Properties

Label 538.3.c.b.351.4
Level $538$
Weight $3$
Character 538.351
Analytic conductor $14.659$
Analytic rank $0$
Dimension $46$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,3,Mod(187,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(4))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.187");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 538.c (of order \(4\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(14.6594382226\)
Analytic rank: \(0\)
Dimension: \(46\)
Relative dimension: \(23\) over \(\Q(i)\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{4}]$

Embedding invariants

Embedding label 351.4
Character \(\chi\) \(=\) 538.351
Dual form 538.3.c.b.187.4

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 + 1.00000i) q^{2} +(-2.93814 + 2.93814i) q^{3} -2.00000i q^{4} -0.402162 q^{5} -5.87628i q^{6} +(-0.366019 - 0.366019i) q^{7} +(2.00000 + 2.00000i) q^{8} -8.26535i q^{9} +(0.402162 - 0.402162i) q^{10} +9.69599i q^{11} +(5.87628 + 5.87628i) q^{12} +22.1669i q^{13} +0.732038 q^{14} +(1.18161 - 1.18161i) q^{15} -4.00000 q^{16} +(-6.41838 + 6.41838i) q^{17} +(8.26535 + 8.26535i) q^{18} +(-20.9838 - 20.9838i) q^{19} +0.804324i q^{20} +2.15083 q^{21} +(-9.69599 - 9.69599i) q^{22} +1.31008 q^{23} -11.7526 q^{24} -24.8383 q^{25} +(-22.1669 - 22.1669i) q^{26} +(-2.15851 - 2.15851i) q^{27} +(-0.732038 + 0.732038i) q^{28} +(-27.7142 - 27.7142i) q^{29} +2.36322i q^{30} +(22.8932 + 22.8932i) q^{31} +(4.00000 - 4.00000i) q^{32} +(-28.4882 - 28.4882i) q^{33} -12.8368i q^{34} +(0.147199 + 0.147199i) q^{35} -16.5307 q^{36} +42.5097 q^{37} +41.9676 q^{38} +(-65.1294 - 65.1294i) q^{39} +(-0.804324 - 0.804324i) q^{40} +34.9325 q^{41} +(-2.15083 + 2.15083i) q^{42} +65.6572i q^{43} +19.3920 q^{44} +3.32401i q^{45} +(-1.31008 + 1.31008i) q^{46} +41.6093 q^{47} +(11.7526 - 11.7526i) q^{48} -48.7321i q^{49} +(24.8383 - 24.8383i) q^{50} -37.7162i q^{51} +44.3337 q^{52} +27.5045 q^{53} +4.31702 q^{54} -3.89936i q^{55} -1.46408i q^{56} +123.307 q^{57} +55.4284 q^{58} +(-64.5763 - 64.5763i) q^{59} +(-2.36322 - 2.36322i) q^{60} +34.4764 q^{61} -45.7864 q^{62} +(-3.02528 + 3.02528i) q^{63} +8.00000i q^{64} -8.91467i q^{65} +56.9764 q^{66} -102.668 q^{67} +(12.8368 + 12.8368i) q^{68} +(-3.84920 + 3.84920i) q^{69} -0.294398 q^{70} +(-31.6960 - 31.6960i) q^{71} +(16.5307 - 16.5307i) q^{72} -59.8307i q^{73} +(-42.5097 + 42.5097i) q^{74} +(72.9783 - 72.9783i) q^{75} +(-41.9676 + 41.9676i) q^{76} +(3.54892 - 3.54892i) q^{77} +130.259 q^{78} -40.3254i q^{79} +1.60865 q^{80} +87.0721 q^{81} +(-34.9325 + 34.9325i) q^{82} +(-93.6724 - 93.6724i) q^{83} -4.30166i q^{84} +(2.58123 - 2.58123i) q^{85} +(-65.6572 - 65.6572i) q^{86} +162.857 q^{87} +(-19.3920 + 19.3920i) q^{88} +70.9859i q^{89} +(-3.32401 - 3.32401i) q^{90} +(8.11349 - 8.11349i) q^{91} -2.62016i q^{92} -134.527 q^{93} +(-41.6093 + 41.6093i) q^{94} +(8.43888 + 8.43888i) q^{95} +23.5051i q^{96} -11.8247i q^{97} +(48.7321 + 48.7321i) q^{98} +80.1407 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 46 q - 46 q^{2} - 6 q^{3} - 32 q^{5} + 4 q^{7} + 92 q^{8} + 32 q^{10} + 12 q^{12} - 8 q^{14} - 10 q^{15} - 184 q^{16} - 50 q^{17} + 118 q^{18} + 10 q^{19} + 16 q^{21} + 8 q^{22} - 124 q^{23} - 24 q^{24}+ \cdots + 508 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(e\left(\frac{3}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 + 1.00000i −0.500000 + 0.500000i
\(3\) −2.93814 + 2.93814i −0.979380 + 0.979380i −0.999792 0.0204112i \(-0.993502\pi\)
0.0204112 + 0.999792i \(0.493502\pi\)
\(4\) 2.00000i 0.500000i
\(5\) −0.402162 −0.0804324 −0.0402162 0.999191i \(-0.512805\pi\)
−0.0402162 + 0.999191i \(0.512805\pi\)
\(6\) 5.87628i 0.979380i
\(7\) −0.366019 0.366019i −0.0522884 0.0522884i 0.680479 0.732768i \(-0.261772\pi\)
−0.732768 + 0.680479i \(0.761772\pi\)
\(8\) 2.00000 + 2.00000i 0.250000 + 0.250000i
\(9\) 8.26535i 0.918372i
\(10\) 0.402162 0.402162i 0.0402162 0.0402162i
\(11\) 9.69599i 0.881453i 0.897641 + 0.440727i \(0.145279\pi\)
−0.897641 + 0.440727i \(0.854721\pi\)
\(12\) 5.87628 + 5.87628i 0.489690 + 0.489690i
\(13\) 22.1669i 1.70514i 0.522610 + 0.852572i \(0.324958\pi\)
−0.522610 + 0.852572i \(0.675042\pi\)
\(14\) 0.732038 0.0522884
\(15\) 1.18161 1.18161i 0.0787739 0.0787739i
\(16\) −4.00000 −0.250000
\(17\) −6.41838 + 6.41838i −0.377551 + 0.377551i −0.870218 0.492667i \(-0.836022\pi\)
0.492667 + 0.870218i \(0.336022\pi\)
\(18\) 8.26535 + 8.26535i 0.459186 + 0.459186i
\(19\) −20.9838 20.9838i −1.10441 1.10441i −0.993872 0.110537i \(-0.964743\pi\)
−0.110537 0.993872i \(-0.535257\pi\)
\(20\) 0.804324i 0.0402162i
\(21\) 2.15083 0.102421
\(22\) −9.69599 9.69599i −0.440727 0.440727i
\(23\) 1.31008 0.0569601 0.0284800 0.999594i \(-0.490933\pi\)
0.0284800 + 0.999594i \(0.490933\pi\)
\(24\) −11.7526 −0.489690
\(25\) −24.8383 −0.993531
\(26\) −22.1669 22.1669i −0.852572 0.852572i
\(27\) −2.15851 2.15851i −0.0799447 0.0799447i
\(28\) −0.732038 + 0.732038i −0.0261442 + 0.0261442i
\(29\) −27.7142 27.7142i −0.955663 0.955663i 0.0433954 0.999058i \(-0.486182\pi\)
−0.999058 + 0.0433954i \(0.986182\pi\)
\(30\) 2.36322i 0.0787739i
\(31\) 22.8932 + 22.8932i 0.738491 + 0.738491i 0.972286 0.233795i \(-0.0751144\pi\)
−0.233795 + 0.972286i \(0.575114\pi\)
\(32\) 4.00000 4.00000i 0.125000 0.125000i
\(33\) −28.4882 28.4882i −0.863278 0.863278i
\(34\) 12.8368i 0.377551i
\(35\) 0.147199 + 0.147199i 0.00420568 + 0.00420568i
\(36\) −16.5307 −0.459186
\(37\) 42.5097 1.14891 0.574456 0.818536i \(-0.305214\pi\)
0.574456 + 0.818536i \(0.305214\pi\)
\(38\) 41.9676 1.10441
\(39\) −65.1294 65.1294i −1.66998 1.66998i
\(40\) −0.804324 0.804324i −0.0201081 0.0201081i
\(41\) 34.9325 0.852013 0.426007 0.904720i \(-0.359920\pi\)
0.426007 + 0.904720i \(0.359920\pi\)
\(42\) −2.15083 + 2.15083i −0.0512103 + 0.0512103i
\(43\) 65.6572i 1.52691i 0.645860 + 0.763456i \(0.276499\pi\)
−0.645860 + 0.763456i \(0.723501\pi\)
\(44\) 19.3920 0.440727
\(45\) 3.32401i 0.0738669i
\(46\) −1.31008 + 1.31008i −0.0284800 + 0.0284800i
\(47\) 41.6093 0.885305 0.442653 0.896693i \(-0.354037\pi\)
0.442653 + 0.896693i \(0.354037\pi\)
\(48\) 11.7526 11.7526i 0.244845 0.244845i
\(49\) 48.7321i 0.994532i
\(50\) 24.8383 24.8383i 0.496765 0.496765i
\(51\) 37.7162i 0.739533i
\(52\) 44.3337 0.852572
\(53\) 27.5045 0.518953 0.259477 0.965749i \(-0.416450\pi\)
0.259477 + 0.965749i \(0.416450\pi\)
\(54\) 4.31702 0.0799447
\(55\) 3.89936i 0.0708974i
\(56\) 1.46408i 0.0261442i
\(57\) 123.307 2.16327
\(58\) 55.4284 0.955663
\(59\) −64.5763 64.5763i −1.09451 1.09451i −0.995040 0.0994736i \(-0.968284\pi\)
−0.0994736 0.995040i \(-0.531716\pi\)
\(60\) −2.36322 2.36322i −0.0393869 0.0393869i
\(61\) 34.4764 0.565186 0.282593 0.959240i \(-0.408805\pi\)
0.282593 + 0.959240i \(0.408805\pi\)
\(62\) −45.7864 −0.738491
\(63\) −3.02528 + 3.02528i −0.0480202 + 0.0480202i
\(64\) 8.00000i 0.125000i
\(65\) 8.91467i 0.137149i
\(66\) 56.9764 0.863278
\(67\) −102.668 −1.53236 −0.766180 0.642626i \(-0.777845\pi\)
−0.766180 + 0.642626i \(0.777845\pi\)
\(68\) 12.8368 + 12.8368i 0.188776 + 0.188776i
\(69\) −3.84920 + 3.84920i −0.0557856 + 0.0557856i
\(70\) −0.294398 −0.00420568
\(71\) −31.6960 31.6960i −0.446422 0.446422i 0.447741 0.894163i \(-0.352229\pi\)
−0.894163 + 0.447741i \(0.852229\pi\)
\(72\) 16.5307 16.5307i 0.229593 0.229593i
\(73\) 59.8307i 0.819599i −0.912176 0.409800i \(-0.865599\pi\)
0.912176 0.409800i \(-0.134401\pi\)
\(74\) −42.5097 + 42.5097i −0.574456 + 0.574456i
\(75\) 72.9783 72.9783i 0.973044 0.973044i
\(76\) −41.9676 + 41.9676i −0.552205 + 0.552205i
\(77\) 3.54892 3.54892i 0.0460898 0.0460898i
\(78\) 130.259 1.66998
\(79\) 40.3254i 0.510449i −0.966882 0.255224i \(-0.917851\pi\)
0.966882 0.255224i \(-0.0821493\pi\)
\(80\) 1.60865 0.0201081
\(81\) 87.0721 1.07496
\(82\) −34.9325 + 34.9325i −0.426007 + 0.426007i
\(83\) −93.6724 93.6724i −1.12858 1.12858i −0.990408 0.138175i \(-0.955876\pi\)
−0.138175 0.990408i \(-0.544124\pi\)
\(84\) 4.30166i 0.0512103i
\(85\) 2.58123 2.58123i 0.0303674 0.0303674i
\(86\) −65.6572 65.6572i −0.763456 0.763456i
\(87\) 162.857 1.87191
\(88\) −19.3920 + 19.3920i −0.220363 + 0.220363i
\(89\) 70.9859i 0.797595i 0.917039 + 0.398797i \(0.130572\pi\)
−0.917039 + 0.398797i \(0.869428\pi\)
\(90\) −3.32401 3.32401i −0.0369334 0.0369334i
\(91\) 8.11349 8.11349i 0.0891593 0.0891593i
\(92\) 2.62016i 0.0284800i
\(93\) −134.527 −1.44653
\(94\) −41.6093 + 41.6093i −0.442653 + 0.442653i
\(95\) 8.43888 + 8.43888i 0.0888303 + 0.0888303i
\(96\) 23.5051i 0.244845i
\(97\) 11.8247i 0.121904i −0.998141 0.0609519i \(-0.980586\pi\)
0.998141 0.0609519i \(-0.0194136\pi\)
\(98\) 48.7321 + 48.7321i 0.497266 + 0.497266i
\(99\) 80.1407 0.809502
\(100\) 49.6765i 0.496765i
\(101\) 55.4057 55.4057i 0.548571 0.548571i −0.377456 0.926027i \(-0.623201\pi\)
0.926027 + 0.377456i \(0.123201\pi\)
\(102\) 37.7162 + 37.7162i 0.369767 + 0.369767i
\(103\) 190.350i 1.84806i −0.382317 0.924031i \(-0.624874\pi\)
0.382317 0.924031i \(-0.375126\pi\)
\(104\) −44.3337 + 44.3337i −0.426286 + 0.426286i
\(105\) −0.864982 −0.00823793
\(106\) −27.5045 + 27.5045i −0.259477 + 0.259477i
\(107\) −105.244 105.244i −0.983584 0.983584i 0.0162829 0.999867i \(-0.494817\pi\)
−0.999867 + 0.0162829i \(0.994817\pi\)
\(108\) −4.31702 + 4.31702i −0.0399724 + 0.0399724i
\(109\) 124.845 + 124.845i 1.14537 + 1.14537i 0.987453 + 0.157916i \(0.0504775\pi\)
0.157916 + 0.987453i \(0.449522\pi\)
\(110\) 3.89936 + 3.89936i 0.0354487 + 0.0354487i
\(111\) −124.900 + 124.900i −1.12522 + 1.12522i
\(112\) 1.46408 + 1.46408i 0.0130721 + 0.0130721i
\(113\) 21.8381 + 21.8381i 0.193258 + 0.193258i 0.797102 0.603844i \(-0.206365\pi\)
−0.603844 + 0.797102i \(0.706365\pi\)
\(114\) −123.307 + 123.307i −1.08164 + 1.08164i
\(115\) −0.526865 −0.00458143
\(116\) −55.4284 + 55.4284i −0.477831 + 0.477831i
\(117\) 183.217 1.56596
\(118\) 129.153 1.09451
\(119\) 4.69850 0.0394832
\(120\) 4.72643 0.0393869
\(121\) 26.9878 0.223040
\(122\) −34.4764 + 34.4764i −0.282593 + 0.282593i
\(123\) −102.637 + 102.637i −0.834445 + 0.834445i
\(124\) 45.7864 45.7864i 0.369245 0.369245i
\(125\) 20.0431 0.160344
\(126\) 6.05055i 0.0480202i
\(127\) 97.4646i 0.767437i 0.923450 + 0.383719i \(0.125357\pi\)
−0.923450 + 0.383719i \(0.874643\pi\)
\(128\) −8.00000 8.00000i −0.0625000 0.0625000i
\(129\) −192.910 192.910i −1.49543 1.49543i
\(130\) 8.91467 + 8.91467i 0.0685744 + 0.0685744i
\(131\) −167.978 −1.28228 −0.641139 0.767425i \(-0.721538\pi\)
−0.641139 + 0.767425i \(0.721538\pi\)
\(132\) −56.9764 + 56.9764i −0.431639 + 0.431639i
\(133\) 15.3609i 0.115496i
\(134\) 102.668 102.668i 0.766180 0.766180i
\(135\) 0.868070 + 0.868070i 0.00643015 + 0.00643015i
\(136\) −25.6735 −0.188776
\(137\) −104.943 104.943i −0.766005 0.766005i 0.211395 0.977401i \(-0.432199\pi\)
−0.977401 + 0.211395i \(0.932199\pi\)
\(138\) 7.69841i 0.0557856i
\(139\) −167.297 + 167.297i −1.20358 + 1.20358i −0.230504 + 0.973071i \(0.574037\pi\)
−0.973071 + 0.230504i \(0.925963\pi\)
\(140\) 0.294398 0.294398i 0.00210284 0.00210284i
\(141\) −122.254 + 122.254i −0.867051 + 0.867051i
\(142\) 63.3919 0.446422
\(143\) −214.930 −1.50300
\(144\) 33.0614i 0.229593i
\(145\) 11.1456 + 11.1456i 0.0768662 + 0.0768662i
\(146\) 59.8307 + 59.8307i 0.409800 + 0.409800i
\(147\) 143.182 + 143.182i 0.974025 + 0.974025i
\(148\) 85.0195i 0.574456i
\(149\) 216.502i 1.45304i −0.687148 0.726518i \(-0.741137\pi\)
0.687148 0.726518i \(-0.258863\pi\)
\(150\) 145.957i 0.973044i
\(151\) 208.990i 1.38404i −0.721877 0.692021i \(-0.756721\pi\)
0.721877 0.692021i \(-0.243279\pi\)
\(152\) 83.9351i 0.552205i
\(153\) 53.0501 + 53.0501i 0.346733 + 0.346733i
\(154\) 7.09783i 0.0460898i
\(155\) −9.20678 9.20678i −0.0593986 0.0593986i
\(156\) −130.259 + 130.259i −0.834992 + 0.834992i
\(157\) −130.490 + 130.490i −0.831146 + 0.831146i −0.987674 0.156528i \(-0.949970\pi\)
0.156528 + 0.987674i \(0.449970\pi\)
\(158\) 40.3254 + 40.3254i 0.255224 + 0.255224i
\(159\) −80.8122 + 80.8122i −0.508253 + 0.508253i
\(160\) −1.60865 + 1.60865i −0.0100540 + 0.0100540i
\(161\) −0.479515 0.479515i −0.00297835 0.00297835i
\(162\) −87.0721 + 87.0721i −0.537482 + 0.537482i
\(163\) 212.724 + 212.724i 1.30505 + 1.30505i 0.924940 + 0.380114i \(0.124115\pi\)
0.380114 + 0.924940i \(0.375885\pi\)
\(164\) 69.8651i 0.426007i
\(165\) 11.4569 + 11.4569i 0.0694355 + 0.0694355i
\(166\) 187.345 1.12858
\(167\) 93.8235 93.8235i 0.561817 0.561817i −0.368006 0.929823i \(-0.619959\pi\)
0.929823 + 0.368006i \(0.119959\pi\)
\(168\) 4.30166 + 4.30166i 0.0256051 + 0.0256051i
\(169\) −322.370 −1.90751
\(170\) 5.16245i 0.0303674i
\(171\) −173.438 + 173.438i −1.01426 + 1.01426i
\(172\) 131.314 0.763456
\(173\) 163.957 0.947730 0.473865 0.880598i \(-0.342859\pi\)
0.473865 + 0.880598i \(0.342859\pi\)
\(174\) −162.857 + 162.857i −0.935957 + 0.935957i
\(175\) 9.09128 + 9.09128i 0.0519502 + 0.0519502i
\(176\) 38.7840i 0.220363i
\(177\) 379.469 2.14389
\(178\) −70.9859 70.9859i −0.398797 0.398797i
\(179\) −159.297 + 159.297i −0.889925 + 0.889925i −0.994515 0.104591i \(-0.966647\pi\)
0.104591 + 0.994515i \(0.466647\pi\)
\(180\) 6.64802 0.0369334
\(181\) −84.4401 84.4401i −0.466520 0.466520i 0.434265 0.900785i \(-0.357008\pi\)
−0.900785 + 0.434265i \(0.857008\pi\)
\(182\) 16.2270i 0.0891593i
\(183\) −101.296 + 101.296i −0.553532 + 0.553532i
\(184\) 2.62016 + 2.62016i 0.0142400 + 0.0142400i
\(185\) −17.0958 −0.0924097
\(186\) 134.527 134.527i 0.723264 0.723264i
\(187\) −62.2325 62.2325i −0.332794 0.332794i
\(188\) 83.2187i 0.442653i
\(189\) 1.58011i 0.00836037i
\(190\) −16.8778 −0.0888303
\(191\) 129.997i 0.680610i 0.940315 + 0.340305i \(0.110530\pi\)
−0.940315 + 0.340305i \(0.889470\pi\)
\(192\) −23.5051 23.5051i −0.122423 0.122423i
\(193\) 129.219 + 129.219i 0.669528 + 0.669528i 0.957607 0.288078i \(-0.0930164\pi\)
−0.288078 + 0.957607i \(0.593016\pi\)
\(194\) 11.8247 + 11.8247i 0.0609519 + 0.0609519i
\(195\) 26.1926 + 26.1926i 0.134321 + 0.134321i
\(196\) −97.4641 −0.497266
\(197\) 136.422 + 136.422i 0.692496 + 0.692496i 0.962780 0.270285i \(-0.0871179\pi\)
−0.270285 + 0.962780i \(0.587118\pi\)
\(198\) −80.1407 + 80.1407i −0.404751 + 0.404751i
\(199\) 19.3603i 0.0972881i 0.998816 + 0.0486441i \(0.0154900\pi\)
−0.998816 + 0.0486441i \(0.984510\pi\)
\(200\) −49.6765 49.6765i −0.248383 0.248383i
\(201\) 301.653 301.653i 1.50076 1.50076i
\(202\) 110.811i 0.548571i
\(203\) 20.2879i 0.0999402i
\(204\) −75.4324 −0.369767
\(205\) −14.0485 −0.0685294
\(206\) 190.350 + 190.350i 0.924031 + 0.924031i
\(207\) 10.8283i 0.0523105i
\(208\) 88.6675i 0.426286i
\(209\) 203.458 203.458i 0.973486 0.973486i
\(210\) 0.864982 0.864982i 0.00411896 0.00411896i
\(211\) 203.403i 0.963994i 0.876173 + 0.481997i \(0.160088\pi\)
−0.876173 + 0.481997i \(0.839912\pi\)
\(212\) 55.0090i 0.259477i
\(213\) 186.254 0.874434
\(214\) 210.487 0.983584
\(215\) 26.4048i 0.122813i
\(216\) 8.63403i 0.0399724i
\(217\) 16.7587i 0.0772291i
\(218\) −249.690 −1.14537
\(219\) 175.791 + 175.791i 0.802699 + 0.802699i
\(220\) −7.79871 −0.0354487
\(221\) −142.275 142.275i −0.643779 0.643779i
\(222\) 249.799i 1.12522i
\(223\) 137.380 + 137.380i 0.616056 + 0.616056i 0.944517 0.328462i \(-0.106530\pi\)
−0.328462 + 0.944517i \(0.606530\pi\)
\(224\) −2.92815 −0.0130721
\(225\) 205.297i 0.912431i
\(226\) −43.6763 −0.193258
\(227\) −221.821 221.821i −0.977185 0.977185i 0.0225608 0.999745i \(-0.492818\pi\)
−0.999745 + 0.0225608i \(0.992818\pi\)
\(228\) 246.613i 1.08164i
\(229\) −271.374 + 271.374i −1.18504 + 1.18504i −0.206620 + 0.978421i \(0.566246\pi\)
−0.978421 + 0.206620i \(0.933754\pi\)
\(230\) 0.526865 0.526865i 0.00229072 0.00229072i
\(231\) 20.8544i 0.0902789i
\(232\) 110.857i 0.477831i
\(233\) 122.625i 0.526288i −0.964757 0.263144i \(-0.915241\pi\)
0.964757 0.263144i \(-0.0847594\pi\)
\(234\) −183.217 + 183.217i −0.782978 + 0.782978i
\(235\) −16.7337 −0.0712072
\(236\) −129.153 + 129.153i −0.547257 + 0.547257i
\(237\) 118.482 + 118.482i 0.499923 + 0.499923i
\(238\) −4.69850 + 4.69850i −0.0197416 + 0.0197416i
\(239\) −241.191 −1.00917 −0.504583 0.863363i \(-0.668354\pi\)
−0.504583 + 0.863363i \(0.668354\pi\)
\(240\) −4.72643 + 4.72643i −0.0196935 + 0.0196935i
\(241\) −181.498 181.498i −0.753102 0.753102i 0.221955 0.975057i \(-0.428756\pi\)
−0.975057 + 0.221955i \(0.928756\pi\)
\(242\) −26.9878 + 26.9878i −0.111520 + 0.111520i
\(243\) −236.404 + 236.404i −0.972855 + 0.972855i
\(244\) 68.9527i 0.282593i
\(245\) 19.5982i 0.0799926i
\(246\) 205.273i 0.834445i
\(247\) 465.145 465.145i 1.88318 1.88318i
\(248\) 91.5729i 0.369245i
\(249\) 550.445 2.21062
\(250\) −20.0431 + 20.0431i −0.0801722 + 0.0801722i
\(251\) −122.307 + 122.307i −0.487279 + 0.487279i −0.907446 0.420168i \(-0.861971\pi\)
0.420168 + 0.907446i \(0.361971\pi\)
\(252\) 6.05055 + 6.05055i 0.0240101 + 0.0240101i
\(253\) 12.7025i 0.0502076i
\(254\) −97.4646 97.4646i −0.383719 0.383719i
\(255\) 15.1680i 0.0594824i
\(256\) 16.0000 0.0625000
\(257\) −175.424 + 175.424i −0.682582 + 0.682582i −0.960581 0.277999i \(-0.910329\pi\)
0.277999 + 0.960581i \(0.410329\pi\)
\(258\) 385.820 1.49543
\(259\) −15.5594 15.5594i −0.0600748 0.0600748i
\(260\) −17.8293 −0.0685744
\(261\) −229.068 + 229.068i −0.877654 + 0.877654i
\(262\) 167.978 167.978i 0.641139 0.641139i
\(263\) −129.955 −0.494125 −0.247062 0.969000i \(-0.579465\pi\)
−0.247062 + 0.969000i \(0.579465\pi\)
\(264\) 113.953i 0.431639i
\(265\) −11.0613 −0.0417406
\(266\) −15.3609 15.3609i −0.0577478 0.0577478i
\(267\) −208.567 208.567i −0.781149 0.781149i
\(268\) 205.336i 0.766180i
\(269\) −264.098 51.1190i −0.981778 0.190033i
\(270\) −1.73614 −0.00643015
\(271\) 18.8319 18.8319i 0.0694904 0.0694904i −0.671507 0.740998i \(-0.734353\pi\)
0.740998 + 0.671507i \(0.234353\pi\)
\(272\) 25.6735 25.6735i 0.0943879 0.0943879i
\(273\) 47.6772i 0.174642i
\(274\) 209.885 0.766005
\(275\) 240.832i 0.875751i
\(276\) 7.69841 + 7.69841i 0.0278928 + 0.0278928i
\(277\) 147.973 + 147.973i 0.534198 + 0.534198i 0.921819 0.387621i \(-0.126703\pi\)
−0.387621 + 0.921819i \(0.626703\pi\)
\(278\) 334.594i 1.20358i
\(279\) 189.220 189.220i 0.678210 0.678210i
\(280\) 0.588796i 0.00210284i
\(281\) 240.167 + 240.167i 0.854688 + 0.854688i 0.990706 0.136018i \(-0.0434306\pi\)
−0.136018 + 0.990706i \(0.543431\pi\)
\(282\) 244.508i 0.867051i
\(283\) 163.475 0.577650 0.288825 0.957382i \(-0.406735\pi\)
0.288825 + 0.957382i \(0.406735\pi\)
\(284\) −63.3919 + 63.3919i −0.223211 + 0.223211i
\(285\) −49.5892 −0.173997
\(286\) 214.930 214.930i 0.751502 0.751502i
\(287\) −12.7860 12.7860i −0.0445504 0.0445504i
\(288\) −33.0614 33.0614i −0.114797 0.114797i
\(289\) 206.609i 0.714910i
\(290\) −22.2912 −0.0768662
\(291\) 34.7426 + 34.7426i 0.119390 + 0.119390i
\(292\) −119.661 −0.409800
\(293\) −369.575 −1.26135 −0.630673 0.776048i \(-0.717221\pi\)
−0.630673 + 0.776048i \(0.717221\pi\)
\(294\) −286.363 −0.974025
\(295\) 25.9701 + 25.9701i 0.0880343 + 0.0880343i
\(296\) 85.0195 + 85.0195i 0.287228 + 0.287228i
\(297\) 20.9289 20.9289i 0.0704676 0.0704676i
\(298\) 216.502 + 216.502i 0.726518 + 0.726518i
\(299\) 29.0404i 0.0971251i
\(300\) −145.957 145.957i −0.486522 0.486522i
\(301\) 24.0318 24.0318i 0.0798398 0.0798398i
\(302\) 208.990 + 208.990i 0.692021 + 0.692021i
\(303\) 325.579i 1.07452i
\(304\) 83.9351 + 83.9351i 0.276102 + 0.276102i
\(305\) −13.8651 −0.0454593
\(306\) −106.100 −0.346733
\(307\) 556.329 1.81215 0.906073 0.423122i \(-0.139066\pi\)
0.906073 + 0.423122i \(0.139066\pi\)
\(308\) −7.09783 7.09783i −0.0230449 0.0230449i
\(309\) 559.276 + 559.276i 1.80996 + 1.80996i
\(310\) 18.4136 0.0593986
\(311\) −341.299 + 341.299i −1.09742 + 1.09742i −0.102714 + 0.994711i \(0.532753\pi\)
−0.994711 + 0.102714i \(0.967247\pi\)
\(312\) 260.518i 0.834992i
\(313\) 180.420 0.576422 0.288211 0.957567i \(-0.406940\pi\)
0.288211 + 0.957567i \(0.406940\pi\)
\(314\) 260.980i 0.831146i
\(315\) 1.21665 1.21665i 0.00386238 0.00386238i
\(316\) −80.6509 −0.255224
\(317\) −73.9318 + 73.9318i −0.233223 + 0.233223i −0.814037 0.580813i \(-0.802735\pi\)
0.580813 + 0.814037i \(0.302735\pi\)
\(318\) 161.624i 0.508253i
\(319\) 268.717 268.717i 0.842372 0.842372i
\(320\) 3.21730i 0.0100540i
\(321\) 618.441 1.92661
\(322\) 0.959029 0.00297835
\(323\) 269.364 0.833943
\(324\) 174.144i 0.537482i
\(325\) 550.586i 1.69411i
\(326\) −425.448 −1.30505
\(327\) −733.626 −2.24350
\(328\) 69.8651 + 69.8651i 0.213003 + 0.213003i
\(329\) −15.2298 15.2298i −0.0462912 0.0462912i
\(330\) −22.9137 −0.0694355
\(331\) −287.956 −0.869957 −0.434979 0.900441i \(-0.643244\pi\)
−0.434979 + 0.900441i \(0.643244\pi\)
\(332\) −187.345 + 187.345i −0.564292 + 0.564292i
\(333\) 351.358i 1.05513i
\(334\) 187.647i 0.561817i
\(335\) 41.2892 0.123251
\(336\) −8.60333 −0.0256051
\(337\) −221.637 221.637i −0.657676 0.657676i 0.297153 0.954830i \(-0.403963\pi\)
−0.954830 + 0.297153i \(0.903963\pi\)
\(338\) 322.370 322.370i 0.953757 0.953757i
\(339\) −128.327 −0.378546
\(340\) −5.16245 5.16245i −0.0151837 0.0151837i
\(341\) −221.972 + 221.972i −0.650945 + 0.650945i
\(342\) 346.877i 1.01426i
\(343\) −35.7718 + 35.7718i −0.104291 + 0.104291i
\(344\) −131.314 + 131.314i −0.381728 + 0.381728i
\(345\) 1.54800 1.54800i 0.00448697 0.00448697i
\(346\) −163.957 + 163.957i −0.473865 + 0.473865i
\(347\) 158.820 0.457693 0.228847 0.973462i \(-0.426505\pi\)
0.228847 + 0.973462i \(0.426505\pi\)
\(348\) 325.713i 0.935957i
\(349\) −27.7738 −0.0795811 −0.0397905 0.999208i \(-0.512669\pi\)
−0.0397905 + 0.999208i \(0.512669\pi\)
\(350\) −18.1826 −0.0519502
\(351\) 47.8474 47.8474i 0.136317 0.136317i
\(352\) 38.7840 + 38.7840i 0.110182 + 0.110182i
\(353\) 630.388i 1.78580i −0.450254 0.892900i \(-0.648667\pi\)
0.450254 0.892900i \(-0.351333\pi\)
\(354\) −379.469 + 379.469i −1.07195 + 1.07195i
\(355\) 12.7469 + 12.7469i 0.0359068 + 0.0359068i
\(356\) 141.972 0.398797
\(357\) −13.8048 + 13.8048i −0.0386690 + 0.0386690i
\(358\) 318.593i 0.889925i
\(359\) −315.711 315.711i −0.879416 0.879416i 0.114058 0.993474i \(-0.463615\pi\)
−0.993474 + 0.114058i \(0.963615\pi\)
\(360\) −6.64802 + 6.64802i −0.0184667 + 0.0184667i
\(361\) 519.638i 1.43944i
\(362\) 168.880 0.466520
\(363\) −79.2940 + 79.2940i −0.218441 + 0.218441i
\(364\) −16.2270 16.2270i −0.0445796 0.0445796i
\(365\) 24.0616i 0.0659223i
\(366\) 202.593i 0.553532i
\(367\) −219.867 219.867i −0.599092 0.599092i 0.340979 0.940071i \(-0.389242\pi\)
−0.940071 + 0.340979i \(0.889242\pi\)
\(368\) −5.24032 −0.0142400
\(369\) 288.730i 0.782465i
\(370\) 17.0958 17.0958i 0.0462048 0.0462048i
\(371\) −10.0672 10.0672i −0.0271353 0.0271353i
\(372\) 269.054i 0.723264i
\(373\) −173.052 + 173.052i −0.463947 + 0.463947i −0.899947 0.436000i \(-0.856395\pi\)
0.436000 + 0.899947i \(0.356395\pi\)
\(374\) 124.465 0.332794
\(375\) −58.8893 + 58.8893i −0.157038 + 0.157038i
\(376\) 83.2187 + 83.2187i 0.221326 + 0.221326i
\(377\) 614.337 614.337i 1.62954 1.62954i
\(378\) −1.58011 1.58011i −0.00418019 0.00418019i
\(379\) −88.1247 88.1247i −0.232519 0.232519i 0.581224 0.813743i \(-0.302574\pi\)
−0.813743 + 0.581224i \(0.802574\pi\)
\(380\) 16.8778 16.8778i 0.0444151 0.0444151i
\(381\) −286.365 286.365i −0.751613 0.751613i
\(382\) −129.997 129.997i −0.340305 0.340305i
\(383\) −183.537 + 183.537i −0.479208 + 0.479208i −0.904878 0.425670i \(-0.860038\pi\)
0.425670 + 0.904878i \(0.360038\pi\)
\(384\) 47.0103 0.122423
\(385\) −1.42724 + 1.42724i −0.00370711 + 0.00370711i
\(386\) −258.438 −0.669528
\(387\) 542.680 1.40227
\(388\) −23.6493 −0.0609519
\(389\) 650.190 1.67144 0.835720 0.549155i \(-0.185050\pi\)
0.835720 + 0.549155i \(0.185050\pi\)
\(390\) −52.3851 −0.134321
\(391\) −8.40859 + 8.40859i −0.0215054 + 0.0215054i
\(392\) 97.4641 97.4641i 0.248633 0.248633i
\(393\) 493.544 493.544i 1.25584 1.25584i
\(394\) −272.843 −0.692496
\(395\) 16.2174i 0.0410566i
\(396\) 160.281i 0.404751i
\(397\) 36.3386 + 36.3386i 0.0915330 + 0.0915330i 0.751391 0.659858i \(-0.229383\pi\)
−0.659858 + 0.751391i \(0.729383\pi\)
\(398\) −19.3603 19.3603i −0.0486441 0.0486441i
\(399\) −45.1326 45.1326i −0.113114 0.113114i
\(400\) 99.3531 0.248383
\(401\) −414.612 + 414.612i −1.03395 + 1.03395i −0.0345424 + 0.999403i \(0.510997\pi\)
−0.999403 + 0.0345424i \(0.989003\pi\)
\(402\) 603.307i 1.50076i
\(403\) −507.471 + 507.471i −1.25923 + 1.25923i
\(404\) −110.811 110.811i −0.274285 0.274285i
\(405\) −35.0171 −0.0864620
\(406\) −20.2879 20.2879i −0.0499701 0.0499701i
\(407\) 412.174i 1.01271i
\(408\) 75.4324 75.4324i 0.184883 0.184883i
\(409\) 180.743 180.743i 0.441914 0.441914i −0.450741 0.892655i \(-0.648840\pi\)
0.892655 + 0.450741i \(0.148840\pi\)
\(410\) 14.0485 14.0485i 0.0342647 0.0342647i
\(411\) 616.673 1.50042
\(412\) −380.701 −0.924031
\(413\) 47.2723i 0.114461i
\(414\) 10.8283 + 10.8283i 0.0261553 + 0.0261553i
\(415\) 37.6715 + 37.6715i 0.0907746 + 0.0907746i
\(416\) 88.6675 + 88.6675i 0.213143 + 0.213143i
\(417\) 983.084i 2.35752i
\(418\) 406.917i 0.973486i
\(419\) 382.839i 0.913697i −0.889544 0.456849i \(-0.848978\pi\)
0.889544 0.456849i \(-0.151022\pi\)
\(420\) 1.72996i 0.00411896i
\(421\) 503.393i 1.19571i −0.801605 0.597854i \(-0.796020\pi\)
0.801605 0.597854i \(-0.203980\pi\)
\(422\) −203.403 203.403i −0.481997 0.481997i
\(423\) 343.916i 0.813040i
\(424\) 55.0090 + 55.0090i 0.129738 + 0.129738i
\(425\) 159.421 159.421i 0.375109 0.375109i
\(426\) −186.254 + 186.254i −0.437217 + 0.437217i
\(427\) −12.6190 12.6190i −0.0295527 0.0295527i
\(428\) −210.487 + 210.487i −0.491792 + 0.491792i
\(429\) 631.494 631.494i 1.47201 1.47201i
\(430\) 26.4048 + 26.4048i 0.0614066 + 0.0614066i
\(431\) −98.3821 + 98.3821i −0.228265 + 0.228265i −0.811967 0.583703i \(-0.801603\pi\)
0.583703 + 0.811967i \(0.301603\pi\)
\(432\) 8.63403 + 8.63403i 0.0199862 + 0.0199862i
\(433\) 5.30339i 0.0122480i −0.999981 0.00612401i \(-0.998051\pi\)
0.999981 0.00612401i \(-0.00194935\pi\)
\(434\) 16.7587 + 16.7587i 0.0386145 + 0.0386145i
\(435\) −65.4947 −0.150563
\(436\) 249.690 249.690i 0.572684 0.572684i
\(437\) −27.4905 27.4905i −0.0629072 0.0629072i
\(438\) −351.582 −0.802699
\(439\) 529.030i 1.20508i 0.798088 + 0.602540i \(0.205845\pi\)
−0.798088 + 0.602540i \(0.794155\pi\)
\(440\) 7.79871 7.79871i 0.0177243 0.0177243i
\(441\) −402.787 −0.913350
\(442\) 284.550 0.643779
\(443\) 396.800 396.800i 0.895710 0.895710i −0.0993432 0.995053i \(-0.531674\pi\)
0.995053 + 0.0993432i \(0.0316742\pi\)
\(444\) 249.799 + 249.799i 0.562611 + 0.562611i
\(445\) 28.5478i 0.0641524i
\(446\) −274.761 −0.616056
\(447\) 636.114 + 636.114i 1.42307 + 1.42307i
\(448\) 2.92815 2.92815i 0.00653605 0.00653605i
\(449\) −298.673 −0.665195 −0.332598 0.943069i \(-0.607925\pi\)
−0.332598 + 0.943069i \(0.607925\pi\)
\(450\) −205.297 205.297i −0.456215 0.456215i
\(451\) 338.705i 0.751010i
\(452\) 43.6763 43.6763i 0.0966289 0.0966289i
\(453\) 614.043 + 614.043i 1.35550 + 1.35550i
\(454\) 443.642 0.977185
\(455\) −3.26294 + 3.26294i −0.00717129 + 0.00717129i
\(456\) 246.613 + 246.613i 0.540819 + 0.540819i
\(457\) 293.719i 0.642710i 0.946959 + 0.321355i \(0.104138\pi\)
−0.946959 + 0.321355i \(0.895862\pi\)
\(458\) 542.749i 1.18504i
\(459\) 27.7082 0.0603665
\(460\) 1.05373i 0.00229072i
\(461\) 52.9283 + 52.9283i 0.114812 + 0.114812i 0.762179 0.647367i \(-0.224130\pi\)
−0.647367 + 0.762179i \(0.724130\pi\)
\(462\) −20.8544 20.8544i −0.0451395 0.0451395i
\(463\) −237.363 237.363i −0.512663 0.512663i 0.402679 0.915341i \(-0.368079\pi\)
−0.915341 + 0.402679i \(0.868079\pi\)
\(464\) 110.857 + 110.857i 0.238916 + 0.238916i
\(465\) 54.1016 0.116348
\(466\) 122.625 + 122.625i 0.263144 + 0.263144i
\(467\) −174.834 + 174.834i −0.374377 + 0.374377i −0.869069 0.494692i \(-0.835281\pi\)
0.494692 + 0.869069i \(0.335281\pi\)
\(468\) 366.434i 0.782978i
\(469\) 37.5785 + 37.5785i 0.0801247 + 0.0801247i
\(470\) 16.7337 16.7337i 0.0356036 0.0356036i
\(471\) 766.796i 1.62802i
\(472\) 258.305i 0.547257i
\(473\) −636.612 −1.34590
\(474\) −236.964 −0.499923
\(475\) 521.201 + 521.201i 1.09726 + 1.09726i
\(476\) 9.39699i 0.0197416i
\(477\) 227.334i 0.476592i
\(478\) 241.191 241.191i 0.504583 0.504583i
\(479\) 249.784 249.784i 0.521470 0.521470i −0.396545 0.918015i \(-0.629791\pi\)
0.918015 + 0.396545i \(0.129791\pi\)
\(480\) 9.45287i 0.0196935i
\(481\) 942.307i 1.95906i
\(482\) 362.995 0.753102
\(483\) 2.81776 0.00583388
\(484\) 53.9756i 0.111520i
\(485\) 4.75543i 0.00980501i
\(486\) 472.807i 0.972855i
\(487\) 486.669 0.999321 0.499660 0.866221i \(-0.333458\pi\)
0.499660 + 0.866221i \(0.333458\pi\)
\(488\) 68.9527 + 68.9527i 0.141297 + 0.141297i
\(489\) −1250.03 −2.55629
\(490\) −19.5982 19.5982i −0.0399963 0.0399963i
\(491\) 611.098i 1.24460i −0.782780 0.622299i \(-0.786199\pi\)
0.782780 0.622299i \(-0.213801\pi\)
\(492\) 205.273 + 205.273i 0.417222 + 0.417222i
\(493\) 355.760 0.721624
\(494\) 930.289i 1.88318i
\(495\) −32.2295 −0.0651102
\(496\) −91.5729 91.5729i −0.184623 0.184623i
\(497\) 23.2027i 0.0466854i
\(498\) −550.445 + 550.445i −1.10531 + 1.10531i
\(499\) 163.048 163.048i 0.326749 0.326749i −0.524600 0.851349i \(-0.675785\pi\)
0.851349 + 0.524600i \(0.175785\pi\)
\(500\) 40.0861i 0.0801722i
\(501\) 551.333i 1.10047i
\(502\) 244.614i 0.487279i
\(503\) 193.054 193.054i 0.383806 0.383806i −0.488665 0.872471i \(-0.662516\pi\)
0.872471 + 0.488665i \(0.162516\pi\)
\(504\) −12.1011 −0.0240101
\(505\) −22.2820 + 22.2820i −0.0441229 + 0.0441229i
\(506\) −12.7025 12.7025i −0.0251038 0.0251038i
\(507\) 947.168 947.168i 1.86818 1.86818i
\(508\) 194.929 0.383719
\(509\) −134.257 + 134.257i −0.263767 + 0.263767i −0.826582 0.562816i \(-0.809718\pi\)
0.562816 + 0.826582i \(0.309718\pi\)
\(510\) −15.1680 15.1680i −0.0297412 0.0297412i
\(511\) −21.8992 + 21.8992i −0.0428556 + 0.0428556i
\(512\) −16.0000 + 16.0000i −0.0312500 + 0.0312500i
\(513\) 90.5873i 0.176583i
\(514\) 350.847i 0.682582i
\(515\) 76.5517i 0.148644i
\(516\) −385.820 + 385.820i −0.747714 + 0.747714i
\(517\) 403.444i 0.780355i
\(518\) 31.1187 0.0600748
\(519\) −481.730 + 481.730i −0.928188 + 0.928188i
\(520\) 17.8293 17.8293i 0.0342872 0.0342872i
\(521\) −330.926 330.926i −0.635174 0.635174i 0.314187 0.949361i \(-0.398268\pi\)
−0.949361 + 0.314187i \(0.898268\pi\)
\(522\) 458.135i 0.877654i
\(523\) 262.398 + 262.398i 0.501716 + 0.501716i 0.911971 0.410255i \(-0.134560\pi\)
−0.410255 + 0.911971i \(0.634560\pi\)
\(524\) 335.957i 0.641139i
\(525\) −53.4229 −0.101758
\(526\) 129.955 129.955i 0.247062 0.247062i
\(527\) −293.875 −0.557637
\(528\) 113.953 + 113.953i 0.215820 + 0.215820i
\(529\) −527.284 −0.996756
\(530\) 11.0613 11.0613i 0.0208703 0.0208703i
\(531\) −533.746 + 533.746i −1.00517 + 1.00517i
\(532\) 30.7219 0.0577478
\(533\) 774.345i 1.45280i
\(534\) 417.133 0.781149
\(535\) 42.3249 + 42.3249i 0.0791120 + 0.0791120i
\(536\) −205.336 205.336i −0.383090 0.383090i
\(537\) 936.071i 1.74315i
\(538\) 315.217 212.979i 0.585906 0.395872i
\(539\) 472.505 0.876634
\(540\) 1.73614 1.73614i 0.00321507 0.00321507i
\(541\) −260.956 + 260.956i −0.482359 + 0.482359i −0.905884 0.423525i \(-0.860793\pi\)
0.423525 + 0.905884i \(0.360793\pi\)
\(542\) 37.6638i 0.0694904i
\(543\) 496.194 0.913801
\(544\) 51.3470i 0.0943879i
\(545\) −50.2080 50.2080i −0.0921247 0.0921247i
\(546\) −47.6772 47.6772i −0.0873209 0.0873209i
\(547\) 528.756i 0.966647i 0.875442 + 0.483323i \(0.160570\pi\)
−0.875442 + 0.483323i \(0.839430\pi\)
\(548\) −209.885 + 209.885i −0.383003 + 0.383003i
\(549\) 284.959i 0.519051i
\(550\) 240.832 + 240.832i 0.437876 + 0.437876i
\(551\) 1163.10i 2.11089i
\(552\) −15.3968 −0.0278928
\(553\) −14.7599 + 14.7599i −0.0266906 + 0.0266906i
\(554\) −295.946 −0.534198
\(555\) 50.2299 50.2299i 0.0905042 0.0905042i
\(556\) 334.594 + 334.594i 0.601788 + 0.601788i
\(557\) 57.8611 + 57.8611i 0.103880 + 0.103880i 0.757137 0.653257i \(-0.226598\pi\)
−0.653257 + 0.757137i \(0.726598\pi\)
\(558\) 378.441i 0.678210i
\(559\) −1455.41 −2.60360
\(560\) −0.588796 0.588796i −0.00105142 0.00105142i
\(561\) 365.696 0.651864
\(562\) −480.335 −0.854688
\(563\) −118.024 −0.209633 −0.104817 0.994492i \(-0.533426\pi\)
−0.104817 + 0.994492i \(0.533426\pi\)
\(564\) 244.508 + 244.508i 0.433525 + 0.433525i
\(565\) −8.78247 8.78247i −0.0155442 0.0155442i
\(566\) −163.475 + 163.475i −0.288825 + 0.288825i
\(567\) −31.8701 31.8701i −0.0562082 0.0562082i
\(568\) 126.784i 0.223211i
\(569\) −68.5356 68.5356i −0.120449 0.120449i 0.644313 0.764762i \(-0.277143\pi\)
−0.764762 + 0.644313i \(0.777143\pi\)
\(570\) 49.5892 49.5892i 0.0869986 0.0869986i
\(571\) −179.419 179.419i −0.314219 0.314219i 0.532323 0.846541i \(-0.321319\pi\)
−0.846541 + 0.532323i \(0.821319\pi\)
\(572\) 429.859i 0.751502i
\(573\) −381.948 381.948i −0.666576 0.666576i
\(574\) 25.5719 0.0445504
\(575\) −32.5401 −0.0565916
\(576\) 66.1228 0.114797
\(577\) −549.862 549.862i −0.952967 0.952967i 0.0459758 0.998943i \(-0.485360\pi\)
−0.998943 + 0.0459758i \(0.985360\pi\)
\(578\) −206.609 206.609i −0.357455 0.357455i
\(579\) −759.327 −1.31145
\(580\) 22.2912 22.2912i 0.0384331 0.0384331i
\(581\) 68.5718i 0.118024i
\(582\) −69.4851 −0.119390
\(583\) 266.684i 0.457433i
\(584\) 119.661 119.661i 0.204900 0.204900i
\(585\) −73.6828 −0.125954
\(586\) 369.575 369.575i 0.630673 0.630673i
\(587\) 255.529i 0.435314i 0.976025 + 0.217657i \(0.0698414\pi\)
−0.976025 + 0.217657i \(0.930159\pi\)
\(588\) 286.363 286.363i 0.487013 0.487013i
\(589\) 960.773i 1.63119i
\(590\) −51.9403 −0.0880343
\(591\) −801.652 −1.35643
\(592\) −170.039 −0.287228
\(593\) 721.678i 1.21699i −0.793556 0.608497i \(-0.791773\pi\)
0.793556 0.608497i \(-0.208227\pi\)
\(594\) 41.8577i 0.0704676i
\(595\) −1.88956 −0.00317572
\(596\) −433.005 −0.726518
\(597\) −56.8834 56.8834i −0.0952821 0.0952821i
\(598\) −29.0404 29.0404i −0.0485625 0.0485625i
\(599\) −1018.77 −1.70078 −0.850391 0.526151i \(-0.823635\pi\)
−0.850391 + 0.526151i \(0.823635\pi\)
\(600\) 291.913 0.486522
\(601\) −100.044 + 100.044i −0.166462 + 0.166462i −0.785422 0.618960i \(-0.787554\pi\)
0.618960 + 0.785422i \(0.287554\pi\)
\(602\) 48.0636i 0.0798398i
\(603\) 848.588i 1.40728i
\(604\) −417.981 −0.692021
\(605\) −10.8535 −0.0179396
\(606\) −325.579 325.579i −0.537260 0.537260i
\(607\) −470.678 + 470.678i −0.775417 + 0.775417i −0.979048 0.203631i \(-0.934726\pi\)
0.203631 + 0.979048i \(0.434726\pi\)
\(608\) −167.870 −0.276102
\(609\) −59.6086 59.6086i −0.0978795 0.0978795i
\(610\) 13.8651 13.8651i 0.0227296 0.0227296i
\(611\) 922.349i 1.50957i
\(612\) 106.100 106.100i 0.173366 0.173366i
\(613\) −392.104 + 392.104i −0.639647 + 0.639647i −0.950468 0.310821i \(-0.899396\pi\)
0.310821 + 0.950468i \(0.399396\pi\)
\(614\) −556.329 + 556.329i −0.906073 + 0.906073i
\(615\) 41.2766 41.2766i 0.0671164 0.0671164i
\(616\) 14.1957 0.0230449
\(617\) 971.089i 1.57389i 0.617024 + 0.786944i \(0.288338\pi\)
−0.617024 + 0.786944i \(0.711662\pi\)
\(618\) −1118.55 −1.80996
\(619\) 568.239 0.917995 0.458997 0.888438i \(-0.348209\pi\)
0.458997 + 0.888438i \(0.348209\pi\)
\(620\) −18.4136 + 18.4136i −0.0296993 + 0.0296993i
\(621\) −2.82782 2.82782i −0.00455366 0.00455366i
\(622\) 682.598i 1.09742i
\(623\) 25.9822 25.9822i 0.0417050 0.0417050i
\(624\) 260.518 + 260.518i 0.417496 + 0.417496i
\(625\) 612.896 0.980634
\(626\) −180.420 + 180.420i −0.288211 + 0.288211i
\(627\) 1195.58i 1.90683i
\(628\) 260.980 + 260.980i 0.415573 + 0.415573i
\(629\) −272.843 + 272.843i −0.433773 + 0.433773i
\(630\) 2.43330i 0.00386238i
\(631\) 814.489 1.29079 0.645396 0.763849i \(-0.276693\pi\)
0.645396 + 0.763849i \(0.276693\pi\)
\(632\) 80.6509 80.6509i 0.127612 0.127612i
\(633\) −597.626 597.626i −0.944117 0.944117i
\(634\) 147.864i 0.233223i
\(635\) 39.1965i 0.0617268i
\(636\) 161.624 + 161.624i 0.254126 + 0.254126i
\(637\) 1080.24 1.69582
\(638\) 537.433i 0.842372i
\(639\) −261.978 + 261.978i −0.409982 + 0.409982i
\(640\) 3.21730 + 3.21730i 0.00502702 + 0.00502702i
\(641\) 152.330i 0.237645i 0.992916 + 0.118822i \(0.0379119\pi\)
−0.992916 + 0.118822i \(0.962088\pi\)
\(642\) −618.441 + 618.441i −0.963303 + 0.963303i
\(643\) 235.446 0.366167 0.183084 0.983097i \(-0.441392\pi\)
0.183084 + 0.983097i \(0.441392\pi\)
\(644\) −0.959029 + 0.959029i −0.00148918 + 0.00148918i
\(645\) 77.5811 + 77.5811i 0.120281 + 0.120281i
\(646\) −269.364 + 269.364i −0.416971 + 0.416971i
\(647\) −158.877 158.877i −0.245559 0.245559i 0.573586 0.819145i \(-0.305552\pi\)
−0.819145 + 0.573586i \(0.805552\pi\)
\(648\) 174.144 + 174.144i 0.268741 + 0.268741i
\(649\) 626.131 626.131i 0.964763 0.964763i
\(650\) 550.586 + 550.586i 0.847056 + 0.847056i
\(651\) 49.2395 + 49.2395i 0.0756366 + 0.0756366i
\(652\) 425.448 425.448i 0.652527 0.652527i
\(653\) −115.607 −0.177040 −0.0885202 0.996074i \(-0.528214\pi\)
−0.0885202 + 0.996074i \(0.528214\pi\)
\(654\) 733.626 733.626i 1.12175 1.12175i
\(655\) 67.5545 0.103137
\(656\) −139.730 −0.213003
\(657\) −494.522 −0.752697
\(658\) 30.4596 0.0462912
\(659\) 529.980 0.804219 0.402109 0.915592i \(-0.368277\pi\)
0.402109 + 0.915592i \(0.368277\pi\)
\(660\) 22.9137 22.9137i 0.0347178 0.0347178i
\(661\) −322.111 + 322.111i −0.487308 + 0.487308i −0.907456 0.420148i \(-0.861978\pi\)
0.420148 + 0.907456i \(0.361978\pi\)
\(662\) 287.956 287.956i 0.434979 0.434979i
\(663\) 836.050 1.26101
\(664\) 374.690i 0.564292i
\(665\) 6.17758i 0.00928959i
\(666\) 351.358 + 351.358i 0.527564 + 0.527564i
\(667\) −36.3079 36.3079i −0.0544346 0.0544346i
\(668\) −187.647 187.647i −0.280909 0.280909i
\(669\) −807.286 −1.20671
\(670\) −41.2892 + 41.2892i −0.0616257 + 0.0616257i
\(671\) 334.282i 0.498185i
\(672\) 8.60333 8.60333i 0.0128026 0.0128026i
\(673\) 382.941 + 382.941i 0.569006 + 0.569006i 0.931850 0.362844i \(-0.118194\pi\)
−0.362844 + 0.931850i \(0.618194\pi\)
\(674\) 443.274 0.657676
\(675\) 53.6136 + 53.6136i 0.0794275 + 0.0794275i
\(676\) 644.740i 0.953757i
\(677\) −511.994 + 511.994i −0.756269 + 0.756269i −0.975641 0.219372i \(-0.929599\pi\)
0.219372 + 0.975641i \(0.429599\pi\)
\(678\) 128.327 128.327i 0.189273 0.189273i
\(679\) −4.32806 + 4.32806i −0.00637416 + 0.00637416i
\(680\) 10.3249 0.0151837
\(681\) 1303.48 1.91407
\(682\) 443.945i 0.650945i
\(683\) −224.694 224.694i −0.328982 0.328982i 0.523218 0.852199i \(-0.324732\pi\)
−0.852199 + 0.523218i \(0.824732\pi\)
\(684\) 346.877 + 346.877i 0.507129 + 0.507129i
\(685\) 42.2040 + 42.2040i 0.0616116 + 0.0616116i
\(686\) 71.5436i 0.104291i
\(687\) 1594.67i 2.32121i
\(688\) 262.629i 0.381728i
\(689\) 609.689i 0.884890i
\(690\) 3.09601i 0.00448697i
\(691\) −561.635 561.635i −0.812786 0.812786i 0.172265 0.985051i \(-0.444892\pi\)
−0.985051 + 0.172265i \(0.944892\pi\)
\(692\) 327.915i 0.473865i
\(693\) −29.3330 29.3330i −0.0423276 0.0423276i
\(694\) −158.820 + 158.820i −0.228847 + 0.228847i
\(695\) 67.2805 67.2805i 0.0968064 0.0968064i
\(696\) 325.713 + 325.713i 0.467979 + 0.467979i
\(697\) −224.210 + 224.210i −0.321679 + 0.321679i
\(698\) 27.7738 27.7738i 0.0397905 0.0397905i
\(699\) 360.290 + 360.290i 0.515436 + 0.515436i
\(700\) 18.1826 18.1826i 0.0259751 0.0259751i
\(701\) 506.040 + 506.040i 0.721883 + 0.721883i 0.968989 0.247106i \(-0.0794795\pi\)
−0.247106 + 0.968989i \(0.579480\pi\)
\(702\) 95.6947i 0.136317i
\(703\) −892.015 892.015i −1.26887 1.26887i
\(704\) −77.5679 −0.110182
\(705\) 49.1660 49.1660i 0.0697389 0.0697389i
\(706\) 630.388 + 630.388i 0.892900 + 0.892900i
\(707\) −40.5591 −0.0573678
\(708\) 758.937i 1.07195i
\(709\) 169.316 169.316i 0.238809 0.238809i −0.577548 0.816357i \(-0.695990\pi\)
0.816357 + 0.577548i \(0.195990\pi\)
\(710\) −25.4938 −0.0359068
\(711\) −333.304 −0.468782
\(712\) −141.972 + 141.972i −0.199399 + 0.199399i
\(713\) 29.9920 + 29.9920i 0.0420645 + 0.0420645i
\(714\) 27.6097i 0.0386690i
\(715\) 86.4365 0.120890
\(716\) 318.593 + 318.593i 0.444962 + 0.444962i
\(717\) 708.652 708.652i 0.988357 0.988357i
\(718\) 631.421 0.879416
\(719\) −497.696 497.696i −0.692206 0.692206i 0.270511 0.962717i \(-0.412807\pi\)
−0.962717 + 0.270511i \(0.912807\pi\)
\(720\) 13.2960i 0.0184667i
\(721\) −69.6719 + 69.6719i −0.0966323 + 0.0966323i
\(722\) −519.638 519.638i −0.719720 0.719720i
\(723\) 1066.53 1.47515
\(724\) −168.880 + 168.880i −0.233260 + 0.233260i
\(725\) 688.373 + 688.373i 0.949480 + 0.949480i
\(726\) 158.588i 0.218441i
\(727\) 874.830i 1.20334i 0.798744 + 0.601671i \(0.205498\pi\)
−0.798744 + 0.601671i \(0.794502\pi\)
\(728\) 32.4540 0.0445796
\(729\) 605.526i 0.830625i
\(730\) −24.0616 24.0616i −0.0329611 0.0329611i
\(731\) −421.413 421.413i −0.576488 0.576488i
\(732\) 202.593 + 202.593i 0.276766 + 0.276766i
\(733\) −155.678 155.678i −0.212385 0.212385i 0.592895 0.805280i \(-0.297985\pi\)
−0.805280 + 0.592895i \(0.797985\pi\)
\(734\) 439.734 0.599092
\(735\) −57.5822 57.5822i −0.0783431 0.0783431i
\(736\) 5.24032 5.24032i 0.00712001 0.00712001i
\(737\) 995.469i 1.35070i
\(738\) 288.730 + 288.730i 0.391233 + 0.391233i
\(739\) 89.2820 89.2820i 0.120815 0.120815i −0.644114 0.764929i \(-0.722774\pi\)
0.764929 + 0.644114i \(0.222774\pi\)
\(740\) 34.1916i 0.0462048i
\(741\) 2733.32i 3.68869i
\(742\) 20.1344 0.0271353
\(743\) 1165.35 1.56844 0.784221 0.620482i \(-0.213063\pi\)
0.784221 + 0.620482i \(0.213063\pi\)
\(744\) −269.054 269.054i −0.361632 0.361632i
\(745\) 87.0690i 0.116871i
\(746\) 346.104i 0.463947i
\(747\) −774.235 + 774.235i −1.03646 + 1.03646i
\(748\) −124.465 + 124.465i −0.166397 + 0.166397i
\(749\) 77.0423i 0.102860i
\(750\) 117.779i 0.157038i
\(751\) 181.913 0.242228 0.121114 0.992639i \(-0.461353\pi\)
0.121114 + 0.992639i \(0.461353\pi\)
\(752\) −166.437 −0.221326
\(753\) 718.710i 0.954462i
\(754\) 1228.67i 1.62954i
\(755\) 84.0479i 0.111322i
\(756\) 3.16022 0.00418019
\(757\) −717.240 717.240i −0.947478 0.947478i 0.0512104 0.998688i \(-0.483692\pi\)
−0.998688 + 0.0512104i \(0.983692\pi\)
\(758\) 176.249 0.232519
\(759\) −37.3218 37.3218i −0.0491724 0.0491724i
\(760\) 33.7555i 0.0444151i
\(761\) −358.668 358.668i −0.471312 0.471312i 0.431027 0.902339i \(-0.358151\pi\)
−0.902339 + 0.431027i \(0.858151\pi\)
\(762\) 572.729 0.751613
\(763\) 91.3914i 0.119779i
\(764\) 259.993 0.340305
\(765\) −21.3347 21.3347i −0.0278885 0.0278885i
\(766\) 367.073i 0.479208i
\(767\) 1431.45 1431.45i 1.86630 1.86630i
\(768\) −47.0103 + 47.0103i −0.0612113 + 0.0612113i
\(769\) 1350.16i 1.75573i 0.478905 + 0.877867i \(0.341034\pi\)
−0.478905 + 0.877867i \(0.658966\pi\)
\(770\) 2.85448i 0.00370711i
\(771\) 1030.84i 1.33702i
\(772\) 258.438 258.438i 0.334764 0.334764i
\(773\) −324.515 −0.419813 −0.209906 0.977721i \(-0.567316\pi\)
−0.209906 + 0.977721i \(0.567316\pi\)
\(774\) −542.680 + 542.680i −0.701137 + 0.701137i
\(775\) −568.628 568.628i −0.733713 0.733713i
\(776\) 23.6493 23.6493i 0.0304760 0.0304760i
\(777\) 91.4313 0.117672
\(778\) −650.190 + 650.190i −0.835720 + 0.835720i
\(779\) −733.017 733.017i −0.940971 0.940971i
\(780\) 52.3851 52.3851i 0.0671604 0.0671604i
\(781\) 307.324 307.324i 0.393500 0.393500i
\(782\) 16.8172i 0.0215054i
\(783\) 119.643i 0.152800i
\(784\) 194.928i 0.248633i
\(785\) 52.4781 52.4781i 0.0668510 0.0668510i
\(786\) 987.088i 1.25584i
\(787\) −1465.98 −1.86274 −0.931371 0.364071i \(-0.881387\pi\)
−0.931371 + 0.364071i \(0.881387\pi\)
\(788\) 272.843 272.843i 0.346248 0.346248i
\(789\) 381.826 381.826i 0.483936 0.483936i
\(790\) −16.2174 16.2174i −0.0205283 0.0205283i
\(791\) 15.9863i 0.0202103i
\(792\) 160.281 + 160.281i 0.202376 + 0.202376i
\(793\) 764.233i 0.963723i
\(794\) −72.6772 −0.0915330
\(795\) 32.4996 32.4996i 0.0408800 0.0408800i
\(796\) 38.7207 0.0486441
\(797\) −168.874 168.874i −0.211887 0.211887i 0.593182 0.805069i \(-0.297872\pi\)
−0.805069 + 0.593182i \(0.797872\pi\)
\(798\) 90.2651 0.113114
\(799\) −267.064 + 267.064i −0.334248 + 0.334248i
\(800\) −99.3531 + 99.3531i −0.124191 + 0.124191i
\(801\) 586.723 0.732489
\(802\) 829.224i 1.03395i
\(803\) 580.118 0.722438
\(804\) −603.307 603.307i −0.750382 0.750382i
\(805\) 0.192843 + 0.192843i 0.000239556 + 0.000239556i
\(806\) 1014.94i 1.25923i
\(807\) 926.153 625.763i 1.14765 0.775419i
\(808\) 221.623 0.274285
\(809\) 886.649 886.649i 1.09598 1.09598i 0.101105 0.994876i \(-0.467762\pi\)
0.994876 0.101105i \(-0.0322379\pi\)
\(810\) 35.0171 35.0171i 0.0432310 0.0432310i
\(811\) 906.558i 1.11783i −0.829226 0.558914i \(-0.811218\pi\)
0.829226 0.558914i \(-0.188782\pi\)
\(812\) 40.5757 0.0499701
\(813\) 110.661i 0.136115i
\(814\) −412.174 412.174i −0.506356 0.506356i
\(815\) −85.5494 85.5494i −0.104969 0.104969i
\(816\) 150.865i 0.184883i
\(817\) 1377.74 1377.74i 1.68634 1.68634i
\(818\) 361.486i 0.441914i
\(819\) −67.0609 67.0609i −0.0818814 0.0818814i
\(820\) 28.0971i 0.0342647i
\(821\) −264.710 −0.322424 −0.161212 0.986920i \(-0.551540\pi\)
−0.161212 + 0.986920i \(0.551540\pi\)
\(822\) −616.673 + 616.673i −0.750211 + 0.750211i
\(823\) −24.7558 −0.0300799 −0.0150400 0.999887i \(-0.504788\pi\)
−0.0150400 + 0.999887i \(0.504788\pi\)
\(824\) 380.701 380.701i 0.462016 0.462016i
\(825\) 707.597 + 707.597i 0.857693 + 0.857693i
\(826\) −47.2723 47.2723i −0.0572304 0.0572304i
\(827\) 106.193i 0.128407i −0.997937 0.0642036i \(-0.979549\pi\)
0.997937 0.0642036i \(-0.0204507\pi\)
\(828\) −21.6566 −0.0261553
\(829\) −381.228 381.228i −0.459864 0.459864i 0.438746 0.898611i \(-0.355423\pi\)
−0.898611 + 0.438746i \(0.855423\pi\)
\(830\) −75.3429 −0.0907746
\(831\) −869.530 −1.04637
\(832\) −177.335 −0.213143
\(833\) 312.781 + 312.781i 0.375487 + 0.375487i
\(834\) 983.084 + 983.084i 1.17876 + 1.17876i
\(835\) −37.7322 + 37.7322i −0.0451883 + 0.0451883i
\(836\) −406.917 406.917i −0.486743 0.486743i
\(837\) 98.8304i 0.118077i
\(838\) 382.839 + 382.839i 0.456849 + 0.456849i
\(839\) −990.248 + 990.248i −1.18027 + 1.18027i −0.200598 + 0.979674i \(0.564288\pi\)
−0.979674 + 0.200598i \(0.935712\pi\)
\(840\) −1.72996 1.72996i −0.00205948 0.00205948i
\(841\) 695.155i 0.826582i
\(842\) 503.393 + 503.393i 0.597854 + 0.597854i
\(843\) −1411.29 −1.67413
\(844\) 406.806 0.481997
\(845\) 129.645 0.153426
\(846\) 343.916 + 343.916i 0.406520 + 0.406520i
\(847\) −9.87805 9.87805i −0.0116624 0.0116624i
\(848\) −110.018 −0.129738
\(849\) −480.313 + 480.313i −0.565740 + 0.565740i
\(850\) 318.843i 0.375109i
\(851\) 55.6912 0.0654421
\(852\) 372.509i 0.437217i
\(853\) 222.583 222.583i 0.260941 0.260941i −0.564495 0.825436i \(-0.690929\pi\)
0.825436 + 0.564495i \(0.190929\pi\)
\(854\) 25.2380 0.0295527
\(855\) 69.7503 69.7503i 0.0815793 0.0815793i
\(856\) 420.974i 0.491792i
\(857\) 79.9429 79.9429i 0.0932823 0.0932823i −0.658926 0.752208i \(-0.728989\pi\)
0.752208 + 0.658926i \(0.228989\pi\)
\(858\) 1262.99i 1.47201i
\(859\) 1384.49 1.61175 0.805873 0.592089i \(-0.201697\pi\)
0.805873 + 0.592089i \(0.201697\pi\)
\(860\) −52.8097 −0.0614066
\(861\) 75.1340 0.0872636
\(862\) 196.764i 0.228265i
\(863\) 1497.84i 1.73562i 0.496896 + 0.867810i \(0.334473\pi\)
−0.496896 + 0.867810i \(0.665527\pi\)
\(864\) −17.2681 −0.0199862
\(865\) −65.9374 −0.0762282
\(866\) 5.30339 + 5.30339i 0.00612401 + 0.00612401i
\(867\) −607.046 607.046i −0.700169 0.700169i
\(868\) −33.5174 −0.0386145
\(869\) 390.995 0.449937
\(870\) 65.4947 65.4947i 0.0752813 0.0752813i
\(871\) 2275.83i 2.61289i
\(872\) 499.381i 0.572684i
\(873\) −97.7350 −0.111953
\(874\) 54.9809 0.0629072
\(875\) −7.33614 7.33614i −0.00838416 0.00838416i
\(876\) 351.582 351.582i 0.401350 0.401350i
\(877\) −497.170 −0.566899 −0.283449 0.958987i \(-0.591479\pi\)
−0.283449 + 0.958987i \(0.591479\pi\)
\(878\) −529.030 529.030i −0.602540 0.602540i
\(879\) 1085.86 1085.86i 1.23534 1.23534i
\(880\) 15.5974i 0.0177243i
\(881\) 876.596 876.596i 0.995001 0.995001i −0.00498636 0.999988i \(-0.501587\pi\)
0.999988 + 0.00498636i \(0.00158721\pi\)
\(882\) 402.787 402.787i 0.456675 0.456675i
\(883\) −544.138 + 544.138i −0.616237 + 0.616237i −0.944564 0.328327i \(-0.893515\pi\)
0.328327 + 0.944564i \(0.393515\pi\)
\(884\) −284.550 + 284.550i −0.321890 + 0.321890i
\(885\) −152.608 −0.172438
\(886\) 793.599i 0.895710i
\(887\) −779.500 −0.878805 −0.439402 0.898290i \(-0.644810\pi\)
−0.439402 + 0.898290i \(0.644810\pi\)
\(888\) −499.598 −0.562611
\(889\) 35.6739 35.6739i 0.0401281 0.0401281i
\(890\) 28.5478 + 28.5478i 0.0320762 + 0.0320762i
\(891\) 844.250i 0.947531i
\(892\) 274.761 274.761i 0.308028 0.308028i
\(893\) −873.121 873.121i −0.977739 0.977739i
\(894\) −1272.23 −1.42307
\(895\) 64.0630 64.0630i 0.0715788 0.0715788i
\(896\) 5.85630i 0.00653605i
\(897\) −85.3248 85.3248i −0.0951224 0.0951224i
\(898\) 298.673 298.673i 0.332598 0.332598i
\(899\) 1268.94i 1.41150i
\(900\) 410.594 0.456215
\(901\) −176.534 + 176.534i −0.195932 + 0.195932i
\(902\) −338.705 338.705i −0.375505 0.375505i
\(903\) 141.218i 0.156387i
\(904\) 87.3525i 0.0966289i
\(905\) 33.9586 + 33.9586i 0.0375233 + 0.0375233i
\(906\) −1228.09 −1.35550
\(907\) 1080.29i 1.19106i 0.803334 + 0.595528i \(0.203057\pi\)
−0.803334 + 0.595528i \(0.796943\pi\)
\(908\) −443.642 + 443.642i −0.488592 + 0.488592i
\(909\) −457.947 457.947i −0.503792 0.503792i
\(910\) 6.52588i 0.00717129i
\(911\) 903.910 903.910i 0.992217 0.992217i −0.00775260 0.999970i \(-0.502468\pi\)
0.999970 + 0.00775260i \(0.00246775\pi\)
\(912\) −493.226 −0.540819
\(913\) 908.246 908.246i 0.994793 0.994793i
\(914\) −293.719 293.719i −0.321355 0.321355i
\(915\) 40.7376 40.7376i 0.0445219 0.0445219i
\(916\) 542.749 + 542.749i 0.592521 + 0.592521i
\(917\) 61.4833 + 61.4833i 0.0670483 + 0.0670483i
\(918\) −27.7082 + 27.7082i −0.0301833 + 0.0301833i
\(919\) −502.782 502.782i −0.547096 0.547096i 0.378504 0.925600i \(-0.376439\pi\)
−0.925600 + 0.378504i \(0.876439\pi\)
\(920\) −1.05373 1.05373i −0.00114536 0.00114536i
\(921\) −1634.57 + 1634.57i −1.77478 + 1.77478i
\(922\) −105.857 −0.114812
\(923\) 702.600 702.600i 0.761214 0.761214i
\(924\) 41.7089 0.0451395
\(925\) −1055.87 −1.14148
\(926\) 474.726 0.512663
\(927\) −1573.31 −1.69721
\(928\) −221.714 −0.238916
\(929\) 844.194 844.194i 0.908713 0.908713i −0.0874557 0.996168i \(-0.527874\pi\)
0.996168 + 0.0874557i \(0.0278736\pi\)
\(930\) −54.1016 + 54.1016i −0.0581738 + 0.0581738i
\(931\) −1022.58 + 1022.58i −1.09837 + 1.09837i
\(932\) −245.250 −0.263144
\(933\) 2005.57i 2.14959i
\(934\) 349.668i 0.374377i
\(935\) 25.0275 + 25.0275i 0.0267674 + 0.0267674i
\(936\) 366.434 + 366.434i 0.391489 + 0.391489i
\(937\) −806.992 806.992i −0.861251 0.861251i 0.130233 0.991483i \(-0.458428\pi\)
−0.991483 + 0.130233i \(0.958428\pi\)
\(938\) −75.1570 −0.0801247
\(939\) −530.100 + 530.100i −0.564537 + 0.564537i
\(940\) 33.4674i 0.0356036i
\(941\) −770.371 + 770.371i −0.818673 + 0.818673i −0.985916 0.167243i \(-0.946514\pi\)
0.167243 + 0.985916i \(0.446514\pi\)
\(942\) 766.796 + 766.796i 0.814008 + 0.814008i
\(943\) 45.7645 0.0485307
\(944\) 258.305 + 258.305i 0.273628 + 0.273628i
\(945\) 0.635460i 0.000672444i
\(946\) 636.612 636.612i 0.672951 0.672951i
\(947\) 921.842 921.842i 0.973434 0.973434i −0.0262220 0.999656i \(-0.508348\pi\)
0.999656 + 0.0262220i \(0.00834767\pi\)
\(948\) 236.964 236.964i 0.249962 0.249962i
\(949\) 1326.26 1.39753
\(950\) −1042.40 −1.09726
\(951\) 434.444i 0.456829i
\(952\) 9.39699 + 9.39699i 0.00987079 + 0.00987079i
\(953\) 119.401 + 119.401i 0.125289 + 0.125289i 0.766971 0.641682i \(-0.221763\pi\)
−0.641682 + 0.766971i \(0.721763\pi\)
\(954\) 227.334 + 227.334i 0.238296 + 0.238296i
\(955\) 52.2797i 0.0547431i
\(956\) 482.381i 0.504583i
\(957\) 1579.06i 1.65001i
\(958\) 499.568i 0.521470i
\(959\) 76.8221i 0.0801064i
\(960\) 9.45287 + 9.45287i 0.00984674 + 0.00984674i
\(961\) 87.1990i 0.0907378i
\(962\) −942.307 942.307i −0.979529 0.979529i
\(963\) −869.875 + 869.875i −0.903297 + 0.903297i
\(964\) −362.995 + 362.995i −0.376551 + 0.376551i
\(965\) −51.9669 51.9669i −0.0538518 0.0538518i
\(966\) −2.81776 + 2.81776i −0.00291694 + 0.00291694i
\(967\) −787.398 + 787.398i −0.814269 + 0.814269i −0.985271 0.171001i \(-0.945300\pi\)
0.171001 + 0.985271i \(0.445300\pi\)
\(968\) 53.9756 + 53.9756i 0.0557599 + 0.0557599i
\(969\) −791.428 + 791.428i −0.816747 + 0.816747i
\(970\) −4.75543 4.75543i −0.00490251 0.00490251i
\(971\) 1195.64i 1.23135i 0.788002 + 0.615673i \(0.211116\pi\)
−0.788002 + 0.615673i \(0.788884\pi\)
\(972\) 472.807 + 472.807i 0.486427 + 0.486427i
\(973\) 122.468 0.125866
\(974\) −486.669 + 486.669i −0.499660 + 0.499660i
\(975\) 1617.70 + 1617.70i 1.65918 + 1.65918i
\(976\) −137.905 −0.141297
\(977\) 1134.55i 1.16126i 0.814168 + 0.580630i \(0.197194\pi\)
−0.814168 + 0.580630i \(0.802806\pi\)
\(978\) 1250.03 1250.03i 1.27814 1.27814i
\(979\) −688.279 −0.703043
\(980\) 39.1964 0.0399963
\(981\) 1031.89 1031.89i 1.05187 1.05187i
\(982\) 611.098 + 611.098i 0.622299 + 0.622299i
\(983\) 1785.68i 1.81656i −0.418358 0.908282i \(-0.637394\pi\)
0.418358 0.908282i \(-0.362606\pi\)
\(984\) −410.547 −0.417222
\(985\) −54.8636 54.8636i −0.0556991 0.0556991i
\(986\) −355.760 + 355.760i −0.360812 + 0.360812i
\(987\) 89.4947 0.0906734
\(988\) −930.289 930.289i −0.941588 0.941588i
\(989\) 86.0163i 0.0869730i
\(990\) 32.2295 32.2295i 0.0325551 0.0325551i
\(991\) −1315.45 1315.45i −1.32740 1.32740i −0.907635 0.419761i \(-0.862114\pi\)
−0.419761 0.907635i \(-0.637886\pi\)
\(992\) 183.146 0.184623
\(993\) 846.055 846.055i 0.852019 0.852019i
\(994\) −23.2027 23.2027i −0.0233427 0.0233427i
\(995\) 7.78599i 0.00782511i
\(996\) 1100.89i 1.10531i
\(997\) −1258.16 −1.26195 −0.630975 0.775803i \(-0.717345\pi\)
−0.630975 + 0.775803i \(0.717345\pi\)
\(998\) 326.095i 0.326749i
\(999\) −91.7576 91.7576i −0.0918494 0.0918494i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.3.c.b.351.4 yes 46
269.187 odd 4 inner 538.3.c.b.187.4 46
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.3.c.b.187.4 46 269.187 odd 4 inner
538.3.c.b.351.4 yes 46 1.1 even 1 trivial