Properties

Label 538.4.a.b.1.2
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 4 x^{14} - 262 x^{13} + 870 x^{12} + 26403 x^{11} - 73750 x^{10} - 1270273 x^{9} + \cdots + 4484581281 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.2
Root \(9.56722\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -8.56722 q^{3} +4.00000 q^{4} -3.91913 q^{5} +17.1344 q^{6} -8.79649 q^{7} -8.00000 q^{8} +46.3972 q^{9} +7.83826 q^{10} -20.7785 q^{11} -34.2689 q^{12} -4.62558 q^{13} +17.5930 q^{14} +33.5760 q^{15} +16.0000 q^{16} -65.4047 q^{17} -92.7944 q^{18} -65.6710 q^{19} -15.6765 q^{20} +75.3614 q^{21} +41.5570 q^{22} +102.572 q^{23} +68.5377 q^{24} -109.640 q^{25} +9.25116 q^{26} -166.180 q^{27} -35.1859 q^{28} -294.284 q^{29} -67.1520 q^{30} -236.193 q^{31} -32.0000 q^{32} +178.014 q^{33} +130.809 q^{34} +34.4746 q^{35} +185.589 q^{36} -349.271 q^{37} +131.342 q^{38} +39.6284 q^{39} +31.3530 q^{40} -213.966 q^{41} -150.723 q^{42} +439.249 q^{43} -83.1139 q^{44} -181.837 q^{45} -205.144 q^{46} -408.782 q^{47} -137.075 q^{48} -265.622 q^{49} +219.281 q^{50} +560.336 q^{51} -18.5023 q^{52} +563.247 q^{53} +332.360 q^{54} +81.4335 q^{55} +70.3719 q^{56} +562.618 q^{57} +588.567 q^{58} +707.804 q^{59} +134.304 q^{60} -530.692 q^{61} +472.387 q^{62} -408.132 q^{63} +64.0000 q^{64} +18.1282 q^{65} -356.028 q^{66} -404.851 q^{67} -261.619 q^{68} -878.757 q^{69} -68.9491 q^{70} -393.079 q^{71} -371.178 q^{72} +319.407 q^{73} +698.542 q^{74} +939.313 q^{75} -262.684 q^{76} +182.778 q^{77} -79.2567 q^{78} +1263.45 q^{79} -62.7060 q^{80} +170.975 q^{81} +427.933 q^{82} +956.077 q^{83} +301.446 q^{84} +256.329 q^{85} -878.499 q^{86} +2521.19 q^{87} +166.228 q^{88} -625.916 q^{89} +363.673 q^{90} +40.6889 q^{91} +410.288 q^{92} +2023.52 q^{93} +817.564 q^{94} +257.373 q^{95} +274.151 q^{96} -18.2342 q^{97} +531.244 q^{98} -964.063 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + 11 q^{3} + 60 q^{4} + 29 q^{5} - 22 q^{6} + 5 q^{7} - 120 q^{8} + 142 q^{9} - 58 q^{10} + 79 q^{11} + 44 q^{12} - 14 q^{13} - 10 q^{14} + 67 q^{15} + 240 q^{16} + 94 q^{17} - 284 q^{18}+ \cdots + 7068 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −8.56722 −1.64876 −0.824381 0.566036i \(-0.808476\pi\)
−0.824381 + 0.566036i \(0.808476\pi\)
\(4\) 4.00000 0.500000
\(5\) −3.91913 −0.350537 −0.175269 0.984521i \(-0.556079\pi\)
−0.175269 + 0.984521i \(0.556079\pi\)
\(6\) 17.1344 1.16585
\(7\) −8.79649 −0.474966 −0.237483 0.971392i \(-0.576322\pi\)
−0.237483 + 0.971392i \(0.576322\pi\)
\(8\) −8.00000 −0.353553
\(9\) 46.3972 1.71841
\(10\) 7.83826 0.247867
\(11\) −20.7785 −0.569541 −0.284770 0.958596i \(-0.591917\pi\)
−0.284770 + 0.958596i \(0.591917\pi\)
\(12\) −34.2689 −0.824381
\(13\) −4.62558 −0.0986850 −0.0493425 0.998782i \(-0.515713\pi\)
−0.0493425 + 0.998782i \(0.515713\pi\)
\(14\) 17.5930 0.335851
\(15\) 33.5760 0.577953
\(16\) 16.0000 0.250000
\(17\) −65.4047 −0.933115 −0.466558 0.884491i \(-0.654506\pi\)
−0.466558 + 0.884491i \(0.654506\pi\)
\(18\) −92.7944 −1.21510
\(19\) −65.6710 −0.792945 −0.396473 0.918047i \(-0.629766\pi\)
−0.396473 + 0.918047i \(0.629766\pi\)
\(20\) −15.6765 −0.175269
\(21\) 75.3614 0.783105
\(22\) 41.5570 0.402726
\(23\) 102.572 0.929902 0.464951 0.885336i \(-0.346072\pi\)
0.464951 + 0.885336i \(0.346072\pi\)
\(24\) 68.5377 0.582925
\(25\) −109.640 −0.877124
\(26\) 9.25116 0.0697808
\(27\) −166.180 −1.18449
\(28\) −35.1859 −0.237483
\(29\) −294.284 −1.88438 −0.942192 0.335074i \(-0.891239\pi\)
−0.942192 + 0.335074i \(0.891239\pi\)
\(30\) −67.1520 −0.408674
\(31\) −236.193 −1.36844 −0.684219 0.729277i \(-0.739857\pi\)
−0.684219 + 0.729277i \(0.739857\pi\)
\(32\) −32.0000 −0.176777
\(33\) 178.014 0.939037
\(34\) 130.809 0.659812
\(35\) 34.4746 0.166493
\(36\) 185.589 0.859207
\(37\) −349.271 −1.55189 −0.775944 0.630802i \(-0.782726\pi\)
−0.775944 + 0.630802i \(0.782726\pi\)
\(38\) 131.342 0.560697
\(39\) 39.6284 0.162708
\(40\) 31.3530 0.123934
\(41\) −213.966 −0.815022 −0.407511 0.913200i \(-0.633603\pi\)
−0.407511 + 0.913200i \(0.633603\pi\)
\(42\) −150.723 −0.553739
\(43\) 439.249 1.55779 0.778894 0.627155i \(-0.215781\pi\)
0.778894 + 0.627155i \(0.215781\pi\)
\(44\) −83.1139 −0.284770
\(45\) −181.837 −0.602369
\(46\) −205.144 −0.657540
\(47\) −408.782 −1.26866 −0.634330 0.773063i \(-0.718724\pi\)
−0.634330 + 0.773063i \(0.718724\pi\)
\(48\) −137.075 −0.412190
\(49\) −265.622 −0.774408
\(50\) 219.281 0.620220
\(51\) 560.336 1.53848
\(52\) −18.5023 −0.0493425
\(53\) 563.247 1.45977 0.729886 0.683569i \(-0.239573\pi\)
0.729886 + 0.683569i \(0.239573\pi\)
\(54\) 332.360 0.837564
\(55\) 81.4335 0.199645
\(56\) 70.3719 0.167926
\(57\) 562.618 1.30738
\(58\) 588.567 1.33246
\(59\) 707.804 1.56183 0.780917 0.624635i \(-0.214752\pi\)
0.780917 + 0.624635i \(0.214752\pi\)
\(60\) 134.304 0.288976
\(61\) −530.692 −1.11390 −0.556952 0.830545i \(-0.688029\pi\)
−0.556952 + 0.830545i \(0.688029\pi\)
\(62\) 472.387 0.967632
\(63\) −408.132 −0.816188
\(64\) 64.0000 0.125000
\(65\) 18.1282 0.0345928
\(66\) −356.028 −0.663999
\(67\) −404.851 −0.738216 −0.369108 0.929387i \(-0.620337\pi\)
−0.369108 + 0.929387i \(0.620337\pi\)
\(68\) −261.619 −0.466558
\(69\) −878.757 −1.53319
\(70\) −68.9491 −0.117728
\(71\) −393.079 −0.657041 −0.328521 0.944497i \(-0.606550\pi\)
−0.328521 + 0.944497i \(0.606550\pi\)
\(72\) −371.178 −0.607551
\(73\) 319.407 0.512107 0.256054 0.966663i \(-0.417578\pi\)
0.256054 + 0.966663i \(0.417578\pi\)
\(74\) 698.542 1.09735
\(75\) 939.313 1.44617
\(76\) −262.684 −0.396473
\(77\) 182.778 0.270512
\(78\) −79.2567 −0.115052
\(79\) 1263.45 1.79935 0.899676 0.436559i \(-0.143803\pi\)
0.899676 + 0.436559i \(0.143803\pi\)
\(80\) −62.7060 −0.0876344
\(81\) 170.975 0.234534
\(82\) 427.933 0.576308
\(83\) 956.077 1.26437 0.632187 0.774816i \(-0.282157\pi\)
0.632187 + 0.774816i \(0.282157\pi\)
\(84\) 301.446 0.391552
\(85\) 256.329 0.327092
\(86\) −878.499 −1.10152
\(87\) 2521.19 3.10690
\(88\) 166.228 0.201363
\(89\) −625.916 −0.745471 −0.372736 0.927938i \(-0.621580\pi\)
−0.372736 + 0.927938i \(0.621580\pi\)
\(90\) 363.673 0.425939
\(91\) 40.6889 0.0468720
\(92\) 410.288 0.464951
\(93\) 2023.52 2.25623
\(94\) 817.564 0.897078
\(95\) 257.373 0.277957
\(96\) 274.151 0.291463
\(97\) −18.2342 −0.0190866 −0.00954331 0.999954i \(-0.503038\pi\)
−0.00954331 + 0.999954i \(0.503038\pi\)
\(98\) 531.244 0.547589
\(99\) −964.063 −0.978707
\(100\) −438.562 −0.438562
\(101\) −336.934 −0.331942 −0.165971 0.986131i \(-0.553076\pi\)
−0.165971 + 0.986131i \(0.553076\pi\)
\(102\) −1120.67 −1.08787
\(103\) −1864.34 −1.78349 −0.891744 0.452540i \(-0.850518\pi\)
−0.891744 + 0.452540i \(0.850518\pi\)
\(104\) 37.0046 0.0348904
\(105\) −295.351 −0.274508
\(106\) −1126.49 −1.03222
\(107\) 1070.55 0.967232 0.483616 0.875280i \(-0.339323\pi\)
0.483616 + 0.875280i \(0.339323\pi\)
\(108\) −664.720 −0.592247
\(109\) 1007.69 0.885493 0.442747 0.896647i \(-0.354004\pi\)
0.442747 + 0.896647i \(0.354004\pi\)
\(110\) −162.867 −0.141171
\(111\) 2992.28 2.55869
\(112\) −140.744 −0.118741
\(113\) 2365.30 1.96911 0.984553 0.175087i \(-0.0560208\pi\)
0.984553 + 0.175087i \(0.0560208\pi\)
\(114\) −1125.24 −0.924456
\(115\) −401.993 −0.325965
\(116\) −1177.13 −0.942192
\(117\) −214.614 −0.169582
\(118\) −1415.61 −1.10438
\(119\) 575.331 0.443198
\(120\) −268.608 −0.204337
\(121\) −899.255 −0.675623
\(122\) 1061.38 0.787649
\(123\) 1833.10 1.34378
\(124\) −944.773 −0.684219
\(125\) 919.586 0.658002
\(126\) 816.265 0.577132
\(127\) 477.027 0.333302 0.166651 0.986016i \(-0.446705\pi\)
0.166651 + 0.986016i \(0.446705\pi\)
\(128\) −128.000 −0.0883883
\(129\) −3763.14 −2.56842
\(130\) −36.2565 −0.0244608
\(131\) −347.246 −0.231595 −0.115798 0.993273i \(-0.536942\pi\)
−0.115798 + 0.993273i \(0.536942\pi\)
\(132\) 712.055 0.469519
\(133\) 577.674 0.376622
\(134\) 809.703 0.521997
\(135\) 651.280 0.415210
\(136\) 523.237 0.329906
\(137\) −1343.23 −0.837660 −0.418830 0.908065i \(-0.637560\pi\)
−0.418830 + 0.908065i \(0.637560\pi\)
\(138\) 1757.51 1.08413
\(139\) 1170.49 0.714245 0.357123 0.934058i \(-0.383758\pi\)
0.357123 + 0.934058i \(0.383758\pi\)
\(140\) 137.898 0.0832466
\(141\) 3502.12 2.09172
\(142\) 786.158 0.464598
\(143\) 96.1126 0.0562052
\(144\) 742.355 0.429604
\(145\) 1153.34 0.660547
\(146\) −638.815 −0.362114
\(147\) 2275.64 1.27681
\(148\) −1397.08 −0.775944
\(149\) −18.6408 −0.0102491 −0.00512454 0.999987i \(-0.501631\pi\)
−0.00512454 + 0.999987i \(0.501631\pi\)
\(150\) −1878.63 −1.02259
\(151\) 319.970 0.172442 0.0862212 0.996276i \(-0.472521\pi\)
0.0862212 + 0.996276i \(0.472521\pi\)
\(152\) 525.368 0.280349
\(153\) −3034.59 −1.60348
\(154\) −365.555 −0.191281
\(155\) 925.672 0.479689
\(156\) 158.513 0.0813540
\(157\) −1752.68 −0.890947 −0.445474 0.895295i \(-0.646965\pi\)
−0.445474 + 0.895295i \(0.646965\pi\)
\(158\) −2526.89 −1.27233
\(159\) −4825.46 −2.40682
\(160\) 125.412 0.0619668
\(161\) −902.273 −0.441671
\(162\) −341.951 −0.165841
\(163\) 814.914 0.391589 0.195794 0.980645i \(-0.437272\pi\)
0.195794 + 0.980645i \(0.437272\pi\)
\(164\) −855.865 −0.407511
\(165\) −697.659 −0.329168
\(166\) −1912.15 −0.894048
\(167\) 2659.81 1.23247 0.616234 0.787563i \(-0.288657\pi\)
0.616234 + 0.787563i \(0.288657\pi\)
\(168\) −602.891 −0.276869
\(169\) −2175.60 −0.990261
\(170\) −512.658 −0.231289
\(171\) −3046.95 −1.36261
\(172\) 1757.00 0.778894
\(173\) −2002.84 −0.880190 −0.440095 0.897951i \(-0.645055\pi\)
−0.440095 + 0.897951i \(0.645055\pi\)
\(174\) −5042.38 −2.19691
\(175\) 964.451 0.416603
\(176\) −332.456 −0.142385
\(177\) −6063.91 −2.57509
\(178\) 1251.83 0.527128
\(179\) −3258.26 −1.36052 −0.680262 0.732969i \(-0.738134\pi\)
−0.680262 + 0.732969i \(0.738134\pi\)
\(180\) −727.346 −0.301184
\(181\) 4096.45 1.68225 0.841124 0.540842i \(-0.181894\pi\)
0.841124 + 0.540842i \(0.181894\pi\)
\(182\) −81.3777 −0.0331435
\(183\) 4546.55 1.83656
\(184\) −820.576 −0.328770
\(185\) 1368.84 0.543994
\(186\) −4047.04 −1.59539
\(187\) 1359.01 0.531447
\(188\) −1635.13 −0.634330
\(189\) 1461.80 0.562594
\(190\) −514.746 −0.196545
\(191\) −4880.90 −1.84906 −0.924528 0.381113i \(-0.875541\pi\)
−0.924528 + 0.381113i \(0.875541\pi\)
\(192\) −548.302 −0.206095
\(193\) −3673.29 −1.37000 −0.684998 0.728545i \(-0.740197\pi\)
−0.684998 + 0.728545i \(0.740197\pi\)
\(194\) 36.4684 0.0134963
\(195\) −155.309 −0.0570353
\(196\) −1062.49 −0.387204
\(197\) 4320.60 1.56259 0.781295 0.624162i \(-0.214559\pi\)
0.781295 + 0.624162i \(0.214559\pi\)
\(198\) 1928.13 0.692051
\(199\) −4624.68 −1.64741 −0.823706 0.567017i \(-0.808097\pi\)
−0.823706 + 0.567017i \(0.808097\pi\)
\(200\) 877.124 0.310110
\(201\) 3468.45 1.21714
\(202\) 673.868 0.234719
\(203\) 2588.66 0.895017
\(204\) 2241.34 0.769242
\(205\) 838.561 0.285696
\(206\) 3728.69 1.26112
\(207\) 4759.05 1.59796
\(208\) −74.0093 −0.0246713
\(209\) 1364.54 0.451615
\(210\) 590.702 0.194106
\(211\) −2887.80 −0.942201 −0.471100 0.882080i \(-0.656143\pi\)
−0.471100 + 0.882080i \(0.656143\pi\)
\(212\) 2252.99 0.729886
\(213\) 3367.59 1.08330
\(214\) −2141.10 −0.683936
\(215\) −1721.47 −0.546063
\(216\) 1329.44 0.418782
\(217\) 2077.67 0.649961
\(218\) −2015.37 −0.626138
\(219\) −2736.43 −0.844342
\(220\) 325.734 0.0998227
\(221\) 302.535 0.0920845
\(222\) −5984.56 −1.80927
\(223\) −876.910 −0.263328 −0.131664 0.991294i \(-0.542032\pi\)
−0.131664 + 0.991294i \(0.542032\pi\)
\(224\) 281.488 0.0839628
\(225\) −5087.01 −1.50726
\(226\) −4730.61 −1.39237
\(227\) 1639.66 0.479419 0.239710 0.970845i \(-0.422948\pi\)
0.239710 + 0.970845i \(0.422948\pi\)
\(228\) 2250.47 0.653689
\(229\) 1903.72 0.549351 0.274675 0.961537i \(-0.411430\pi\)
0.274675 + 0.961537i \(0.411430\pi\)
\(230\) 803.986 0.230492
\(231\) −1565.90 −0.446010
\(232\) 2354.27 0.666230
\(233\) 6193.76 1.74149 0.870743 0.491738i \(-0.163638\pi\)
0.870743 + 0.491738i \(0.163638\pi\)
\(234\) 429.228 0.119912
\(235\) 1602.07 0.444713
\(236\) 2831.21 0.780917
\(237\) −10824.2 −2.96670
\(238\) −1150.66 −0.313388
\(239\) 4914.38 1.33006 0.665031 0.746816i \(-0.268418\pi\)
0.665031 + 0.746816i \(0.268418\pi\)
\(240\) 537.216 0.144488
\(241\) 4839.50 1.29353 0.646763 0.762691i \(-0.276122\pi\)
0.646763 + 0.762691i \(0.276122\pi\)
\(242\) 1798.51 0.477738
\(243\) 3022.08 0.797803
\(244\) −2122.77 −0.556952
\(245\) 1041.01 0.271459
\(246\) −3666.19 −0.950194
\(247\) 303.767 0.0782518
\(248\) 1889.55 0.483816
\(249\) −8190.92 −2.08465
\(250\) −1839.17 −0.465278
\(251\) −3118.20 −0.784139 −0.392070 0.919935i \(-0.628241\pi\)
−0.392070 + 0.919935i \(0.628241\pi\)
\(252\) −1632.53 −0.408094
\(253\) −2131.29 −0.529617
\(254\) −954.054 −0.235680
\(255\) −2196.03 −0.539296
\(256\) 256.000 0.0625000
\(257\) 4360.89 1.05846 0.529231 0.848478i \(-0.322480\pi\)
0.529231 + 0.848478i \(0.322480\pi\)
\(258\) 7526.29 1.81615
\(259\) 3072.36 0.737093
\(260\) 72.5130 0.0172964
\(261\) −13653.9 −3.23815
\(262\) 694.491 0.163763
\(263\) −3762.86 −0.882236 −0.441118 0.897449i \(-0.645418\pi\)
−0.441118 + 0.897449i \(0.645418\pi\)
\(264\) −1424.11 −0.332000
\(265\) −2207.44 −0.511705
\(266\) −1155.35 −0.266312
\(267\) 5362.35 1.22910
\(268\) −1619.41 −0.369108
\(269\) −269.000 −0.0609711
\(270\) −1302.56 −0.293598
\(271\) 3124.09 0.700276 0.350138 0.936698i \(-0.386135\pi\)
0.350138 + 0.936698i \(0.386135\pi\)
\(272\) −1046.47 −0.233279
\(273\) −348.590 −0.0772807
\(274\) 2686.45 0.592315
\(275\) 2278.16 0.499558
\(276\) −3515.03 −0.766593
\(277\) −3145.09 −0.682203 −0.341102 0.940026i \(-0.610800\pi\)
−0.341102 + 0.940026i \(0.610800\pi\)
\(278\) −2340.99 −0.505048
\(279\) −10958.7 −2.35154
\(280\) −275.796 −0.0588642
\(281\) 2281.22 0.484293 0.242147 0.970240i \(-0.422148\pi\)
0.242147 + 0.970240i \(0.422148\pi\)
\(282\) −7004.25 −1.47907
\(283\) 4220.93 0.886602 0.443301 0.896373i \(-0.353807\pi\)
0.443301 + 0.896373i \(0.353807\pi\)
\(284\) −1572.32 −0.328521
\(285\) −2204.97 −0.458285
\(286\) −192.225 −0.0397430
\(287\) 1882.15 0.387108
\(288\) −1484.71 −0.303776
\(289\) −635.230 −0.129296
\(290\) −2306.67 −0.467077
\(291\) 156.216 0.0314693
\(292\) 1277.63 0.256054
\(293\) −2543.56 −0.507155 −0.253577 0.967315i \(-0.581607\pi\)
−0.253577 + 0.967315i \(0.581607\pi\)
\(294\) −4551.28 −0.902844
\(295\) −2773.97 −0.547481
\(296\) 2794.17 0.548675
\(297\) 3452.97 0.674618
\(298\) 37.2816 0.00724719
\(299\) −474.455 −0.0917674
\(300\) 3757.25 0.723084
\(301\) −3863.85 −0.739896
\(302\) −639.940 −0.121935
\(303\) 2886.59 0.547294
\(304\) −1050.74 −0.198236
\(305\) 2079.85 0.390465
\(306\) 6069.19 1.13383
\(307\) −104.075 −0.0193481 −0.00967403 0.999953i \(-0.503079\pi\)
−0.00967403 + 0.999953i \(0.503079\pi\)
\(308\) 731.111 0.135256
\(309\) 15972.2 2.94055
\(310\) −1851.34 −0.339191
\(311\) 4174.21 0.761086 0.380543 0.924763i \(-0.375737\pi\)
0.380543 + 0.924763i \(0.375737\pi\)
\(312\) −317.027 −0.0575260
\(313\) −6030.19 −1.08897 −0.544483 0.838772i \(-0.683274\pi\)
−0.544483 + 0.838772i \(0.683274\pi\)
\(314\) 3505.35 0.629995
\(315\) 1599.52 0.286104
\(316\) 5053.78 0.899676
\(317\) 4123.80 0.730649 0.365324 0.930880i \(-0.380958\pi\)
0.365324 + 0.930880i \(0.380958\pi\)
\(318\) 9650.92 1.70188
\(319\) 6114.77 1.07323
\(320\) −250.824 −0.0438172
\(321\) −9171.62 −1.59473
\(322\) 1804.55 0.312309
\(323\) 4295.19 0.739909
\(324\) 683.902 0.117267
\(325\) 507.151 0.0865590
\(326\) −1629.83 −0.276895
\(327\) −8633.06 −1.45997
\(328\) 1711.73 0.288154
\(329\) 3595.85 0.602570
\(330\) 1395.32 0.232757
\(331\) 2336.11 0.387928 0.193964 0.981009i \(-0.437866\pi\)
0.193964 + 0.981009i \(0.437866\pi\)
\(332\) 3824.31 0.632187
\(333\) −16205.2 −2.66679
\(334\) −5319.62 −0.871487
\(335\) 1586.66 0.258772
\(336\) 1205.78 0.195776
\(337\) −7892.98 −1.27584 −0.637920 0.770103i \(-0.720205\pi\)
−0.637920 + 0.770103i \(0.720205\pi\)
\(338\) 4351.21 0.700220
\(339\) −20264.1 −3.24659
\(340\) 1025.32 0.163546
\(341\) 4907.74 0.779381
\(342\) 6093.90 0.963510
\(343\) 5353.73 0.842783
\(344\) −3514.00 −0.550761
\(345\) 3443.96 0.537439
\(346\) 4005.67 0.622388
\(347\) 3891.02 0.601962 0.300981 0.953630i \(-0.402686\pi\)
0.300981 + 0.953630i \(0.402686\pi\)
\(348\) 10084.8 1.55345
\(349\) −11706.2 −1.79547 −0.897736 0.440534i \(-0.854789\pi\)
−0.897736 + 0.440534i \(0.854789\pi\)
\(350\) −1928.90 −0.294583
\(351\) 768.679 0.116892
\(352\) 664.912 0.100682
\(353\) 3176.80 0.478991 0.239495 0.970897i \(-0.423018\pi\)
0.239495 + 0.970897i \(0.423018\pi\)
\(354\) 12127.8 1.82086
\(355\) 1540.53 0.230318
\(356\) −2503.66 −0.372736
\(357\) −4928.99 −0.730727
\(358\) 6516.52 0.962036
\(359\) 4871.15 0.716127 0.358064 0.933697i \(-0.383437\pi\)
0.358064 + 0.933697i \(0.383437\pi\)
\(360\) 1454.69 0.212969
\(361\) −2546.32 −0.371238
\(362\) −8192.90 −1.18953
\(363\) 7704.11 1.11394
\(364\) 162.755 0.0234360
\(365\) −1251.80 −0.179513
\(366\) −9093.11 −1.29865
\(367\) 2226.29 0.316652 0.158326 0.987387i \(-0.449390\pi\)
0.158326 + 0.987387i \(0.449390\pi\)
\(368\) 1641.15 0.232475
\(369\) −9927.44 −1.40055
\(370\) −2737.68 −0.384662
\(371\) −4954.60 −0.693342
\(372\) 8094.08 1.12811
\(373\) −8816.62 −1.22388 −0.611940 0.790904i \(-0.709610\pi\)
−0.611940 + 0.790904i \(0.709610\pi\)
\(374\) −2718.02 −0.375790
\(375\) −7878.29 −1.08489
\(376\) 3270.26 0.448539
\(377\) 1361.23 0.185960
\(378\) −2923.60 −0.397814
\(379\) 9053.02 1.22697 0.613486 0.789705i \(-0.289767\pi\)
0.613486 + 0.789705i \(0.289767\pi\)
\(380\) 1029.49 0.138979
\(381\) −4086.79 −0.549535
\(382\) 9761.81 1.30748
\(383\) −7441.05 −0.992741 −0.496370 0.868111i \(-0.665334\pi\)
−0.496370 + 0.868111i \(0.665334\pi\)
\(384\) 1096.60 0.145731
\(385\) −716.329 −0.0948247
\(386\) 7346.58 0.968733
\(387\) 20379.9 2.67693
\(388\) −72.9368 −0.00954331
\(389\) 9412.93 1.22687 0.613437 0.789743i \(-0.289786\pi\)
0.613437 + 0.789743i \(0.289786\pi\)
\(390\) 310.617 0.0403300
\(391\) −6708.69 −0.867706
\(392\) 2124.97 0.273794
\(393\) 2974.93 0.381845
\(394\) −8641.21 −1.10492
\(395\) −4951.61 −0.630740
\(396\) −3856.25 −0.489354
\(397\) 2461.26 0.311151 0.155575 0.987824i \(-0.450277\pi\)
0.155575 + 0.987824i \(0.450277\pi\)
\(398\) 9249.36 1.16490
\(399\) −4949.06 −0.620959
\(400\) −1754.25 −0.219281
\(401\) −1975.56 −0.246021 −0.123011 0.992405i \(-0.539255\pi\)
−0.123011 + 0.992405i \(0.539255\pi\)
\(402\) −6936.90 −0.860649
\(403\) 1092.53 0.135044
\(404\) −1347.74 −0.165971
\(405\) −670.075 −0.0822130
\(406\) −5177.33 −0.632873
\(407\) 7257.33 0.883863
\(408\) −4482.69 −0.543936
\(409\) −2506.50 −0.303028 −0.151514 0.988455i \(-0.548415\pi\)
−0.151514 + 0.988455i \(0.548415\pi\)
\(410\) −1677.12 −0.202017
\(411\) 11507.7 1.38110
\(412\) −7457.37 −0.891744
\(413\) −6226.18 −0.741817
\(414\) −9518.11 −1.12993
\(415\) −3746.99 −0.443211
\(416\) 148.019 0.0174452
\(417\) −10027.9 −1.17762
\(418\) −2729.09 −0.319340
\(419\) 8566.84 0.998849 0.499424 0.866358i \(-0.333545\pi\)
0.499424 + 0.866358i \(0.333545\pi\)
\(420\) −1181.40 −0.137254
\(421\) 8177.17 0.946630 0.473315 0.880893i \(-0.343057\pi\)
0.473315 + 0.880893i \(0.343057\pi\)
\(422\) 5775.60 0.666237
\(423\) −18966.3 −2.18008
\(424\) −4505.98 −0.516108
\(425\) 7171.00 0.818457
\(426\) −6735.19 −0.766012
\(427\) 4668.23 0.529066
\(428\) 4282.19 0.483616
\(429\) −823.417 −0.0926689
\(430\) 3442.95 0.386125
\(431\) 13772.5 1.53921 0.769605 0.638520i \(-0.220453\pi\)
0.769605 + 0.638520i \(0.220453\pi\)
\(432\) −2658.88 −0.296124
\(433\) −130.033 −0.0144319 −0.00721595 0.999974i \(-0.502297\pi\)
−0.00721595 + 0.999974i \(0.502297\pi\)
\(434\) −4155.34 −0.459592
\(435\) −9880.87 −1.08908
\(436\) 4030.74 0.442747
\(437\) −6736.01 −0.737361
\(438\) 5472.87 0.597040
\(439\) −10139.8 −1.10238 −0.551189 0.834380i \(-0.685826\pi\)
−0.551189 + 0.834380i \(0.685826\pi\)
\(440\) −651.468 −0.0705853
\(441\) −12324.1 −1.33075
\(442\) −605.069 −0.0651136
\(443\) −4992.22 −0.535412 −0.267706 0.963501i \(-0.586266\pi\)
−0.267706 + 0.963501i \(0.586266\pi\)
\(444\) 11969.1 1.27935
\(445\) 2453.04 0.261316
\(446\) 1753.82 0.186201
\(447\) 159.700 0.0168983
\(448\) −562.975 −0.0593707
\(449\) 12347.0 1.29776 0.648878 0.760893i \(-0.275239\pi\)
0.648878 + 0.760893i \(0.275239\pi\)
\(450\) 10174.0 1.06580
\(451\) 4445.90 0.464189
\(452\) 9461.21 0.984553
\(453\) −2741.25 −0.284316
\(454\) −3279.32 −0.339001
\(455\) −159.465 −0.0164304
\(456\) −4500.94 −0.462228
\(457\) −1742.55 −0.178365 −0.0891825 0.996015i \(-0.528425\pi\)
−0.0891825 + 0.996015i \(0.528425\pi\)
\(458\) −3807.44 −0.388450
\(459\) 10868.9 1.10527
\(460\) −1607.97 −0.162983
\(461\) −3993.01 −0.403413 −0.201706 0.979446i \(-0.564649\pi\)
−0.201706 + 0.979446i \(0.564649\pi\)
\(462\) 3131.79 0.315377
\(463\) 11933.7 1.19785 0.598924 0.800806i \(-0.295595\pi\)
0.598924 + 0.800806i \(0.295595\pi\)
\(464\) −4708.54 −0.471096
\(465\) −7930.43 −0.790892
\(466\) −12387.5 −1.23142
\(467\) 7008.75 0.694489 0.347244 0.937775i \(-0.387117\pi\)
0.347244 + 0.937775i \(0.387117\pi\)
\(468\) −858.456 −0.0847909
\(469\) 3561.27 0.350627
\(470\) −3204.14 −0.314459
\(471\) 15015.5 1.46896
\(472\) −5662.43 −0.552192
\(473\) −9126.94 −0.887224
\(474\) 21648.4 2.09778
\(475\) 7200.20 0.695511
\(476\) 2301.32 0.221599
\(477\) 26133.1 2.50849
\(478\) −9828.76 −0.940496
\(479\) −13942.4 −1.32995 −0.664976 0.746865i \(-0.731558\pi\)
−0.664976 + 0.746865i \(0.731558\pi\)
\(480\) −1074.43 −0.102169
\(481\) 1615.58 0.153148
\(482\) −9679.00 −0.914661
\(483\) 7729.97 0.728211
\(484\) −3597.02 −0.337812
\(485\) 71.4621 0.00669057
\(486\) −6044.15 −0.564132
\(487\) 4196.59 0.390484 0.195242 0.980755i \(-0.437451\pi\)
0.195242 + 0.980755i \(0.437451\pi\)
\(488\) 4245.54 0.393825
\(489\) −6981.54 −0.645636
\(490\) −2082.01 −0.191950
\(491\) −2111.33 −0.194059 −0.0970295 0.995282i \(-0.530934\pi\)
−0.0970295 + 0.995282i \(0.530934\pi\)
\(492\) 7332.38 0.671889
\(493\) 19247.5 1.75835
\(494\) −607.533 −0.0553324
\(495\) 3778.29 0.343074
\(496\) −3779.09 −0.342109
\(497\) 3457.72 0.312072
\(498\) 16381.8 1.47407
\(499\) 20437.0 1.83344 0.916720 0.399531i \(-0.130827\pi\)
0.916720 + 0.399531i \(0.130827\pi\)
\(500\) 3678.34 0.329001
\(501\) −22787.2 −2.03205
\(502\) 6236.40 0.554470
\(503\) 454.849 0.0403196 0.0201598 0.999797i \(-0.493583\pi\)
0.0201598 + 0.999797i \(0.493583\pi\)
\(504\) 3265.06 0.288566
\(505\) 1320.49 0.116358
\(506\) 4262.58 0.374496
\(507\) 18638.9 1.63270
\(508\) 1908.11 0.166651
\(509\) 6333.30 0.551510 0.275755 0.961228i \(-0.411072\pi\)
0.275755 + 0.961228i \(0.411072\pi\)
\(510\) 4392.06 0.381340
\(511\) −2809.66 −0.243233
\(512\) −512.000 −0.0441942
\(513\) 10913.2 0.939239
\(514\) −8721.78 −0.748446
\(515\) 7306.60 0.625179
\(516\) −15052.6 −1.28421
\(517\) 8493.87 0.722553
\(518\) −6144.72 −0.521203
\(519\) 17158.7 1.45122
\(520\) −145.026 −0.0122304
\(521\) 1590.59 0.133752 0.0668762 0.997761i \(-0.478697\pi\)
0.0668762 + 0.997761i \(0.478697\pi\)
\(522\) 27307.9 2.28972
\(523\) −12164.9 −1.01708 −0.508542 0.861037i \(-0.669815\pi\)
−0.508542 + 0.861037i \(0.669815\pi\)
\(524\) −1388.98 −0.115798
\(525\) −8262.66 −0.686880
\(526\) 7525.73 0.623835
\(527\) 15448.1 1.27691
\(528\) 2848.22 0.234759
\(529\) −1645.98 −0.135282
\(530\) 4414.87 0.361830
\(531\) 32840.1 2.68388
\(532\) 2310.70 0.188311
\(533\) 989.718 0.0804305
\(534\) −10724.7 −0.869108
\(535\) −4195.61 −0.339051
\(536\) 3238.81 0.260999
\(537\) 27914.2 2.24318
\(538\) 538.000 0.0431131
\(539\) 5519.22 0.441057
\(540\) 2605.12 0.207605
\(541\) −6567.20 −0.521897 −0.260948 0.965353i \(-0.584035\pi\)
−0.260948 + 0.965353i \(0.584035\pi\)
\(542\) −6248.17 −0.495170
\(543\) −35095.2 −2.77363
\(544\) 2092.95 0.164953
\(545\) −3949.25 −0.310399
\(546\) 697.180 0.0546457
\(547\) −13457.3 −1.05190 −0.525951 0.850515i \(-0.676291\pi\)
−0.525951 + 0.850515i \(0.676291\pi\)
\(548\) −5372.90 −0.418830
\(549\) −24622.6 −1.91415
\(550\) −4556.32 −0.353241
\(551\) 19325.9 1.49421
\(552\) 7030.05 0.542063
\(553\) −11113.9 −0.854630
\(554\) 6290.19 0.482391
\(555\) −11727.1 −0.896917
\(556\) 4681.98 0.357123
\(557\) 10125.6 0.770262 0.385131 0.922862i \(-0.374156\pi\)
0.385131 + 0.922862i \(0.374156\pi\)
\(558\) 21917.4 1.66279
\(559\) −2031.78 −0.153730
\(560\) 551.593 0.0416233
\(561\) −11642.9 −0.876230
\(562\) −4562.45 −0.342447
\(563\) −10284.4 −0.769867 −0.384933 0.922944i \(-0.625776\pi\)
−0.384933 + 0.922944i \(0.625776\pi\)
\(564\) 14008.5 1.04586
\(565\) −9269.92 −0.690245
\(566\) −8441.87 −0.626923
\(567\) −1503.98 −0.111396
\(568\) 3144.63 0.232299
\(569\) −4089.80 −0.301324 −0.150662 0.988585i \(-0.548141\pi\)
−0.150662 + 0.988585i \(0.548141\pi\)
\(570\) 4409.94 0.324056
\(571\) 5467.48 0.400712 0.200356 0.979723i \(-0.435790\pi\)
0.200356 + 0.979723i \(0.435790\pi\)
\(572\) 384.450 0.0281026
\(573\) 41815.8 3.04865
\(574\) −3764.30 −0.273726
\(575\) −11246.0 −0.815639
\(576\) 2969.42 0.214802
\(577\) 15170.9 1.09458 0.547290 0.836943i \(-0.315659\pi\)
0.547290 + 0.836943i \(0.315659\pi\)
\(578\) 1270.46 0.0914259
\(579\) 31469.9 2.25880
\(580\) 4613.34 0.330273
\(581\) −8410.12 −0.600534
\(582\) −312.433 −0.0222521
\(583\) −11703.4 −0.831400
\(584\) −2555.26 −0.181057
\(585\) 841.100 0.0594448
\(586\) 5087.12 0.358613
\(587\) −15977.1 −1.12341 −0.561707 0.827336i \(-0.689855\pi\)
−0.561707 + 0.827336i \(0.689855\pi\)
\(588\) 9102.56 0.638407
\(589\) 15511.1 1.08510
\(590\) 5547.94 0.387128
\(591\) −37015.5 −2.57634
\(592\) −5588.34 −0.387972
\(593\) −17473.5 −1.21003 −0.605017 0.796213i \(-0.706834\pi\)
−0.605017 + 0.796213i \(0.706834\pi\)
\(594\) −6905.94 −0.477027
\(595\) −2254.80 −0.155357
\(596\) −74.5631 −0.00512454
\(597\) 39620.6 2.71619
\(598\) 948.910 0.0648893
\(599\) 1908.73 0.130198 0.0650988 0.997879i \(-0.479264\pi\)
0.0650988 + 0.997879i \(0.479264\pi\)
\(600\) −7514.51 −0.511297
\(601\) −10232.7 −0.694508 −0.347254 0.937771i \(-0.612886\pi\)
−0.347254 + 0.937771i \(0.612886\pi\)
\(602\) 7727.70 0.523185
\(603\) −18784.0 −1.26856
\(604\) 1279.88 0.0862212
\(605\) 3524.29 0.236831
\(606\) −5773.17 −0.386995
\(607\) −6321.13 −0.422680 −0.211340 0.977413i \(-0.567783\pi\)
−0.211340 + 0.977413i \(0.567783\pi\)
\(608\) 2101.47 0.140174
\(609\) −22177.6 −1.47567
\(610\) −4159.70 −0.276101
\(611\) 1890.85 0.125198
\(612\) −12138.4 −0.801740
\(613\) −11014.1 −0.725702 −0.362851 0.931847i \(-0.618197\pi\)
−0.362851 + 0.931847i \(0.618197\pi\)
\(614\) 208.149 0.0136812
\(615\) −7184.13 −0.471044
\(616\) −1462.22 −0.0956405
\(617\) −27706.9 −1.80784 −0.903919 0.427703i \(-0.859323\pi\)
−0.903919 + 0.427703i \(0.859323\pi\)
\(618\) −31944.5 −2.07928
\(619\) −13943.7 −0.905403 −0.452701 0.891662i \(-0.649540\pi\)
−0.452701 + 0.891662i \(0.649540\pi\)
\(620\) 3702.69 0.239844
\(621\) −17045.4 −1.10146
\(622\) −8348.42 −0.538169
\(623\) 5505.86 0.354073
\(624\) 634.054 0.0406770
\(625\) 10101.1 0.646469
\(626\) 12060.4 0.770015
\(627\) −11690.3 −0.744605
\(628\) −7010.70 −0.445474
\(629\) 22844.0 1.44809
\(630\) −3199.04 −0.202306
\(631\) −17734.2 −1.11884 −0.559419 0.828885i \(-0.688976\pi\)
−0.559419 + 0.828885i \(0.688976\pi\)
\(632\) −10107.6 −0.636167
\(633\) 24740.4 1.55346
\(634\) −8247.60 −0.516647
\(635\) −1869.53 −0.116835
\(636\) −19301.8 −1.20341
\(637\) 1228.66 0.0764224
\(638\) −12229.5 −0.758890
\(639\) −18237.8 −1.12907
\(640\) 501.648 0.0309834
\(641\) 6992.08 0.430843 0.215422 0.976521i \(-0.430887\pi\)
0.215422 + 0.976521i \(0.430887\pi\)
\(642\) 18343.2 1.12765
\(643\) −23243.4 −1.42555 −0.712775 0.701393i \(-0.752562\pi\)
−0.712775 + 0.701393i \(0.752562\pi\)
\(644\) −3609.09 −0.220836
\(645\) 14748.2 0.900328
\(646\) −8590.38 −0.523195
\(647\) −10308.2 −0.626361 −0.313180 0.949694i \(-0.601394\pi\)
−0.313180 + 0.949694i \(0.601394\pi\)
\(648\) −1367.80 −0.0829204
\(649\) −14707.1 −0.889528
\(650\) −1014.30 −0.0612064
\(651\) −17799.9 −1.07163
\(652\) 3259.65 0.195794
\(653\) −19931.2 −1.19444 −0.597221 0.802077i \(-0.703728\pi\)
−0.597221 + 0.802077i \(0.703728\pi\)
\(654\) 17266.1 1.03235
\(655\) 1360.90 0.0811828
\(656\) −3423.46 −0.203756
\(657\) 14819.6 0.880012
\(658\) −7191.69 −0.426081
\(659\) −8666.82 −0.512308 −0.256154 0.966636i \(-0.582455\pi\)
−0.256154 + 0.966636i \(0.582455\pi\)
\(660\) −2790.63 −0.164584
\(661\) −22490.5 −1.32342 −0.661710 0.749760i \(-0.730169\pi\)
−0.661710 + 0.749760i \(0.730169\pi\)
\(662\) −4672.21 −0.274306
\(663\) −2591.88 −0.151825
\(664\) −7648.61 −0.447024
\(665\) −2263.98 −0.132020
\(666\) 32410.4 1.88570
\(667\) −30185.3 −1.75229
\(668\) 10639.2 0.616234
\(669\) 7512.68 0.434166
\(670\) −3173.33 −0.182980
\(671\) 11027.0 0.634414
\(672\) −2411.56 −0.138435
\(673\) −2036.99 −0.116672 −0.0583361 0.998297i \(-0.518579\pi\)
−0.0583361 + 0.998297i \(0.518579\pi\)
\(674\) 15786.0 0.902155
\(675\) 18220.0 1.03895
\(676\) −8702.42 −0.495131
\(677\) 20296.3 1.15221 0.576107 0.817374i \(-0.304571\pi\)
0.576107 + 0.817374i \(0.304571\pi\)
\(678\) 40528.1 2.29568
\(679\) 160.397 0.00906549
\(680\) −2050.63 −0.115644
\(681\) −14047.3 −0.790448
\(682\) −9815.48 −0.551106
\(683\) 17867.9 1.00102 0.500509 0.865731i \(-0.333146\pi\)
0.500509 + 0.865731i \(0.333146\pi\)
\(684\) −12187.8 −0.681304
\(685\) 5264.27 0.293631
\(686\) −10707.5 −0.595937
\(687\) −16309.6 −0.905748
\(688\) 7027.99 0.389447
\(689\) −2605.35 −0.144058
\(690\) −6887.92 −0.380027
\(691\) −17376.4 −0.956626 −0.478313 0.878189i \(-0.658752\pi\)
−0.478313 + 0.878189i \(0.658752\pi\)
\(692\) −8011.34 −0.440095
\(693\) 8480.37 0.464852
\(694\) −7782.04 −0.425651
\(695\) −4587.32 −0.250370
\(696\) −20169.5 −1.09845
\(697\) 13994.4 0.760510
\(698\) 23412.4 1.26959
\(699\) −53063.2 −2.87130
\(700\) 3857.80 0.208302
\(701\) −26604.2 −1.43342 −0.716709 0.697372i \(-0.754352\pi\)
−0.716709 + 0.697372i \(0.754352\pi\)
\(702\) −1537.36 −0.0826550
\(703\) 22937.0 1.23056
\(704\) −1329.82 −0.0711926
\(705\) −13725.3 −0.733225
\(706\) −6353.59 −0.338698
\(707\) 2963.84 0.157661
\(708\) −24255.6 −1.28755
\(709\) 9955.82 0.527361 0.263680 0.964610i \(-0.415064\pi\)
0.263680 + 0.964610i \(0.415064\pi\)
\(710\) −3081.06 −0.162859
\(711\) 58620.4 3.09203
\(712\) 5007.32 0.263564
\(713\) −24226.8 −1.27251
\(714\) 9857.97 0.516702
\(715\) −376.677 −0.0197020
\(716\) −13033.0 −0.680262
\(717\) −42102.6 −2.19296
\(718\) −9742.31 −0.506378
\(719\) 14511.6 0.752699 0.376350 0.926478i \(-0.377179\pi\)
0.376350 + 0.926478i \(0.377179\pi\)
\(720\) −2909.38 −0.150592
\(721\) 16399.7 0.847095
\(722\) 5092.64 0.262505
\(723\) −41461.1 −2.13272
\(724\) 16385.8 0.841124
\(725\) 32265.4 1.65284
\(726\) −15408.2 −0.787676
\(727\) 22615.4 1.15373 0.576864 0.816840i \(-0.304276\pi\)
0.576864 + 0.816840i \(0.304276\pi\)
\(728\) −325.511 −0.0165718
\(729\) −30507.1 −1.54992
\(730\) 2503.60 0.126935
\(731\) −28729.0 −1.45360
\(732\) 18186.2 0.918281
\(733\) −17154.5 −0.864415 −0.432208 0.901774i \(-0.642265\pi\)
−0.432208 + 0.901774i \(0.642265\pi\)
\(734\) −4452.58 −0.223907
\(735\) −8918.52 −0.447571
\(736\) −3282.30 −0.164385
\(737\) 8412.20 0.420444
\(738\) 19854.9 0.990336
\(739\) −21558.2 −1.07312 −0.536558 0.843864i \(-0.680276\pi\)
−0.536558 + 0.843864i \(0.680276\pi\)
\(740\) 5475.35 0.271997
\(741\) −2602.43 −0.129019
\(742\) 9909.19 0.490267
\(743\) 18289.3 0.903054 0.451527 0.892258i \(-0.350880\pi\)
0.451527 + 0.892258i \(0.350880\pi\)
\(744\) −16188.2 −0.797697
\(745\) 73.0556 0.00359268
\(746\) 17633.2 0.865413
\(747\) 44359.3 2.17272
\(748\) 5436.04 0.265724
\(749\) −9417.06 −0.459402
\(750\) 15756.6 0.767132
\(751\) −17355.1 −0.843270 −0.421635 0.906766i \(-0.638544\pi\)
−0.421635 + 0.906766i \(0.638544\pi\)
\(752\) −6540.51 −0.317165
\(753\) 26714.3 1.29286
\(754\) −2722.47 −0.131494
\(755\) −1254.00 −0.0604475
\(756\) 5847.20 0.281297
\(757\) 32246.3 1.54823 0.774115 0.633045i \(-0.218195\pi\)
0.774115 + 0.633045i \(0.218195\pi\)
\(758\) −18106.0 −0.867601
\(759\) 18259.2 0.873212
\(760\) −2058.98 −0.0982727
\(761\) −6832.20 −0.325449 −0.162725 0.986672i \(-0.552028\pi\)
−0.162725 + 0.986672i \(0.552028\pi\)
\(762\) 8173.59 0.388580
\(763\) −8864.09 −0.420579
\(764\) −19523.6 −0.924528
\(765\) 11893.0 0.562079
\(766\) 14882.1 0.701974
\(767\) −3274.00 −0.154130
\(768\) −2193.21 −0.103048
\(769\) 14347.5 0.672800 0.336400 0.941719i \(-0.390791\pi\)
0.336400 + 0.941719i \(0.390791\pi\)
\(770\) 1432.66 0.0670512
\(771\) −37360.7 −1.74515
\(772\) −14693.2 −0.684998
\(773\) −37191.8 −1.73052 −0.865262 0.501319i \(-0.832848\pi\)
−0.865262 + 0.501319i \(0.832848\pi\)
\(774\) −40759.9 −1.89287
\(775\) 25896.3 1.20029
\(776\) 145.874 0.00674814
\(777\) −26321.6 −1.21529
\(778\) −18825.9 −0.867532
\(779\) 14051.4 0.646268
\(780\) −621.234 −0.0285176
\(781\) 8167.59 0.374212
\(782\) 13417.4 0.613561
\(783\) 48904.1 2.23204
\(784\) −4249.95 −0.193602
\(785\) 6868.96 0.312310
\(786\) −5949.85 −0.270005
\(787\) 17025.9 0.771166 0.385583 0.922673i \(-0.374000\pi\)
0.385583 + 0.922673i \(0.374000\pi\)
\(788\) 17282.4 0.781295
\(789\) 32237.3 1.45460
\(790\) 9903.21 0.446001
\(791\) −20806.4 −0.935257
\(792\) 7712.51 0.346025
\(793\) 2454.76 0.109926
\(794\) −4922.51 −0.220017
\(795\) 18911.6 0.843679
\(796\) −18498.7 −0.823706
\(797\) 33264.8 1.47842 0.739210 0.673475i \(-0.235199\pi\)
0.739210 + 0.673475i \(0.235199\pi\)
\(798\) 9898.12 0.439085
\(799\) 26736.3 1.18381
\(800\) 3508.49 0.155055
\(801\) −29040.7 −1.28103
\(802\) 3951.11 0.173963
\(803\) −6636.80 −0.291666
\(804\) 13873.8 0.608571
\(805\) 3536.12 0.154822
\(806\) −2185.06 −0.0954907
\(807\) 2304.58 0.100527
\(808\) 2695.47 0.117359
\(809\) −44722.8 −1.94360 −0.971798 0.235817i \(-0.924224\pi\)
−0.971798 + 0.235817i \(0.924224\pi\)
\(810\) 1340.15 0.0581334
\(811\) 18209.9 0.788453 0.394226 0.919013i \(-0.371013\pi\)
0.394226 + 0.919013i \(0.371013\pi\)
\(812\) 10354.7 0.447509
\(813\) −26764.7 −1.15459
\(814\) −14514.7 −0.624986
\(815\) −3193.75 −0.137266
\(816\) 8965.37 0.384621
\(817\) −28846.0 −1.23524
\(818\) 5013.00 0.214273
\(819\) 1887.85 0.0805455
\(820\) 3354.24 0.142848
\(821\) 46340.6 1.96991 0.984956 0.172803i \(-0.0552823\pi\)
0.984956 + 0.172803i \(0.0552823\pi\)
\(822\) −23015.4 −0.976587
\(823\) −18109.5 −0.767022 −0.383511 0.923536i \(-0.625285\pi\)
−0.383511 + 0.923536i \(0.625285\pi\)
\(824\) 14914.7 0.630558
\(825\) −19517.5 −0.823651
\(826\) 12452.4 0.524544
\(827\) −15923.6 −0.669549 −0.334775 0.942298i \(-0.608660\pi\)
−0.334775 + 0.942298i \(0.608660\pi\)
\(828\) 19036.2 0.798979
\(829\) −29621.7 −1.24102 −0.620510 0.784199i \(-0.713074\pi\)
−0.620510 + 0.784199i \(0.713074\pi\)
\(830\) 7493.97 0.313397
\(831\) 26944.7 1.12479
\(832\) −296.037 −0.0123356
\(833\) 17372.9 0.722612
\(834\) 20055.8 0.832703
\(835\) −10424.1 −0.432026
\(836\) 5458.18 0.225807
\(837\) 39250.6 1.62091
\(838\) −17133.7 −0.706293
\(839\) −17636.8 −0.725731 −0.362866 0.931842i \(-0.618202\pi\)
−0.362866 + 0.931842i \(0.618202\pi\)
\(840\) 2362.81 0.0970531
\(841\) 62213.9 2.55090
\(842\) −16354.3 −0.669368
\(843\) −19543.7 −0.798484
\(844\) −11551.2 −0.471100
\(845\) 8526.47 0.347124
\(846\) 37932.7 1.54155
\(847\) 7910.28 0.320898
\(848\) 9011.95 0.364943
\(849\) −36161.7 −1.46180
\(850\) −14342.0 −0.578737
\(851\) −35825.4 −1.44310
\(852\) 13470.4 0.541652
\(853\) 19316.5 0.775365 0.387682 0.921793i \(-0.373276\pi\)
0.387682 + 0.921793i \(0.373276\pi\)
\(854\) −9336.45 −0.374106
\(855\) 11941.4 0.477645
\(856\) −8564.38 −0.341968
\(857\) −45708.8 −1.82192 −0.910958 0.412498i \(-0.864656\pi\)
−0.910958 + 0.412498i \(0.864656\pi\)
\(858\) 1646.83 0.0655268
\(859\) 8113.87 0.322284 0.161142 0.986931i \(-0.448482\pi\)
0.161142 + 0.986931i \(0.448482\pi\)
\(860\) −6885.90 −0.273032
\(861\) −16124.8 −0.638248
\(862\) −27545.1 −1.08839
\(863\) 30062.5 1.18579 0.592897 0.805279i \(-0.297984\pi\)
0.592897 + 0.805279i \(0.297984\pi\)
\(864\) 5317.76 0.209391
\(865\) 7849.37 0.308539
\(866\) 260.067 0.0102049
\(867\) 5442.15 0.213178
\(868\) 8310.68 0.324980
\(869\) −26252.5 −1.02480
\(870\) 19761.7 0.770099
\(871\) 1872.67 0.0728508
\(872\) −8061.48 −0.313069
\(873\) −846.015 −0.0327987
\(874\) 13472.0 0.521393
\(875\) −8089.12 −0.312528
\(876\) −10945.7 −0.422171
\(877\) −2172.86 −0.0836626 −0.0418313 0.999125i \(-0.513319\pi\)
−0.0418313 + 0.999125i \(0.513319\pi\)
\(878\) 20279.5 0.779500
\(879\) 21791.2 0.836177
\(880\) 1302.94 0.0499113
\(881\) −17545.9 −0.670985 −0.335492 0.942043i \(-0.608903\pi\)
−0.335492 + 0.942043i \(0.608903\pi\)
\(882\) 24648.2 0.940985
\(883\) −16091.7 −0.613282 −0.306641 0.951825i \(-0.599205\pi\)
−0.306641 + 0.951825i \(0.599205\pi\)
\(884\) 1210.14 0.0460423
\(885\) 23765.2 0.902666
\(886\) 9984.43 0.378593
\(887\) 33265.0 1.25922 0.629610 0.776911i \(-0.283215\pi\)
0.629610 + 0.776911i \(0.283215\pi\)
\(888\) −23938.3 −0.904634
\(889\) −4196.16 −0.158307
\(890\) −4906.09 −0.184778
\(891\) −3552.61 −0.133577
\(892\) −3507.64 −0.131664
\(893\) 26845.1 1.00598
\(894\) −319.399 −0.0119489
\(895\) 12769.5 0.476915
\(896\) 1125.95 0.0419814
\(897\) 4064.76 0.151303
\(898\) −24694.1 −0.917652
\(899\) 69507.8 2.57866
\(900\) −20348.0 −0.753631
\(901\) −36839.0 −1.36214
\(902\) −8891.79 −0.328231
\(903\) 33102.5 1.21991
\(904\) −18922.4 −0.696184
\(905\) −16054.5 −0.589691
\(906\) 5482.51 0.201042
\(907\) 22458.2 0.822175 0.411088 0.911596i \(-0.365149\pi\)
0.411088 + 0.911596i \(0.365149\pi\)
\(908\) 6558.65 0.239710
\(909\) −15632.8 −0.570415
\(910\) 318.930 0.0116180
\(911\) −23602.6 −0.858386 −0.429193 0.903213i \(-0.641202\pi\)
−0.429193 + 0.903213i \(0.641202\pi\)
\(912\) 9001.88 0.326844
\(913\) −19865.8 −0.720113
\(914\) 3485.09 0.126123
\(915\) −17818.5 −0.643784
\(916\) 7614.88 0.274675
\(917\) 3054.54 0.110000
\(918\) −21737.9 −0.781544
\(919\) −17262.0 −0.619610 −0.309805 0.950800i \(-0.600264\pi\)
−0.309805 + 0.950800i \(0.600264\pi\)
\(920\) 3215.94 0.115246
\(921\) 891.630 0.0319004
\(922\) 7986.03 0.285256
\(923\) 1818.22 0.0648401
\(924\) −6263.58 −0.223005
\(925\) 38294.2 1.36120
\(926\) −23867.3 −0.847007
\(927\) −86500.3 −3.06477
\(928\) 9417.08 0.333115
\(929\) 51716.0 1.82642 0.913211 0.407487i \(-0.133595\pi\)
0.913211 + 0.407487i \(0.133595\pi\)
\(930\) 15860.9 0.559245
\(931\) 17443.7 0.614063
\(932\) 24775.0 0.870743
\(933\) −35761.4 −1.25485
\(934\) −14017.5 −0.491078
\(935\) −5326.13 −0.186292
\(936\) 1716.91 0.0599562
\(937\) −52471.8 −1.82943 −0.914717 0.404096i \(-0.867586\pi\)
−0.914717 + 0.404096i \(0.867586\pi\)
\(938\) −7122.54 −0.247931
\(939\) 51661.9 1.79544
\(940\) 6408.28 0.222356
\(941\) 28142.7 0.974948 0.487474 0.873138i \(-0.337918\pi\)
0.487474 + 0.873138i \(0.337918\pi\)
\(942\) −30031.1 −1.03871
\(943\) −21947.0 −0.757891
\(944\) 11324.9 0.390458
\(945\) −5728.98 −0.197210
\(946\) 18253.9 0.627362
\(947\) 39961.6 1.37125 0.685626 0.727954i \(-0.259528\pi\)
0.685626 + 0.727954i \(0.259528\pi\)
\(948\) −43296.9 −1.48335
\(949\) −1477.45 −0.0505373
\(950\) −14400.4 −0.491801
\(951\) −35329.5 −1.20467
\(952\) −4602.65 −0.156694
\(953\) 17906.5 0.608655 0.304327 0.952568i \(-0.401568\pi\)
0.304327 + 0.952568i \(0.401568\pi\)
\(954\) −52266.2 −1.77377
\(955\) 19128.9 0.648164
\(956\) 19657.5 0.665031
\(957\) −52386.6 −1.76951
\(958\) 27884.9 0.940417
\(959\) 11815.7 0.397860
\(960\) 2148.86 0.0722441
\(961\) 25996.3 0.872622
\(962\) −3231.16 −0.108292
\(963\) 49670.4 1.66210
\(964\) 19358.0 0.646763
\(965\) 14396.1 0.480235
\(966\) −15459.9 −0.514923
\(967\) −43343.4 −1.44140 −0.720698 0.693249i \(-0.756179\pi\)
−0.720698 + 0.693249i \(0.756179\pi\)
\(968\) 7194.04 0.238869
\(969\) −36797.8 −1.21993
\(970\) −142.924 −0.00473095
\(971\) 26889.1 0.888683 0.444341 0.895858i \(-0.353438\pi\)
0.444341 + 0.895858i \(0.353438\pi\)
\(972\) 12088.3 0.398902
\(973\) −10296.2 −0.339242
\(974\) −8393.18 −0.276114
\(975\) −4344.87 −0.142715
\(976\) −8491.07 −0.278476
\(977\) −6994.03 −0.229026 −0.114513 0.993422i \(-0.536531\pi\)
−0.114513 + 0.993422i \(0.536531\pi\)
\(978\) 13963.1 0.456534
\(979\) 13005.6 0.424576
\(980\) 4164.02 0.135729
\(981\) 46753.8 1.52164
\(982\) 4222.66 0.137220
\(983\) 5952.35 0.193134 0.0965668 0.995327i \(-0.469214\pi\)
0.0965668 + 0.995327i \(0.469214\pi\)
\(984\) −14664.8 −0.475097
\(985\) −16933.0 −0.547746
\(986\) −38495.1 −1.24334
\(987\) −30806.4 −0.993493
\(988\) 1215.07 0.0391259
\(989\) 45054.7 1.44859
\(990\) −7556.58 −0.242590
\(991\) −17328.8 −0.555467 −0.277733 0.960658i \(-0.589583\pi\)
−0.277733 + 0.960658i \(0.589583\pi\)
\(992\) 7558.19 0.241908
\(993\) −20013.9 −0.639600
\(994\) −6915.43 −0.220668
\(995\) 18124.7 0.577480
\(996\) −32763.7 −1.04233
\(997\) −3393.06 −0.107783 −0.0538913 0.998547i \(-0.517162\pi\)
−0.0538913 + 0.998547i \(0.517162\pi\)
\(998\) −40874.0 −1.29644
\(999\) 58041.9 1.83820
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.b.1.2 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.b.1.2 15 1.1 even 1 trivial