Properties

Label 538.4.a.c.1.16
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 8 x^{17} - 299 x^{16} + 2191 x^{15} + 37840 x^{14} - 247598 x^{13} - 2647415 x^{12} + \cdots - 88752454191 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.16
Root \(7.35951\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} +6.35951 q^{3} +4.00000 q^{4} +6.17843 q^{5} -12.7190 q^{6} -27.3928 q^{7} -8.00000 q^{8} +13.4434 q^{9} -12.3569 q^{10} -40.4875 q^{11} +25.4381 q^{12} +70.4369 q^{13} +54.7855 q^{14} +39.2918 q^{15} +16.0000 q^{16} -109.655 q^{17} -26.8868 q^{18} +124.330 q^{19} +24.7137 q^{20} -174.205 q^{21} +80.9751 q^{22} +47.2294 q^{23} -50.8761 q^{24} -86.8270 q^{25} -140.874 q^{26} -86.2134 q^{27} -109.571 q^{28} -275.186 q^{29} -78.5836 q^{30} +78.4699 q^{31} -32.0000 q^{32} -257.481 q^{33} +219.309 q^{34} -169.244 q^{35} +53.7736 q^{36} -411.965 q^{37} -248.660 q^{38} +447.945 q^{39} -49.4275 q^{40} +367.077 q^{41} +348.409 q^{42} -323.524 q^{43} -161.950 q^{44} +83.0592 q^{45} -94.4588 q^{46} -345.631 q^{47} +101.752 q^{48} +407.364 q^{49} +173.654 q^{50} -697.350 q^{51} +281.748 q^{52} -183.659 q^{53} +172.427 q^{54} -250.150 q^{55} +219.142 q^{56} +790.678 q^{57} +550.373 q^{58} +4.65834 q^{59} +157.167 q^{60} -178.061 q^{61} -156.940 q^{62} -368.252 q^{63} +64.0000 q^{64} +435.190 q^{65} +514.962 q^{66} -184.917 q^{67} -438.619 q^{68} +300.356 q^{69} +338.489 q^{70} -429.952 q^{71} -107.547 q^{72} +608.426 q^{73} +823.930 q^{74} -552.177 q^{75} +497.320 q^{76} +1109.07 q^{77} -895.889 q^{78} +535.072 q^{79} +98.8549 q^{80} -911.247 q^{81} -734.155 q^{82} -601.154 q^{83} -696.819 q^{84} -677.494 q^{85} +647.048 q^{86} -1750.05 q^{87} +323.900 q^{88} -479.696 q^{89} -166.118 q^{90} -1929.46 q^{91} +188.918 q^{92} +499.030 q^{93} +691.261 q^{94} +768.164 q^{95} -203.504 q^{96} +903.154 q^{97} -814.728 q^{98} -544.290 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 36 q^{2} - 10 q^{3} + 72 q^{4} - 26 q^{5} + 20 q^{6} - 9 q^{7} - 144 q^{8} + 178 q^{9} + 52 q^{10} - 130 q^{11} - 40 q^{12} - 27 q^{13} + 18 q^{14} - 143 q^{15} + 288 q^{16} - 110 q^{17} - 356 q^{18}+ \cdots - 9455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) 6.35951 1.22389 0.611944 0.790901i \(-0.290388\pi\)
0.611944 + 0.790901i \(0.290388\pi\)
\(4\) 4.00000 0.500000
\(5\) 6.17843 0.552616 0.276308 0.961069i \(-0.410889\pi\)
0.276308 + 0.961069i \(0.410889\pi\)
\(6\) −12.7190 −0.865420
\(7\) −27.3928 −1.47907 −0.739535 0.673118i \(-0.764955\pi\)
−0.739535 + 0.673118i \(0.764955\pi\)
\(8\) −8.00000 −0.353553
\(9\) 13.4434 0.497904
\(10\) −12.3569 −0.390758
\(11\) −40.4875 −1.10977 −0.554884 0.831928i \(-0.687237\pi\)
−0.554884 + 0.831928i \(0.687237\pi\)
\(12\) 25.4381 0.611944
\(13\) 70.4369 1.50275 0.751373 0.659878i \(-0.229392\pi\)
0.751373 + 0.659878i \(0.229392\pi\)
\(14\) 54.7855 1.04586
\(15\) 39.2918 0.676340
\(16\) 16.0000 0.250000
\(17\) −109.655 −1.56442 −0.782211 0.623014i \(-0.785908\pi\)
−0.782211 + 0.623014i \(0.785908\pi\)
\(18\) −26.8868 −0.352071
\(19\) 124.330 1.50122 0.750612 0.660743i \(-0.229759\pi\)
0.750612 + 0.660743i \(0.229759\pi\)
\(20\) 24.7137 0.276308
\(21\) −174.205 −1.81022
\(22\) 80.9751 0.784725
\(23\) 47.2294 0.428175 0.214087 0.976815i \(-0.431322\pi\)
0.214087 + 0.976815i \(0.431322\pi\)
\(24\) −50.8761 −0.432710
\(25\) −86.8270 −0.694616
\(26\) −140.874 −1.06260
\(27\) −86.2134 −0.614510
\(28\) −109.571 −0.739535
\(29\) −275.186 −1.76210 −0.881049 0.473026i \(-0.843162\pi\)
−0.881049 + 0.473026i \(0.843162\pi\)
\(30\) −78.5836 −0.478245
\(31\) 78.4699 0.454633 0.227316 0.973821i \(-0.427005\pi\)
0.227316 + 0.973821i \(0.427005\pi\)
\(32\) −32.0000 −0.176777
\(33\) −257.481 −1.35823
\(34\) 219.309 1.10621
\(35\) −169.244 −0.817358
\(36\) 53.7736 0.248952
\(37\) −411.965 −1.83045 −0.915225 0.402943i \(-0.867987\pi\)
−0.915225 + 0.402943i \(0.867987\pi\)
\(38\) −248.660 −1.06153
\(39\) 447.945 1.83919
\(40\) −49.4275 −0.195379
\(41\) 367.077 1.39824 0.699120 0.715004i \(-0.253575\pi\)
0.699120 + 0.715004i \(0.253575\pi\)
\(42\) 348.409 1.28002
\(43\) −323.524 −1.14737 −0.573686 0.819075i \(-0.694487\pi\)
−0.573686 + 0.819075i \(0.694487\pi\)
\(44\) −161.950 −0.554884
\(45\) 83.0592 0.275150
\(46\) −94.4588 −0.302765
\(47\) −345.631 −1.07267 −0.536334 0.844006i \(-0.680191\pi\)
−0.536334 + 0.844006i \(0.680191\pi\)
\(48\) 101.752 0.305972
\(49\) 407.364 1.18765
\(50\) 173.654 0.491167
\(51\) −697.350 −1.91468
\(52\) 281.748 0.751373
\(53\) −183.659 −0.475991 −0.237995 0.971266i \(-0.576490\pi\)
−0.237995 + 0.971266i \(0.576490\pi\)
\(54\) 172.427 0.434524
\(55\) −250.150 −0.613276
\(56\) 219.142 0.522930
\(57\) 790.678 1.83733
\(58\) 550.373 1.24599
\(59\) 4.65834 0.0102790 0.00513952 0.999987i \(-0.498364\pi\)
0.00513952 + 0.999987i \(0.498364\pi\)
\(60\) 157.167 0.338170
\(61\) −178.061 −0.373744 −0.186872 0.982384i \(-0.559835\pi\)
−0.186872 + 0.982384i \(0.559835\pi\)
\(62\) −156.940 −0.321474
\(63\) −368.252 −0.736435
\(64\) 64.0000 0.125000
\(65\) 435.190 0.830441
\(66\) 514.962 0.960416
\(67\) −184.917 −0.337183 −0.168591 0.985686i \(-0.553922\pi\)
−0.168591 + 0.985686i \(0.553922\pi\)
\(68\) −438.619 −0.782211
\(69\) 300.356 0.524038
\(70\) 338.489 0.577959
\(71\) −429.952 −0.718675 −0.359337 0.933208i \(-0.616997\pi\)
−0.359337 + 0.933208i \(0.616997\pi\)
\(72\) −107.547 −0.176036
\(73\) 608.426 0.975492 0.487746 0.872986i \(-0.337819\pi\)
0.487746 + 0.872986i \(0.337819\pi\)
\(74\) 823.930 1.29432
\(75\) −552.177 −0.850132
\(76\) 497.320 0.750612
\(77\) 1109.07 1.64143
\(78\) −895.889 −1.30051
\(79\) 535.072 0.762029 0.381015 0.924569i \(-0.375575\pi\)
0.381015 + 0.924569i \(0.375575\pi\)
\(80\) 98.8549 0.138154
\(81\) −911.247 −1.25000
\(82\) −734.155 −0.988705
\(83\) −601.154 −0.795003 −0.397502 0.917601i \(-0.630123\pi\)
−0.397502 + 0.917601i \(0.630123\pi\)
\(84\) −696.819 −0.905109
\(85\) −677.494 −0.864524
\(86\) 647.048 0.811314
\(87\) −1750.05 −2.15661
\(88\) 323.900 0.392362
\(89\) −479.696 −0.571322 −0.285661 0.958331i \(-0.592213\pi\)
−0.285661 + 0.958331i \(0.592213\pi\)
\(90\) −166.118 −0.194560
\(91\) −1929.46 −2.22267
\(92\) 188.918 0.214087
\(93\) 499.030 0.556420
\(94\) 691.261 0.758491
\(95\) 768.164 0.829600
\(96\) −203.504 −0.216355
\(97\) 903.154 0.945376 0.472688 0.881230i \(-0.343284\pi\)
0.472688 + 0.881230i \(0.343284\pi\)
\(98\) −814.728 −0.839796
\(99\) −544.290 −0.552558
\(100\) −347.308 −0.347308
\(101\) 1647.75 1.62334 0.811669 0.584118i \(-0.198559\pi\)
0.811669 + 0.584118i \(0.198559\pi\)
\(102\) 1394.70 1.35388
\(103\) −893.871 −0.855104 −0.427552 0.903991i \(-0.640624\pi\)
−0.427552 + 0.903991i \(0.640624\pi\)
\(104\) −563.495 −0.531301
\(105\) −1076.31 −1.00036
\(106\) 367.318 0.336576
\(107\) −328.384 −0.296693 −0.148346 0.988935i \(-0.547395\pi\)
−0.148346 + 0.988935i \(0.547395\pi\)
\(108\) −344.853 −0.307255
\(109\) −1566.74 −1.37675 −0.688376 0.725354i \(-0.741676\pi\)
−0.688376 + 0.725354i \(0.741676\pi\)
\(110\) 500.299 0.433651
\(111\) −2619.90 −2.24027
\(112\) −438.284 −0.369768
\(113\) −572.155 −0.476317 −0.238158 0.971226i \(-0.576544\pi\)
−0.238158 + 0.971226i \(0.576544\pi\)
\(114\) −1581.36 −1.29919
\(115\) 291.804 0.236616
\(116\) −1100.75 −0.881049
\(117\) 946.912 0.748222
\(118\) −9.31667 −0.00726838
\(119\) 3003.75 2.31389
\(120\) −314.335 −0.239122
\(121\) 308.241 0.231586
\(122\) 356.122 0.264277
\(123\) 2334.43 1.71129
\(124\) 313.880 0.227316
\(125\) −1308.76 −0.936472
\(126\) 736.504 0.520738
\(127\) 1310.29 0.915506 0.457753 0.889079i \(-0.348654\pi\)
0.457753 + 0.889079i \(0.348654\pi\)
\(128\) −128.000 −0.0883883
\(129\) −2057.46 −1.40426
\(130\) −870.380 −0.587210
\(131\) −553.665 −0.369267 −0.184633 0.982807i \(-0.559110\pi\)
−0.184633 + 0.982807i \(0.559110\pi\)
\(132\) −1029.92 −0.679117
\(133\) −3405.74 −2.22042
\(134\) 369.835 0.238424
\(135\) −532.664 −0.339588
\(136\) 877.237 0.553107
\(137\) 2665.66 1.66235 0.831177 0.556009i \(-0.187668\pi\)
0.831177 + 0.556009i \(0.187668\pi\)
\(138\) −600.712 −0.370551
\(139\) 131.133 0.0800185 0.0400093 0.999199i \(-0.487261\pi\)
0.0400093 + 0.999199i \(0.487261\pi\)
\(140\) −676.978 −0.408679
\(141\) −2198.04 −1.31283
\(142\) 859.904 0.508180
\(143\) −2851.82 −1.66770
\(144\) 215.094 0.124476
\(145\) −1700.22 −0.973763
\(146\) −1216.85 −0.689777
\(147\) 2590.64 1.45355
\(148\) −1647.86 −0.915225
\(149\) −439.481 −0.241635 −0.120818 0.992675i \(-0.538552\pi\)
−0.120818 + 0.992675i \(0.538552\pi\)
\(150\) 1104.35 0.601134
\(151\) −1887.85 −1.01742 −0.508711 0.860937i \(-0.669878\pi\)
−0.508711 + 0.860937i \(0.669878\pi\)
\(152\) −994.640 −0.530763
\(153\) −1474.13 −0.778931
\(154\) −2218.13 −1.16066
\(155\) 484.821 0.251237
\(156\) 1791.78 0.919597
\(157\) 3238.51 1.64625 0.823126 0.567859i \(-0.192228\pi\)
0.823126 + 0.567859i \(0.192228\pi\)
\(158\) −1070.14 −0.538836
\(159\) −1167.98 −0.582560
\(160\) −197.710 −0.0976896
\(161\) −1293.74 −0.633300
\(162\) 1822.49 0.883880
\(163\) −663.913 −0.319029 −0.159514 0.987196i \(-0.550993\pi\)
−0.159514 + 0.987196i \(0.550993\pi\)
\(164\) 1468.31 0.699120
\(165\) −1590.83 −0.750581
\(166\) 1202.31 0.562152
\(167\) −3567.76 −1.65318 −0.826591 0.562803i \(-0.809723\pi\)
−0.826591 + 0.562803i \(0.809723\pi\)
\(168\) 1393.64 0.640009
\(169\) 2764.36 1.25824
\(170\) 1354.99 0.611311
\(171\) 1671.42 0.747465
\(172\) −1294.10 −0.573686
\(173\) 1103.31 0.484874 0.242437 0.970167i \(-0.422053\pi\)
0.242437 + 0.970167i \(0.422053\pi\)
\(174\) 3500.10 1.52495
\(175\) 2378.43 1.02739
\(176\) −647.801 −0.277442
\(177\) 29.6247 0.0125804
\(178\) 959.392 0.403986
\(179\) 3368.29 1.40647 0.703233 0.710959i \(-0.251739\pi\)
0.703233 + 0.710959i \(0.251739\pi\)
\(180\) 332.237 0.137575
\(181\) 1780.04 0.730992 0.365496 0.930813i \(-0.380899\pi\)
0.365496 + 0.930813i \(0.380899\pi\)
\(182\) 3858.93 1.57166
\(183\) −1132.38 −0.457421
\(184\) −377.835 −0.151383
\(185\) −2545.30 −1.01154
\(186\) −998.061 −0.393448
\(187\) 4439.65 1.73615
\(188\) −1382.52 −0.536334
\(189\) 2361.62 0.908904
\(190\) −1536.33 −0.586616
\(191\) −330.785 −0.125313 −0.0626564 0.998035i \(-0.519957\pi\)
−0.0626564 + 0.998035i \(0.519957\pi\)
\(192\) 407.009 0.152986
\(193\) −1215.48 −0.453328 −0.226664 0.973973i \(-0.572782\pi\)
−0.226664 + 0.973973i \(0.572782\pi\)
\(194\) −1806.31 −0.668481
\(195\) 2767.60 1.01637
\(196\) 1629.46 0.593825
\(197\) 1866.53 0.675051 0.337526 0.941316i \(-0.390410\pi\)
0.337526 + 0.941316i \(0.390410\pi\)
\(198\) 1088.58 0.390717
\(199\) 3625.79 1.29158 0.645792 0.763513i \(-0.276527\pi\)
0.645792 + 0.763513i \(0.276527\pi\)
\(200\) 694.616 0.245584
\(201\) −1175.98 −0.412674
\(202\) −3295.50 −1.14787
\(203\) 7538.12 2.60627
\(204\) −2789.40 −0.957339
\(205\) 2267.96 0.772690
\(206\) 1787.74 0.604650
\(207\) 634.924 0.213190
\(208\) 1126.99 0.375686
\(209\) −5033.81 −1.66601
\(210\) 2152.62 0.707358
\(211\) −3798.32 −1.23928 −0.619638 0.784887i \(-0.712721\pi\)
−0.619638 + 0.784887i \(0.712721\pi\)
\(212\) −734.636 −0.237995
\(213\) −2734.28 −0.879578
\(214\) 656.769 0.209793
\(215\) −1998.87 −0.634056
\(216\) 689.707 0.217262
\(217\) −2149.51 −0.672434
\(218\) 3133.47 0.973511
\(219\) 3869.30 1.19389
\(220\) −1000.60 −0.306638
\(221\) −7723.74 −2.35093
\(222\) 5239.79 1.58411
\(223\) −3788.32 −1.13760 −0.568800 0.822476i \(-0.692592\pi\)
−0.568800 + 0.822476i \(0.692592\pi\)
\(224\) 876.569 0.261465
\(225\) −1167.25 −0.345852
\(226\) 1144.31 0.336807
\(227\) −1698.92 −0.496745 −0.248373 0.968665i \(-0.579896\pi\)
−0.248373 + 0.968665i \(0.579896\pi\)
\(228\) 3162.71 0.918665
\(229\) 4577.02 1.32078 0.660388 0.750925i \(-0.270392\pi\)
0.660388 + 0.750925i \(0.270392\pi\)
\(230\) −583.608 −0.167313
\(231\) 7053.12 2.00892
\(232\) 2201.49 0.622995
\(233\) 780.610 0.219483 0.109741 0.993960i \(-0.464998\pi\)
0.109741 + 0.993960i \(0.464998\pi\)
\(234\) −1893.82 −0.529073
\(235\) −2135.46 −0.592773
\(236\) 18.6333 0.00513952
\(237\) 3402.80 0.932639
\(238\) −6007.49 −1.63617
\(239\) −1222.46 −0.330854 −0.165427 0.986222i \(-0.552900\pi\)
−0.165427 + 0.986222i \(0.552900\pi\)
\(240\) 628.669 0.169085
\(241\) 1200.72 0.320934 0.160467 0.987041i \(-0.448700\pi\)
0.160467 + 0.987041i \(0.448700\pi\)
\(242\) −616.482 −0.163756
\(243\) −3467.32 −0.915346
\(244\) −712.245 −0.186872
\(245\) 2516.87 0.656314
\(246\) −4668.87 −1.21007
\(247\) 8757.42 2.25596
\(248\) −627.759 −0.160737
\(249\) −3823.05 −0.972996
\(250\) 2617.52 0.662185
\(251\) −5592.27 −1.40630 −0.703150 0.711042i \(-0.748224\pi\)
−0.703150 + 0.711042i \(0.748224\pi\)
\(252\) −1473.01 −0.368217
\(253\) −1912.20 −0.475175
\(254\) −2620.58 −0.647361
\(255\) −4308.53 −1.05808
\(256\) 256.000 0.0625000
\(257\) −1159.99 −0.281550 −0.140775 0.990042i \(-0.544959\pi\)
−0.140775 + 0.990042i \(0.544959\pi\)
\(258\) 4114.91 0.992958
\(259\) 11284.9 2.70737
\(260\) 1740.76 0.415220
\(261\) −3699.44 −0.877355
\(262\) 1107.33 0.261111
\(263\) 2853.19 0.668954 0.334477 0.942404i \(-0.391440\pi\)
0.334477 + 0.942404i \(0.391440\pi\)
\(264\) 2059.85 0.480208
\(265\) −1134.73 −0.263040
\(266\) 6811.49 1.57007
\(267\) −3050.63 −0.699235
\(268\) −739.669 −0.168591
\(269\) 269.000 0.0609711
\(270\) 1065.33 0.240125
\(271\) 5693.80 1.27629 0.638143 0.769918i \(-0.279703\pi\)
0.638143 + 0.769918i \(0.279703\pi\)
\(272\) −1754.47 −0.391105
\(273\) −12270.4 −2.72030
\(274\) −5331.31 −1.17546
\(275\) 3515.41 0.770863
\(276\) 1201.42 0.262019
\(277\) 7862.07 1.70537 0.852683 0.522429i \(-0.174974\pi\)
0.852683 + 0.522429i \(0.174974\pi\)
\(278\) −262.267 −0.0565817
\(279\) 1054.90 0.226363
\(280\) 1353.96 0.288980
\(281\) 6976.11 1.48099 0.740497 0.672059i \(-0.234590\pi\)
0.740497 + 0.672059i \(0.234590\pi\)
\(282\) 4396.08 0.928309
\(283\) −3720.29 −0.781443 −0.390722 0.920509i \(-0.627774\pi\)
−0.390722 + 0.920509i \(0.627774\pi\)
\(284\) −1719.81 −0.359337
\(285\) 4885.15 1.01534
\(286\) 5703.64 1.17924
\(287\) −10055.3 −2.06810
\(288\) −430.189 −0.0880178
\(289\) 7111.15 1.44741
\(290\) 3400.44 0.688554
\(291\) 5743.62 1.15703
\(292\) 2433.71 0.487746
\(293\) 4601.52 0.917487 0.458743 0.888569i \(-0.348300\pi\)
0.458743 + 0.888569i \(0.348300\pi\)
\(294\) −5181.27 −1.02782
\(295\) 28.7812 0.00568036
\(296\) 3295.72 0.647162
\(297\) 3490.57 0.681964
\(298\) 878.962 0.170862
\(299\) 3326.70 0.643437
\(300\) −2208.71 −0.425066
\(301\) 8862.23 1.69704
\(302\) 3775.69 0.719426
\(303\) 10478.9 1.98678
\(304\) 1989.28 0.375306
\(305\) −1100.14 −0.206537
\(306\) 2948.26 0.550788
\(307\) 2573.22 0.478376 0.239188 0.970973i \(-0.423119\pi\)
0.239188 + 0.970973i \(0.423119\pi\)
\(308\) 4436.26 0.820713
\(309\) −5684.58 −1.04655
\(310\) −969.642 −0.177652
\(311\) −2998.14 −0.546653 −0.273327 0.961921i \(-0.588124\pi\)
−0.273327 + 0.961921i \(0.588124\pi\)
\(312\) −3583.56 −0.650253
\(313\) 7468.20 1.34865 0.674325 0.738435i \(-0.264435\pi\)
0.674325 + 0.738435i \(0.264435\pi\)
\(314\) −6477.03 −1.16408
\(315\) −2275.22 −0.406966
\(316\) 2140.29 0.381015
\(317\) −8629.09 −1.52889 −0.764445 0.644689i \(-0.776987\pi\)
−0.764445 + 0.644689i \(0.776987\pi\)
\(318\) 2335.96 0.411932
\(319\) 11141.6 1.95552
\(320\) 395.420 0.0690770
\(321\) −2088.37 −0.363119
\(322\) 2587.49 0.447811
\(323\) −13633.4 −2.34855
\(324\) −3644.99 −0.624998
\(325\) −6115.82 −1.04383
\(326\) 1327.83 0.225587
\(327\) −9963.67 −1.68499
\(328\) −2936.62 −0.494353
\(329\) 9467.78 1.58655
\(330\) 3181.66 0.530741
\(331\) −8905.99 −1.47891 −0.739453 0.673209i \(-0.764916\pi\)
−0.739453 + 0.673209i \(0.764916\pi\)
\(332\) −2404.62 −0.397502
\(333\) −5538.21 −0.911388
\(334\) 7135.52 1.16898
\(335\) −1142.50 −0.186332
\(336\) −2787.28 −0.452555
\(337\) −3263.04 −0.527446 −0.263723 0.964598i \(-0.584950\pi\)
−0.263723 + 0.964598i \(0.584950\pi\)
\(338\) −5528.72 −0.889712
\(339\) −3638.62 −0.582959
\(340\) −2709.98 −0.432262
\(341\) −3177.05 −0.504537
\(342\) −3342.84 −0.528537
\(343\) −1763.11 −0.277548
\(344\) 2588.19 0.405657
\(345\) 1855.73 0.289592
\(346\) −2206.62 −0.342858
\(347\) −4533.53 −0.701362 −0.350681 0.936495i \(-0.614050\pi\)
−0.350681 + 0.936495i \(0.614050\pi\)
\(348\) −7000.20 −1.07831
\(349\) 6669.32 1.02292 0.511462 0.859306i \(-0.329104\pi\)
0.511462 + 0.859306i \(0.329104\pi\)
\(350\) −4756.86 −0.726471
\(351\) −6072.60 −0.923452
\(352\) 1295.60 0.196181
\(353\) −7899.51 −1.19107 −0.595536 0.803329i \(-0.703060\pi\)
−0.595536 + 0.803329i \(0.703060\pi\)
\(354\) −59.2495 −0.00889569
\(355\) −2656.43 −0.397151
\(356\) −1918.78 −0.285661
\(357\) 19102.4 2.83194
\(358\) −6736.57 −0.994522
\(359\) −2084.92 −0.306513 −0.153256 0.988186i \(-0.548976\pi\)
−0.153256 + 0.988186i \(0.548976\pi\)
\(360\) −664.473 −0.0972800
\(361\) 8598.94 1.25367
\(362\) −3560.08 −0.516889
\(363\) 1960.26 0.283435
\(364\) −7717.85 −1.11133
\(365\) 3759.12 0.539073
\(366\) 2264.77 0.323446
\(367\) −8620.84 −1.22617 −0.613085 0.790017i \(-0.710072\pi\)
−0.613085 + 0.790017i \(0.710072\pi\)
\(368\) 755.671 0.107044
\(369\) 4934.77 0.696189
\(370\) 5090.60 0.715264
\(371\) 5030.93 0.704024
\(372\) 1996.12 0.278210
\(373\) 8148.00 1.13107 0.565533 0.824726i \(-0.308671\pi\)
0.565533 + 0.824726i \(0.308671\pi\)
\(374\) −8879.30 −1.22764
\(375\) −8323.07 −1.14614
\(376\) 2765.04 0.379245
\(377\) −19383.3 −2.64798
\(378\) −4723.25 −0.642692
\(379\) −6970.22 −0.944686 −0.472343 0.881415i \(-0.656592\pi\)
−0.472343 + 0.881415i \(0.656592\pi\)
\(380\) 3072.66 0.414800
\(381\) 8332.79 1.12048
\(382\) 661.569 0.0886095
\(383\) −1444.60 −0.192730 −0.0963649 0.995346i \(-0.530722\pi\)
−0.0963649 + 0.995346i \(0.530722\pi\)
\(384\) −814.018 −0.108178
\(385\) 6852.29 0.907078
\(386\) 2430.96 0.320551
\(387\) −4349.27 −0.571281
\(388\) 3612.62 0.472688
\(389\) −12982.9 −1.69219 −0.846094 0.533033i \(-0.821052\pi\)
−0.846094 + 0.533033i \(0.821052\pi\)
\(390\) −5535.19 −0.718680
\(391\) −5178.93 −0.669845
\(392\) −3258.91 −0.419898
\(393\) −3521.04 −0.451942
\(394\) −3733.07 −0.477333
\(395\) 3305.91 0.421109
\(396\) −2177.16 −0.276279
\(397\) −2000.41 −0.252890 −0.126445 0.991974i \(-0.540357\pi\)
−0.126445 + 0.991974i \(0.540357\pi\)
\(398\) −7251.57 −0.913288
\(399\) −21658.9 −2.71754
\(400\) −1389.23 −0.173654
\(401\) −10956.7 −1.36447 −0.682236 0.731132i \(-0.738992\pi\)
−0.682236 + 0.731132i \(0.738992\pi\)
\(402\) 2351.97 0.291805
\(403\) 5527.18 0.683197
\(404\) 6590.99 0.811669
\(405\) −5630.08 −0.690767
\(406\) −15076.2 −1.84291
\(407\) 16679.5 2.03138
\(408\) 5578.80 0.676941
\(409\) 7376.63 0.891812 0.445906 0.895080i \(-0.352882\pi\)
0.445906 + 0.895080i \(0.352882\pi\)
\(410\) −4535.93 −0.546374
\(411\) 16952.3 2.03454
\(412\) −3575.48 −0.427552
\(413\) −127.605 −0.0152034
\(414\) −1269.85 −0.150748
\(415\) −3714.19 −0.439331
\(416\) −2253.98 −0.265650
\(417\) 833.944 0.0979338
\(418\) 10067.6 1.17805
\(419\) 678.679 0.0791304 0.0395652 0.999217i \(-0.487403\pi\)
0.0395652 + 0.999217i \(0.487403\pi\)
\(420\) −4305.25 −0.500178
\(421\) −30.7798 −0.00356322 −0.00178161 0.999998i \(-0.500567\pi\)
−0.00178161 + 0.999998i \(0.500567\pi\)
\(422\) 7596.65 0.876301
\(423\) −4646.45 −0.534085
\(424\) 1469.27 0.168288
\(425\) 9520.98 1.08667
\(426\) 5468.57 0.621956
\(427\) 4877.59 0.552794
\(428\) −1313.54 −0.148346
\(429\) −18136.2 −2.04108
\(430\) 3997.75 0.448345
\(431\) 10181.0 1.13783 0.568914 0.822397i \(-0.307364\pi\)
0.568914 + 0.822397i \(0.307364\pi\)
\(432\) −1379.41 −0.153628
\(433\) −3149.27 −0.349525 −0.174762 0.984611i \(-0.555916\pi\)
−0.174762 + 0.984611i \(0.555916\pi\)
\(434\) 4299.02 0.475483
\(435\) −10812.6 −1.19178
\(436\) −6266.94 −0.688376
\(437\) 5872.03 0.642786
\(438\) −7738.59 −0.844211
\(439\) 9021.45 0.980798 0.490399 0.871498i \(-0.336851\pi\)
0.490399 + 0.871498i \(0.336851\pi\)
\(440\) 2001.20 0.216826
\(441\) 5476.36 0.591336
\(442\) 15447.5 1.66236
\(443\) −6946.79 −0.745038 −0.372519 0.928025i \(-0.621506\pi\)
−0.372519 + 0.928025i \(0.621506\pi\)
\(444\) −10479.6 −1.12013
\(445\) −2963.77 −0.315722
\(446\) 7576.64 0.804405
\(447\) −2794.88 −0.295735
\(448\) −1753.14 −0.184884
\(449\) −1814.13 −0.190677 −0.0953384 0.995445i \(-0.530393\pi\)
−0.0953384 + 0.995445i \(0.530393\pi\)
\(450\) 2334.50 0.244554
\(451\) −14862.1 −1.55172
\(452\) −2288.62 −0.238158
\(453\) −12005.8 −1.24521
\(454\) 3397.84 0.351252
\(455\) −11921.1 −1.22828
\(456\) −6325.42 −0.649595
\(457\) −7242.82 −0.741368 −0.370684 0.928759i \(-0.620877\pi\)
−0.370684 + 0.928759i \(0.620877\pi\)
\(458\) −9154.03 −0.933930
\(459\) 9453.70 0.961353
\(460\) 1167.22 0.118308
\(461\) −10017.5 −1.01207 −0.506033 0.862514i \(-0.668888\pi\)
−0.506033 + 0.862514i \(0.668888\pi\)
\(462\) −14106.2 −1.42052
\(463\) 9661.74 0.969804 0.484902 0.874568i \(-0.338855\pi\)
0.484902 + 0.874568i \(0.338855\pi\)
\(464\) −4402.98 −0.440524
\(465\) 3083.23 0.307486
\(466\) −1561.22 −0.155198
\(467\) −13821.0 −1.36950 −0.684751 0.728777i \(-0.740089\pi\)
−0.684751 + 0.728777i \(0.740089\pi\)
\(468\) 3787.65 0.374111
\(469\) 5065.40 0.498717
\(470\) 4270.91 0.419154
\(471\) 20595.4 2.01483
\(472\) −37.2667 −0.00363419
\(473\) 13098.7 1.27332
\(474\) −6805.59 −0.659475
\(475\) −10795.2 −1.04277
\(476\) 12015.0 1.15695
\(477\) −2469.00 −0.236998
\(478\) 2444.91 0.233949
\(479\) 7605.97 0.725523 0.362762 0.931882i \(-0.381834\pi\)
0.362762 + 0.931882i \(0.381834\pi\)
\(480\) −1257.34 −0.119561
\(481\) −29017.6 −2.75070
\(482\) −2401.44 −0.226935
\(483\) −8227.59 −0.775089
\(484\) 1232.96 0.115793
\(485\) 5580.08 0.522430
\(486\) 6934.65 0.647247
\(487\) 14839.7 1.38081 0.690403 0.723425i \(-0.257433\pi\)
0.690403 + 0.723425i \(0.257433\pi\)
\(488\) 1424.49 0.132139
\(489\) −4222.16 −0.390456
\(490\) −5033.74 −0.464084
\(491\) 19099.2 1.75547 0.877734 0.479148i \(-0.159054\pi\)
0.877734 + 0.479148i \(0.159054\pi\)
\(492\) 9337.73 0.855645
\(493\) 30175.5 2.75666
\(494\) −17514.8 −1.59520
\(495\) −3362.86 −0.305352
\(496\) 1255.52 0.113658
\(497\) 11777.6 1.06297
\(498\) 7646.10 0.688012
\(499\) −14020.5 −1.25780 −0.628900 0.777486i \(-0.716494\pi\)
−0.628900 + 0.777486i \(0.716494\pi\)
\(500\) −5235.04 −0.468236
\(501\) −22689.2 −2.02331
\(502\) 11184.5 0.994404
\(503\) 4852.50 0.430144 0.215072 0.976598i \(-0.431001\pi\)
0.215072 + 0.976598i \(0.431001\pi\)
\(504\) 2946.02 0.260369
\(505\) 10180.5 0.897082
\(506\) 3824.41 0.335999
\(507\) 17580.0 1.53995
\(508\) 5241.15 0.457753
\(509\) 19208.0 1.67266 0.836328 0.548230i \(-0.184698\pi\)
0.836328 + 0.548230i \(0.184698\pi\)
\(510\) 8617.06 0.748177
\(511\) −16666.5 −1.44282
\(512\) −512.000 −0.0441942
\(513\) −10718.9 −0.922517
\(514\) 2319.99 0.199086
\(515\) −5522.72 −0.472544
\(516\) −8229.82 −0.702128
\(517\) 13993.7 1.19041
\(518\) −22569.7 −1.91440
\(519\) 7016.52 0.593432
\(520\) −3481.52 −0.293605
\(521\) −17217.0 −1.44778 −0.723888 0.689917i \(-0.757647\pi\)
−0.723888 + 0.689917i \(0.757647\pi\)
\(522\) 7398.88 0.620383
\(523\) −2732.00 −0.228417 −0.114209 0.993457i \(-0.536433\pi\)
−0.114209 + 0.993457i \(0.536433\pi\)
\(524\) −2214.66 −0.184633
\(525\) 15125.7 1.25741
\(526\) −5706.37 −0.473022
\(527\) −8604.59 −0.711237
\(528\) −4119.70 −0.339558
\(529\) −9936.38 −0.816667
\(530\) 2269.45 0.185997
\(531\) 62.6239 0.00511797
\(532\) −13623.0 −1.11021
\(533\) 25855.8 2.10120
\(534\) 6101.26 0.494434
\(535\) −2028.90 −0.163957
\(536\) 1479.34 0.119212
\(537\) 21420.7 1.72136
\(538\) −538.000 −0.0431131
\(539\) −16493.2 −1.31802
\(540\) −2130.65 −0.169794
\(541\) 14736.7 1.17113 0.585565 0.810626i \(-0.300873\pi\)
0.585565 + 0.810626i \(0.300873\pi\)
\(542\) −11387.6 −0.902471
\(543\) 11320.2 0.894653
\(544\) 3508.95 0.276553
\(545\) −9679.97 −0.760815
\(546\) 24540.9 1.92354
\(547\) 19894.1 1.55505 0.777525 0.628852i \(-0.216475\pi\)
0.777525 + 0.628852i \(0.216475\pi\)
\(548\) 10662.6 0.831177
\(549\) −2393.75 −0.186089
\(550\) −7030.82 −0.545082
\(551\) −34213.9 −2.64530
\(552\) −2402.85 −0.185275
\(553\) −14657.1 −1.12710
\(554\) −15724.1 −1.20588
\(555\) −16186.9 −1.23801
\(556\) 524.533 0.0400093
\(557\) 9446.18 0.718577 0.359288 0.933227i \(-0.383019\pi\)
0.359288 + 0.933227i \(0.383019\pi\)
\(558\) −2109.80 −0.160063
\(559\) −22788.1 −1.72421
\(560\) −2707.91 −0.204339
\(561\) 28234.0 2.12485
\(562\) −13952.2 −1.04722
\(563\) −3008.57 −0.225215 −0.112608 0.993640i \(-0.535920\pi\)
−0.112608 + 0.993640i \(0.535920\pi\)
\(564\) −8792.17 −0.656413
\(565\) −3535.02 −0.263220
\(566\) 7440.58 0.552564
\(567\) 24961.6 1.84883
\(568\) 3439.62 0.254090
\(569\) −12918.2 −0.951776 −0.475888 0.879506i \(-0.657873\pi\)
−0.475888 + 0.879506i \(0.657873\pi\)
\(570\) −9770.30 −0.717953
\(571\) 14536.3 1.06537 0.532684 0.846314i \(-0.321183\pi\)
0.532684 + 0.846314i \(0.321183\pi\)
\(572\) −11407.3 −0.833850
\(573\) −2103.63 −0.153369
\(574\) 20110.5 1.46236
\(575\) −4100.79 −0.297417
\(576\) 860.378 0.0622380
\(577\) 7050.72 0.508709 0.254355 0.967111i \(-0.418137\pi\)
0.254355 + 0.967111i \(0.418137\pi\)
\(578\) −14222.3 −1.02348
\(579\) −7729.87 −0.554823
\(580\) −6800.88 −0.486881
\(581\) 16467.3 1.17587
\(582\) −11487.2 −0.818147
\(583\) 7435.90 0.528240
\(584\) −4867.41 −0.344889
\(585\) 5850.43 0.413480
\(586\) −9203.04 −0.648761
\(587\) 11549.5 0.812092 0.406046 0.913853i \(-0.366907\pi\)
0.406046 + 0.913853i \(0.366907\pi\)
\(588\) 10362.5 0.726776
\(589\) 9756.16 0.682505
\(590\) −57.5624 −0.00401662
\(591\) 11870.3 0.826188
\(592\) −6591.44 −0.457613
\(593\) −27141.0 −1.87950 −0.939752 0.341858i \(-0.888944\pi\)
−0.939752 + 0.341858i \(0.888944\pi\)
\(594\) −6981.13 −0.482221
\(595\) 18558.4 1.27869
\(596\) −1757.92 −0.120818
\(597\) 23058.2 1.58076
\(598\) −6653.39 −0.454979
\(599\) 24871.7 1.69655 0.848274 0.529558i \(-0.177642\pi\)
0.848274 + 0.529558i \(0.177642\pi\)
\(600\) 4417.42 0.300567
\(601\) 17802.6 1.20829 0.604145 0.796875i \(-0.293515\pi\)
0.604145 + 0.796875i \(0.293515\pi\)
\(602\) −17724.5 −1.19999
\(603\) −2485.92 −0.167884
\(604\) −7551.39 −0.508711
\(605\) 1904.45 0.127978
\(606\) −20957.8 −1.40487
\(607\) −13047.0 −0.872427 −0.436214 0.899843i \(-0.643681\pi\)
−0.436214 + 0.899843i \(0.643681\pi\)
\(608\) −3978.56 −0.265381
\(609\) 47938.7 3.18978
\(610\) 2200.28 0.146044
\(611\) −24345.2 −1.61195
\(612\) −5896.53 −0.389466
\(613\) 15441.5 1.01742 0.508708 0.860939i \(-0.330123\pi\)
0.508708 + 0.860939i \(0.330123\pi\)
\(614\) −5146.45 −0.338263
\(615\) 14423.1 0.945686
\(616\) −8872.53 −0.580332
\(617\) 7104.35 0.463550 0.231775 0.972769i \(-0.425547\pi\)
0.231775 + 0.972769i \(0.425547\pi\)
\(618\) 11369.2 0.740024
\(619\) −2739.51 −0.177884 −0.0889420 0.996037i \(-0.528349\pi\)
−0.0889420 + 0.996037i \(0.528349\pi\)
\(620\) 1939.28 0.125619
\(621\) −4071.81 −0.263118
\(622\) 5996.29 0.386542
\(623\) 13140.2 0.845026
\(624\) 7167.11 0.459798
\(625\) 2767.29 0.177107
\(626\) −14936.4 −0.953640
\(627\) −32012.6 −2.03901
\(628\) 12954.1 0.823126
\(629\) 45173.9 2.86360
\(630\) 4550.44 0.287768
\(631\) −11035.2 −0.696205 −0.348103 0.937456i \(-0.613174\pi\)
−0.348103 + 0.937456i \(0.613174\pi\)
\(632\) −4280.58 −0.269418
\(633\) −24155.5 −1.51674
\(634\) 17258.2 1.08109
\(635\) 8095.53 0.505923
\(636\) −4671.93 −0.291280
\(637\) 28693.5 1.78474
\(638\) −22283.2 −1.38276
\(639\) −5780.02 −0.357831
\(640\) −790.839 −0.0488448
\(641\) 9542.16 0.587976 0.293988 0.955809i \(-0.405017\pi\)
0.293988 + 0.955809i \(0.405017\pi\)
\(642\) 4176.73 0.256764
\(643\) −11642.5 −0.714053 −0.357026 0.934094i \(-0.616209\pi\)
−0.357026 + 0.934094i \(0.616209\pi\)
\(644\) −5174.98 −0.316650
\(645\) −12711.9 −0.776014
\(646\) 27266.7 1.66067
\(647\) 25181.2 1.53010 0.765051 0.643969i \(-0.222714\pi\)
0.765051 + 0.643969i \(0.222714\pi\)
\(648\) 7289.97 0.441940
\(649\) −188.605 −0.0114074
\(650\) 12231.6 0.738100
\(651\) −13669.8 −0.822984
\(652\) −2655.65 −0.159514
\(653\) 1039.40 0.0622890 0.0311445 0.999515i \(-0.490085\pi\)
0.0311445 + 0.999515i \(0.490085\pi\)
\(654\) 19927.3 1.19147
\(655\) −3420.78 −0.204063
\(656\) 5873.24 0.349560
\(657\) 8179.32 0.485701
\(658\) −18935.6 −1.12186
\(659\) −12230.6 −0.722967 −0.361483 0.932379i \(-0.617730\pi\)
−0.361483 + 0.932379i \(0.617730\pi\)
\(660\) −6363.32 −0.375291
\(661\) −10681.1 −0.628514 −0.314257 0.949338i \(-0.601755\pi\)
−0.314257 + 0.949338i \(0.601755\pi\)
\(662\) 17812.0 1.04574
\(663\) −49119.2 −2.87727
\(664\) 4809.24 0.281076
\(665\) −21042.2 −1.22704
\(666\) 11076.4 0.644449
\(667\) −12996.9 −0.754485
\(668\) −14271.0 −0.826591
\(669\) −24091.9 −1.39230
\(670\) 2285.00 0.131757
\(671\) 7209.26 0.414770
\(672\) 5574.55 0.320004
\(673\) −20703.6 −1.18583 −0.592916 0.805264i \(-0.702023\pi\)
−0.592916 + 0.805264i \(0.702023\pi\)
\(674\) 6526.08 0.372960
\(675\) 7485.64 0.426848
\(676\) 11057.4 0.629122
\(677\) −667.158 −0.0378744 −0.0189372 0.999821i \(-0.506028\pi\)
−0.0189372 + 0.999821i \(0.506028\pi\)
\(678\) 7277.25 0.412214
\(679\) −24739.9 −1.39828
\(680\) 5419.95 0.305655
\(681\) −10804.3 −0.607961
\(682\) 6354.11 0.356761
\(683\) −9663.02 −0.541354 −0.270677 0.962670i \(-0.587248\pi\)
−0.270677 + 0.962670i \(0.587248\pi\)
\(684\) 6685.67 0.373732
\(685\) 16469.6 0.918643
\(686\) 3526.22 0.196256
\(687\) 29107.6 1.61648
\(688\) −5176.39 −0.286843
\(689\) −12936.4 −0.715293
\(690\) −3711.46 −0.204772
\(691\) −20862.9 −1.14857 −0.574286 0.818655i \(-0.694720\pi\)
−0.574286 + 0.818655i \(0.694720\pi\)
\(692\) 4413.24 0.242437
\(693\) 14909.6 0.817272
\(694\) 9067.05 0.495937
\(695\) 810.198 0.0442195
\(696\) 14000.4 0.762477
\(697\) −40251.7 −2.18744
\(698\) −13338.6 −0.723316
\(699\) 4964.30 0.268622
\(700\) 9513.73 0.513693
\(701\) 25666.5 1.38290 0.691448 0.722426i \(-0.256973\pi\)
0.691448 + 0.722426i \(0.256973\pi\)
\(702\) 12145.2 0.652979
\(703\) −51219.6 −2.74792
\(704\) −2591.20 −0.138721
\(705\) −13580.5 −0.725489
\(706\) 15799.0 0.842215
\(707\) −45136.4 −2.40103
\(708\) 118.499 0.00629020
\(709\) −18647.3 −0.987750 −0.493875 0.869533i \(-0.664420\pi\)
−0.493875 + 0.869533i \(0.664420\pi\)
\(710\) 5312.86 0.280828
\(711\) 7193.19 0.379417
\(712\) 3837.57 0.201993
\(713\) 3706.09 0.194662
\(714\) −38204.7 −2.00249
\(715\) −17619.8 −0.921597
\(716\) 13473.1 0.703233
\(717\) −7774.23 −0.404929
\(718\) 4169.85 0.216737
\(719\) 10863.7 0.563486 0.281743 0.959490i \(-0.409087\pi\)
0.281743 + 0.959490i \(0.409087\pi\)
\(720\) 1328.95 0.0687874
\(721\) 24485.6 1.26476
\(722\) −17197.9 −0.886481
\(723\) 7636.00 0.392788
\(724\) 7120.17 0.365496
\(725\) 23893.6 1.22398
\(726\) −3920.52 −0.200419
\(727\) −25838.8 −1.31817 −0.659085 0.752068i \(-0.729056\pi\)
−0.659085 + 0.752068i \(0.729056\pi\)
\(728\) 15435.7 0.785831
\(729\) 2553.17 0.129714
\(730\) −7518.24 −0.381182
\(731\) 35475.9 1.79497
\(732\) −4529.53 −0.228711
\(733\) −13280.0 −0.669179 −0.334589 0.942364i \(-0.608598\pi\)
−0.334589 + 0.942364i \(0.608598\pi\)
\(734\) 17241.7 0.867033
\(735\) 16006.1 0.803256
\(736\) −1511.34 −0.0756913
\(737\) 7486.84 0.374195
\(738\) −9869.53 −0.492280
\(739\) −25232.1 −1.25599 −0.627995 0.778217i \(-0.716124\pi\)
−0.627995 + 0.778217i \(0.716124\pi\)
\(740\) −10181.2 −0.505768
\(741\) 55692.9 2.76104
\(742\) −10061.9 −0.497820
\(743\) −29048.3 −1.43429 −0.717146 0.696923i \(-0.754552\pi\)
−0.717146 + 0.696923i \(0.754552\pi\)
\(744\) −3992.24 −0.196724
\(745\) −2715.30 −0.133532
\(746\) −16296.0 −0.799784
\(747\) −8081.56 −0.395835
\(748\) 17758.6 0.868073
\(749\) 8995.36 0.438830
\(750\) 16646.1 0.810441
\(751\) −33303.9 −1.61821 −0.809106 0.587662i \(-0.800048\pi\)
−0.809106 + 0.587662i \(0.800048\pi\)
\(752\) −5530.09 −0.268167
\(753\) −35564.1 −1.72115
\(754\) 38766.6 1.87241
\(755\) −11663.9 −0.562244
\(756\) 9446.49 0.454452
\(757\) 22528.3 1.08164 0.540821 0.841137i \(-0.318113\pi\)
0.540821 + 0.841137i \(0.318113\pi\)
\(758\) 13940.4 0.667994
\(759\) −12160.7 −0.581561
\(760\) −6145.32 −0.293308
\(761\) 18284.3 0.870967 0.435484 0.900197i \(-0.356577\pi\)
0.435484 + 0.900197i \(0.356577\pi\)
\(762\) −16665.6 −0.792297
\(763\) 42917.2 2.03631
\(764\) −1323.14 −0.0626564
\(765\) −9107.82 −0.430450
\(766\) 2889.20 0.136281
\(767\) 328.119 0.0154468
\(768\) 1628.04 0.0764930
\(769\) −3298.29 −0.154667 −0.0773337 0.997005i \(-0.524641\pi\)
−0.0773337 + 0.997005i \(0.524641\pi\)
\(770\) −13704.6 −0.641401
\(771\) −7377.00 −0.344586
\(772\) −4861.93 −0.226664
\(773\) −21641.1 −1.00695 −0.503477 0.864009i \(-0.667946\pi\)
−0.503477 + 0.864009i \(0.667946\pi\)
\(774\) 8698.53 0.403956
\(775\) −6813.30 −0.315795
\(776\) −7225.23 −0.334241
\(777\) 71766.3 3.31351
\(778\) 25965.9 1.19656
\(779\) 45638.7 2.09907
\(780\) 11070.4 0.508184
\(781\) 17407.7 0.797563
\(782\) 10357.9 0.473652
\(783\) 23724.7 1.08283
\(784\) 6517.82 0.296913
\(785\) 20008.9 0.909745
\(786\) 7042.08 0.319571
\(787\) −20051.8 −0.908220 −0.454110 0.890946i \(-0.650043\pi\)
−0.454110 + 0.890946i \(0.650043\pi\)
\(788\) 7466.14 0.337526
\(789\) 18144.9 0.818726
\(790\) −6611.81 −0.297769
\(791\) 15672.9 0.704506
\(792\) 4354.32 0.195359
\(793\) −12542.1 −0.561643
\(794\) 4000.81 0.178821
\(795\) −7216.30 −0.321932
\(796\) 14503.1 0.645792
\(797\) −21663.1 −0.962794 −0.481397 0.876503i \(-0.659871\pi\)
−0.481397 + 0.876503i \(0.659871\pi\)
\(798\) 43317.7 1.92159
\(799\) 37900.0 1.67811
\(800\) 2778.46 0.122792
\(801\) −6448.74 −0.284463
\(802\) 21913.5 0.964827
\(803\) −24633.7 −1.08257
\(804\) −4703.93 −0.206337
\(805\) −7993.32 −0.349972
\(806\) −11054.4 −0.483093
\(807\) 1710.71 0.0746218
\(808\) −13182.0 −0.573937
\(809\) −11734.5 −0.509968 −0.254984 0.966945i \(-0.582070\pi\)
−0.254984 + 0.966945i \(0.582070\pi\)
\(810\) 11260.2 0.488446
\(811\) 19350.0 0.837818 0.418909 0.908028i \(-0.362413\pi\)
0.418909 + 0.908028i \(0.362413\pi\)
\(812\) 30152.5 1.30313
\(813\) 36209.8 1.56203
\(814\) −33358.9 −1.43640
\(815\) −4101.94 −0.176300
\(816\) −11157.6 −0.478669
\(817\) −40223.8 −1.72246
\(818\) −14753.3 −0.630606
\(819\) −25938.5 −1.10667
\(820\) 9071.85 0.386345
\(821\) −27906.0 −1.18627 −0.593134 0.805104i \(-0.702110\pi\)
−0.593134 + 0.805104i \(0.702110\pi\)
\(822\) −33904.5 −1.43863
\(823\) −22165.0 −0.938788 −0.469394 0.882989i \(-0.655528\pi\)
−0.469394 + 0.882989i \(0.655528\pi\)
\(824\) 7150.97 0.302325
\(825\) 22356.3 0.943450
\(826\) 255.209 0.0107505
\(827\) −41485.3 −1.74436 −0.872179 0.489186i \(-0.837294\pi\)
−0.872179 + 0.489186i \(0.837294\pi\)
\(828\) 2539.70 0.106595
\(829\) −37169.9 −1.55725 −0.778626 0.627488i \(-0.784083\pi\)
−0.778626 + 0.627488i \(0.784083\pi\)
\(830\) 7428.39 0.310654
\(831\) 49998.9 2.08718
\(832\) 4507.96 0.187843
\(833\) −44669.4 −1.85799
\(834\) −1667.89 −0.0692497
\(835\) −22043.2 −0.913575
\(836\) −20135.3 −0.833005
\(837\) −6765.15 −0.279376
\(838\) −1357.36 −0.0559536
\(839\) −30671.4 −1.26209 −0.631046 0.775746i \(-0.717374\pi\)
−0.631046 + 0.775746i \(0.717374\pi\)
\(840\) 8610.50 0.353679
\(841\) 51338.5 2.10499
\(842\) 61.5596 0.00251958
\(843\) 44364.6 1.81257
\(844\) −15193.3 −0.619638
\(845\) 17079.4 0.695325
\(846\) 9292.90 0.377655
\(847\) −8443.57 −0.342532
\(848\) −2938.55 −0.118998
\(849\) −23659.2 −0.956400
\(850\) −19042.0 −0.768393
\(851\) −19456.9 −0.783752
\(852\) −10937.1 −0.439789
\(853\) 30642.8 1.23000 0.614999 0.788528i \(-0.289156\pi\)
0.614999 + 0.788528i \(0.289156\pi\)
\(854\) −9755.18 −0.390885
\(855\) 10326.7 0.413061
\(856\) 2627.08 0.104897
\(857\) 27495.8 1.09596 0.547980 0.836491i \(-0.315397\pi\)
0.547980 + 0.836491i \(0.315397\pi\)
\(858\) 36272.3 1.44326
\(859\) 17570.5 0.697902 0.348951 0.937141i \(-0.386538\pi\)
0.348951 + 0.937141i \(0.386538\pi\)
\(860\) −7995.49 −0.317028
\(861\) −63946.6 −2.53112
\(862\) −20362.1 −0.804566
\(863\) −36296.2 −1.43168 −0.715839 0.698265i \(-0.753956\pi\)
−0.715839 + 0.698265i \(0.753956\pi\)
\(864\) 2758.83 0.108631
\(865\) 6816.73 0.267949
\(866\) 6298.53 0.247151
\(867\) 45223.4 1.77147
\(868\) −8598.03 −0.336217
\(869\) −21663.7 −0.845676
\(870\) 21625.1 0.842714
\(871\) −13025.0 −0.506700
\(872\) 12533.9 0.486756
\(873\) 12141.5 0.470706
\(874\) −11744.1 −0.454518
\(875\) 35850.5 1.38511
\(876\) 15477.2 0.596947
\(877\) 21916.4 0.843858 0.421929 0.906629i \(-0.361353\pi\)
0.421929 + 0.906629i \(0.361353\pi\)
\(878\) −18042.9 −0.693529
\(879\) 29263.4 1.12290
\(880\) −4002.39 −0.153319
\(881\) −21877.8 −0.836644 −0.418322 0.908299i \(-0.637382\pi\)
−0.418322 + 0.908299i \(0.637382\pi\)
\(882\) −10952.7 −0.418137
\(883\) −39950.2 −1.52257 −0.761285 0.648417i \(-0.775431\pi\)
−0.761285 + 0.648417i \(0.775431\pi\)
\(884\) −30895.0 −1.17546
\(885\) 183.035 0.00695213
\(886\) 13893.6 0.526822
\(887\) −47496.9 −1.79796 −0.898980 0.437990i \(-0.855691\pi\)
−0.898980 + 0.437990i \(0.855691\pi\)
\(888\) 20959.2 0.792054
\(889\) −35892.4 −1.35410
\(890\) 5927.54 0.223249
\(891\) 36894.1 1.38721
\(892\) −15153.3 −0.568800
\(893\) −42972.2 −1.61031
\(894\) 5589.77 0.209116
\(895\) 20810.7 0.777236
\(896\) 3506.28 0.130733
\(897\) 21156.2 0.787496
\(898\) 3628.25 0.134829
\(899\) −21593.8 −0.801107
\(900\) −4669.00 −0.172926
\(901\) 20139.1 0.744650
\(902\) 29724.1 1.09723
\(903\) 56359.4 2.07699
\(904\) 4577.24 0.168403
\(905\) 10997.9 0.403958
\(906\) 24011.6 0.880498
\(907\) 15797.8 0.578345 0.289173 0.957277i \(-0.406620\pi\)
0.289173 + 0.957277i \(0.406620\pi\)
\(908\) −6795.68 −0.248373
\(909\) 22151.3 0.808266
\(910\) 23842.1 0.868526
\(911\) 48925.8 1.77935 0.889673 0.456598i \(-0.150932\pi\)
0.889673 + 0.456598i \(0.150932\pi\)
\(912\) 12650.8 0.459333
\(913\) 24339.3 0.882270
\(914\) 14485.6 0.524226
\(915\) −6996.35 −0.252778
\(916\) 18308.1 0.660388
\(917\) 15166.4 0.546172
\(918\) −18907.4 −0.679779
\(919\) −55381.3 −1.98788 −0.993940 0.109927i \(-0.964938\pi\)
−0.993940 + 0.109927i \(0.964938\pi\)
\(920\) −2334.43 −0.0836564
\(921\) 16364.4 0.585480
\(922\) 20035.0 0.715638
\(923\) −30284.5 −1.07999
\(924\) 28212.5 1.00446
\(925\) 35769.7 1.27146
\(926\) −19323.5 −0.685755
\(927\) −12016.7 −0.425760
\(928\) 8805.96 0.311498
\(929\) 2585.64 0.0913154 0.0456577 0.998957i \(-0.485462\pi\)
0.0456577 + 0.998957i \(0.485462\pi\)
\(930\) −6166.45 −0.217426
\(931\) 50647.6 1.78293
\(932\) 3122.44 0.109741
\(933\) −19066.7 −0.669043
\(934\) 27641.9 0.968384
\(935\) 27430.1 0.959422
\(936\) −7575.29 −0.264537
\(937\) −23216.3 −0.809439 −0.404720 0.914441i \(-0.632631\pi\)
−0.404720 + 0.914441i \(0.632631\pi\)
\(938\) −10130.8 −0.352646
\(939\) 47494.1 1.65060
\(940\) −8541.82 −0.296387
\(941\) −20316.7 −0.703830 −0.351915 0.936032i \(-0.614469\pi\)
−0.351915 + 0.936032i \(0.614469\pi\)
\(942\) −41190.7 −1.42470
\(943\) 17336.8 0.598691
\(944\) 74.5334 0.00256976
\(945\) 14591.1 0.502275
\(946\) −26197.4 −0.900371
\(947\) −35872.2 −1.23093 −0.615464 0.788165i \(-0.711031\pi\)
−0.615464 + 0.788165i \(0.711031\pi\)
\(948\) 13611.2 0.466319
\(949\) 42855.7 1.46592
\(950\) 21590.4 0.737352
\(951\) −54876.8 −1.87119
\(952\) −24030.0 −0.818084
\(953\) 31515.4 1.07123 0.535616 0.844462i \(-0.320079\pi\)
0.535616 + 0.844462i \(0.320079\pi\)
\(954\) 4938.00 0.167583
\(955\) −2043.73 −0.0692498
\(956\) −4889.83 −0.165427
\(957\) 70855.3 2.39334
\(958\) −15211.9 −0.513022
\(959\) −73019.7 −2.45874
\(960\) 2514.68 0.0845425
\(961\) −23633.5 −0.793309
\(962\) 58035.1 1.94504
\(963\) −4414.60 −0.147724
\(964\) 4802.88 0.160467
\(965\) −7509.78 −0.250516
\(966\) 16455.2 0.548071
\(967\) 36425.5 1.21134 0.605670 0.795716i \(-0.292905\pi\)
0.605670 + 0.795716i \(0.292905\pi\)
\(968\) −2465.93 −0.0818780
\(969\) −86701.5 −2.87436
\(970\) −11160.2 −0.369413
\(971\) 4958.17 0.163867 0.0819337 0.996638i \(-0.473890\pi\)
0.0819337 + 0.996638i \(0.473890\pi\)
\(972\) −13869.3 −0.457673
\(973\) −3592.10 −0.118353
\(974\) −29679.5 −0.976377
\(975\) −38893.7 −1.27753
\(976\) −2848.98 −0.0934361
\(977\) −28872.8 −0.945469 −0.472734 0.881205i \(-0.656733\pi\)
−0.472734 + 0.881205i \(0.656733\pi\)
\(978\) 8444.32 0.276094
\(979\) 19421.7 0.634035
\(980\) 10067.5 0.328157
\(981\) −21062.3 −0.685490
\(982\) −38198.4 −1.24130
\(983\) −20864.5 −0.676982 −0.338491 0.940970i \(-0.609916\pi\)
−0.338491 + 0.940970i \(0.609916\pi\)
\(984\) −18675.5 −0.605033
\(985\) 11532.3 0.373044
\(986\) −60350.9 −1.94925
\(987\) 60210.5 1.94176
\(988\) 35029.7 1.12798
\(989\) −15279.9 −0.491275
\(990\) 6725.72 0.215917
\(991\) −14583.2 −0.467457 −0.233729 0.972302i \(-0.575093\pi\)
−0.233729 + 0.972302i \(0.575093\pi\)
\(992\) −2511.04 −0.0803685
\(993\) −56637.8 −1.81002
\(994\) −23555.2 −0.751634
\(995\) 22401.7 0.713750
\(996\) −15292.2 −0.486498
\(997\) −28556.6 −0.907117 −0.453559 0.891226i \(-0.649846\pi\)
−0.453559 + 0.891226i \(0.649846\pi\)
\(998\) 28040.9 0.889399
\(999\) 35516.9 1.12483
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.c.1.16 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.c.1.16 18 1.1 even 1 trivial