853883i \(-0.674241\pi\)
−0.520465 + 0.853883i \(0.674241\pi\)
\(314\) 385.323i 1.22714i
\(315\) 273.197 + 273.197i 0.867292 + 0.867292i
\(316\) −12.2540 −0.0387786
\(317\) −65.7703 65.7703i −0.207477 0.207477i 0.595717 0.803194i \(-0.296868\pi\)
−0.803194 + 0.595717i \(0.796868\pi\)
\(318\) 113.977i 0.358417i
\(319\) −60.4639 60.4639i −0.189542 0.189542i
\(320\) 37.2067i 0.116271i
\(321\) 542.870 1.69119
\(322\) 390.712 1.21339
\(323\) 177.047 0.548134
\(324\) 88.8944i 0.274366i
\(325\) 14.6362i 0.0450346i
\(326\) 256.469 0.786715
\(327\) −113.278 −0.346417
\(328\) 22.9685 22.9685i 0.0700258 0.0700258i
\(329\) −202.412 + 202.412i −0.615233 + 0.615233i
\(330\) −534.759 −1.62048
\(331\) 226.887 0.685459 0.342729 0.939434i \(-0.388649\pi\)
0.342729 + 0.939434i \(0.388649\pi\)
\(332\) 117.563 + 117.563i 0.354105 + 0.354105i
\(333\) 39.1334i 0.117518i
\(334\) 407.454i 1.21992i
\(335\) 12.7436 0.0380406
\(336\) 126.619 0.376843
\(337\) 195.474 195.474i 0.580042 0.580042i −0.354873 0.934915i \(-0.615476\pi\)
0.934915 + 0.354873i \(0.115476\pi\)
\(338\) −150.135 150.135i −0.444185 0.444185i
\(339\) −588.743 −1.73671
\(340\) 105.514 105.514i 0.310335 0.310335i
\(341\) −737.806 737.806i −2.16365 2.16365i
\(342\) 187.866i 0.549317i
\(343\) 245.804 + 245.804i 0.716629 + 0.716629i
\(344\) −17.6195 17.6195i −0.0512196 0.0512196i
\(345\) 603.805 + 603.805i 1.75016 + 1.75016i
\(346\) 300.872 + 300.872i 0.869571 + 0.869571i
\(347\) −366.063 −1.05494 −0.527468 0.849575i \(-0.676859\pi\)
−0.527468 + 0.849575i \(0.676859\pi\)
\(348\) 44.2495i 0.127154i
\(349\) 404.957 1.16034 0.580168 0.814497i \(-0.302987\pi\)
0.580168 + 0.814497i \(0.302987\pi\)
\(350\) 32.8898 0.0939708
\(351\) 42.7779 + 42.7779i 0.121874 + 0.121874i
\(352\) −70.9059 + 70.9059i −0.201437 + 0.201437i
\(353\) 186.759i 0.529062i −0.964377 0.264531i \(-0.914783\pi\)
0.964377 0.264531i \(-0.0852171\pi\)
\(354\) −35.5064 35.5064i −0.100300 0.100300i
\(355\) −285.916 + 285.916i −0.805397 + 0.805397i
\(356\) −227.923 −0.640232
\(357\) 359.078 + 359.078i 1.00582 + 1.00582i
\(358\) 14.7913i 0.0413166i
\(359\) −137.869 + 137.869i −0.384037 + 0.384037i −0.872554 0.488518i \(-0.837538\pi\)
0.488518 + 0.872554i \(0.337538\pi\)
\(360\) 111.962 + 111.962i 0.311006 + 0.311006i
\(361\) 239.199i 0.662602i
\(362\) −400.585 −1.10659
\(363\) 626.678 + 626.678i 1.72639 + 1.72639i
\(364\) −42.3935 + 42.3935i −0.116466 + 0.116466i
\(365\) 368.262i 1.00894i
\(366\) 176.204i 0.481431i
\(367\) −405.724 + 405.724i −1.10552 + 1.10552i −0.111783 + 0.993733i \(0.535656\pi\)
−0.993733 + 0.111783i \(0.964344\pi\)
\(368\) 160.122 0.435114
\(369\) 138.233i 0.374615i
\(370\) 15.1206 + 15.1206i 0.0408665 + 0.0408665i
\(371\) −85.7525 + 85.7525i −0.231139 + 0.231139i
\(372\) 539.951i 1.45148i
\(373\) −460.015 460.015i −1.23328 1.23328i −0.962695 0.270588i \(-0.912782\pi\)
−0.270588 0.962695i \(-0.587218\pi\)
\(374\) −402.163 −1.07530
\(375\) 427.918 + 427.918i 1.14111 + 1.14111i
\(376\) −82.9526 + 82.9526i −0.220619 + 0.220619i
\(377\) −14.8152 14.8152i −0.0392976 0.0392976i
\(378\) −96.1281 + 96.1281i −0.254307 + 0.254307i
\(379\) 241.236 241.236i 0.636508 0.636508i −0.313184 0.949692i \(-0.601396\pi\)
0.949692 + 0.313184i \(0.101396\pi\)
\(380\) −72.5890 72.5890i −0.191024 0.191024i
\(381\) −633.701 + 633.701i −1.66326 + 1.66326i
\(382\) 89.3960 89.3960i 0.234021 0.234021i
\(383\) −197.526 197.526i −0.515733 0.515733i 0.400544 0.916277i \(-0.368821\pi\)
−0.916277 + 0.400544i \(0.868821\pi\)
\(384\) 51.8913 0.135134
\(385\) 402.336 + 402.336i 1.04503 + 1.04503i
\(386\) −302.066 −0.782554
\(387\) 106.041 0.274008
\(388\) 18.2239 0.0469689
\(389\) −585.938 −1.50627 −0.753134 0.657867i \(-0.771459\pi\)
−0.753134 + 0.657867i \(0.771459\pi\)
\(390\) −131.030 −0.335973
\(391\) 454.088 + 454.088i 1.16135 + 1.16135i
\(392\) 2.73565 + 2.73565i 0.00697870 + 0.00697870i
\(393\) 168.013 + 168.013i 0.427514 + 0.427514i
\(394\) 106.723 0.270871
\(395\) 28.4958i 0.0721412i
\(396\) 426.739i 1.07762i
\(397\) 34.3580 34.3580i 0.0865440 0.0865440i −0.662509 0.749054i \(-0.730509\pi\)
0.749054 + 0.662509i \(0.230509\pi\)
\(398\) 97.4643 97.4643i 0.244885 0.244885i
\(399\) 247.030 247.030i 0.619122 0.619122i
\(400\) 13.4789 0.0336973
\(401\) −117.728 117.728i −0.293587 0.293587i 0.544909 0.838495i \(-0.316564\pi\)
−0.838495 + 0.544909i \(0.816564\pi\)
\(402\) 17.7732i 0.0442120i
\(403\) −180.781 180.781i −0.448589 0.448589i
\(404\) −4.16713 + 4.16713i −0.0103147 + 0.0103147i
\(405\) 206.717 0.510411
\(406\) 33.2919 33.2919i 0.0819998 0.0819998i
\(407\) 57.6316i 0.141601i
\(408\) 147.158 + 147.158i 0.360681 + 0.360681i
\(409\) 108.614 + 108.614i 0.265560 + 0.265560i 0.827308 0.561748i \(-0.189871\pi\)
−0.561748 + 0.827308i \(0.689871\pi\)
\(410\) −53.4113 53.4113i −0.130271 0.130271i
\(411\) 719.553 1.75074
\(412\) 91.1915 0.221339
\(413\) 53.4277i 0.129365i
\(414\) −481.838 + 481.838i −1.16386 + 1.16386i
\(415\) 273.383 273.383i 0.658754 0.658754i
\(416\) −17.3738 + 17.3738i −0.0417639 + 0.0417639i
\(417\) 418.933i 1.00464i
\(418\) 276.670i 0.661890i
\(419\) 201.551i 0.481030i 0.970645 + 0.240515i \(0.0773162\pi\)
−0.970645 + 0.240515i \(0.922684\pi\)
\(420\) 294.443i 0.701054i
\(421\) 689.634i 1.63809i −0.573733 0.819043i \(-0.694505\pi\)
0.573733 0.819043i \(-0.305495\pi\)
\(422\) −186.048 + 186.048i −0.440872 + 0.440872i
\(423\) 499.240i 1.18024i
\(424\) −35.1432 + 35.1432i −0.0828850 + 0.0828850i
\(425\) 38.2248 + 38.2248i 0.0899406 + 0.0899406i
\(426\) −398.760 398.760i −0.936057 0.936057i
\(427\) 132.570 132.570i 0.310469 0.310469i
\(428\) −167.387 167.387i −0.391091 0.391091i
\(429\) 249.707 + 249.707i 0.582068 + 0.582068i
\(430\) −40.9728 + 40.9728i −0.0952856 + 0.0952856i
\(431\) −124.538 124.538i −0.288951 0.288951i 0.547714 0.836665i \(-0.315498\pi\)
−0.836665 + 0.547714i \(0.815498\pi\)
\(432\) −39.3954 + 39.3954i −0.0911930 + 0.0911930i
\(433\) 10.7776i 0.0248905i 0.999923 + 0.0124452i \(0.00396155\pi\)
−0.999923 + 0.0124452i \(0.996038\pi\)
\(434\) 406.242 406.242i 0.936042 0.936042i
\(435\) 102.899 0.236548
\(436\) 34.9279 + 34.9279i 0.0801099 + 0.0801099i
\(437\) 312.393 312.393i 0.714857 0.714857i
\(438\) 513.607 1.17262
\(439\) 659.978i 1.50337i −0.659524 0.751684i \(-0.729242\pi\)
0.659524 0.751684i \(-0.270758\pi\)
\(440\) 164.886 + 164.886i 0.374741 + 0.374741i
\(441\) −16.4642 −0.0373338
\(442\) −98.5402 −0.222942
\(443\) 69.5007 + 69.5007i 0.156886 + 0.156886i 0.781185 0.624299i \(-0.214615\pi\)
−0.624299 + 0.781185i \(0.714615\pi\)
\(444\) −21.0883 + 21.0883i −0.0474963 + 0.0474963i
\(445\) 530.016i 1.19105i
\(446\) 329.251 0.738230
\(447\) −749.042 + 749.042i −1.67571 + 1.67571i
\(448\) −39.0414 39.0414i −0.0871459 0.0871459i
\(449\) −476.210 −1.06060 −0.530301 0.847810i \(-0.677921\pi\)
−0.530301 + 0.847810i \(0.677921\pi\)
\(450\) −40.5607 + 40.5607i −0.0901349 + 0.0901349i
\(451\) 203.575i 0.451386i
\(452\) 181.531 + 181.531i 0.401618 + 0.401618i
\(453\) −814.675 + 814.675i −1.79840 + 1.79840i
\(454\) −99.4260 −0.219000
\(455\) 98.5826 + 98.5826i 0.216665 + 0.216665i
\(456\) 101.238 101.238i 0.222013 0.222013i
\(457\) 411.084i 0.899527i 0.893148 + 0.449763i \(0.148492\pi\)
−0.893148 + 0.449763i \(0.851508\pi\)
\(458\) 510.832i 1.11535i
\(459\) −223.442 −0.486801
\(460\) 372.351i 0.809458i
\(461\) −496.304 + 496.304i −1.07658 + 1.07658i −0.0797675 + 0.996813i \(0.525418\pi\)
−0.996813 + 0.0797675i \(0.974582\pi\)
\(462\) −561.128 + 561.128i −1.21456 + 1.21456i
\(463\) −527.308 + 527.308i −1.13889 + 1.13889i −0.150245 + 0.988649i \(0.548006\pi\)
−0.988649 + 0.150245i \(0.951994\pi\)
\(464\) 13.6438 13.6438i 0.0294046 0.0294046i
\(465\) 1255.61 2.70024
\(466\) 417.135 417.135i 0.895140 0.895140i
\(467\) 410.785 + 410.785i 0.879625 + 0.879625i 0.993496 0.113871i \(-0.0363250\pi\)
−0.113871 + 0.993496i \(0.536325\pi\)
\(468\) 104.562i 0.223423i
\(469\) 13.3720 13.3720i 0.0285117 0.0285117i
\(470\) 192.899 + 192.899i 0.410424 + 0.410424i
\(471\) 1249.68i 2.65325i
\(472\) 21.8958i 0.0463895i
\(473\) 156.166 0.330161
\(474\) −39.7424 −0.0838447
\(475\) 26.2969 26.2969i 0.0553620 0.0553620i
\(476\) 221.434i 0.465198i
\(477\) 211.505i 0.443408i
\(478\) −361.322 361.322i −0.755904 0.755904i
\(479\) 476.992 + 476.992i 0.995808 + 0.995808i 0.999991 0.00418306i \(-0.00133151\pi\)
−0.00418306 + 0.999991i \(0.501332\pi\)
\(480\) 120.669i 0.251394i
\(481\) 14.1212i 0.0293580i
\(482\) 292.801 0.607472
\(483\) 1267.16 2.62352
\(484\) 386.456i 0.798463i
\(485\) 42.3782i 0.0873778i
\(486\) 465.582i 0.957988i
\(487\) −29.8493 −0.0612923 −0.0306461 0.999530i \(-0.509756\pi\)
−0.0306461 + 0.999530i \(0.509756\pi\)
\(488\) 54.3301 54.3301i 0.111332 0.111332i
\(489\) 831.782 1.70098
\(490\) 6.36153 6.36153i 0.0129827 0.0129827i
\(491\) 648.671i 1.32112i −0.750772 0.660561i \(-0.770318\pi\)
0.750772 0.660561i \(-0.229682\pi\)
\(492\) 74.4915 74.4915i 0.151405 0.151405i
\(493\) 77.3843 0.156966
\(494\) 67.7913i 0.137229i
\(495\) −992.346 −2.00474
\(496\) 166.487 166.487i 0.335659 0.335659i
\(497\) 600.029i 1.20730i
\(498\) 381.281 + 381.281i 0.765624 + 0.765624i
\(499\) −589.524 589.524i −1.18141 1.18141i −0.979379 0.202031i \(-0.935246\pi\)
−0.202031 0.979379i \(-0.564754\pi\)
\(500\) 263.886i 0.527772i
\(501\) 1321.46i 2.63764i
\(502\) 312.308i 0.622127i
\(503\) −388.751 388.751i −0.772865 0.772865i 0.205742 0.978606i \(-0.434039\pi\)
−0.978606 + 0.205742i \(0.934039\pi\)
\(504\) 234.966 0.466202
\(505\) 9.69031 + 9.69031i 0.0191887 + 0.0191887i
\(506\) −709.600 + 709.600i −1.40237 + 1.40237i
\(507\) −486.917 486.917i −0.960389 0.960389i
\(508\) 390.787 0.769265
\(509\) 11.4967 + 11.4967i 0.0225869 + 0.0225869i 0.718310 0.695723i \(-0.244916\pi\)
−0.695723 + 0.718310i \(0.744916\pi\)
\(510\) 342.204 342.204i 0.670988 0.670988i
\(511\) −386.422 386.422i −0.756207 0.756207i
\(512\) −16.0000 16.0000i −0.0312500 0.0312500i
\(513\) 153.718i 0.299645i
\(514\) 257.887i 0.501726i
\(515\) 212.058i 0.411764i
\(516\) −57.1438 57.1438i −0.110744 0.110744i
\(517\) 735.229i 1.42211i
\(518\) 31.7324 0.0612595
\(519\) 975.788 + 975.788i 1.88013 + 1.88013i
\(520\) 40.4013 + 40.4013i 0.0776947 + 0.0776947i
\(521\) 513.038 513.038i 0.984717 0.984717i −0.0151678 0.999885i \(-0.504828\pi\)
0.999885 + 0.0151678i \(0.00482826\pi\)
\(522\) 82.1133i 0.157305i
\(523\) 152.358 152.358i 0.291316 0.291316i −0.546284 0.837600i \(-0.683958\pi\)
0.837600 + 0.546284i \(0.183958\pi\)
\(524\) 103.609i 0.197728i
\(525\) 106.668 0.203178
\(526\) −9.95329 9.95329i −0.0189226 0.0189226i
\(527\) 944.276 1.79179
\(528\) −229.962 + 229.962i −0.435535 + 0.435535i
\(529\) 1073.44 2.02919
\(530\) 81.7227 + 81.7227i 0.154194 + 0.154194i
\(531\) −65.8888 65.8888i −0.124084 0.124084i
\(532\) −152.337 −0.286347
\(533\) 49.8811i 0.0935856i
\(534\) −739.200 −1.38427
\(535\) −389.245 + 389.245i −0.727560 + 0.727560i
\(536\) 5.48014 5.48014i 0.0102241 0.0102241i
\(537\) 47.9713i 0.0893321i
\(538\) 315.806 + 212.105i 0.587000 + 0.394247i
\(539\) −24.2467 −0.0449847
\(540\) 91.6107 + 91.6107i 0.169649 + 0.169649i
\(541\) −591.764 591.764i −1.09383 1.09383i −0.995115 0.0987185i \(-0.968526\pi\)
−0.0987185 0.995115i \(-0.531474\pi\)
\(542\) 380.512i 0.702051i
\(543\) −1299.18 −2.39259
\(544\) 90.7485i 0.166817i
\(545\) 81.2220 81.2220i 0.149031 0.149031i
\(546\) −137.491 + 137.491i −0.251815 + 0.251815i
\(547\) 131.614i 0.240611i −0.992737 0.120305i \(-0.961613\pi\)
0.992737 0.120305i \(-0.0383873\pi\)
\(548\) −221.865 221.865i −0.404863 0.404863i
\(549\) 326.979i 0.595590i
\(550\) −59.7335 + 59.7335i −0.108606 + 0.108606i
\(551\) 53.2370i 0.0966188i
\(552\) 519.309 0.940777
\(553\) 29.9009 + 29.9009i 0.0540704 + 0.0540704i
\(554\) −344.447 −0.621745
\(555\) 49.0392 + 49.0392i 0.0883589 + 0.0883589i
\(556\) 129.173 129.173i 0.232325 0.232325i
\(557\) −319.474 + 319.474i −0.573563 + 0.573563i −0.933122 0.359559i \(-0.882927\pi\)
0.359559 + 0.933122i \(0.382927\pi\)
\(558\) 1001.98i 1.79566i
\(559\) 38.2647 0.0684521
\(560\) −90.7875 + 90.7875i −0.162121 + 0.162121i
\(561\) −1304.30 −2.32495
\(562\) −138.822 −0.247014
\(563\) −1020.14 −1.81198 −0.905989 0.423300i \(-0.860872\pi\)
−0.905989 + 0.423300i \(0.860872\pi\)
\(564\) −269.032 + 269.032i −0.477008 + 0.477008i
\(565\) 422.136 422.136i 0.747143 0.747143i
\(566\) −75.3669 75.3669i −0.133157 0.133157i
\(567\) 216.910 216.910i 0.382557 0.382557i
\(568\) 245.905i 0.432931i
\(569\) −748.079 + 748.079i −1.31473 + 1.31473i −0.396836 + 0.917889i \(0.629892\pi\)
−0.917889 + 0.396836i \(0.870108\pi\)
\(570\) −235.421 235.421i −0.413019 0.413019i
\(571\) 366.353 366.353i 0.641599 0.641599i −0.309350 0.950948i \(-0.600111\pi\)
0.950948 + 0.309350i \(0.100111\pi\)
\(572\) 153.988i 0.269210i
\(573\) 289.930 289.930i 0.505985 0.505985i
\(574\) −112.090 −0.195279
\(575\) 134.892 0.234595
\(576\) 96.2941 0.167177
\(577\) −783.122 + 783.122i −1.35723 + 1.35723i −0.479917 + 0.877314i \(0.659333\pi\)
−0.877314 + 0.479917i \(0.840667\pi\)
\(578\) −31.6474 + 31.6474i −0.0547534 + 0.0547534i
\(579\) −979.661 −1.69199
\(580\) −31.7274 31.7274i −0.0547024 0.0547024i
\(581\) 573.727i 0.987483i
\(582\) 59.1039 0.101553
\(583\) 311.483i 0.534276i
\(584\) −158.364 158.364i −0.271171 0.271171i
\(585\) −243.150 −0.415641
\(586\) 52.8258 + 52.8258i 0.0901463 + 0.0901463i
\(587\) 312.119i 0.531718i 0.964012 + 0.265859i \(0.0856556\pi\)
−0.964012 + 0.265859i \(0.914344\pi\)
\(588\) 8.87228 + 8.87228i 0.0150889 + 0.0150889i
\(589\) 649.620i 1.10292i
\(590\) 50.9170 0.0862999
\(591\) 346.125 0.585659
\(592\) 13.0046 0.0219673
\(593\) 698.996i 1.17875i −0.807861 0.589373i \(-0.799375\pi\)
0.807861 0.589373i \(-0.200625\pi\)
\(594\) 349.171i 0.587829i
\(595\) −514.927 −0.865423
\(596\) 461.914 0.775024
\(597\) 316.097 316.097i 0.529475 0.529475i
\(598\) −173.870 + 173.870i −0.290753 + 0.290753i
\(599\) −527.549 −0.880716 −0.440358 0.897822i \(-0.645148\pi\)
−0.440358 + 0.897822i \(0.645148\pi\)
\(600\) 43.7150 0.0728583
\(601\) −291.321 291.321i −0.484728 0.484728i 0.421910 0.906638i \(-0.361360\pi\)
−0.906638 + 0.421910i \(0.861360\pi\)
\(602\) 85.9864i 0.142835i
\(603\) 32.9815i 0.0546958i
\(604\) 502.389 0.831770
\(605\) −898.672 −1.48541
\(606\) −13.5149 + 13.5149i −0.0223017 + 0.0223017i
\(607\) −218.193 218.193i −0.359461 0.359461i 0.504153 0.863614i \(-0.331805\pi\)
−0.863614 + 0.504153i \(0.831805\pi\)
\(608\) −62.4309 −0.102682
\(609\) 107.973 107.973i 0.177295 0.177295i
\(610\) −126.340 126.340i −0.207115 0.207115i
\(611\) 180.150i 0.294844i
\(612\) 273.079 + 273.079i 0.446208 + 0.446208i
\(613\) 452.233 + 452.233i 0.737738 + 0.737738i 0.972140 0.234402i \(-0.0753132\pi\)
−0.234402 + 0.972140i \(0.575313\pi\)
\(614\) 71.2554 + 71.2554i 0.116051 + 0.116051i
\(615\) −173.224 173.224i −0.281665 0.281665i
\(616\) 346.033 0.561742
\(617\) 267.924i 0.434236i 0.976145 + 0.217118i \(0.0696656\pi\)
−0.976145 + 0.217118i \(0.930334\pi\)
\(618\) 295.753 0.478564
\(619\) −296.911 −0.479663 −0.239831 0.970815i \(-0.577092\pi\)
−0.239831 + 0.970815i \(0.577092\pi\)
\(620\) −387.151 387.151i −0.624437 0.624437i
\(621\) −394.254 + 394.254i −0.634870 + 0.634870i
\(622\) 715.895i 1.15096i
\(623\) 556.151 + 556.151i 0.892699 + 0.892699i
\(624\) −56.3467 + 56.3467i −0.0902992 + 0.0902992i
\(625\) −529.402 −0.847042
\(626\) 325.811 + 325.811i 0.520465 + 0.520465i
\(627\) 897.298i 1.43110i
\(628\) −385.323 + 385.323i −0.613572 + 0.613572i
\(629\) 36.8797 + 36.8797i 0.0586322 + 0.0586322i
\(630\) 546.394i 0.867292i
\(631\) 284.390 0.450698 0.225349 0.974278i \(-0.427648\pi\)
0.225349 + 0.974278i \(0.427648\pi\)
\(632\) 12.2540 + 12.2540i 0.0193893 + 0.0193893i
\(633\) −603.392 + 603.392i −0.953227 + 0.953227i
\(634\) 131.541i 0.207477i
\(635\) 908.742i 1.43109i
\(636\) −113.977 + 113.977i −0.179209 + 0.179209i
\(637\) −5.94107 −0.00932665
\(638\) 120.928i 0.189542i
\(639\) −739.975 739.975i −1.15802 1.15802i
\(640\) −37.2067 + 37.2067i −0.0581354 + 0.0581354i
\(641\) 124.117i 0.193630i 0.995302 + 0.0968152i \(0.0308656\pi\)
−0.995302 + 0.0968152i \(0.969134\pi\)
\(642\) −542.870 542.870i −0.845593 0.845593i
\(643\) −418.214 −0.650410 −0.325205 0.945644i \(-0.605433\pi\)
−0.325205 + 0.945644i \(0.605433\pi\)
\(644\) −390.712 390.712i −0.606695 0.606695i
\(645\) −132.883 + 132.883i −0.206020 + 0.206020i
\(646\) −177.047 177.047i −0.274067 0.274067i
\(647\) 277.424 277.424i 0.428786 0.428786i −0.459429 0.888215i \(-0.651946\pi\)
0.888215 + 0.459429i \(0.151946\pi\)
\(648\) 88.8944 88.8944i 0.137183 0.137183i
\(649\) −97.0340 97.0340i −0.149513 0.149513i
\(650\) −14.6362 + 14.6362i −0.0225173 + 0.0225173i
\(651\) 1317.53 1317.53i 2.02385 2.02385i
\(652\) −256.469 256.469i −0.393357 0.393357i
\(653\) −157.807 −0.241665 −0.120832 0.992673i \(-0.538556\pi\)
−0.120832 + 0.992673i \(0.538556\pi\)
\(654\) 113.278 + 113.278i 0.173209 + 0.173209i
\(655\) −240.935 −0.367840
\(656\) −45.9369 −0.0700258
\(657\) 953.094 1.45068
\(658\) 404.823 0.615233
\(659\) −300.321 −0.455723 −0.227861 0.973694i \(-0.573173\pi\)
−0.227861 + 0.973694i \(0.573173\pi\)
\(660\) 534.759 + 534.759i 0.810241 + 0.810241i
\(661\) 644.216 + 644.216i 0.974608 + 0.974608i 0.999686 0.0250771i \(-0.00798313\pi\)
−0.0250771 + 0.999686i \(0.507983\pi\)
\(662\) −226.887 226.887i −0.342729 0.342729i
\(663\) −319.586 −0.482030
\(664\) 235.126i 0.354105i
\(665\) 354.247i 0.532702i
\(666\) −39.1334 + 39.1334i −0.0587589 + 0.0587589i
\(667\) 136.542 136.542i 0.204710 0.204710i
\(668\) −407.454 + 407.454i −0.609960 + 0.609960i
\(669\) 1067.83 1.59616
\(670\) −12.7436 12.7436i −0.0190203 0.0190203i
\(671\) 481.541i 0.717646i
\(672\) −126.619 126.619i −0.188421 0.188421i
\(673\) 435.829 435.829i 0.647591 0.647591i −0.304819 0.952410i \(-0.598596\pi\)
0.952410 + 0.304819i \(0.0985961\pi\)
\(674\) −390.948 −0.580042
\(675\) −33.1880 + 33.1880i −0.0491674 + 0.0491674i
\(676\) 300.269i 0.444185i
\(677\) 878.629 + 878.629i 1.29783 + 1.29783i 0.929825 + 0.368002i \(0.119958\pi\)
0.368002 + 0.929825i \(0.380042\pi\)
\(678\) 588.743 + 588.743i 0.868353 + 0.868353i
\(679\) −44.4680 44.4680i −0.0654904 0.0654904i
\(680\) −211.028 −0.310335
\(681\) −322.459 −0.473508
\(682\) 1475.61i 2.16365i
\(683\) 41.5498 41.5498i 0.0608343 0.0608343i −0.676035 0.736869i \(-0.736303\pi\)
0.736869 + 0.676035i \(0.236303\pi\)
\(684\) 187.866 187.866i 0.274659 0.274659i
\(685\) −515.928 + 515.928i −0.753180 + 0.753180i
\(686\) 491.607i 0.716629i
\(687\) 1656.73i 2.41155i
\(688\) 35.2391i 0.0512196i
\(689\) 76.3213i 0.110771i
\(690\) 1207.61i 1.75016i
\(691\) −47.9903 + 47.9903i −0.0694505 + 0.0694505i −0.740979 0.671528i \(-0.765638\pi\)
0.671528 + 0.740979i \(0.265638\pi\)
\(692\) 601.743i 0.869571i
\(693\) −1041.28 + 1041.28i −1.50257 + 1.50257i
\(694\) 366.063 + 366.063i 0.527468 + 0.527468i
\(695\) −300.380 300.380i −0.432202 0.432202i
\(696\) 44.2495 44.2495i 0.0635768 0.0635768i
\(697\) −130.272 130.272i −0.186904 0.186904i
\(698\) −404.957 404.957i −0.580168 0.580168i
\(699\) 1352.85 1352.85i 1.93541 1.93541i
\(700\) −32.8898 32.8898i −0.0469854 0.0469854i
\(701\) 165.521 165.521i 0.236121 0.236121i −0.579121 0.815242i \(-0.696604\pi\)
0.815242 + 0.579121i \(0.196604\pi\)
\(702\) 85.5558i 0.121874i
\(703\) 25.3716 25.3716i 0.0360904 0.0360904i
\(704\) 141.812 0.201437
\(705\) 625.613 + 625.613i 0.887394 + 0.887394i
\(706\) −186.759 + 186.759i −0.264531 + 0.264531i
\(707\) 20.3363 0.0287642
\(708\) 71.0127i 0.100300i
\(709\) 705.800 + 705.800i 0.995486 + 0.995486i 0.999990 0.00450375i \(-0.00143359\pi\)
−0.00450375 + 0.999990i \(0.501434\pi\)
\(710\) 571.832 0.805397
\(711\) −73.7495 −0.103726
\(712\) 227.923 + 227.923i 0.320116 + 0.320116i
\(713\) 1666.14 1666.14i 2.33680 2.33680i
\(714\) 718.156i 1.00582i
\(715\) −358.086 −0.500820
\(716\) −14.7913 + 14.7913i −0.0206583 + 0.0206583i
\(717\) −1171.84 1171.84i −1.63437 1.63437i
\(718\) 275.738 0.384037
\(719\) −482.421 + 482.421i −0.670962 + 0.670962i −0.957938 0.286976i \(-0.907350\pi\)
0.286976 + 0.957938i \(0.407350\pi\)
\(720\) 223.924i 0.311006i
\(721\) −222.515 222.515i −0.308620 0.308620i
\(722\) 239.199 239.199i 0.331301 0.331301i
\(723\) 949.615 1.31344
\(724\) 400.585 + 400.585i 0.553294 + 0.553294i
\(725\) 11.4940 11.4940i 0.0158537 0.0158537i
\(726\) 1253.36i 1.72639i
\(727\) 903.795i 1.24318i −0.783341 0.621592i \(-0.786486\pi\)
0.783341 0.621592i \(-0.213514\pi\)
\(728\) 84.7870 0.116466
\(729\) 1109.95i 1.52257i
\(730\) −368.262 + 368.262i −0.504469 + 0.504469i
\(731\) −99.9341 + 99.9341i −0.136709 + 0.136709i
\(732\) 176.204 176.204i 0.240715 0.240715i
\(733\) 52.7615 52.7615i 0.0719802 0.0719802i −0.670200 0.742180i \(-0.733792\pi\)
0.742180 + 0.670200i \(0.233792\pi\)
\(734\) 811.449 1.10552
\(735\) 20.6318 20.6318i 0.0280704 0.0280704i
\(736\) −160.122 160.122i −0.217557 0.217557i
\(737\) 48.5718i 0.0659047i
\(738\) 138.233 138.233i 0.187308 0.187308i
\(739\) 963.523 + 963.523i 1.30382 + 1.30382i 0.925795 + 0.378025i \(0.123397\pi\)
0.378025 + 0.925795i \(0.376603\pi\)
\(740\) 30.2412i 0.0408665i
\(741\) 219.861i 0.296708i
\(742\) 171.505 0.231139
\(743\) 440.376 0.592700 0.296350 0.955079i \(-0.404230\pi\)
0.296350 + 0.955079i \(0.404230\pi\)
\(744\) 539.951 539.951i 0.725740 0.725740i
\(745\) 1074.14i 1.44180i
\(746\) 920.030i 1.23328i
\(747\) 707.538 + 707.538i 0.947173 + 0.947173i
\(748\) 402.163 + 402.163i 0.537651 + 0.537651i
\(749\) 816.878i 1.09062i
\(750\) 855.836i 1.14111i
\(751\) 1037.35 1.38129 0.690643 0.723196i \(-0.257328\pi\)
0.690643 + 0.723196i \(0.257328\pi\)
\(752\) 165.905 0.220619
\(753\) 1012.88i 1.34512i
\(754\) 29.6304i 0.0392976i
\(755\) 1168.26i 1.54737i
\(756\) 192.256 0.254307
\(757\) −66.0668 + 66.0668i −0.0872745 + 0.0872745i −0.749396 0.662122i \(-0.769656\pi\)
0.662122 + 0.749396i \(0.269656\pi\)
\(758\) −482.473 −0.636508
\(759\) −2301.38 + 2301.38i −3.03212 + 3.03212i
\(760\) 145.178i 0.191024i
\(761\) −613.704 + 613.704i −0.806444 + 0.806444i −0.984094 0.177649i \(-0.943151\pi\)
0.177649 + 0.984094i \(0.443151\pi\)
\(762\) 1267.40 1.66326
\(763\) 170.454i 0.223400i
\(764\) −178.792 −0.234021
\(765\) 635.024 635.024i 0.830096 0.830096i
\(766\) 395.051i 0.515733i
\(767\) −23.7758 23.7758i −0.0309985 0.0309985i
\(768\) −51.8913 51.8913i −0.0675668 0.0675668i
\(769\) 657.413i 0.854894i −0.904040 0.427447i \(-0.859413\pi\)
0.904040 0.427447i \(-0.140587\pi\)
\(770\) 804.672i 1.04503i
\(771\) 836.381i 1.08480i
\(772\) 302.066 + 302.066i 0.391277 + 0.391277i
\(773\) −239.707 −0.310099 −0.155050 0.987907i \(-0.549554\pi\)
−0.155050 + 0.987907i \(0.549554\pi\)
\(774\) −106.041 106.041i −0.137004 0.137004i
\(775\) 140.254 140.254i 0.180973 0.180973i
\(776\) −18.2239 18.2239i −0.0234844 0.0234844i
\(777\) 102.915 0.132451
\(778\) 585.938 + 585.938i 0.753134 + 0.753134i
\(779\) −89.6214 + 89.6214i −0.115047 + 0.115047i
\(780\) 131.030 + 131.030i 0.167987 + 0.167987i
\(781\) −1089.76 1089.76i −1.39534 1.39534i
\(782\) 908.177i 1.16135i
\(783\) 67.1876i 0.0858079i
\(784\) 5.47130i 0.00697870i
\(785\) 896.037 + 896.037i 1.14145 + 1.14145i
\(786\) 336.026i 0.427514i
\(787\) −1402.92 −1.78262 −0.891308 0.453398i \(-0.850211\pi\)
−0.891308 + 0.453398i \(0.850211\pi\)
\(788\) −106.723 106.723i −0.135435 0.135435i
\(789\) −32.2806 32.2806i −0.0409133 0.0409133i
\(790\) 28.4958 28.4958i 0.0360706 0.0360706i
\(791\) 885.904i 1.11998i
\(792\) −426.739 + 426.739i −0.538812 + 0.538812i
\(793\) 117.990i 0.148789i
\(794\) −68.7160 −0.0865440
\(795\) 265.043 + 265.043i 0.333388 + 0.333388i
\(796\) −194.929 −0.244885
\(797\) −18.3790 + 18.3790i −0.0230603 + 0.0230603i −0.718543 0.695483i \(-0.755191\pi\)
0.695483 + 0.718543i \(0.255191\pi\)
\(798\) −494.060 −0.619122
\(799\) 470.489 + 470.489i 0.588847 + 0.588847i
\(800\) −13.4789 13.4789i −0.0168487 0.0168487i
\(801\) −1371.73 −1.71252
\(802\) 235.456i 0.293587i
\(803\) 1403.62 1.74797
\(804\) 17.7732 17.7732i 0.0221060 0.0221060i
\(805\) −908.568 + 908.568i −1.12866 + 1.12866i
\(806\) 361.563i 0.448589i
\(807\) 1024.22 + 687.900i 1.26917 + 0.852416i
\(808\) 8.33426 0.0103147
\(809\) 910.227 + 910.227i 1.12513 + 1.12513i 0.990959 + 0.134167i \(0.0428359\pi\)
0.134167 + 0.990959i \(0.457164\pi\)
\(810\) −206.717 206.717i −0.255206 0.255206i
\(811\) 196.995i 0.242904i 0.992597 + 0.121452i \(0.0387551\pi\)
−0.992597 + 0.121452i \(0.961245\pi\)
\(812\) −66.5839 −0.0819998
\(813\) 1234.08i 1.51793i
\(814\) −57.6316 + 57.6316i −0.0708005 + 0.0708005i
\(815\) −596.397 + 596.397i −0.731776 + 0.731776i
\(816\) 294.316i 0.360681i
\(817\) 68.7503 + 68.7503i 0.0841496 + 0.0841496i
\(818\) 217.228i 0.265560i
\(819\) −255.140 + 255.140i −0.311527 + 0.311527i
\(820\) 106.823i 0.130271i
\(821\) 1604.12 1.95386 0.976929 0.213563i \(-0.0685068\pi\)
0.976929 + 0.213563i \(0.0685068\pi\)
\(822\) −719.553 719.553i −0.875369 0.875369i
\(823\) −1149.18 −1.39632 −0.698162 0.715939i \(-0.745999\pi\)
−0.698162 + 0.715939i \(0.745999\pi\)
\(824\) −91.1915 91.1915i −0.110669 0.110669i
\(825\) −193.728 + 193.728i −0.234822 + 0.234822i
\(826\) 53.4277 53.4277i 0.0646825 0.0646825i
\(827\) 1447.99i 1.75089i 0.483316 + 0.875446i \(0.339432\pi\)
−0.483316 + 0.875446i \(0.660568\pi\)
\(828\) 963.676 1.16386
\(829\) −202.788 + 202.788i −0.244617 + 0.244617i −0.818757 0.574140i \(-0.805337\pi\)
0.574140 + 0.818757i \(0.305337\pi\)
\(830\) −546.766 −0.658754
\(831\) −1117.11 −1.34430
\(832\) 34.7475 0.0417639
\(833\) 15.5160 15.5160i 0.0186267 0.0186267i
\(834\) 418.933 418.933i 0.502318 0.502318i
\(835\) 947.500 + 947.500i 1.13473 + 1.13473i
\(836\) 276.670 276.670i 0.330945 0.330945i
\(837\) 819.851i 0.979511i
\(838\) 201.551 201.551i 0.240515 0.240515i
\(839\) −173.794 173.794i −0.207144 0.207144i 0.595908 0.803052i \(-0.296792\pi\)
−0.803052 + 0.595908i \(0.796792\pi\)
\(840\) −294.443 + 294.443i −0.350527 + 0.350527i
\(841\) 817.731i 0.972332i
\(842\) −689.634 + 689.634i −0.819043 + 0.819043i
\(843\) −450.227 −0.534077
\(844\) 372.096 0.440872
\(845\) 698.251 0.826332
\(846\) −499.240 + 499.240i −0.590119 + 0.590119i
\(847\) −942.987 + 942.987i −1.11333 + 1.11333i
\(848\) 70.2865 0.0828850
\(849\) −244.430 244.430i −0.287904 0.287904i
\(850\) 76.4495i 0.0899406i
\(851\) 130.145 0.152932
\(852\) 797.520i 0.936057i
\(853\) 385.375 + 385.375i 0.451788 + 0.451788i 0.895948 0.444160i \(-0.146498\pi\)
−0.444160 + 0.895948i \(0.646498\pi\)
\(854\) −265.140 −0.310469
\(855\) −436.868 436.868i −0.510957 0.510957i
\(856\) 334.774i 0.391091i
\(857\) 749.750 + 749.750i 0.874854 + 0.874854i 0.992997 0.118143i \(-0.0376941\pi\)
−0.118143 + 0.992997i \(0.537694\pi\)
\(858\) 499.414i 0.582068i
\(859\) −89.1312 −0.103762 −0.0518808 0.998653i \(-0.516522\pi\)
−0.0518808 + 0.998653i \(0.516522\pi\)
\(860\) 81.9456 0.0952856
\(861\) −363.531 −0.422220
\(862\) 249.076i 0.288951i
\(863\) 1389.87i 1.61051i 0.592928 + 0.805256i \(0.297972\pi\)
−0.592928 + 0.805256i \(0.702028\pi\)
\(864\) 78.7908 0.0911930
\(865\) −1399.30 −1.61769
\(866\) 10.7776 10.7776i 0.0124452 0.0124452i
\(867\) −102.639 + 102.639i −0.118384 + 0.118384i
\(868\) −812.484 −0.936042
\(869\) −108.611 −0.124983
\(870\) −102.899 102.899i −0.118274 0.118274i
\(871\) 11.9013i 0.0136640i
\(872\) 69.8558i 0.0801099i
\(873\) 109.679 0.125634
\(874\) −624.785 −0.714857
\(875\) −643.904 + 643.904i −0.735891 + 0.735891i
\(876\) −513.607 513.607i −0.586309 0.586309i
\(877\) 95.5592 0.108961 0.0544807 0.998515i \(-0.482650\pi\)
0.0544807 + 0.998515i \(0.482650\pi\)
\(878\) −659.978 + 659.978i −0.751684 + 0.751684i
\(879\) 171.325 + 171.325i 0.194909 + 0.194909i
\(880\) 329.772i 0.374741i
\(881\) −1045.37 1045.37i −1.18657 1.18657i −0.978010 0.208556i \(-0.933124\pi\)
−0.208556 0.978010i \(-0.566876\pi\)
\(882\) 16.4642 + 16.4642i 0.0186669 + 0.0186669i
\(883\) 574.613 + 574.613i 0.650751 + 0.650751i 0.953174 0.302423i \(-0.0977954\pi\)
−0.302423 + 0.953174i \(0.597795\pi\)
\(884\) 98.5402 + 98.5402i 0.111471 + 0.111471i
\(885\) 165.134 0.186592
\(886\) 139.001i 0.156886i
\(887\) −548.626 −0.618519 −0.309259 0.950978i \(-0.600081\pi\)
−0.309259 + 0.950978i \(0.600081\pi\)
\(888\) 42.1767 0.0474963
\(889\) −953.553 953.553i −1.07261 1.07261i
\(890\) 530.016 530.016i 0.595523 0.595523i
\(891\) 787.893i 0.884279i
\(892\) −329.251 329.251i −0.369115 0.369115i
\(893\) 323.675 323.675i 0.362458 0.362458i
\(894\) 1498.08 1.67571
\(895\) 34.3960 + 34.3960i 0.0384313 + 0.0384313i
\(896\) 78.0828i 0.0871459i
\(897\) −563.897 + 563.897i −0.628648 + 0.628648i
\(898\) 476.210 + 476.210i 0.530301 + 0.530301i
\(899\) 283.938i 0.315838i
\(900\) 81.1214 0.0901349
\(901\) 199.325 + 199.325i 0.221226 + 0.221226i
\(902\) 203.575 203.575i 0.225693 0.225693i
\(903\) 278.872i 0.308828i
\(904\) 363.063i 0.401618i
\(905\) 931.526 931.526i 1.02931 1.02931i
\(906\) 1629.35 1.79840
\(907\) 76.3254i 0.0841515i −0.999114 0.0420758i \(-0.986603\pi\)
0.999114 0.0420758i \(-0.0133971\pi\)
\(908\) 99.4260 + 99.4260i 0.109500 + 0.109500i
\(909\) −25.0794 + 25.0794i −0.0275901 + 0.0275901i
\(910\) 197.165i 0.216665i
\(911\) −836.780 836.780i −0.918529 0.918529i 0.0783937 0.996922i \(-0.475021\pi\)
−0.996922 + 0.0783937i \(0.975021\pi\)
\(912\) −202.476 −0.222013
\(913\) 1041.99 + 1041.99i 1.14128 + 1.14128i
\(914\) 411.084 411.084i 0.449763 0.449763i
\(915\) −409.747 409.747i −0.447811 0.447811i
\(916\) −510.832 + 510.832i −0.557676 + 0.557676i
\(917\) −252.816 + 252.816i −0.275699 + 0.275699i
\(918\) 223.442 + 223.442i 0.243401 + 0.243401i
\(919\) −560.470 + 560.470i −0.609869 + 0.609869i −0.942912 0.333042i \(-0.891925\pi\)
0.333042 + 0.942912i \(0.391925\pi\)
\(920\) −372.351 + 372.351i −0.404729 + 0.404729i
\(921\) 231.096 + 231.096i 0.250918 + 0.250918i
\(922\) 992.608 1.07658
\(923\) −267.019 267.019i −0.289294 0.289294i
\(924\) 1122.26 1.21456
\(925\) 10.9555 0.0118438
\(926\) 1054.62 1.13889
\(927\) 548.825 0.592045
\(928\) −27.2875 −0.0294046
\(929\) 1227.95 + 1227.95i 1.32180 + 1.32180i 0.912319 + 0.409481i \(0.134290\pi\)
0.409481 + 0.912319i \(0.365710\pi\)
\(930\) −1255.61 1255.61i −1.35012 1.35012i
\(931\) −10.6743 10.6743i −0.0114654 0.0114654i
\(932\) −834.270 −0.895140
\(933\) 2321.79i 2.48853i
\(934\) 821.570i 0.879625i
\(935\) 935.196 935.196i 1.00021 1.00021i
\(936\) −104.562 + 104.562i −0.111712 + 0.111712i
\(937\) 105.483 105.483i 0.112575 0.112575i −0.648576 0.761150i \(-0.724635\pi\)
0.761150 + 0.648576i \(0.224635\pi\)
\(938\) −26.7440 −0.0285117
\(939\) 1056.67 + 1056.67i 1.12532 + 1.12532i
\(940\) 385.799i 0.410424i
\(941\) −826.783 826.783i −0.878621 0.878621i 0.114771 0.993392i \(-0.463387\pi\)
−0.993392 + 0.114771i \(0.963387\pi\)
\(942\) −1249.68 + 1249.68i −1.32663 + 1.32663i
\(943\) −459.720 −0.487508
\(944\) 21.8958 21.8958i 0.0231947 0.0231947i
\(945\) 447.076i 0.473096i
\(946\) −156.166 156.166i −0.165081 0.165081i
\(947\) 1189.52 + 1189.52i 1.25609 + 1.25609i 0.952945 + 0.303145i \(0.0980365\pi\)
0.303145 + 0.952945i \(0.401964\pi\)
\(948\) 39.7424 + 39.7424i 0.0419223 + 0.0419223i
\(949\) 343.922 0.362405
\(950\) −52.5939 −0.0553620
\(951\) 426.613i 0.448594i
\(952\) −221.434 + 221.434i −0.232599 + 0.232599i
\(953\) 482.280 482.280i 0.506065 0.506065i −0.407251 0.913316i \(-0.633513\pi\)
0.913316 + 0.407251i \(0.133513\pi\)
\(954\) −211.505 + 211.505i −0.221704 + 0.221704i
\(955\) 415.766i 0.435357i
\(956\) 722.644i 0.755904i
\(957\) 392.194i 0.409816i
\(958\) 953.984i 0.995808i
\(959\) 1082.74i 1.12903i
\(960\) −120.669 + 120.669i −0.125697 + 0.125697i
\(961\) 2503.73i 2.60534i
\(962\) −14.1212 + 14.1212i −0.0146790 + 0.0146790i
\(963\) −1007.40 1007.40i −1.04610 1.04610i
\(964\) −292.801 292.801i −0.303736 0.303736i
\(965\) 702.429 702.429i 0.727906 0.727906i
\(966\) −1267.16 1267.16i −1.31176 1.31176i
\(967\) 1278.70 + 1278.70i 1.32233 + 1.32233i 0.911884 + 0.410448i \(0.134628\pi\)
0.410448 + 0.911884i \(0.365372\pi\)
\(968\) −386.456 + 386.456i −0.399232 + 0.399232i
\(969\) −574.200 574.200i −0.592570 0.592570i
\(970\) −42.3782 + 42.3782i −0.0436889 + 0.0436889i
\(971\) 103.072i 0.106151i −0.998591 0.0530754i \(-0.983098\pi\)
0.998591 0.0530754i \(-0.0169024\pi\)
\(972\) 465.582 465.582i 0.478994 0.478994i
\(973\) −630.385 −0.647878
\(974\) 29.8493 + 29.8493i 0.0306461 + 0.0306461i
\(975\) −47.4684 + 47.4684i −0.0486855 + 0.0486855i
\(976\) −108.660 −0.111332
\(977\) 1372.54i 1.40485i −0.711759 0.702424i \(-0.752101\pi\)
0.711759 0.702424i \(-0.247899\pi\)
\(978\) −831.782 831.782i −0.850492 0.850492i
\(979\) −2020.13 −2.06347
\(980\) −12.7231 −0.0129827
\(981\) 210.210 + 210.210i 0.214281 + 0.214281i
\(982\) −648.671 + 648.671i −0.660561 + 0.660561i
\(983\) 1395.65i 1.41979i 0.704309 + 0.709894i \(0.251257\pi\)
−0.704309 + 0.709894i \(0.748743\pi\)
\(984\) −148.983 −0.151405
\(985\) −248.176 + 248.176i −0.251955 + 0.251955i
\(986\) −77.3843 77.3843i −0.0784831 0.0784831i
\(987\) 1312.92 1.33022
\(988\) 67.7913 67.7913i 0.0686146 0.0686146i
\(989\) 352.660i 0.356582i
\(990\) 992.346 + 992.346i 1.00237 + 1.00237i
\(991\) −842.735 + 842.735i −0.850388 + 0.850388i −0.990181 0.139793i \(-0.955356\pi\)
0.139793 + 0.990181i \(0.455356\pi\)
\(992\) −332.973 −0.335659
\(993\) −735.840 735.840i −0.741028 0.741028i
\(994\) 600.029 600.029i 0.603651 0.603651i
\(995\) 453.290i 0.455568i
\(996\) 762.561i 0.765624i
\(997\) 724.949 0.727131 0.363565 0.931569i \(-0.381559\pi\)
0.363565 + 0.931569i \(0.381559\pi\)
\(998\) 1179.05i 1.18141i
\(999\) −32.0201 + 32.0201i −0.0320522 + 0.0320522i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.187.3 46
269.82 odd 4 inner 538.3.c.b.351.3 yes 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.3 46 1.1 even 1 trivial
538.3.c.b.351.3 yes 46 269.82 odd 4 inner