Properties

Label 538.4.a.b.1.3
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $0$
Dimension $15$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(15\)
Coefficient field: \(\mathbb{Q}[x]/(x^{15} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{15} - 4 x^{14} - 262 x^{13} + 870 x^{12} + 26403 x^{11} - 73750 x^{10} - 1270273 x^{9} + \cdots + 4484581281 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.3
Root \(7.81309\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -6.81309 q^{3} +4.00000 q^{4} +10.9766 q^{5} +13.6262 q^{6} -4.36588 q^{7} -8.00000 q^{8} +19.4181 q^{9} -21.9532 q^{10} +42.8218 q^{11} -27.2523 q^{12} +14.5070 q^{13} +8.73175 q^{14} -74.7845 q^{15} +16.0000 q^{16} +81.0612 q^{17} -38.8363 q^{18} +12.3775 q^{19} +43.9064 q^{20} +29.7451 q^{21} -85.6435 q^{22} -80.3207 q^{23} +54.5047 q^{24} -4.51421 q^{25} -29.0139 q^{26} +51.6559 q^{27} -17.4635 q^{28} -280.199 q^{29} +149.569 q^{30} +230.068 q^{31} -32.0000 q^{32} -291.748 q^{33} -162.122 q^{34} -47.9225 q^{35} +77.6725 q^{36} +93.7485 q^{37} -24.7550 q^{38} -98.8372 q^{39} -87.8128 q^{40} -463.927 q^{41} -59.4902 q^{42} +12.0323 q^{43} +171.287 q^{44} +213.145 q^{45} +160.641 q^{46} +435.970 q^{47} -109.009 q^{48} -323.939 q^{49} +9.02842 q^{50} -552.277 q^{51} +58.0279 q^{52} -227.550 q^{53} -103.312 q^{54} +470.038 q^{55} +34.9270 q^{56} -84.3290 q^{57} +560.397 q^{58} +537.036 q^{59} -299.138 q^{60} -513.672 q^{61} -460.136 q^{62} -84.7772 q^{63} +64.0000 q^{64} +159.237 q^{65} +583.497 q^{66} +804.492 q^{67} +324.245 q^{68} +547.231 q^{69} +95.8450 q^{70} -67.2315 q^{71} -155.345 q^{72} +597.947 q^{73} -187.497 q^{74} +30.7557 q^{75} +49.5100 q^{76} -186.955 q^{77} +197.674 q^{78} +710.808 q^{79} +175.626 q^{80} -876.226 q^{81} +927.854 q^{82} -508.468 q^{83} +118.980 q^{84} +889.777 q^{85} -24.0646 q^{86} +1909.02 q^{87} -342.574 q^{88} +1284.51 q^{89} -426.290 q^{90} -63.3356 q^{91} -321.283 q^{92} -1567.47 q^{93} -871.939 q^{94} +135.863 q^{95} +218.019 q^{96} +1553.35 q^{97} +647.878 q^{98} +831.519 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 15 q - 30 q^{2} + 11 q^{3} + 60 q^{4} + 29 q^{5} - 22 q^{6} + 5 q^{7} - 120 q^{8} + 142 q^{9} - 58 q^{10} + 79 q^{11} + 44 q^{12} - 14 q^{13} - 10 q^{14} + 67 q^{15} + 240 q^{16} + 94 q^{17} - 284 q^{18}+ \cdots + 7068 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −6.81309 −1.31118 −0.655589 0.755118i \(-0.727580\pi\)
−0.655589 + 0.755118i \(0.727580\pi\)
\(4\) 4.00000 0.500000
\(5\) 10.9766 0.981777 0.490889 0.871222i \(-0.336672\pi\)
0.490889 + 0.871222i \(0.336672\pi\)
\(6\) 13.6262 0.927143
\(7\) −4.36588 −0.235735 −0.117868 0.993029i \(-0.537606\pi\)
−0.117868 + 0.993029i \(0.537606\pi\)
\(8\) −8.00000 −0.353553
\(9\) 19.4181 0.719190
\(10\) −21.9532 −0.694221
\(11\) 42.8218 1.17375 0.586875 0.809678i \(-0.300358\pi\)
0.586875 + 0.809678i \(0.300358\pi\)
\(12\) −27.2523 −0.655589
\(13\) 14.5070 0.309501 0.154750 0.987954i \(-0.450543\pi\)
0.154750 + 0.987954i \(0.450543\pi\)
\(14\) 8.73175 0.166690
\(15\) −74.7845 −1.28729
\(16\) 16.0000 0.250000
\(17\) 81.0612 1.15648 0.578242 0.815865i \(-0.303739\pi\)
0.578242 + 0.815865i \(0.303739\pi\)
\(18\) −38.8363 −0.508544
\(19\) 12.3775 0.149452 0.0747262 0.997204i \(-0.476192\pi\)
0.0747262 + 0.997204i \(0.476192\pi\)
\(20\) 43.9064 0.490889
\(21\) 29.7451 0.309091
\(22\) −85.6435 −0.829967
\(23\) −80.3207 −0.728175 −0.364087 0.931365i \(-0.618619\pi\)
−0.364087 + 0.931365i \(0.618619\pi\)
\(24\) 54.5047 0.463572
\(25\) −4.51421 −0.0361137
\(26\) −29.0139 −0.218850
\(27\) 51.6559 0.368192
\(28\) −17.4635 −0.117868
\(29\) −280.199 −1.79419 −0.897096 0.441835i \(-0.854328\pi\)
−0.897096 + 0.441835i \(0.854328\pi\)
\(30\) 149.569 0.910248
\(31\) 230.068 1.33295 0.666474 0.745528i \(-0.267803\pi\)
0.666474 + 0.745528i \(0.267803\pi\)
\(32\) −32.0000 −0.176777
\(33\) −291.748 −1.53900
\(34\) −162.122 −0.817758
\(35\) −47.9225 −0.231439
\(36\) 77.6725 0.359595
\(37\) 93.7485 0.416545 0.208272 0.978071i \(-0.433216\pi\)
0.208272 + 0.978071i \(0.433216\pi\)
\(38\) −24.7550 −0.105679
\(39\) −98.8372 −0.405811
\(40\) −87.8128 −0.347111
\(41\) −463.927 −1.76715 −0.883576 0.468287i \(-0.844871\pi\)
−0.883576 + 0.468287i \(0.844871\pi\)
\(42\) −59.4902 −0.218560
\(43\) 12.0323 0.0426722 0.0213361 0.999772i \(-0.493208\pi\)
0.0213361 + 0.999772i \(0.493208\pi\)
\(44\) 171.287 0.586875
\(45\) 213.145 0.706084
\(46\) 160.641 0.514897
\(47\) 435.970 1.35304 0.676518 0.736426i \(-0.263488\pi\)
0.676518 + 0.736426i \(0.263488\pi\)
\(48\) −109.009 −0.327795
\(49\) −323.939 −0.944429
\(50\) 9.02842 0.0255362
\(51\) −552.277 −1.51636
\(52\) 58.0279 0.154750
\(53\) −227.550 −0.589742 −0.294871 0.955537i \(-0.595277\pi\)
−0.294871 + 0.955537i \(0.595277\pi\)
\(54\) −103.312 −0.260351
\(55\) 470.038 1.15236
\(56\) 34.9270 0.0833450
\(57\) −84.3290 −0.195959
\(58\) 560.397 1.26869
\(59\) 537.036 1.18502 0.592510 0.805563i \(-0.298137\pi\)
0.592510 + 0.805563i \(0.298137\pi\)
\(60\) −299.138 −0.643643
\(61\) −513.672 −1.07818 −0.539090 0.842248i \(-0.681232\pi\)
−0.539090 + 0.842248i \(0.681232\pi\)
\(62\) −460.136 −0.942537
\(63\) −84.7772 −0.169538
\(64\) 64.0000 0.125000
\(65\) 159.237 0.303861
\(66\) 583.497 1.08823
\(67\) 804.492 1.46693 0.733466 0.679727i \(-0.237902\pi\)
0.733466 + 0.679727i \(0.237902\pi\)
\(68\) 324.245 0.578242
\(69\) 547.231 0.954767
\(70\) 95.8450 0.163652
\(71\) −67.2315 −0.112379 −0.0561895 0.998420i \(-0.517895\pi\)
−0.0561895 + 0.998420i \(0.517895\pi\)
\(72\) −155.345 −0.254272
\(73\) 597.947 0.958690 0.479345 0.877627i \(-0.340874\pi\)
0.479345 + 0.877627i \(0.340874\pi\)
\(74\) −187.497 −0.294542
\(75\) 30.7557 0.0473515
\(76\) 49.5100 0.0747262
\(77\) −186.955 −0.276694
\(78\) 197.674 0.286952
\(79\) 710.808 1.01231 0.506153 0.862444i \(-0.331067\pi\)
0.506153 + 0.862444i \(0.331067\pi\)
\(80\) 175.626 0.245444
\(81\) −876.226 −1.20196
\(82\) 927.854 1.24957
\(83\) −508.468 −0.672429 −0.336215 0.941785i \(-0.609147\pi\)
−0.336215 + 0.941785i \(0.609147\pi\)
\(84\) 118.980 0.154545
\(85\) 889.777 1.13541
\(86\) −24.0646 −0.0301738
\(87\) 1909.02 2.35251
\(88\) −342.574 −0.414983
\(89\) 1284.51 1.52987 0.764933 0.644109i \(-0.222772\pi\)
0.764933 + 0.644109i \(0.222772\pi\)
\(90\) −426.290 −0.499277
\(91\) −63.3356 −0.0729602
\(92\) −321.283 −0.364087
\(93\) −1567.47 −1.74773
\(94\) −871.939 −0.956741
\(95\) 135.863 0.146729
\(96\) 218.019 0.231786
\(97\) 1553.35 1.62597 0.812984 0.582286i \(-0.197841\pi\)
0.812984 + 0.582286i \(0.197841\pi\)
\(98\) 647.878 0.667812
\(99\) 831.519 0.844149
\(100\) −18.0568 −0.0180568
\(101\) 1540.97 1.51814 0.759072 0.651007i \(-0.225653\pi\)
0.759072 + 0.651007i \(0.225653\pi\)
\(102\) 1104.55 1.07223
\(103\) 1397.17 1.33657 0.668286 0.743905i \(-0.267028\pi\)
0.668286 + 0.743905i \(0.267028\pi\)
\(104\) −116.056 −0.109425
\(105\) 326.500 0.303458
\(106\) 455.099 0.417011
\(107\) 1168.71 1.05592 0.527958 0.849270i \(-0.322958\pi\)
0.527958 + 0.849270i \(0.322958\pi\)
\(108\) 206.624 0.184096
\(109\) −246.815 −0.216886 −0.108443 0.994103i \(-0.534586\pi\)
−0.108443 + 0.994103i \(0.534586\pi\)
\(110\) −940.075 −0.814842
\(111\) −638.716 −0.546165
\(112\) −69.8540 −0.0589338
\(113\) 1440.81 1.19947 0.599733 0.800200i \(-0.295274\pi\)
0.599733 + 0.800200i \(0.295274\pi\)
\(114\) 168.658 0.138564
\(115\) −881.648 −0.714905
\(116\) −1120.79 −0.897096
\(117\) 281.698 0.222590
\(118\) −1074.07 −0.837935
\(119\) −353.903 −0.272624
\(120\) 598.276 0.455124
\(121\) 502.704 0.377689
\(122\) 1027.34 0.762388
\(123\) 3160.78 2.31705
\(124\) 920.271 0.666474
\(125\) −1421.63 −1.01723
\(126\) 169.554 0.119882
\(127\) −2687.95 −1.87809 −0.939044 0.343797i \(-0.888287\pi\)
−0.939044 + 0.343797i \(0.888287\pi\)
\(128\) −128.000 −0.0883883
\(129\) −81.9770 −0.0559510
\(130\) −318.475 −0.214862
\(131\) 1031.74 0.688116 0.344058 0.938948i \(-0.388198\pi\)
0.344058 + 0.938948i \(0.388198\pi\)
\(132\) −1166.99 −0.769498
\(133\) −54.0387 −0.0352312
\(134\) −1608.98 −1.03728
\(135\) 567.006 0.361483
\(136\) −648.490 −0.408879
\(137\) 2653.53 1.65479 0.827397 0.561618i \(-0.189821\pi\)
0.827397 + 0.561618i \(0.189821\pi\)
\(138\) −1094.46 −0.675122
\(139\) −1752.17 −1.06919 −0.534595 0.845108i \(-0.679536\pi\)
−0.534595 + 0.845108i \(0.679536\pi\)
\(140\) −191.690 −0.115720
\(141\) −2970.30 −1.77407
\(142\) 134.463 0.0794639
\(143\) 621.214 0.363277
\(144\) 310.690 0.179798
\(145\) −3075.63 −1.76150
\(146\) −1195.89 −0.677896
\(147\) 2207.02 1.23832
\(148\) 374.994 0.208272
\(149\) −1196.12 −0.657652 −0.328826 0.944390i \(-0.606653\pi\)
−0.328826 + 0.944390i \(0.606653\pi\)
\(150\) −61.5114 −0.0334826
\(151\) −3271.09 −1.76290 −0.881450 0.472278i \(-0.843432\pi\)
−0.881450 + 0.472278i \(0.843432\pi\)
\(152\) −99.0201 −0.0528394
\(153\) 1574.06 0.831732
\(154\) 373.909 0.195652
\(155\) 2525.36 1.30866
\(156\) −395.349 −0.202905
\(157\) 56.4475 0.0286943 0.0143471 0.999897i \(-0.495433\pi\)
0.0143471 + 0.999897i \(0.495433\pi\)
\(158\) −1421.62 −0.715809
\(159\) 1550.31 0.773257
\(160\) −351.251 −0.173555
\(161\) 350.670 0.171656
\(162\) 1752.45 0.849911
\(163\) −1668.75 −0.801883 −0.400942 0.916104i \(-0.631317\pi\)
−0.400942 + 0.916104i \(0.631317\pi\)
\(164\) −1855.71 −0.883576
\(165\) −3202.41 −1.51095
\(166\) 1016.94 0.475479
\(167\) −1861.07 −0.862357 −0.431179 0.902267i \(-0.641902\pi\)
−0.431179 + 0.902267i \(0.641902\pi\)
\(168\) −237.961 −0.109280
\(169\) −1986.55 −0.904209
\(170\) −1779.55 −0.802856
\(171\) 240.348 0.107485
\(172\) 48.1292 0.0213361
\(173\) 2094.04 0.920270 0.460135 0.887849i \(-0.347801\pi\)
0.460135 + 0.887849i \(0.347801\pi\)
\(174\) −3818.04 −1.66347
\(175\) 19.7085 0.00851327
\(176\) 685.148 0.293437
\(177\) −3658.87 −1.55377
\(178\) −2569.03 −1.08178
\(179\) 1404.28 0.586372 0.293186 0.956055i \(-0.405284\pi\)
0.293186 + 0.956055i \(0.405284\pi\)
\(180\) 852.580 0.353042
\(181\) 1015.96 0.417213 0.208606 0.978000i \(-0.433107\pi\)
0.208606 + 0.978000i \(0.433107\pi\)
\(182\) 126.671 0.0515907
\(183\) 3499.69 1.41369
\(184\) 642.565 0.257449
\(185\) 1029.04 0.408954
\(186\) 3134.94 1.23583
\(187\) 3471.18 1.35742
\(188\) 1743.88 0.676518
\(189\) −225.523 −0.0867958
\(190\) −271.726 −0.103753
\(191\) 1688.24 0.639563 0.319782 0.947491i \(-0.396390\pi\)
0.319782 + 0.947491i \(0.396390\pi\)
\(192\) −436.037 −0.163897
\(193\) 3483.86 1.29934 0.649672 0.760214i \(-0.274906\pi\)
0.649672 + 0.760214i \(0.274906\pi\)
\(194\) −3106.70 −1.14973
\(195\) −1084.90 −0.398416
\(196\) −1295.76 −0.472214
\(197\) −1948.88 −0.704831 −0.352416 0.935844i \(-0.614640\pi\)
−0.352416 + 0.935844i \(0.614640\pi\)
\(198\) −1663.04 −0.596904
\(199\) 5303.40 1.88919 0.944594 0.328242i \(-0.106456\pi\)
0.944594 + 0.328242i \(0.106456\pi\)
\(200\) 36.1137 0.0127681
\(201\) −5481.08 −1.92341
\(202\) −3081.95 −1.07349
\(203\) 1223.31 0.422954
\(204\) −2209.11 −0.758179
\(205\) −5092.34 −1.73495
\(206\) −2794.33 −0.945099
\(207\) −1559.68 −0.523696
\(208\) 232.112 0.0773752
\(209\) 530.027 0.175420
\(210\) −653.000 −0.214578
\(211\) 2937.60 0.958449 0.479224 0.877692i \(-0.340918\pi\)
0.479224 + 0.877692i \(0.340918\pi\)
\(212\) −910.198 −0.294871
\(213\) 458.054 0.147349
\(214\) −2337.41 −0.746646
\(215\) 132.074 0.0418946
\(216\) −413.247 −0.130176
\(217\) −1004.45 −0.314223
\(218\) 493.629 0.153361
\(219\) −4073.86 −1.25701
\(220\) 1880.15 0.576180
\(221\) 1175.95 0.357933
\(222\) 1277.43 0.386197
\(223\) 2235.46 0.671289 0.335645 0.941989i \(-0.391046\pi\)
0.335645 + 0.941989i \(0.391046\pi\)
\(224\) 139.708 0.0416725
\(225\) −87.6576 −0.0259726
\(226\) −2881.61 −0.848150
\(227\) 3543.01 1.03594 0.517969 0.855399i \(-0.326688\pi\)
0.517969 + 0.855399i \(0.326688\pi\)
\(228\) −337.316 −0.0979794
\(229\) −508.575 −0.146758 −0.0733790 0.997304i \(-0.523378\pi\)
−0.0733790 + 0.997304i \(0.523378\pi\)
\(230\) 1763.30 0.505514
\(231\) 1273.74 0.362795
\(232\) 2241.59 0.634343
\(233\) 1701.88 0.478516 0.239258 0.970956i \(-0.423096\pi\)
0.239258 + 0.970956i \(0.423096\pi\)
\(234\) −563.397 −0.157395
\(235\) 4785.46 1.32838
\(236\) 2148.14 0.592510
\(237\) −4842.80 −1.32731
\(238\) 707.806 0.192774
\(239\) 871.533 0.235878 0.117939 0.993021i \(-0.462371\pi\)
0.117939 + 0.993021i \(0.462371\pi\)
\(240\) −1196.55 −0.321821
\(241\) −3234.84 −0.864623 −0.432311 0.901724i \(-0.642302\pi\)
−0.432311 + 0.901724i \(0.642302\pi\)
\(242\) −1005.41 −0.267066
\(243\) 4575.09 1.20779
\(244\) −2054.69 −0.539090
\(245\) −3555.75 −0.927219
\(246\) −6321.55 −1.63840
\(247\) 179.560 0.0462556
\(248\) −1840.54 −0.471268
\(249\) 3464.24 0.881675
\(250\) 2843.25 0.719292
\(251\) 3737.33 0.939835 0.469917 0.882710i \(-0.344284\pi\)
0.469917 + 0.882710i \(0.344284\pi\)
\(252\) −339.109 −0.0847692
\(253\) −3439.47 −0.854695
\(254\) 5375.90 1.32801
\(255\) −6062.12 −1.48873
\(256\) 256.000 0.0625000
\(257\) 2378.81 0.577378 0.288689 0.957423i \(-0.406781\pi\)
0.288689 + 0.957423i \(0.406781\pi\)
\(258\) 163.954 0.0395633
\(259\) −409.294 −0.0981942
\(260\) 636.949 0.151930
\(261\) −5440.94 −1.29037
\(262\) −2063.47 −0.486571
\(263\) −7352.72 −1.72391 −0.861954 0.506986i \(-0.830760\pi\)
−0.861954 + 0.506986i \(0.830760\pi\)
\(264\) 2333.99 0.544117
\(265\) −2497.72 −0.578995
\(266\) 108.077 0.0249122
\(267\) −8751.50 −2.00593
\(268\) 3217.97 0.733466
\(269\) −269.000 −0.0609711
\(270\) −1134.01 −0.255607
\(271\) 295.175 0.0661647 0.0330823 0.999453i \(-0.489468\pi\)
0.0330823 + 0.999453i \(0.489468\pi\)
\(272\) 1296.98 0.289121
\(273\) 431.511 0.0956639
\(274\) −5307.07 −1.17012
\(275\) −193.307 −0.0423884
\(276\) 2188.93 0.477384
\(277\) 5551.91 1.20427 0.602133 0.798396i \(-0.294318\pi\)
0.602133 + 0.798396i \(0.294318\pi\)
\(278\) 3504.35 0.756032
\(279\) 4467.49 0.958643
\(280\) 383.380 0.0818262
\(281\) 6161.18 1.30799 0.653995 0.756499i \(-0.273092\pi\)
0.653995 + 0.756499i \(0.273092\pi\)
\(282\) 5940.60 1.25446
\(283\) −4983.98 −1.04688 −0.523440 0.852062i \(-0.675352\pi\)
−0.523440 + 0.852062i \(0.675352\pi\)
\(284\) −268.926 −0.0561895
\(285\) −925.646 −0.192388
\(286\) −1242.43 −0.256875
\(287\) 2025.45 0.416580
\(288\) −621.380 −0.127136
\(289\) 1657.92 0.337455
\(290\) 6151.26 1.24557
\(291\) −10583.1 −2.13194
\(292\) 2391.79 0.479345
\(293\) 155.885 0.0310815 0.0155408 0.999879i \(-0.495053\pi\)
0.0155408 + 0.999879i \(0.495053\pi\)
\(294\) −4414.05 −0.875621
\(295\) 5894.83 1.16342
\(296\) −749.988 −0.147271
\(297\) 2212.00 0.432165
\(298\) 2392.25 0.465030
\(299\) −1165.21 −0.225371
\(300\) 123.023 0.0236758
\(301\) −52.5315 −0.0100593
\(302\) 6542.19 1.24656
\(303\) −10498.8 −1.99056
\(304\) 198.040 0.0373631
\(305\) −5638.37 −1.05853
\(306\) −3148.11 −0.588123
\(307\) 6785.97 1.26155 0.630775 0.775966i \(-0.282737\pi\)
0.630775 + 0.775966i \(0.282737\pi\)
\(308\) −747.818 −0.138347
\(309\) −9519.01 −1.75248
\(310\) −5050.73 −0.925361
\(311\) 1599.69 0.291673 0.145837 0.989309i \(-0.453413\pi\)
0.145837 + 0.989309i \(0.453413\pi\)
\(312\) 790.698 0.143476
\(313\) −6297.60 −1.13726 −0.568629 0.822594i \(-0.692526\pi\)
−0.568629 + 0.822594i \(0.692526\pi\)
\(314\) −112.895 −0.0202899
\(315\) −930.565 −0.166449
\(316\) 2843.23 0.506153
\(317\) 225.200 0.0399006 0.0199503 0.999801i \(-0.493649\pi\)
0.0199503 + 0.999801i \(0.493649\pi\)
\(318\) −3100.63 −0.546776
\(319\) −11998.6 −2.10593
\(320\) 702.503 0.122722
\(321\) −7962.49 −1.38450
\(322\) −701.340 −0.121379
\(323\) 1003.34 0.172839
\(324\) −3504.90 −0.600978
\(325\) −65.4875 −0.0111772
\(326\) 3337.51 0.567017
\(327\) 1681.57 0.284376
\(328\) 3711.42 0.624783
\(329\) −1903.39 −0.318958
\(330\) 6404.81 1.06840
\(331\) −10514.9 −1.74608 −0.873039 0.487651i \(-0.837854\pi\)
−0.873039 + 0.487651i \(0.837854\pi\)
\(332\) −2033.87 −0.336215
\(333\) 1820.42 0.299575
\(334\) 3722.13 0.609779
\(335\) 8830.59 1.44020
\(336\) 475.921 0.0772727
\(337\) 6123.68 0.989845 0.494923 0.868937i \(-0.335196\pi\)
0.494923 + 0.868937i \(0.335196\pi\)
\(338\) 3973.10 0.639372
\(339\) −9816.33 −1.57271
\(340\) 3559.11 0.567705
\(341\) 9851.91 1.56455
\(342\) −480.696 −0.0760032
\(343\) 2911.77 0.458370
\(344\) −96.2583 −0.0150869
\(345\) 6006.74 0.937369
\(346\) −4188.07 −0.650729
\(347\) 3653.06 0.565149 0.282575 0.959245i \(-0.408812\pi\)
0.282575 + 0.959245i \(0.408812\pi\)
\(348\) 7636.07 1.17625
\(349\) 10099.3 1.54901 0.774504 0.632569i \(-0.218000\pi\)
0.774504 + 0.632569i \(0.218000\pi\)
\(350\) −39.4170 −0.00601979
\(351\) 749.371 0.113956
\(352\) −1370.30 −0.207492
\(353\) −7918.64 −1.19396 −0.596978 0.802257i \(-0.703632\pi\)
−0.596978 + 0.802257i \(0.703632\pi\)
\(354\) 7317.75 1.09868
\(355\) −737.973 −0.110331
\(356\) 5138.05 0.764933
\(357\) 2411.17 0.357459
\(358\) −2808.56 −0.414628
\(359\) 7882.78 1.15888 0.579439 0.815016i \(-0.303272\pi\)
0.579439 + 0.815016i \(0.303272\pi\)
\(360\) −1705.16 −0.249639
\(361\) −6705.80 −0.977664
\(362\) −2031.91 −0.295014
\(363\) −3424.97 −0.495218
\(364\) −253.343 −0.0364801
\(365\) 6563.42 0.941220
\(366\) −6999.38 −0.999627
\(367\) −4183.29 −0.595003 −0.297501 0.954721i \(-0.596153\pi\)
−0.297501 + 0.954721i \(0.596153\pi\)
\(368\) −1285.13 −0.182044
\(369\) −9008.60 −1.27092
\(370\) −2058.08 −0.289174
\(371\) 993.453 0.139023
\(372\) −6269.89 −0.873867
\(373\) −10184.2 −1.41372 −0.706858 0.707356i \(-0.749888\pi\)
−0.706858 + 0.707356i \(0.749888\pi\)
\(374\) −6942.37 −0.959843
\(375\) 9685.66 1.33377
\(376\) −3487.76 −0.478371
\(377\) −4064.83 −0.555304
\(378\) 451.047 0.0613739
\(379\) 3203.75 0.434210 0.217105 0.976148i \(-0.430339\pi\)
0.217105 + 0.976148i \(0.430339\pi\)
\(380\) 543.452 0.0733645
\(381\) 18313.2 2.46251
\(382\) −3376.47 −0.452239
\(383\) 10771.8 1.43712 0.718558 0.695467i \(-0.244803\pi\)
0.718558 + 0.695467i \(0.244803\pi\)
\(384\) 872.075 0.115893
\(385\) −2052.13 −0.271652
\(386\) −6967.72 −0.918776
\(387\) 233.645 0.0306895
\(388\) 6213.41 0.812984
\(389\) 2226.02 0.290138 0.145069 0.989422i \(-0.453660\pi\)
0.145069 + 0.989422i \(0.453660\pi\)
\(390\) 2169.79 0.281723
\(391\) −6510.89 −0.842122
\(392\) 2591.51 0.333906
\(393\) −7029.30 −0.902243
\(394\) 3897.75 0.498391
\(395\) 7802.26 0.993859
\(396\) 3326.08 0.422075
\(397\) −507.500 −0.0641580 −0.0320790 0.999485i \(-0.510213\pi\)
−0.0320790 + 0.999485i \(0.510213\pi\)
\(398\) −10606.8 −1.33586
\(399\) 368.170 0.0461944
\(400\) −72.2274 −0.00902842
\(401\) −380.992 −0.0474459 −0.0237230 0.999719i \(-0.507552\pi\)
−0.0237230 + 0.999719i \(0.507552\pi\)
\(402\) 10962.2 1.36006
\(403\) 3337.59 0.412549
\(404\) 6163.89 0.759072
\(405\) −9617.98 −1.18005
\(406\) −2446.63 −0.299074
\(407\) 4014.48 0.488919
\(408\) 4418.22 0.536113
\(409\) −9377.58 −1.13372 −0.566860 0.823814i \(-0.691842\pi\)
−0.566860 + 0.823814i \(0.691842\pi\)
\(410\) 10184.7 1.22679
\(411\) −18078.8 −2.16973
\(412\) 5588.67 0.668286
\(413\) −2344.63 −0.279351
\(414\) 3119.35 0.370309
\(415\) −5581.25 −0.660176
\(416\) −464.223 −0.0547125
\(417\) 11937.7 1.40190
\(418\) −1060.05 −0.124041
\(419\) −10205.5 −1.18990 −0.594951 0.803762i \(-0.702829\pi\)
−0.594951 + 0.803762i \(0.702829\pi\)
\(420\) 1306.00 0.151729
\(421\) 3310.61 0.383252 0.191626 0.981468i \(-0.438624\pi\)
0.191626 + 0.981468i \(0.438624\pi\)
\(422\) −5875.20 −0.677726
\(423\) 8465.72 0.973090
\(424\) 1820.40 0.208505
\(425\) −365.927 −0.0417649
\(426\) −916.107 −0.104191
\(427\) 2242.63 0.254165
\(428\) 4674.82 0.527958
\(429\) −4232.39 −0.476321
\(430\) −264.147 −0.0296240
\(431\) −4989.78 −0.557655 −0.278827 0.960341i \(-0.589946\pi\)
−0.278827 + 0.960341i \(0.589946\pi\)
\(432\) 826.495 0.0920480
\(433\) 14694.2 1.63085 0.815425 0.578862i \(-0.196503\pi\)
0.815425 + 0.578862i \(0.196503\pi\)
\(434\) 2008.90 0.222189
\(435\) 20954.5 2.30964
\(436\) −987.258 −0.108443
\(437\) −994.170 −0.108827
\(438\) 8147.73 0.888843
\(439\) 7286.35 0.792161 0.396081 0.918216i \(-0.370370\pi\)
0.396081 + 0.918216i \(0.370370\pi\)
\(440\) −3760.30 −0.407421
\(441\) −6290.29 −0.679224
\(442\) −2351.91 −0.253097
\(443\) 6330.81 0.678975 0.339487 0.940611i \(-0.389746\pi\)
0.339487 + 0.940611i \(0.389746\pi\)
\(444\) −2554.87 −0.273082
\(445\) 14099.6 1.50199
\(446\) −4470.92 −0.474673
\(447\) 8149.29 0.862300
\(448\) −279.416 −0.0294669
\(449\) 536.523 0.0563921 0.0281961 0.999602i \(-0.491024\pi\)
0.0281961 + 0.999602i \(0.491024\pi\)
\(450\) 175.315 0.0183654
\(451\) −19866.2 −2.07420
\(452\) 5763.22 0.599733
\(453\) 22286.2 2.31148
\(454\) −7086.02 −0.732519
\(455\) −695.210 −0.0716307
\(456\) 674.632 0.0692819
\(457\) −15325.7 −1.56873 −0.784363 0.620302i \(-0.787010\pi\)
−0.784363 + 0.620302i \(0.787010\pi\)
\(458\) 1017.15 0.103774
\(459\) 4187.29 0.425808
\(460\) −3526.59 −0.357453
\(461\) −9299.66 −0.939541 −0.469771 0.882789i \(-0.655663\pi\)
−0.469771 + 0.882789i \(0.655663\pi\)
\(462\) −2547.47 −0.256535
\(463\) 5124.09 0.514334 0.257167 0.966367i \(-0.417211\pi\)
0.257167 + 0.966367i \(0.417211\pi\)
\(464\) −4483.18 −0.448548
\(465\) −17205.5 −1.71589
\(466\) −3403.77 −0.338362
\(467\) −8778.92 −0.869893 −0.434947 0.900456i \(-0.643233\pi\)
−0.434947 + 0.900456i \(0.643233\pi\)
\(468\) 1126.79 0.111295
\(469\) −3512.31 −0.345807
\(470\) −9570.93 −0.939307
\(471\) −384.582 −0.0376233
\(472\) −4296.29 −0.418968
\(473\) 515.244 0.0500866
\(474\) 9685.60 0.938553
\(475\) −55.8747 −0.00539728
\(476\) −1415.61 −0.136312
\(477\) −4418.59 −0.424137
\(478\) −1743.07 −0.166791
\(479\) −4476.36 −0.426994 −0.213497 0.976944i \(-0.568485\pi\)
−0.213497 + 0.976944i \(0.568485\pi\)
\(480\) 2393.10 0.227562
\(481\) 1360.01 0.128921
\(482\) 6469.67 0.611381
\(483\) −2389.14 −0.225072
\(484\) 2010.82 0.188845
\(485\) 17050.5 1.59634
\(486\) −9150.18 −0.854034
\(487\) 2490.55 0.231741 0.115870 0.993264i \(-0.463034\pi\)
0.115870 + 0.993264i \(0.463034\pi\)
\(488\) 4109.38 0.381194
\(489\) 11369.4 1.05141
\(490\) 7111.50 0.655643
\(491\) 17685.3 1.62551 0.812756 0.582604i \(-0.197966\pi\)
0.812756 + 0.582604i \(0.197966\pi\)
\(492\) 12643.1 1.15853
\(493\) −22713.2 −2.07496
\(494\) −359.120 −0.0327077
\(495\) 9127.25 0.828767
\(496\) 3681.09 0.333237
\(497\) 293.524 0.0264917
\(498\) −6928.48 −0.623439
\(499\) 8668.95 0.777706 0.388853 0.921300i \(-0.372871\pi\)
0.388853 + 0.921300i \(0.372871\pi\)
\(500\) −5686.50 −0.508616
\(501\) 12679.6 1.13070
\(502\) −7474.67 −0.664563
\(503\) −1594.53 −0.141345 −0.0706726 0.997500i \(-0.522515\pi\)
−0.0706726 + 0.997500i \(0.522515\pi\)
\(504\) 678.217 0.0599409
\(505\) 16914.6 1.49048
\(506\) 6878.95 0.604361
\(507\) 13534.5 1.18558
\(508\) −10751.8 −0.939044
\(509\) −8686.94 −0.756467 −0.378234 0.925710i \(-0.623468\pi\)
−0.378234 + 0.925710i \(0.623468\pi\)
\(510\) 12124.2 1.05269
\(511\) −2610.56 −0.225997
\(512\) −512.000 −0.0441942
\(513\) 639.372 0.0550272
\(514\) −4757.62 −0.408268
\(515\) 15336.1 1.31222
\(516\) −327.908 −0.0279755
\(517\) 18669.0 1.58813
\(518\) 818.589 0.0694338
\(519\) −14266.9 −1.20664
\(520\) −1273.90 −0.107431
\(521\) 13757.3 1.15685 0.578423 0.815737i \(-0.303668\pi\)
0.578423 + 0.815737i \(0.303668\pi\)
\(522\) 10881.9 0.912426
\(523\) −3781.19 −0.316138 −0.158069 0.987428i \(-0.550527\pi\)
−0.158069 + 0.987428i \(0.550527\pi\)
\(524\) 4126.94 0.344058
\(525\) −134.276 −0.0111624
\(526\) 14705.4 1.21899
\(527\) 18649.6 1.54153
\(528\) −4667.97 −0.384749
\(529\) −5715.59 −0.469762
\(530\) 4995.44 0.409412
\(531\) 10428.2 0.852254
\(532\) −216.155 −0.0176156
\(533\) −6730.18 −0.546935
\(534\) 17503.0 1.41841
\(535\) 12828.4 1.03667
\(536\) −6435.94 −0.518638
\(537\) −9567.46 −0.768839
\(538\) 538.000 0.0431131
\(539\) −13871.6 −1.10852
\(540\) 2268.03 0.180741
\(541\) −846.129 −0.0672420 −0.0336210 0.999435i \(-0.510704\pi\)
−0.0336210 + 0.999435i \(0.510704\pi\)
\(542\) −590.351 −0.0467855
\(543\) −6921.80 −0.547041
\(544\) −2593.96 −0.204439
\(545\) −2709.18 −0.212933
\(546\) −863.022 −0.0676446
\(547\) −1077.27 −0.0842060 −0.0421030 0.999113i \(-0.513406\pi\)
−0.0421030 + 0.999113i \(0.513406\pi\)
\(548\) 10614.1 0.827397
\(549\) −9974.55 −0.775416
\(550\) 386.613 0.0299732
\(551\) −3468.16 −0.268146
\(552\) −4377.85 −0.337561
\(553\) −3103.30 −0.238636
\(554\) −11103.8 −0.851545
\(555\) −7010.94 −0.536212
\(556\) −7008.70 −0.534595
\(557\) 17202.9 1.30863 0.654317 0.756220i \(-0.272956\pi\)
0.654317 + 0.756220i \(0.272956\pi\)
\(558\) −8934.98 −0.677863
\(559\) 174.552 0.0132071
\(560\) −766.760 −0.0578598
\(561\) −23649.5 −1.77982
\(562\) −12322.4 −0.924888
\(563\) −891.139 −0.0667088 −0.0333544 0.999444i \(-0.510619\pi\)
−0.0333544 + 0.999444i \(0.510619\pi\)
\(564\) −11881.2 −0.887036
\(565\) 15815.1 1.17761
\(566\) 9967.97 0.740256
\(567\) 3825.49 0.283343
\(568\) 537.852 0.0397320
\(569\) 21115.6 1.55573 0.777866 0.628430i \(-0.216302\pi\)
0.777866 + 0.628430i \(0.216302\pi\)
\(570\) 1851.29 0.136039
\(571\) 11665.3 0.854952 0.427476 0.904027i \(-0.359403\pi\)
0.427476 + 0.904027i \(0.359403\pi\)
\(572\) 2484.86 0.181638
\(573\) −11502.1 −0.838582
\(574\) −4050.90 −0.294567
\(575\) 362.584 0.0262971
\(576\) 1242.76 0.0898988
\(577\) −18980.9 −1.36947 −0.684737 0.728791i \(-0.740083\pi\)
−0.684737 + 0.728791i \(0.740083\pi\)
\(578\) −3315.84 −0.238617
\(579\) −23735.8 −1.70367
\(580\) −12302.5 −0.880749
\(581\) 2219.91 0.158515
\(582\) 21166.2 1.50751
\(583\) −9744.08 −0.692210
\(584\) −4783.57 −0.338948
\(585\) 3092.09 0.218534
\(586\) −311.769 −0.0219779
\(587\) 18871.8 1.32696 0.663479 0.748195i \(-0.269079\pi\)
0.663479 + 0.748195i \(0.269079\pi\)
\(588\) 8828.10 0.619158
\(589\) 2847.67 0.199212
\(590\) −11789.7 −0.822666
\(591\) 13277.9 0.924160
\(592\) 1499.98 0.104136
\(593\) 1805.65 0.125041 0.0625203 0.998044i \(-0.480086\pi\)
0.0625203 + 0.998044i \(0.480086\pi\)
\(594\) −4424.00 −0.305587
\(595\) −3884.65 −0.267656
\(596\) −4784.49 −0.328826
\(597\) −36132.5 −2.47706
\(598\) 2330.42 0.159361
\(599\) −23197.4 −1.58233 −0.791167 0.611600i \(-0.790526\pi\)
−0.791167 + 0.611600i \(0.790526\pi\)
\(600\) −246.046 −0.0167413
\(601\) 11255.3 0.763916 0.381958 0.924180i \(-0.375250\pi\)
0.381958 + 0.924180i \(0.375250\pi\)
\(602\) 105.063 0.00711303
\(603\) 15621.7 1.05500
\(604\) −13084.4 −0.881450
\(605\) 5517.98 0.370806
\(606\) 20997.6 1.40754
\(607\) −19788.3 −1.32320 −0.661599 0.749858i \(-0.730122\pi\)
−0.661599 + 0.749858i \(0.730122\pi\)
\(608\) −396.080 −0.0264197
\(609\) −8334.53 −0.554569
\(610\) 11276.7 0.748495
\(611\) 6324.60 0.418766
\(612\) 6296.23 0.415866
\(613\) 4567.25 0.300929 0.150464 0.988615i \(-0.451923\pi\)
0.150464 + 0.988615i \(0.451923\pi\)
\(614\) −13571.9 −0.892051
\(615\) 34694.6 2.27483
\(616\) 1495.64 0.0978261
\(617\) 3433.52 0.224033 0.112016 0.993706i \(-0.464269\pi\)
0.112016 + 0.993706i \(0.464269\pi\)
\(618\) 19038.0 1.23919
\(619\) −4237.77 −0.275170 −0.137585 0.990490i \(-0.543934\pi\)
−0.137585 + 0.990490i \(0.543934\pi\)
\(620\) 10101.5 0.654329
\(621\) −4149.04 −0.268108
\(622\) −3199.39 −0.206244
\(623\) −5608.03 −0.360643
\(624\) −1581.40 −0.101453
\(625\) −15040.3 −0.962582
\(626\) 12595.2 0.804162
\(627\) −3611.12 −0.230007
\(628\) 225.790 0.0143471
\(629\) 7599.36 0.481727
\(630\) 1861.13 0.117697
\(631\) −14706.9 −0.927846 −0.463923 0.885876i \(-0.653558\pi\)
−0.463923 + 0.885876i \(0.653558\pi\)
\(632\) −5686.47 −0.357904
\(633\) −20014.1 −1.25670
\(634\) −450.400 −0.0282140
\(635\) −29504.6 −1.84386
\(636\) 6201.26 0.386629
\(637\) −4699.38 −0.292302
\(638\) 23997.2 1.48912
\(639\) −1305.51 −0.0808218
\(640\) −1405.01 −0.0867777
\(641\) −17175.0 −1.05830 −0.529150 0.848529i \(-0.677489\pi\)
−0.529150 + 0.848529i \(0.677489\pi\)
\(642\) 15925.0 0.978986
\(643\) −21183.9 −1.29924 −0.649620 0.760259i \(-0.725072\pi\)
−0.649620 + 0.760259i \(0.725072\pi\)
\(644\) 1402.68 0.0858282
\(645\) −899.829 −0.0549314
\(646\) −2006.67 −0.122216
\(647\) −22797.5 −1.38526 −0.692630 0.721293i \(-0.743548\pi\)
−0.692630 + 0.721293i \(0.743548\pi\)
\(648\) 7009.81 0.424956
\(649\) 22996.8 1.39092
\(650\) 130.975 0.00790349
\(651\) 6843.39 0.412002
\(652\) −6675.02 −0.400942
\(653\) −14781.3 −0.885813 −0.442907 0.896568i \(-0.646053\pi\)
−0.442907 + 0.896568i \(0.646053\pi\)
\(654\) −3363.14 −0.201084
\(655\) 11325.0 0.675576
\(656\) −7422.84 −0.441788
\(657\) 11611.0 0.689480
\(658\) 3806.78 0.225537
\(659\) 6278.22 0.371115 0.185558 0.982633i \(-0.440591\pi\)
0.185558 + 0.982633i \(0.440591\pi\)
\(660\) −12809.6 −0.755476
\(661\) −22338.9 −1.31449 −0.657247 0.753675i \(-0.728279\pi\)
−0.657247 + 0.753675i \(0.728279\pi\)
\(662\) 21029.8 1.23466
\(663\) −8011.87 −0.469314
\(664\) 4067.75 0.237740
\(665\) −593.161 −0.0345892
\(666\) −3640.84 −0.211831
\(667\) 22505.7 1.30649
\(668\) −7444.27 −0.431179
\(669\) −15230.4 −0.880180
\(670\) −17661.2 −1.01837
\(671\) −21996.3 −1.26551
\(672\) −951.843 −0.0546401
\(673\) −32188.5 −1.84365 −0.921825 0.387607i \(-0.873302\pi\)
−0.921825 + 0.387607i \(0.873302\pi\)
\(674\) −12247.4 −0.699926
\(675\) −233.186 −0.0132968
\(676\) −7946.19 −0.452105
\(677\) 17251.0 0.979333 0.489666 0.871910i \(-0.337119\pi\)
0.489666 + 0.871910i \(0.337119\pi\)
\(678\) 19632.7 1.11208
\(679\) −6781.74 −0.383298
\(680\) −7118.21 −0.401428
\(681\) −24138.8 −1.35830
\(682\) −19703.8 −1.10630
\(683\) 27527.8 1.54220 0.771098 0.636716i \(-0.219708\pi\)
0.771098 + 0.636716i \(0.219708\pi\)
\(684\) 961.393 0.0537423
\(685\) 29126.8 1.62464
\(686\) −5823.55 −0.324117
\(687\) 3464.96 0.192426
\(688\) 192.517 0.0106681
\(689\) −3301.06 −0.182526
\(690\) −12013.5 −0.662820
\(691\) 1757.83 0.0967743 0.0483871 0.998829i \(-0.484592\pi\)
0.0483871 + 0.998829i \(0.484592\pi\)
\(692\) 8376.15 0.460135
\(693\) −3630.31 −0.198996
\(694\) −7306.13 −0.399621
\(695\) −19232.9 −1.04971
\(696\) −15272.1 −0.831737
\(697\) −37606.5 −2.04368
\(698\) −20198.6 −1.09531
\(699\) −11595.1 −0.627419
\(700\) 78.8340 0.00425663
\(701\) 13105.1 0.706098 0.353049 0.935605i \(-0.385145\pi\)
0.353049 + 0.935605i \(0.385145\pi\)
\(702\) −1498.74 −0.0805789
\(703\) 1160.37 0.0622536
\(704\) 2740.59 0.146719
\(705\) −32603.8 −1.74174
\(706\) 15837.3 0.844255
\(707\) −6727.70 −0.357880
\(708\) −14635.5 −0.776886
\(709\) −3131.78 −0.165891 −0.0829453 0.996554i \(-0.526433\pi\)
−0.0829453 + 0.996554i \(0.526433\pi\)
\(710\) 1475.95 0.0780159
\(711\) 13802.6 0.728041
\(712\) −10276.1 −0.540890
\(713\) −18479.2 −0.970619
\(714\) −4822.34 −0.252762
\(715\) 6818.82 0.356657
\(716\) 5617.11 0.293186
\(717\) −5937.83 −0.309278
\(718\) −15765.6 −0.819450
\(719\) 16893.9 0.876269 0.438135 0.898909i \(-0.355639\pi\)
0.438135 + 0.898909i \(0.355639\pi\)
\(720\) 3410.32 0.176521
\(721\) −6099.85 −0.315077
\(722\) 13411.6 0.691313
\(723\) 22039.2 1.13367
\(724\) 4063.83 0.208606
\(725\) 1264.88 0.0647949
\(726\) 6849.93 0.350172
\(727\) −33263.5 −1.69694 −0.848469 0.529245i \(-0.822475\pi\)
−0.848469 + 0.529245i \(0.822475\pi\)
\(728\) 506.685 0.0257953
\(729\) −7512.39 −0.381669
\(730\) −13126.8 −0.665543
\(731\) 975.352 0.0493498
\(732\) 13998.8 0.706843
\(733\) 28341.9 1.42815 0.714075 0.700070i \(-0.246848\pi\)
0.714075 + 0.700070i \(0.246848\pi\)
\(734\) 8366.58 0.420730
\(735\) 24225.6 1.21575
\(736\) 2570.26 0.128724
\(737\) 34449.8 1.72181
\(738\) 18017.2 0.898675
\(739\) −16211.0 −0.806942 −0.403471 0.914993i \(-0.632196\pi\)
−0.403471 + 0.914993i \(0.632196\pi\)
\(740\) 4116.16 0.204477
\(741\) −1223.36 −0.0606494
\(742\) −1986.91 −0.0983041
\(743\) 15351.5 0.757997 0.378998 0.925397i \(-0.376269\pi\)
0.378998 + 0.925397i \(0.376269\pi\)
\(744\) 12539.8 0.617917
\(745\) −13129.4 −0.645668
\(746\) 20368.3 0.999648
\(747\) −9873.50 −0.483605
\(748\) 13884.7 0.678712
\(749\) −5102.42 −0.248917
\(750\) −19371.3 −0.943121
\(751\) 6189.66 0.300751 0.150375 0.988629i \(-0.451952\pi\)
0.150375 + 0.988629i \(0.451952\pi\)
\(752\) 6975.51 0.338259
\(753\) −25462.8 −1.23229
\(754\) 8129.67 0.392659
\(755\) −35905.5 −1.73077
\(756\) −902.093 −0.0433979
\(757\) 8310.68 0.399018 0.199509 0.979896i \(-0.436065\pi\)
0.199509 + 0.979896i \(0.436065\pi\)
\(758\) −6407.50 −0.307033
\(759\) 23433.4 1.12066
\(760\) −1086.90 −0.0518765
\(761\) −20644.0 −0.983371 −0.491685 0.870773i \(-0.663619\pi\)
−0.491685 + 0.870773i \(0.663619\pi\)
\(762\) −36626.5 −1.74126
\(763\) 1077.56 0.0511276
\(764\) 6752.95 0.319782
\(765\) 17277.8 0.816575
\(766\) −21543.7 −1.01619
\(767\) 7790.77 0.366764
\(768\) −1744.15 −0.0819487
\(769\) −15352.5 −0.719928 −0.359964 0.932966i \(-0.617211\pi\)
−0.359964 + 0.932966i \(0.617211\pi\)
\(770\) 4104.25 0.192087
\(771\) −16207.1 −0.757046
\(772\) 13935.4 0.649672
\(773\) 29217.7 1.35949 0.679746 0.733447i \(-0.262090\pi\)
0.679746 + 0.733447i \(0.262090\pi\)
\(774\) −467.289 −0.0217007
\(775\) −1038.57 −0.0481377
\(776\) −12426.8 −0.574867
\(777\) 2788.56 0.128750
\(778\) −4452.04 −0.205159
\(779\) −5742.26 −0.264105
\(780\) −4339.59 −0.199208
\(781\) −2878.97 −0.131905
\(782\) 13021.8 0.595470
\(783\) −14473.9 −0.660607
\(784\) −5183.03 −0.236107
\(785\) 619.602 0.0281714
\(786\) 14058.6 0.637982
\(787\) 10971.3 0.496929 0.248464 0.968641i \(-0.420074\pi\)
0.248464 + 0.968641i \(0.420074\pi\)
\(788\) −7795.51 −0.352416
\(789\) 50094.7 2.26035
\(790\) −15604.5 −0.702765
\(791\) −6290.38 −0.282756
\(792\) −6652.15 −0.298452
\(793\) −7451.83 −0.333697
\(794\) 1015.00 0.0453665
\(795\) 17017.2 0.759167
\(796\) 21213.6 0.944594
\(797\) 8943.38 0.397479 0.198740 0.980052i \(-0.436315\pi\)
0.198740 + 0.980052i \(0.436315\pi\)
\(798\) −736.340 −0.0326644
\(799\) 35340.2 1.56476
\(800\) 144.455 0.00638406
\(801\) 24942.8 1.10026
\(802\) 761.984 0.0335493
\(803\) 25605.1 1.12526
\(804\) −21924.3 −0.961705
\(805\) 3849.17 0.168528
\(806\) −6675.18 −0.291716
\(807\) 1832.72 0.0799440
\(808\) −12327.8 −0.536745
\(809\) −9047.14 −0.393177 −0.196589 0.980486i \(-0.562986\pi\)
−0.196589 + 0.980486i \(0.562986\pi\)
\(810\) 19236.0 0.834423
\(811\) 20660.7 0.894570 0.447285 0.894391i \(-0.352391\pi\)
0.447285 + 0.894391i \(0.352391\pi\)
\(812\) 4893.25 0.211477
\(813\) −2011.05 −0.0867537
\(814\) −8028.95 −0.345718
\(815\) −18317.3 −0.787270
\(816\) −8836.43 −0.379089
\(817\) 148.930 0.00637747
\(818\) 18755.2 0.801661
\(819\) −1229.86 −0.0524723
\(820\) −20369.4 −0.867475
\(821\) −16981.4 −0.721869 −0.360934 0.932591i \(-0.617542\pi\)
−0.360934 + 0.932591i \(0.617542\pi\)
\(822\) 36157.5 1.53423
\(823\) 38928.4 1.64880 0.824399 0.566010i \(-0.191513\pi\)
0.824399 + 0.566010i \(0.191513\pi\)
\(824\) −11177.3 −0.472549
\(825\) 1317.01 0.0555788
\(826\) 4689.27 0.197531
\(827\) 26389.7 1.10962 0.554812 0.831976i \(-0.312790\pi\)
0.554812 + 0.831976i \(0.312790\pi\)
\(828\) −6238.71 −0.261848
\(829\) 26255.4 1.09998 0.549992 0.835170i \(-0.314631\pi\)
0.549992 + 0.835170i \(0.314631\pi\)
\(830\) 11162.5 0.466815
\(831\) −37825.6 −1.57901
\(832\) 928.446 0.0386876
\(833\) −26258.9 −1.09222
\(834\) −23875.4 −0.991293
\(835\) −20428.2 −0.846643
\(836\) 2120.11 0.0877099
\(837\) 11884.4 0.490781
\(838\) 20410.9 0.841388
\(839\) −31106.4 −1.27999 −0.639996 0.768378i \(-0.721064\pi\)
−0.639996 + 0.768378i \(0.721064\pi\)
\(840\) −2612.00 −0.107289
\(841\) 54122.3 2.21913
\(842\) −6621.22 −0.271000
\(843\) −41976.6 −1.71501
\(844\) 11750.4 0.479224
\(845\) −21805.5 −0.887732
\(846\) −16931.4 −0.688079
\(847\) −2194.74 −0.0890346
\(848\) −3640.79 −0.147436
\(849\) 33956.3 1.37265
\(850\) 731.855 0.0295323
\(851\) −7529.94 −0.303317
\(852\) 1832.21 0.0736745
\(853\) 7352.21 0.295117 0.147558 0.989053i \(-0.452859\pi\)
0.147558 + 0.989053i \(0.452859\pi\)
\(854\) −4485.26 −0.179722
\(855\) 2638.21 0.105526
\(856\) −9349.65 −0.373323
\(857\) −3179.52 −0.126733 −0.0633665 0.997990i \(-0.520184\pi\)
−0.0633665 + 0.997990i \(0.520184\pi\)
\(858\) 8464.77 0.336809
\(859\) −26140.0 −1.03828 −0.519142 0.854688i \(-0.673749\pi\)
−0.519142 + 0.854688i \(0.673749\pi\)
\(860\) 528.295 0.0209473
\(861\) −13799.6 −0.546211
\(862\) 9979.56 0.394321
\(863\) −7878.74 −0.310771 −0.155386 0.987854i \(-0.549662\pi\)
−0.155386 + 0.987854i \(0.549662\pi\)
\(864\) −1652.99 −0.0650878
\(865\) 22985.4 0.903500
\(866\) −29388.4 −1.15319
\(867\) −11295.5 −0.442464
\(868\) −4017.79 −0.157111
\(869\) 30438.1 1.18819
\(870\) −41909.1 −1.63316
\(871\) 11670.7 0.454016
\(872\) 1974.52 0.0766807
\(873\) 30163.2 1.16938
\(874\) 1988.34 0.0769526
\(875\) 6206.64 0.239797
\(876\) −16295.5 −0.628507
\(877\) −34655.2 −1.33435 −0.667175 0.744901i \(-0.732497\pi\)
−0.667175 + 0.744901i \(0.732497\pi\)
\(878\) −14572.7 −0.560142
\(879\) −1062.06 −0.0407534
\(880\) 7520.60 0.288090
\(881\) 26971.1 1.03142 0.515709 0.856764i \(-0.327529\pi\)
0.515709 + 0.856764i \(0.327529\pi\)
\(882\) 12580.6 0.480284
\(883\) −18329.2 −0.698559 −0.349280 0.937018i \(-0.613574\pi\)
−0.349280 + 0.937018i \(0.613574\pi\)
\(884\) 4703.81 0.178966
\(885\) −40162.0 −1.52546
\(886\) −12661.6 −0.480108
\(887\) −13799.2 −0.522358 −0.261179 0.965290i \(-0.584111\pi\)
−0.261179 + 0.965290i \(0.584111\pi\)
\(888\) 5109.73 0.193098
\(889\) 11735.3 0.442731
\(890\) −28199.2 −1.06207
\(891\) −37521.5 −1.41080
\(892\) 8941.84 0.335645
\(893\) 5396.22 0.202215
\(894\) −16298.6 −0.609738
\(895\) 15414.2 0.575687
\(896\) 558.832 0.0208362
\(897\) 7938.67 0.295501
\(898\) −1073.05 −0.0398753
\(899\) −64464.7 −2.39157
\(900\) −350.630 −0.0129863
\(901\) −18445.4 −0.682027
\(902\) 39732.4 1.46668
\(903\) 357.901 0.0131896
\(904\) −11526.4 −0.424075
\(905\) 11151.8 0.409610
\(906\) −44572.5 −1.63446
\(907\) −10859.4 −0.397553 −0.198776 0.980045i \(-0.563697\pi\)
−0.198776 + 0.980045i \(0.563697\pi\)
\(908\) 14172.0 0.517969
\(909\) 29922.8 1.09183
\(910\) 1390.42 0.0506505
\(911\) 29073.0 1.05734 0.528668 0.848829i \(-0.322692\pi\)
0.528668 + 0.848829i \(0.322692\pi\)
\(912\) −1349.26 −0.0489897
\(913\) −21773.5 −0.789264
\(914\) 30651.5 1.10926
\(915\) 38414.7 1.38793
\(916\) −2034.30 −0.0733790
\(917\) −4504.43 −0.162213
\(918\) −8374.58 −0.301092
\(919\) 22481.3 0.806953 0.403476 0.914990i \(-0.367802\pi\)
0.403476 + 0.914990i \(0.367802\pi\)
\(920\) 7053.18 0.252757
\(921\) −46233.4 −1.65412
\(922\) 18599.3 0.664356
\(923\) −975.325 −0.0347814
\(924\) 5094.95 0.181398
\(925\) −423.201 −0.0150430
\(926\) −10248.2 −0.363689
\(927\) 27130.4 0.961249
\(928\) 8966.36 0.317171
\(929\) −18585.2 −0.656363 −0.328182 0.944615i \(-0.606436\pi\)
−0.328182 + 0.944615i \(0.606436\pi\)
\(930\) 34411.0 1.21331
\(931\) −4009.56 −0.141147
\(932\) 6807.54 0.239258
\(933\) −10898.9 −0.382436
\(934\) 17557.8 0.615107
\(935\) 38101.8 1.33269
\(936\) −2253.59 −0.0786974
\(937\) 1098.03 0.0382831 0.0191415 0.999817i \(-0.493907\pi\)
0.0191415 + 0.999817i \(0.493907\pi\)
\(938\) 7024.63 0.244523
\(939\) 42906.1 1.49115
\(940\) 19141.9 0.664190
\(941\) −49152.4 −1.70279 −0.851393 0.524528i \(-0.824242\pi\)
−0.851393 + 0.524528i \(0.824242\pi\)
\(942\) 769.163 0.0266037
\(943\) 37262.9 1.28680
\(944\) 8592.58 0.296255
\(945\) −2475.48 −0.0852141
\(946\) −1030.49 −0.0354165
\(947\) −23449.3 −0.804648 −0.402324 0.915497i \(-0.631797\pi\)
−0.402324 + 0.915497i \(0.631797\pi\)
\(948\) −19371.2 −0.663657
\(949\) 8674.40 0.296715
\(950\) 111.749 0.00381645
\(951\) −1534.31 −0.0523168
\(952\) 2831.23 0.0963871
\(953\) −52589.6 −1.78756 −0.893780 0.448506i \(-0.851956\pi\)
−0.893780 + 0.448506i \(0.851956\pi\)
\(954\) 8837.17 0.299910
\(955\) 18531.1 0.627908
\(956\) 3486.13 0.117939
\(957\) 81747.5 2.76126
\(958\) 8952.72 0.301930
\(959\) −11585.0 −0.390093
\(960\) −4786.21 −0.160911
\(961\) 23140.2 0.776752
\(962\) −2720.01 −0.0911609
\(963\) 22694.1 0.759405
\(964\) −12939.3 −0.432311
\(965\) 38240.9 1.27567
\(966\) 4778.29 0.159150
\(967\) 27847.0 0.926058 0.463029 0.886343i \(-0.346763\pi\)
0.463029 + 0.886343i \(0.346763\pi\)
\(968\) −4021.63 −0.133533
\(969\) −6835.81 −0.226623
\(970\) −34101.0 −1.12878
\(971\) 28912.9 0.955572 0.477786 0.878476i \(-0.341440\pi\)
0.477786 + 0.878476i \(0.341440\pi\)
\(972\) 18300.4 0.603893
\(973\) 7649.78 0.252046
\(974\) −4981.10 −0.163865
\(975\) 446.172 0.0146553
\(976\) −8218.75 −0.269545
\(977\) 26790.4 0.877279 0.438640 0.898663i \(-0.355460\pi\)
0.438640 + 0.898663i \(0.355460\pi\)
\(978\) −22738.7 −0.743461
\(979\) 55005.1 1.79568
\(980\) −14223.0 −0.463609
\(981\) −4792.68 −0.155982
\(982\) −35370.6 −1.14941
\(983\) 33307.4 1.08071 0.540357 0.841436i \(-0.318289\pi\)
0.540357 + 0.841436i \(0.318289\pi\)
\(984\) −25286.2 −0.819202
\(985\) −21392.0 −0.691987
\(986\) 45426.5 1.46721
\(987\) 12968.0 0.418211
\(988\) 718.241 0.0231278
\(989\) −966.441 −0.0310728
\(990\) −18254.5 −0.586026
\(991\) −9507.98 −0.304774 −0.152387 0.988321i \(-0.548696\pi\)
−0.152387 + 0.988321i \(0.548696\pi\)
\(992\) −7362.17 −0.235634
\(993\) 71639.0 2.28942
\(994\) −587.049 −0.0187324
\(995\) 58213.3 1.85476
\(996\) 13857.0 0.440838
\(997\) −30680.1 −0.974572 −0.487286 0.873242i \(-0.662013\pi\)
−0.487286 + 0.873242i \(0.662013\pi\)
\(998\) −17337.9 −0.549921
\(999\) 4842.66 0.153368
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.b.1.3 15
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.b.1.3 15 1.1 even 1 trivial