Properties

Label 538.4.a.a.1.10
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $1$
Dimension $13$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(1\)
Dimension: \(13\)
Coefficient field: \(\mathbb{Q}[x]/(x^{13} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{13} - 2 x^{12} - 189 x^{11} + 344 x^{10} + 12502 x^{9} - 15678 x^{8} - 385197 x^{7} + 263029 x^{6} + \cdots + 3268107 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Root \(-4.40749\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} +3.40749 q^{3} +4.00000 q^{4} -1.51765 q^{5} +6.81499 q^{6} -24.7241 q^{7} +8.00000 q^{8} -15.3890 q^{9} -3.03530 q^{10} -24.1415 q^{11} +13.6300 q^{12} +21.8956 q^{13} -49.4482 q^{14} -5.17139 q^{15} +16.0000 q^{16} +27.0456 q^{17} -30.7780 q^{18} +135.074 q^{19} -6.07061 q^{20} -84.2473 q^{21} -48.2830 q^{22} -191.404 q^{23} +27.2600 q^{24} -122.697 q^{25} +43.7912 q^{26} -144.440 q^{27} -98.8965 q^{28} -225.412 q^{29} -10.3428 q^{30} -330.532 q^{31} +32.0000 q^{32} -82.2621 q^{33} +54.0912 q^{34} +37.5226 q^{35} -61.5559 q^{36} +171.006 q^{37} +270.148 q^{38} +74.6091 q^{39} -12.1412 q^{40} -428.217 q^{41} -168.495 q^{42} +195.171 q^{43} -96.5661 q^{44} +23.3551 q^{45} -382.808 q^{46} +390.335 q^{47} +54.5199 q^{48} +268.282 q^{49} -245.393 q^{50} +92.1578 q^{51} +87.5823 q^{52} -150.141 q^{53} -288.880 q^{54} +36.6384 q^{55} -197.793 q^{56} +460.264 q^{57} -450.824 q^{58} -423.222 q^{59} -20.6856 q^{60} -142.383 q^{61} -661.065 q^{62} +380.479 q^{63} +64.0000 q^{64} -33.2299 q^{65} -164.524 q^{66} +249.793 q^{67} +108.182 q^{68} -652.208 q^{69} +75.0452 q^{70} +433.982 q^{71} -123.112 q^{72} +221.525 q^{73} +342.013 q^{74} -418.088 q^{75} +540.296 q^{76} +596.878 q^{77} +149.218 q^{78} +413.925 q^{79} -24.2824 q^{80} -76.6766 q^{81} -856.435 q^{82} -294.365 q^{83} -336.989 q^{84} -41.0458 q^{85} +390.341 q^{86} -768.090 q^{87} -193.132 q^{88} +1257.87 q^{89} +46.7102 q^{90} -541.349 q^{91} -765.616 q^{92} -1126.29 q^{93} +780.669 q^{94} -204.995 q^{95} +109.040 q^{96} -86.7492 q^{97} +536.564 q^{98} +371.513 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 13 q + 26 q^{2} - 15 q^{3} + 52 q^{4} - 41 q^{5} - 30 q^{6} - 60 q^{7} + 104 q^{8} + 48 q^{9} - 82 q^{10} - 110 q^{11} - 60 q^{12} - 140 q^{13} - 120 q^{14} - 113 q^{15} + 208 q^{16} - 214 q^{17} + 96 q^{18}+ \cdots + 767 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) 3.40749 0.655773 0.327886 0.944717i \(-0.393664\pi\)
0.327886 + 0.944717i \(0.393664\pi\)
\(4\) 4.00000 0.500000
\(5\) −1.51765 −0.135743 −0.0678715 0.997694i \(-0.521621\pi\)
−0.0678715 + 0.997694i \(0.521621\pi\)
\(6\) 6.81499 0.463701
\(7\) −24.7241 −1.33498 −0.667488 0.744620i \(-0.732631\pi\)
−0.667488 + 0.744620i \(0.732631\pi\)
\(8\) 8.00000 0.353553
\(9\) −15.3890 −0.569962
\(10\) −3.03530 −0.0959847
\(11\) −24.1415 −0.661722 −0.330861 0.943679i \(-0.607339\pi\)
−0.330861 + 0.943679i \(0.607339\pi\)
\(12\) 13.6300 0.327886
\(13\) 21.8956 0.467134 0.233567 0.972341i \(-0.424960\pi\)
0.233567 + 0.972341i \(0.424960\pi\)
\(14\) −49.4482 −0.943971
\(15\) −5.17139 −0.0890165
\(16\) 16.0000 0.250000
\(17\) 27.0456 0.385854 0.192927 0.981213i \(-0.438202\pi\)
0.192927 + 0.981213i \(0.438202\pi\)
\(18\) −30.7780 −0.403024
\(19\) 135.074 1.63095 0.815476 0.578791i \(-0.196475\pi\)
0.815476 + 0.578791i \(0.196475\pi\)
\(20\) −6.07061 −0.0678715
\(21\) −84.2473 −0.875441
\(22\) −48.2830 −0.467908
\(23\) −191.404 −1.73524 −0.867620 0.497229i \(-0.834351\pi\)
−0.867620 + 0.497229i \(0.834351\pi\)
\(24\) 27.2600 0.231851
\(25\) −122.697 −0.981574
\(26\) 43.7912 0.330314
\(27\) −144.440 −1.02954
\(28\) −98.8965 −0.667488
\(29\) −225.412 −1.44338 −0.721689 0.692217i \(-0.756634\pi\)
−0.721689 + 0.692217i \(0.756634\pi\)
\(30\) −10.3428 −0.0629442
\(31\) −330.532 −1.91501 −0.957506 0.288414i \(-0.906872\pi\)
−0.957506 + 0.288414i \(0.906872\pi\)
\(32\) 32.0000 0.176777
\(33\) −82.2621 −0.433939
\(34\) 54.0912 0.272840
\(35\) 37.5226 0.181214
\(36\) −61.5559 −0.284981
\(37\) 171.006 0.759818 0.379909 0.925024i \(-0.375955\pi\)
0.379909 + 0.925024i \(0.375955\pi\)
\(38\) 270.148 1.15326
\(39\) 74.6091 0.306334
\(40\) −12.1412 −0.0479924
\(41\) −428.217 −1.63113 −0.815565 0.578666i \(-0.803574\pi\)
−0.815565 + 0.578666i \(0.803574\pi\)
\(42\) −168.495 −0.619030
\(43\) 195.171 0.692169 0.346084 0.938203i \(-0.387511\pi\)
0.346084 + 0.938203i \(0.387511\pi\)
\(44\) −96.5661 −0.330861
\(45\) 23.3551 0.0773684
\(46\) −382.808 −1.22700
\(47\) 390.335 1.21141 0.605704 0.795690i \(-0.292892\pi\)
0.605704 + 0.795690i \(0.292892\pi\)
\(48\) 54.5199 0.163943
\(49\) 268.282 0.782163
\(50\) −245.393 −0.694078
\(51\) 92.1578 0.253033
\(52\) 87.5823 0.233567
\(53\) −150.141 −0.389122 −0.194561 0.980890i \(-0.562328\pi\)
−0.194561 + 0.980890i \(0.562328\pi\)
\(54\) −288.880 −0.727993
\(55\) 36.6384 0.0898241
\(56\) −197.793 −0.471986
\(57\) 460.264 1.06953
\(58\) −450.824 −1.02062
\(59\) −423.222 −0.933878 −0.466939 0.884290i \(-0.654643\pi\)
−0.466939 + 0.884290i \(0.654643\pi\)
\(60\) −20.6856 −0.0445082
\(61\) −142.383 −0.298857 −0.149428 0.988773i \(-0.547743\pi\)
−0.149428 + 0.988773i \(0.547743\pi\)
\(62\) −661.065 −1.35412
\(63\) 380.479 0.760886
\(64\) 64.0000 0.125000
\(65\) −33.2299 −0.0634101
\(66\) −164.524 −0.306841
\(67\) 249.793 0.455478 0.227739 0.973722i \(-0.426867\pi\)
0.227739 + 0.973722i \(0.426867\pi\)
\(68\) 108.182 0.192927
\(69\) −652.208 −1.13792
\(70\) 75.0452 0.128137
\(71\) 433.982 0.725412 0.362706 0.931904i \(-0.381853\pi\)
0.362706 + 0.931904i \(0.381853\pi\)
\(72\) −123.112 −0.201512
\(73\) 221.525 0.355172 0.177586 0.984105i \(-0.443171\pi\)
0.177586 + 0.984105i \(0.443171\pi\)
\(74\) 342.013 0.537273
\(75\) −418.088 −0.643689
\(76\) 540.296 0.815476
\(77\) 596.878 0.883383
\(78\) 149.218 0.216611
\(79\) 413.925 0.589496 0.294748 0.955575i \(-0.404764\pi\)
0.294748 + 0.955575i \(0.404764\pi\)
\(80\) −24.2824 −0.0339357
\(81\) −76.6766 −0.105181
\(82\) −856.435 −1.15338
\(83\) −294.365 −0.389286 −0.194643 0.980874i \(-0.562355\pi\)
−0.194643 + 0.980874i \(0.562355\pi\)
\(84\) −336.989 −0.437721
\(85\) −41.0458 −0.0523770
\(86\) 390.341 0.489437
\(87\) −768.090 −0.946528
\(88\) −193.132 −0.233954
\(89\) 1257.87 1.49813 0.749067 0.662494i \(-0.230502\pi\)
0.749067 + 0.662494i \(0.230502\pi\)
\(90\) 46.7102 0.0547077
\(91\) −541.349 −0.623613
\(92\) −765.616 −0.867620
\(93\) −1126.29 −1.25581
\(94\) 780.669 0.856595
\(95\) −204.995 −0.221390
\(96\) 109.040 0.115925
\(97\) −86.7492 −0.0908047 −0.0454023 0.998969i \(-0.514457\pi\)
−0.0454023 + 0.998969i \(0.514457\pi\)
\(98\) 536.564 0.553072
\(99\) 371.513 0.377157
\(100\) −490.787 −0.490787
\(101\) −1948.85 −1.91997 −0.959987 0.280045i \(-0.909651\pi\)
−0.959987 + 0.280045i \(0.909651\pi\)
\(102\) 184.316 0.178921
\(103\) 900.399 0.861349 0.430675 0.902507i \(-0.358276\pi\)
0.430675 + 0.902507i \(0.358276\pi\)
\(104\) 175.165 0.165157
\(105\) 127.858 0.118835
\(106\) −300.282 −0.275151
\(107\) 686.009 0.619804 0.309902 0.950769i \(-0.399704\pi\)
0.309902 + 0.950769i \(0.399704\pi\)
\(108\) −577.761 −0.514769
\(109\) −213.561 −0.187664 −0.0938322 0.995588i \(-0.529912\pi\)
−0.0938322 + 0.995588i \(0.529912\pi\)
\(110\) 73.2768 0.0635152
\(111\) 582.703 0.498268
\(112\) −395.586 −0.333744
\(113\) 1136.58 0.946196 0.473098 0.881010i \(-0.343136\pi\)
0.473098 + 0.881010i \(0.343136\pi\)
\(114\) 920.528 0.756275
\(115\) 290.485 0.235546
\(116\) −901.648 −0.721689
\(117\) −336.951 −0.266249
\(118\) −846.444 −0.660351
\(119\) −668.679 −0.515107
\(120\) −41.3711 −0.0314721
\(121\) −748.187 −0.562124
\(122\) −284.766 −0.211323
\(123\) −1459.15 −1.06965
\(124\) −1322.13 −0.957506
\(125\) 375.917 0.268985
\(126\) 760.958 0.538028
\(127\) 17.7360 0.0123922 0.00619611 0.999981i \(-0.498028\pi\)
0.00619611 + 0.999981i \(0.498028\pi\)
\(128\) 128.000 0.0883883
\(129\) 665.043 0.453905
\(130\) −66.4597 −0.0448377
\(131\) 2653.46 1.76972 0.884862 0.465853i \(-0.154252\pi\)
0.884862 + 0.465853i \(0.154252\pi\)
\(132\) −329.048 −0.216970
\(133\) −3339.58 −2.17728
\(134\) 499.585 0.322072
\(135\) 219.210 0.139753
\(136\) 216.365 0.136420
\(137\) 1700.75 1.06062 0.530308 0.847805i \(-0.322076\pi\)
0.530308 + 0.847805i \(0.322076\pi\)
\(138\) −1304.42 −0.804633
\(139\) −1504.11 −0.917823 −0.458911 0.888482i \(-0.651760\pi\)
−0.458911 + 0.888482i \(0.651760\pi\)
\(140\) 150.090 0.0906068
\(141\) 1330.06 0.794408
\(142\) 867.965 0.512944
\(143\) −528.593 −0.309113
\(144\) −246.224 −0.142491
\(145\) 342.097 0.195928
\(146\) 443.050 0.251144
\(147\) 914.169 0.512921
\(148\) 684.026 0.379909
\(149\) 1525.33 0.838657 0.419329 0.907834i \(-0.362265\pi\)
0.419329 + 0.907834i \(0.362265\pi\)
\(150\) −836.177 −0.455157
\(151\) 673.096 0.362754 0.181377 0.983414i \(-0.441945\pi\)
0.181377 + 0.983414i \(0.441945\pi\)
\(152\) 1080.59 0.576629
\(153\) −416.204 −0.219922
\(154\) 1193.76 0.624646
\(155\) 501.633 0.259949
\(156\) 298.436 0.153167
\(157\) −1025.10 −0.521095 −0.260547 0.965461i \(-0.583903\pi\)
−0.260547 + 0.965461i \(0.583903\pi\)
\(158\) 827.850 0.416837
\(159\) −511.605 −0.255175
\(160\) −48.5649 −0.0239962
\(161\) 4732.30 2.31650
\(162\) −153.353 −0.0743739
\(163\) 2223.46 1.06843 0.534217 0.845347i \(-0.320606\pi\)
0.534217 + 0.845347i \(0.320606\pi\)
\(164\) −1712.87 −0.815565
\(165\) 124.845 0.0589042
\(166\) −588.730 −0.275267
\(167\) −3816.65 −1.76851 −0.884256 0.467003i \(-0.845334\pi\)
−0.884256 + 0.467003i \(0.845334\pi\)
\(168\) −673.978 −0.309515
\(169\) −1717.58 −0.781786
\(170\) −82.0916 −0.0370361
\(171\) −2078.65 −0.929581
\(172\) 780.683 0.346084
\(173\) −4212.25 −1.85116 −0.925581 0.378549i \(-0.876423\pi\)
−0.925581 + 0.378549i \(0.876423\pi\)
\(174\) −1536.18 −0.669296
\(175\) 3033.57 1.31038
\(176\) −386.264 −0.165431
\(177\) −1442.13 −0.612412
\(178\) 2515.74 1.05934
\(179\) −2141.00 −0.893998 −0.446999 0.894534i \(-0.647507\pi\)
−0.446999 + 0.894534i \(0.647507\pi\)
\(180\) 93.4205 0.0386842
\(181\) 2106.29 0.864970 0.432485 0.901641i \(-0.357637\pi\)
0.432485 + 0.901641i \(0.357637\pi\)
\(182\) −1082.70 −0.440961
\(183\) −485.169 −0.195982
\(184\) −1531.23 −0.613500
\(185\) −259.528 −0.103140
\(186\) −2252.57 −0.887993
\(187\) −652.922 −0.255328
\(188\) 1561.34 0.605704
\(189\) 3571.16 1.37441
\(190\) −409.991 −0.156547
\(191\) 1583.77 0.599986 0.299993 0.953941i \(-0.403016\pi\)
0.299993 + 0.953941i \(0.403016\pi\)
\(192\) 218.080 0.0819716
\(193\) 1310.02 0.488589 0.244294 0.969701i \(-0.421444\pi\)
0.244294 + 0.969701i \(0.421444\pi\)
\(194\) −173.498 −0.0642086
\(195\) −113.231 −0.0415826
\(196\) 1073.13 0.391081
\(197\) 2597.84 0.939535 0.469767 0.882790i \(-0.344338\pi\)
0.469767 + 0.882790i \(0.344338\pi\)
\(198\) 743.027 0.266690
\(199\) −1392.63 −0.496086 −0.248043 0.968749i \(-0.579787\pi\)
−0.248043 + 0.968749i \(0.579787\pi\)
\(200\) −981.574 −0.347039
\(201\) 851.167 0.298690
\(202\) −3897.69 −1.35763
\(203\) 5573.11 1.92688
\(204\) 368.631 0.126516
\(205\) 649.885 0.221414
\(206\) 1800.80 0.609066
\(207\) 2945.51 0.989021
\(208\) 350.329 0.116783
\(209\) −3260.89 −1.07924
\(210\) 255.716 0.0840290
\(211\) −1159.68 −0.378368 −0.189184 0.981942i \(-0.560584\pi\)
−0.189184 + 0.981942i \(0.560584\pi\)
\(212\) −600.564 −0.194561
\(213\) 1478.79 0.475705
\(214\) 1372.02 0.438268
\(215\) −296.201 −0.0939570
\(216\) −1155.52 −0.363997
\(217\) 8172.12 2.55650
\(218\) −427.121 −0.132699
\(219\) 754.845 0.232912
\(220\) 146.554 0.0449120
\(221\) 592.179 0.180246
\(222\) 1165.41 0.352329
\(223\) −5018.57 −1.50703 −0.753516 0.657429i \(-0.771644\pi\)
−0.753516 + 0.657429i \(0.771644\pi\)
\(224\) −791.172 −0.235993
\(225\) 1888.18 0.559460
\(226\) 2273.15 0.669061
\(227\) −3008.73 −0.879719 −0.439860 0.898067i \(-0.644972\pi\)
−0.439860 + 0.898067i \(0.644972\pi\)
\(228\) 1841.06 0.534767
\(229\) −1551.16 −0.447613 −0.223806 0.974634i \(-0.571848\pi\)
−0.223806 + 0.974634i \(0.571848\pi\)
\(230\) 580.969 0.166556
\(231\) 2033.86 0.579299
\(232\) −1803.30 −0.510311
\(233\) 431.719 0.121386 0.0606928 0.998156i \(-0.480669\pi\)
0.0606928 + 0.998156i \(0.480669\pi\)
\(234\) −673.901 −0.188266
\(235\) −592.392 −0.164440
\(236\) −1692.89 −0.466939
\(237\) 1410.45 0.386575
\(238\) −1337.36 −0.364235
\(239\) −1896.08 −0.513169 −0.256585 0.966522i \(-0.582597\pi\)
−0.256585 + 0.966522i \(0.582597\pi\)
\(240\) −82.7422 −0.0222541
\(241\) −1082.80 −0.289416 −0.144708 0.989474i \(-0.546224\pi\)
−0.144708 + 0.989474i \(0.546224\pi\)
\(242\) −1496.37 −0.397482
\(243\) 3638.61 0.960564
\(244\) −569.531 −0.149428
\(245\) −407.158 −0.106173
\(246\) −2918.30 −0.756357
\(247\) 2957.52 0.761873
\(248\) −2644.26 −0.677059
\(249\) −1003.05 −0.255283
\(250\) 751.835 0.190201
\(251\) −1482.51 −0.372809 −0.186405 0.982473i \(-0.559684\pi\)
−0.186405 + 0.982473i \(0.559684\pi\)
\(252\) 1521.92 0.380443
\(253\) 4620.78 1.14825
\(254\) 35.4719 0.00876262
\(255\) −139.863 −0.0343474
\(256\) 256.000 0.0625000
\(257\) −2290.18 −0.555865 −0.277932 0.960601i \(-0.589649\pi\)
−0.277932 + 0.960601i \(0.589649\pi\)
\(258\) 1330.09 0.320959
\(259\) −4227.98 −1.01434
\(260\) −132.919 −0.0317051
\(261\) 3468.86 0.822671
\(262\) 5306.92 1.25138
\(263\) −2815.61 −0.660144 −0.330072 0.943956i \(-0.607073\pi\)
−0.330072 + 0.943956i \(0.607073\pi\)
\(264\) −658.097 −0.153421
\(265\) 227.862 0.0528205
\(266\) −6679.17 −1.53957
\(267\) 4286.18 0.982435
\(268\) 999.171 0.227739
\(269\) −269.000 −0.0609711
\(270\) 438.420 0.0988200
\(271\) −1744.89 −0.391123 −0.195561 0.980691i \(-0.562653\pi\)
−0.195561 + 0.980691i \(0.562653\pi\)
\(272\) 432.730 0.0964636
\(273\) −1844.64 −0.408948
\(274\) 3401.49 0.749969
\(275\) 2962.09 0.649529
\(276\) −2608.83 −0.568961
\(277\) 1768.88 0.383689 0.191844 0.981425i \(-0.438553\pi\)
0.191844 + 0.981425i \(0.438553\pi\)
\(278\) −3008.23 −0.648999
\(279\) 5086.56 1.09148
\(280\) 300.181 0.0640687
\(281\) 1532.69 0.325384 0.162692 0.986677i \(-0.447982\pi\)
0.162692 + 0.986677i \(0.447982\pi\)
\(282\) 2660.13 0.561731
\(283\) 2210.03 0.464213 0.232107 0.972690i \(-0.425438\pi\)
0.232107 + 0.972690i \(0.425438\pi\)
\(284\) 1735.93 0.362706
\(285\) −698.520 −0.145182
\(286\) −1057.19 −0.218576
\(287\) 10587.3 2.17752
\(288\) −492.447 −0.100756
\(289\) −4181.54 −0.851116
\(290\) 684.194 0.138542
\(291\) −295.598 −0.0595472
\(292\) 886.100 0.177586
\(293\) −8946.98 −1.78392 −0.891960 0.452115i \(-0.850670\pi\)
−0.891960 + 0.452115i \(0.850670\pi\)
\(294\) 1828.34 0.362690
\(295\) 642.304 0.126767
\(296\) 1368.05 0.268636
\(297\) 3487.01 0.681268
\(298\) 3050.66 0.593020
\(299\) −4190.90 −0.810589
\(300\) −1672.35 −0.321845
\(301\) −4825.42 −0.924029
\(302\) 1346.19 0.256505
\(303\) −6640.68 −1.25907
\(304\) 2161.18 0.407738
\(305\) 216.088 0.0405677
\(306\) −832.409 −0.155509
\(307\) 8186.79 1.52197 0.760985 0.648770i \(-0.224716\pi\)
0.760985 + 0.648770i \(0.224716\pi\)
\(308\) 2387.51 0.441692
\(309\) 3068.10 0.564849
\(310\) 1003.27 0.183812
\(311\) 7960.72 1.45148 0.725742 0.687967i \(-0.241497\pi\)
0.725742 + 0.687967i \(0.241497\pi\)
\(312\) 596.872 0.108305
\(313\) 1823.64 0.329324 0.164662 0.986350i \(-0.447347\pi\)
0.164662 + 0.986350i \(0.447347\pi\)
\(314\) −2050.20 −0.368470
\(315\) −577.435 −0.103285
\(316\) 1655.70 0.294748
\(317\) −3619.11 −0.641228 −0.320614 0.947210i \(-0.603889\pi\)
−0.320614 + 0.947210i \(0.603889\pi\)
\(318\) −1023.21 −0.180436
\(319\) 5441.79 0.955115
\(320\) −97.1297 −0.0169679
\(321\) 2337.57 0.406450
\(322\) 9464.59 1.63802
\(323\) 3653.16 0.629310
\(324\) −306.706 −0.0525903
\(325\) −2686.52 −0.458526
\(326\) 4446.92 0.755498
\(327\) −727.707 −0.123065
\(328\) −3425.74 −0.576691
\(329\) −9650.68 −1.61720
\(330\) 249.690 0.0416515
\(331\) −1597.41 −0.265262 −0.132631 0.991165i \(-0.542343\pi\)
−0.132631 + 0.991165i \(0.542343\pi\)
\(332\) −1177.46 −0.194643
\(333\) −2631.61 −0.433068
\(334\) −7633.31 −1.25053
\(335\) −379.098 −0.0618279
\(336\) −1347.96 −0.218860
\(337\) −10728.5 −1.73418 −0.867091 0.498149i \(-0.834013\pi\)
−0.867091 + 0.498149i \(0.834013\pi\)
\(338\) −3435.17 −0.552806
\(339\) 3872.88 0.620489
\(340\) −164.183 −0.0261885
\(341\) 7979.55 1.26721
\(342\) −4157.30 −0.657313
\(343\) 1847.34 0.290808
\(344\) 1561.37 0.244719
\(345\) 989.825 0.154465
\(346\) −8424.49 −1.30897
\(347\) −8540.79 −1.32131 −0.660654 0.750691i \(-0.729721\pi\)
−0.660654 + 0.750691i \(0.729721\pi\)
\(348\) −3072.36 −0.473264
\(349\) 10888.5 1.67004 0.835022 0.550216i \(-0.185455\pi\)
0.835022 + 0.550216i \(0.185455\pi\)
\(350\) 6067.14 0.926577
\(351\) −3162.60 −0.480932
\(352\) −772.529 −0.116977
\(353\) −1760.03 −0.265373 −0.132687 0.991158i \(-0.542360\pi\)
−0.132687 + 0.991158i \(0.542360\pi\)
\(354\) −2884.25 −0.433040
\(355\) −658.634 −0.0984695
\(356\) 5031.48 0.749067
\(357\) −2278.52 −0.337793
\(358\) −4281.99 −0.632152
\(359\) −6463.46 −0.950218 −0.475109 0.879927i \(-0.657591\pi\)
−0.475109 + 0.879927i \(0.657591\pi\)
\(360\) 186.841 0.0273538
\(361\) 11386.0 1.66001
\(362\) 4212.59 0.611626
\(363\) −2549.44 −0.368625
\(364\) −2165.39 −0.311806
\(365\) −336.198 −0.0482121
\(366\) −970.337 −0.138580
\(367\) 6456.84 0.918376 0.459188 0.888339i \(-0.348140\pi\)
0.459188 + 0.888339i \(0.348140\pi\)
\(368\) −3062.46 −0.433810
\(369\) 6589.83 0.929683
\(370\) −519.056 −0.0729310
\(371\) 3712.10 0.519468
\(372\) −4505.15 −0.627906
\(373\) −7517.75 −1.04358 −0.521788 0.853075i \(-0.674735\pi\)
−0.521788 + 0.853075i \(0.674735\pi\)
\(374\) −1305.84 −0.180544
\(375\) 1280.94 0.176393
\(376\) 3122.68 0.428297
\(377\) −4935.53 −0.674251
\(378\) 7142.31 0.971854
\(379\) −12664.4 −1.71643 −0.858214 0.513291i \(-0.828426\pi\)
−0.858214 + 0.513291i \(0.828426\pi\)
\(380\) −819.981 −0.110695
\(381\) 60.4352 0.00812648
\(382\) 3167.53 0.424254
\(383\) 6954.46 0.927824 0.463912 0.885881i \(-0.346445\pi\)
0.463912 + 0.885881i \(0.346445\pi\)
\(384\) 436.159 0.0579627
\(385\) −905.853 −0.119913
\(386\) 2620.05 0.345484
\(387\) −3003.48 −0.394510
\(388\) −346.997 −0.0454023
\(389\) 1671.13 0.217815 0.108907 0.994052i \(-0.465265\pi\)
0.108907 + 0.994052i \(0.465265\pi\)
\(390\) −226.461 −0.0294033
\(391\) −5176.64 −0.669550
\(392\) 2146.25 0.276536
\(393\) 9041.65 1.16054
\(394\) 5195.68 0.664351
\(395\) −628.194 −0.0800199
\(396\) 1486.05 0.188578
\(397\) −12233.3 −1.54653 −0.773267 0.634081i \(-0.781379\pi\)
−0.773267 + 0.634081i \(0.781379\pi\)
\(398\) −2785.27 −0.350786
\(399\) −11379.6 −1.42780
\(400\) −1963.15 −0.245393
\(401\) −13185.9 −1.64208 −0.821038 0.570873i \(-0.806605\pi\)
−0.821038 + 0.570873i \(0.806605\pi\)
\(402\) 1702.33 0.211206
\(403\) −7237.20 −0.894567
\(404\) −7795.38 −0.959987
\(405\) 116.368 0.0142775
\(406\) 11146.2 1.36251
\(407\) −4128.35 −0.502789
\(408\) 737.262 0.0894606
\(409\) 9059.62 1.09528 0.547640 0.836714i \(-0.315527\pi\)
0.547640 + 0.836714i \(0.315527\pi\)
\(410\) 1299.77 0.156564
\(411\) 5795.28 0.695523
\(412\) 3601.60 0.430675
\(413\) 10463.8 1.24671
\(414\) 5891.03 0.699343
\(415\) 446.744 0.0528429
\(416\) 700.659 0.0825784
\(417\) −5125.26 −0.601883
\(418\) −6521.78 −0.763136
\(419\) −9398.92 −1.09586 −0.547932 0.836523i \(-0.684585\pi\)
−0.547932 + 0.836523i \(0.684585\pi\)
\(420\) 511.432 0.0594175
\(421\) −10004.8 −1.15820 −0.579102 0.815255i \(-0.696597\pi\)
−0.579102 + 0.815255i \(0.696597\pi\)
\(422\) −2319.36 −0.267547
\(423\) −6006.85 −0.690457
\(424\) −1201.13 −0.137575
\(425\) −3318.41 −0.378745
\(426\) 2957.58 0.336374
\(427\) 3520.29 0.398966
\(428\) 2744.04 0.309902
\(429\) −1801.18 −0.202708
\(430\) −592.402 −0.0664376
\(431\) 15243.5 1.70360 0.851801 0.523865i \(-0.175510\pi\)
0.851801 + 0.523865i \(0.175510\pi\)
\(432\) −2311.04 −0.257385
\(433\) −1116.95 −0.123966 −0.0619828 0.998077i \(-0.519742\pi\)
−0.0619828 + 0.998077i \(0.519742\pi\)
\(434\) 16344.2 1.80772
\(435\) 1165.69 0.128484
\(436\) −854.243 −0.0938322
\(437\) −25853.7 −2.83009
\(438\) 1509.69 0.164694
\(439\) 9000.27 0.978495 0.489248 0.872145i \(-0.337271\pi\)
0.489248 + 0.872145i \(0.337271\pi\)
\(440\) 293.107 0.0317576
\(441\) −4128.58 −0.445803
\(442\) 1184.36 0.127453
\(443\) −5418.87 −0.581170 −0.290585 0.956849i \(-0.593850\pi\)
−0.290585 + 0.956849i \(0.593850\pi\)
\(444\) 2330.81 0.249134
\(445\) −1909.01 −0.203361
\(446\) −10037.1 −1.06563
\(447\) 5197.56 0.549969
\(448\) −1582.34 −0.166872
\(449\) −11304.0 −1.18812 −0.594062 0.804419i \(-0.702477\pi\)
−0.594062 + 0.804419i \(0.702477\pi\)
\(450\) 3776.36 0.395598
\(451\) 10337.8 1.07935
\(452\) 4546.30 0.473098
\(453\) 2293.57 0.237884
\(454\) −6017.46 −0.622056
\(455\) 821.579 0.0846510
\(456\) 3682.11 0.378137
\(457\) 16511.4 1.69009 0.845043 0.534698i \(-0.179575\pi\)
0.845043 + 0.534698i \(0.179575\pi\)
\(458\) −3102.31 −0.316510
\(459\) −3906.47 −0.397252
\(460\) 1161.94 0.117773
\(461\) 5205.28 0.525888 0.262944 0.964811i \(-0.415307\pi\)
0.262944 + 0.964811i \(0.415307\pi\)
\(462\) 4067.71 0.409626
\(463\) 6418.22 0.644233 0.322116 0.946700i \(-0.395606\pi\)
0.322116 + 0.946700i \(0.395606\pi\)
\(464\) −3606.59 −0.360845
\(465\) 1709.31 0.170468
\(466\) 863.438 0.0858326
\(467\) 14037.9 1.39100 0.695502 0.718524i \(-0.255182\pi\)
0.695502 + 0.718524i \(0.255182\pi\)
\(468\) −1347.80 −0.133124
\(469\) −6175.90 −0.608053
\(470\) −1184.78 −0.116277
\(471\) −3493.02 −0.341720
\(472\) −3385.78 −0.330176
\(473\) −4711.72 −0.458023
\(474\) 2820.89 0.273350
\(475\) −16573.1 −1.60090
\(476\) −2674.71 −0.257553
\(477\) 2310.52 0.221785
\(478\) −3792.17 −0.362865
\(479\) 6783.14 0.647035 0.323517 0.946222i \(-0.395135\pi\)
0.323517 + 0.946222i \(0.395135\pi\)
\(480\) −165.484 −0.0157360
\(481\) 3744.28 0.354937
\(482\) −2165.60 −0.204648
\(483\) 16125.3 1.51910
\(484\) −2992.75 −0.281062
\(485\) 131.655 0.0123261
\(486\) 7277.22 0.679221
\(487\) −959.214 −0.0892528 −0.0446264 0.999004i \(-0.514210\pi\)
−0.0446264 + 0.999004i \(0.514210\pi\)
\(488\) −1139.06 −0.105662
\(489\) 7576.43 0.700650
\(490\) −814.317 −0.0750757
\(491\) 7370.51 0.677447 0.338723 0.940886i \(-0.390005\pi\)
0.338723 + 0.940886i \(0.390005\pi\)
\(492\) −5836.59 −0.534825
\(493\) −6096.41 −0.556934
\(494\) 5915.05 0.538726
\(495\) −563.828 −0.0511963
\(496\) −5288.52 −0.478753
\(497\) −10729.8 −0.968408
\(498\) −2006.10 −0.180513
\(499\) −159.784 −0.0143345 −0.00716725 0.999974i \(-0.502281\pi\)
−0.00716725 + 0.999974i \(0.502281\pi\)
\(500\) 1503.67 0.134492
\(501\) −13005.2 −1.15974
\(502\) −2965.02 −0.263616
\(503\) −6117.45 −0.542274 −0.271137 0.962541i \(-0.587400\pi\)
−0.271137 + 0.962541i \(0.587400\pi\)
\(504\) 3043.83 0.269014
\(505\) 2957.67 0.260623
\(506\) 9241.57 0.811933
\(507\) −5852.66 −0.512674
\(508\) 70.9438 0.00619611
\(509\) −2953.79 −0.257219 −0.128610 0.991695i \(-0.541051\pi\)
−0.128610 + 0.991695i \(0.541051\pi\)
\(510\) −279.727 −0.0242873
\(511\) −5477.01 −0.474146
\(512\) 512.000 0.0441942
\(513\) −19510.1 −1.67913
\(514\) −4580.35 −0.393056
\(515\) −1366.49 −0.116922
\(516\) 2660.17 0.226953
\(517\) −9423.27 −0.801615
\(518\) −8455.96 −0.717247
\(519\) −14353.2 −1.21394
\(520\) −265.839 −0.0224189
\(521\) −6433.70 −0.541009 −0.270504 0.962719i \(-0.587190\pi\)
−0.270504 + 0.962719i \(0.587190\pi\)
\(522\) 6937.72 0.581716
\(523\) −9670.04 −0.808492 −0.404246 0.914650i \(-0.632466\pi\)
−0.404246 + 0.914650i \(0.632466\pi\)
\(524\) 10613.8 0.884862
\(525\) 10336.9 0.859310
\(526\) −5631.22 −0.466792
\(527\) −8939.45 −0.738915
\(528\) −1316.19 −0.108485
\(529\) 24468.5 2.01106
\(530\) 455.724 0.0373497
\(531\) 6512.95 0.532275
\(532\) −13358.3 −1.08864
\(533\) −9376.07 −0.761956
\(534\) 8572.37 0.694686
\(535\) −1041.12 −0.0841340
\(536\) 1998.34 0.161036
\(537\) −7295.44 −0.586259
\(538\) −538.000 −0.0431131
\(539\) −6476.73 −0.517574
\(540\) 876.840 0.0698763
\(541\) −9497.13 −0.754739 −0.377369 0.926063i \(-0.623171\pi\)
−0.377369 + 0.926063i \(0.623171\pi\)
\(542\) −3489.77 −0.276566
\(543\) 7177.18 0.567224
\(544\) 865.459 0.0682101
\(545\) 324.111 0.0254741
\(546\) −3689.29 −0.289170
\(547\) −13128.8 −1.02623 −0.513115 0.858320i \(-0.671509\pi\)
−0.513115 + 0.858320i \(0.671509\pi\)
\(548\) 6802.98 0.530308
\(549\) 2191.13 0.170337
\(550\) 5924.17 0.459286
\(551\) −30447.3 −2.35408
\(552\) −5217.67 −0.402316
\(553\) −10233.9 −0.786963
\(554\) 3537.76 0.271309
\(555\) −884.341 −0.0676364
\(556\) −6016.46 −0.458911
\(557\) −25580.9 −1.94595 −0.972976 0.230905i \(-0.925831\pi\)
−0.972976 + 0.230905i \(0.925831\pi\)
\(558\) 10173.1 0.771796
\(559\) 4273.38 0.323335
\(560\) 600.362 0.0453034
\(561\) −2224.83 −0.167437
\(562\) 3065.39 0.230081
\(563\) 3109.95 0.232804 0.116402 0.993202i \(-0.462864\pi\)
0.116402 + 0.993202i \(0.462864\pi\)
\(564\) 5320.25 0.397204
\(565\) −1724.93 −0.128439
\(566\) 4420.05 0.328248
\(567\) 1895.76 0.140414
\(568\) 3471.86 0.256472
\(569\) −23750.3 −1.74985 −0.874925 0.484258i \(-0.839090\pi\)
−0.874925 + 0.484258i \(0.839090\pi\)
\(570\) −1397.04 −0.102659
\(571\) 2105.75 0.154331 0.0771654 0.997018i \(-0.475413\pi\)
0.0771654 + 0.997018i \(0.475413\pi\)
\(572\) −2114.37 −0.154556
\(573\) 5396.67 0.393454
\(574\) 21174.6 1.53974
\(575\) 23484.7 1.70327
\(576\) −984.895 −0.0712453
\(577\) −116.705 −0.00842028 −0.00421014 0.999991i \(-0.501340\pi\)
−0.00421014 + 0.999991i \(0.501340\pi\)
\(578\) −8363.07 −0.601830
\(579\) 4463.90 0.320403
\(580\) 1368.39 0.0979642
\(581\) 7277.92 0.519688
\(582\) −591.195 −0.0421062
\(583\) 3624.63 0.257490
\(584\) 1772.20 0.125572
\(585\) 511.374 0.0361414
\(586\) −17894.0 −1.26142
\(587\) 14628.0 1.02856 0.514278 0.857624i \(-0.328060\pi\)
0.514278 + 0.857624i \(0.328060\pi\)
\(588\) 3656.67 0.256460
\(589\) −44646.3 −3.12329
\(590\) 1284.61 0.0896380
\(591\) 8852.12 0.616121
\(592\) 2736.10 0.189955
\(593\) 3363.86 0.232946 0.116473 0.993194i \(-0.462841\pi\)
0.116473 + 0.993194i \(0.462841\pi\)
\(594\) 6974.01 0.481729
\(595\) 1014.82 0.0699221
\(596\) 6101.32 0.419329
\(597\) −4745.39 −0.325320
\(598\) −8381.80 −0.573173
\(599\) 19587.8 1.33612 0.668059 0.744108i \(-0.267125\pi\)
0.668059 + 0.744108i \(0.267125\pi\)
\(600\) −3344.71 −0.227578
\(601\) −26502.6 −1.79877 −0.899387 0.437153i \(-0.855987\pi\)
−0.899387 + 0.437153i \(0.855987\pi\)
\(602\) −9650.84 −0.653387
\(603\) −3844.06 −0.259605
\(604\) 2692.38 0.181377
\(605\) 1135.49 0.0763044
\(606\) −13281.4 −0.890294
\(607\) −22872.0 −1.52940 −0.764698 0.644388i \(-0.777112\pi\)
−0.764698 + 0.644388i \(0.777112\pi\)
\(608\) 4322.37 0.288314
\(609\) 18990.3 1.26359
\(610\) 432.175 0.0286857
\(611\) 8546.60 0.565890
\(612\) −1664.82 −0.109961
\(613\) −18154.1 −1.19615 −0.598073 0.801442i \(-0.704067\pi\)
−0.598073 + 0.801442i \(0.704067\pi\)
\(614\) 16373.6 1.07619
\(615\) 2214.48 0.145197
\(616\) 4775.02 0.312323
\(617\) −15347.7 −1.00142 −0.500708 0.865616i \(-0.666927\pi\)
−0.500708 + 0.865616i \(0.666927\pi\)
\(618\) 6136.21 0.399409
\(619\) 25371.4 1.64743 0.823717 0.567001i \(-0.191897\pi\)
0.823717 + 0.567001i \(0.191897\pi\)
\(620\) 2006.53 0.129975
\(621\) 27646.4 1.78650
\(622\) 15921.4 1.02635
\(623\) −31099.7 −1.99997
\(624\) 1193.74 0.0765834
\(625\) 14766.6 0.945061
\(626\) 3647.29 0.232867
\(627\) −11111.5 −0.707734
\(628\) −4100.40 −0.260547
\(629\) 4624.97 0.293179
\(630\) −1154.87 −0.0730335
\(631\) −8022.02 −0.506104 −0.253052 0.967453i \(-0.581434\pi\)
−0.253052 + 0.967453i \(0.581434\pi\)
\(632\) 3311.40 0.208418
\(633\) −3951.61 −0.248124
\(634\) −7238.21 −0.453417
\(635\) −26.9170 −0.00168216
\(636\) −2046.42 −0.127588
\(637\) 5874.18 0.365375
\(638\) 10883.6 0.675368
\(639\) −6678.55 −0.413457
\(640\) −194.259 −0.0119981
\(641\) 21454.8 1.32202 0.661010 0.750377i \(-0.270128\pi\)
0.661010 + 0.750377i \(0.270128\pi\)
\(642\) 4675.15 0.287404
\(643\) 23631.8 1.44937 0.724686 0.689080i \(-0.241985\pi\)
0.724686 + 0.689080i \(0.241985\pi\)
\(644\) 18929.2 1.15825
\(645\) −1009.30 −0.0616144
\(646\) 7306.32 0.444989
\(647\) 6347.20 0.385679 0.192840 0.981230i \(-0.438230\pi\)
0.192840 + 0.981230i \(0.438230\pi\)
\(648\) −613.413 −0.0371869
\(649\) 10217.2 0.617968
\(650\) −5373.03 −0.324227
\(651\) 27846.4 1.67648
\(652\) 8893.84 0.534217
\(653\) 2481.65 0.148721 0.0743603 0.997231i \(-0.476308\pi\)
0.0743603 + 0.997231i \(0.476308\pi\)
\(654\) −1455.41 −0.0870202
\(655\) −4027.03 −0.240228
\(656\) −6851.48 −0.407782
\(657\) −3409.05 −0.202435
\(658\) −19301.4 −1.14353
\(659\) −10707.7 −0.632951 −0.316475 0.948601i \(-0.602499\pi\)
−0.316475 + 0.948601i \(0.602499\pi\)
\(660\) 499.381 0.0294521
\(661\) −32837.0 −1.93224 −0.966120 0.258093i \(-0.916906\pi\)
−0.966120 + 0.258093i \(0.916906\pi\)
\(662\) −3194.82 −0.187568
\(663\) 2017.85 0.118200
\(664\) −2354.92 −0.137634
\(665\) 5068.33 0.295551
\(666\) −5263.23 −0.306225
\(667\) 43144.8 2.50461
\(668\) −15266.6 −0.884256
\(669\) −17100.8 −0.988271
\(670\) −758.197 −0.0437189
\(671\) 3437.34 0.197760
\(672\) −2695.91 −0.154758
\(673\) 13069.6 0.748583 0.374291 0.927311i \(-0.377886\pi\)
0.374291 + 0.927311i \(0.377886\pi\)
\(674\) −21457.0 −1.22625
\(675\) 17722.3 1.01057
\(676\) −6870.33 −0.390893
\(677\) −27617.9 −1.56786 −0.783932 0.620847i \(-0.786789\pi\)
−0.783932 + 0.620847i \(0.786789\pi\)
\(678\) 7745.75 0.438752
\(679\) 2144.80 0.121222
\(680\) −328.367 −0.0185181
\(681\) −10252.2 −0.576896
\(682\) 15959.1 0.896049
\(683\) −8519.21 −0.477275 −0.238637 0.971109i \(-0.576701\pi\)
−0.238637 + 0.971109i \(0.576701\pi\)
\(684\) −8314.60 −0.464791
\(685\) −2581.14 −0.143971
\(686\) 3694.68 0.205632
\(687\) −5285.56 −0.293532
\(688\) 3122.73 0.173042
\(689\) −3287.42 −0.181772
\(690\) 1979.65 0.109223
\(691\) 31072.6 1.71065 0.855323 0.518096i \(-0.173359\pi\)
0.855323 + 0.518096i \(0.173359\pi\)
\(692\) −16849.0 −0.925581
\(693\) −9185.34 −0.503495
\(694\) −17081.6 −0.934305
\(695\) 2282.72 0.124588
\(696\) −6144.72 −0.334648
\(697\) −11581.4 −0.629378
\(698\) 21776.9 1.18090
\(699\) 1471.08 0.0796014
\(700\) 12134.3 0.655189
\(701\) 662.282 0.0356834 0.0178417 0.999841i \(-0.494321\pi\)
0.0178417 + 0.999841i \(0.494321\pi\)
\(702\) −6325.20 −0.340070
\(703\) 23098.5 1.23923
\(704\) −1545.06 −0.0827153
\(705\) −2018.57 −0.107835
\(706\) −3520.05 −0.187647
\(707\) 48183.5 2.56312
\(708\) −5768.50 −0.306206
\(709\) 9426.56 0.499326 0.249663 0.968333i \(-0.419680\pi\)
0.249663 + 0.968333i \(0.419680\pi\)
\(710\) −1317.27 −0.0696285
\(711\) −6369.88 −0.335991
\(712\) 10063.0 0.529670
\(713\) 63265.2 3.32300
\(714\) −4557.04 −0.238856
\(715\) 802.219 0.0419599
\(716\) −8563.99 −0.446999
\(717\) −6460.89 −0.336522
\(718\) −12926.9 −0.671906
\(719\) −30710.1 −1.59290 −0.796450 0.604705i \(-0.793291\pi\)
−0.796450 + 0.604705i \(0.793291\pi\)
\(720\) 373.682 0.0193421
\(721\) −22261.6 −1.14988
\(722\) 22772.0 1.17380
\(723\) −3689.64 −0.189791
\(724\) 8425.17 0.432485
\(725\) 27657.3 1.41678
\(726\) −5098.89 −0.260658
\(727\) 22568.5 1.15133 0.575667 0.817684i \(-0.304742\pi\)
0.575667 + 0.817684i \(0.304742\pi\)
\(728\) −4330.79 −0.220480
\(729\) 14468.8 0.735092
\(730\) −672.396 −0.0340911
\(731\) 5278.51 0.267076
\(732\) −1940.67 −0.0979909
\(733\) 4535.51 0.228544 0.114272 0.993449i \(-0.463546\pi\)
0.114272 + 0.993449i \(0.463546\pi\)
\(734\) 12913.7 0.649390
\(735\) −1387.39 −0.0696254
\(736\) −6124.93 −0.306750
\(737\) −6030.37 −0.301400
\(738\) 13179.7 0.657385
\(739\) 31404.5 1.56324 0.781619 0.623756i \(-0.214394\pi\)
0.781619 + 0.623756i \(0.214394\pi\)
\(740\) −1038.11 −0.0515700
\(741\) 10077.7 0.499616
\(742\) 7424.21 0.367320
\(743\) 12752.7 0.629677 0.314838 0.949145i \(-0.398050\pi\)
0.314838 + 0.949145i \(0.398050\pi\)
\(744\) −9010.29 −0.443997
\(745\) −2314.92 −0.113842
\(746\) −15035.5 −0.737920
\(747\) 4529.98 0.221879
\(748\) −2611.69 −0.127664
\(749\) −16961.0 −0.827424
\(750\) 2561.87 0.124728
\(751\) −2887.72 −0.140312 −0.0701560 0.997536i \(-0.522350\pi\)
−0.0701560 + 0.997536i \(0.522350\pi\)
\(752\) 6245.36 0.302852
\(753\) −5051.64 −0.244478
\(754\) −9871.05 −0.476767
\(755\) −1021.53 −0.0492412
\(756\) 14284.6 0.687205
\(757\) 6581.74 0.316007 0.158004 0.987439i \(-0.449494\pi\)
0.158004 + 0.987439i \(0.449494\pi\)
\(758\) −25328.8 −1.21370
\(759\) 15745.3 0.752988
\(760\) −1639.96 −0.0782733
\(761\) −3453.84 −0.164523 −0.0822613 0.996611i \(-0.526214\pi\)
−0.0822613 + 0.996611i \(0.526214\pi\)
\(762\) 120.870 0.00574629
\(763\) 5280.10 0.250527
\(764\) 6335.06 0.299993
\(765\) 631.653 0.0298529
\(766\) 13908.9 0.656070
\(767\) −9266.69 −0.436246
\(768\) 872.319 0.0409858
\(769\) 30668.7 1.43816 0.719079 0.694928i \(-0.244564\pi\)
0.719079 + 0.694928i \(0.244564\pi\)
\(770\) −1811.71 −0.0847913
\(771\) −7803.76 −0.364521
\(772\) 5240.10 0.244294
\(773\) 9792.34 0.455635 0.227818 0.973704i \(-0.426841\pi\)
0.227818 + 0.973704i \(0.426841\pi\)
\(774\) −6006.96 −0.278961
\(775\) 40555.2 1.87973
\(776\) −693.994 −0.0321043
\(777\) −14406.8 −0.665176
\(778\) 3342.27 0.154018
\(779\) −57841.0 −2.66029
\(780\) −452.922 −0.0207913
\(781\) −10477.0 −0.480021
\(782\) −10353.3 −0.473443
\(783\) 32558.6 1.48601
\(784\) 4292.51 0.195541
\(785\) 1555.74 0.0707349
\(786\) 18083.3 0.820623
\(787\) 38453.8 1.74171 0.870857 0.491536i \(-0.163564\pi\)
0.870857 + 0.491536i \(0.163564\pi\)
\(788\) 10391.4 0.469767
\(789\) −9594.17 −0.432904
\(790\) −1256.39 −0.0565826
\(791\) −28100.8 −1.26315
\(792\) 2972.11 0.133345
\(793\) −3117.55 −0.139606
\(794\) −24466.7 −1.09356
\(795\) 776.438 0.0346382
\(796\) −5570.53 −0.248043
\(797\) −1335.78 −0.0593674 −0.0296837 0.999559i \(-0.509450\pi\)
−0.0296837 + 0.999559i \(0.509450\pi\)
\(798\) −22759.2 −1.00961
\(799\) 10556.8 0.467427
\(800\) −3926.30 −0.173519
\(801\) −19357.3 −0.853880
\(802\) −26371.8 −1.16112
\(803\) −5347.95 −0.235025
\(804\) 3404.67 0.149345
\(805\) −7181.98 −0.314449
\(806\) −14474.4 −0.632554
\(807\) −916.616 −0.0399832
\(808\) −15590.8 −0.678813
\(809\) 8481.43 0.368592 0.184296 0.982871i \(-0.440999\pi\)
0.184296 + 0.982871i \(0.440999\pi\)
\(810\) 232.737 0.0100957
\(811\) −28127.1 −1.21785 −0.608925 0.793228i \(-0.708399\pi\)
−0.608925 + 0.793228i \(0.708399\pi\)
\(812\) 22292.5 0.963438
\(813\) −5945.69 −0.256488
\(814\) −8256.71 −0.355525
\(815\) −3374.44 −0.145032
\(816\) 1474.52 0.0632582
\(817\) 26362.5 1.12889
\(818\) 18119.2 0.774479
\(819\) 8330.81 0.355436
\(820\) 2599.54 0.110707
\(821\) −16757.1 −0.712337 −0.356168 0.934422i \(-0.615917\pi\)
−0.356168 + 0.934422i \(0.615917\pi\)
\(822\) 11590.6 0.491809
\(823\) 26047.5 1.10323 0.551614 0.834099i \(-0.314012\pi\)
0.551614 + 0.834099i \(0.314012\pi\)
\(824\) 7203.19 0.304533
\(825\) 10093.3 0.425943
\(826\) 20927.6 0.881554
\(827\) −23807.6 −1.00105 −0.500526 0.865721i \(-0.666860\pi\)
−0.500526 + 0.865721i \(0.666860\pi\)
\(828\) 11782.1 0.494511
\(829\) −11270.9 −0.472201 −0.236101 0.971729i \(-0.575869\pi\)
−0.236101 + 0.971729i \(0.575869\pi\)
\(830\) 893.488 0.0373656
\(831\) 6027.45 0.251612
\(832\) 1401.32 0.0583917
\(833\) 7255.84 0.301801
\(834\) −10250.5 −0.425595
\(835\) 5792.35 0.240063
\(836\) −13043.6 −0.539619
\(837\) 47742.2 1.97158
\(838\) −18797.8 −0.774893
\(839\) −33284.4 −1.36961 −0.684807 0.728725i \(-0.740113\pi\)
−0.684807 + 0.728725i \(0.740113\pi\)
\(840\) 1022.86 0.0420145
\(841\) 26421.6 1.08334
\(842\) −20009.6 −0.818974
\(843\) 5222.65 0.213378
\(844\) −4638.72 −0.189184
\(845\) 2606.69 0.106122
\(846\) −12013.7 −0.488227
\(847\) 18498.3 0.750422
\(848\) −2402.26 −0.0972804
\(849\) 7530.65 0.304418
\(850\) −6636.82 −0.267813
\(851\) −32731.3 −1.31847
\(852\) 5915.17 0.237853
\(853\) 15920.5 0.639049 0.319524 0.947578i \(-0.396477\pi\)
0.319524 + 0.947578i \(0.396477\pi\)
\(854\) 7040.58 0.282112
\(855\) 3154.67 0.126184
\(856\) 5488.08 0.219134
\(857\) −35133.4 −1.40039 −0.700196 0.713951i \(-0.746904\pi\)
−0.700196 + 0.713951i \(0.746904\pi\)
\(858\) −3602.35 −0.143336
\(859\) −33334.7 −1.32406 −0.662029 0.749478i \(-0.730305\pi\)
−0.662029 + 0.749478i \(0.730305\pi\)
\(860\) −1184.80 −0.0469785
\(861\) 36076.1 1.42796
\(862\) 30487.0 1.20463
\(863\) 28167.7 1.11105 0.555527 0.831498i \(-0.312516\pi\)
0.555527 + 0.831498i \(0.312516\pi\)
\(864\) −4622.09 −0.181998
\(865\) 6392.72 0.251282
\(866\) −2233.90 −0.0876570
\(867\) −14248.6 −0.558139
\(868\) 32688.5 1.27825
\(869\) −9992.77 −0.390082
\(870\) 2331.39 0.0908522
\(871\) 5469.36 0.212769
\(872\) −1708.49 −0.0663494
\(873\) 1334.98 0.0517552
\(874\) −51707.4 −2.00118
\(875\) −9294.23 −0.359088
\(876\) 3019.38 0.116456
\(877\) −20115.1 −0.774501 −0.387251 0.921974i \(-0.626575\pi\)
−0.387251 + 0.921974i \(0.626575\pi\)
\(878\) 18000.5 0.691901
\(879\) −30486.8 −1.16985
\(880\) 586.215 0.0224560
\(881\) 28290.6 1.08188 0.540938 0.841062i \(-0.318069\pi\)
0.540938 + 0.841062i \(0.318069\pi\)
\(882\) −8257.17 −0.315230
\(883\) 33470.4 1.27561 0.637807 0.770196i \(-0.279842\pi\)
0.637807 + 0.770196i \(0.279842\pi\)
\(884\) 2368.72 0.0901228
\(885\) 2188.65 0.0831305
\(886\) −10837.7 −0.410949
\(887\) −28668.7 −1.08523 −0.542616 0.839981i \(-0.682566\pi\)
−0.542616 + 0.839981i \(0.682566\pi\)
\(888\) 4661.63 0.176164
\(889\) −438.506 −0.0165433
\(890\) −3818.02 −0.143798
\(891\) 1851.09 0.0696003
\(892\) −20074.3 −0.753516
\(893\) 52724.1 1.97575
\(894\) 10395.1 0.388886
\(895\) 3249.29 0.121354
\(896\) −3164.69 −0.117996
\(897\) −14280.5 −0.531562
\(898\) −22608.0 −0.840131
\(899\) 74506.0 2.76409
\(900\) 7552.71 0.279730
\(901\) −4060.65 −0.150144
\(902\) 20675.6 0.763219
\(903\) −16442.6 −0.605953
\(904\) 9092.61 0.334531
\(905\) −3196.62 −0.117414
\(906\) 4587.14 0.168209
\(907\) 17672.9 0.646988 0.323494 0.946230i \(-0.395143\pi\)
0.323494 + 0.946230i \(0.395143\pi\)
\(908\) −12034.9 −0.439860
\(909\) 29990.8 1.09431
\(910\) 1643.16 0.0598573
\(911\) −26005.8 −0.945784 −0.472892 0.881120i \(-0.656790\pi\)
−0.472892 + 0.881120i \(0.656790\pi\)
\(912\) 7364.22 0.267383
\(913\) 7106.42 0.257599
\(914\) 33022.7 1.19507
\(915\) 736.317 0.0266032
\(916\) −6204.63 −0.223806
\(917\) −65604.4 −2.36254
\(918\) −7812.95 −0.280899
\(919\) 25914.6 0.930187 0.465094 0.885261i \(-0.346021\pi\)
0.465094 + 0.885261i \(0.346021\pi\)
\(920\) 2323.88 0.0832782
\(921\) 27896.4 0.998066
\(922\) 10410.6 0.371859
\(923\) 9502.30 0.338864
\(924\) 8135.43 0.289649
\(925\) −20981.9 −0.745818
\(926\) 12836.4 0.455541
\(927\) −13856.2 −0.490937
\(928\) −7213.19 −0.255156
\(929\) 1775.24 0.0626951 0.0313476 0.999509i \(-0.490020\pi\)
0.0313476 + 0.999509i \(0.490020\pi\)
\(930\) 3418.62 0.120539
\(931\) 36237.9 1.27567
\(932\) 1726.88 0.0606928
\(933\) 27126.1 0.951843
\(934\) 28075.9 0.983588
\(935\) 990.909 0.0346590
\(936\) −2695.61 −0.0941331
\(937\) −15444.3 −0.538466 −0.269233 0.963075i \(-0.586770\pi\)
−0.269233 + 0.963075i \(0.586770\pi\)
\(938\) −12351.8 −0.429958
\(939\) 6214.06 0.215962
\(940\) −2369.57 −0.0822200
\(941\) 32278.7 1.11823 0.559115 0.829090i \(-0.311141\pi\)
0.559115 + 0.829090i \(0.311141\pi\)
\(942\) −6986.04 −0.241632
\(943\) 81962.5 2.83040
\(944\) −6771.55 −0.233469
\(945\) −5419.77 −0.186566
\(946\) −9423.43 −0.323871
\(947\) 2548.59 0.0874529 0.0437265 0.999044i \(-0.486077\pi\)
0.0437265 + 0.999044i \(0.486077\pi\)
\(948\) 5641.79 0.193288
\(949\) 4850.42 0.165913
\(950\) −33146.3 −1.13201
\(951\) −12332.1 −0.420500
\(952\) −5349.43 −0.182118
\(953\) −22955.4 −0.780271 −0.390136 0.920757i \(-0.627572\pi\)
−0.390136 + 0.920757i \(0.627572\pi\)
\(954\) 4621.03 0.156825
\(955\) −2403.60 −0.0814438
\(956\) −7584.33 −0.256585
\(957\) 18542.9 0.626338
\(958\) 13566.3 0.457523
\(959\) −42049.4 −1.41590
\(960\) −330.969 −0.0111271
\(961\) 79460.6 2.66727
\(962\) 7488.57 0.250978
\(963\) −10557.0 −0.353265
\(964\) −4331.21 −0.144708
\(965\) −1988.16 −0.0663224
\(966\) 32250.5 1.07417
\(967\) 54820.1 1.82306 0.911528 0.411237i \(-0.134903\pi\)
0.911528 + 0.411237i \(0.134903\pi\)
\(968\) −5985.50 −0.198741
\(969\) 12448.1 0.412684
\(970\) 263.310 0.00871586
\(971\) 2907.74 0.0961007 0.0480504 0.998845i \(-0.484699\pi\)
0.0480504 + 0.998845i \(0.484699\pi\)
\(972\) 14554.4 0.480282
\(973\) 37187.9 1.22527
\(974\) −1918.43 −0.0631113
\(975\) −9154.29 −0.300689
\(976\) −2278.12 −0.0747141
\(977\) −43351.2 −1.41958 −0.709789 0.704415i \(-0.751210\pi\)
−0.709789 + 0.704415i \(0.751210\pi\)
\(978\) 15152.9 0.495435
\(979\) −30366.9 −0.991348
\(980\) −1628.63 −0.0530865
\(981\) 3286.48 0.106962
\(982\) 14741.0 0.479027
\(983\) −11683.0 −0.379074 −0.189537 0.981874i \(-0.560699\pi\)
−0.189537 + 0.981874i \(0.560699\pi\)
\(984\) −11673.2 −0.378178
\(985\) −3942.61 −0.127535
\(986\) −12192.8 −0.393812
\(987\) −32884.6 −1.06052
\(988\) 11830.1 0.380937
\(989\) −37356.5 −1.20108
\(990\) −1127.66 −0.0362013
\(991\) −44062.4 −1.41240 −0.706200 0.708013i \(-0.749592\pi\)
−0.706200 + 0.708013i \(0.749592\pi\)
\(992\) −10577.0 −0.338529
\(993\) −5443.17 −0.173951
\(994\) −21459.7 −0.684768
\(995\) 2113.53 0.0673402
\(996\) −4012.19 −0.127642
\(997\) −30706.1 −0.975398 −0.487699 0.873012i \(-0.662164\pi\)
−0.487699 + 0.873012i \(0.662164\pi\)
\(998\) −319.568 −0.0101360
\(999\) −24700.2 −0.782262
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.a.1.10 13
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.a.1.10 13 1.1 even 1 trivial