Properties

Label 538.4.a.c.1.9
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $1$
Dimension $18$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(1\)
Dimension: \(18\)
Coefficient field: \(\mathbb{Q}[x]/(x^{18} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{18} - 8 x^{17} - 299 x^{16} + 2191 x^{15} + 37840 x^{14} - 247598 x^{13} - 2647415 x^{12} + \cdots - 88752454191 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3^{2} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-0.230427\) of defining polynomial
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000 q^{2} -1.23043 q^{3} +4.00000 q^{4} -2.13428 q^{5} +2.46085 q^{6} +8.15129 q^{7} -8.00000 q^{8} -25.4860 q^{9} +4.26856 q^{10} -16.5349 q^{11} -4.92171 q^{12} +59.2303 q^{13} -16.3026 q^{14} +2.62608 q^{15} +16.0000 q^{16} +95.2369 q^{17} +50.9721 q^{18} -37.4417 q^{19} -8.53713 q^{20} -10.0296 q^{21} +33.0698 q^{22} -118.852 q^{23} +9.84342 q^{24} -120.445 q^{25} -118.461 q^{26} +64.5802 q^{27} +32.6052 q^{28} -165.730 q^{29} -5.25216 q^{30} +139.847 q^{31} -32.0000 q^{32} +20.3450 q^{33} -190.474 q^{34} -17.3971 q^{35} -101.944 q^{36} +122.795 q^{37} +74.8834 q^{38} -72.8786 q^{39} +17.0743 q^{40} +263.594 q^{41} +20.0591 q^{42} +341.053 q^{43} -66.1397 q^{44} +54.3944 q^{45} +237.703 q^{46} -264.528 q^{47} -19.6868 q^{48} -276.557 q^{49} +240.890 q^{50} -117.182 q^{51} +236.921 q^{52} +369.221 q^{53} -129.160 q^{54} +35.2902 q^{55} -65.2103 q^{56} +46.0693 q^{57} +331.461 q^{58} -664.882 q^{59} +10.5043 q^{60} -113.669 q^{61} -279.694 q^{62} -207.744 q^{63} +64.0000 q^{64} -126.414 q^{65} -40.6900 q^{66} -314.601 q^{67} +380.948 q^{68} +146.238 q^{69} +34.7943 q^{70} -995.728 q^{71} +203.888 q^{72} -1102.49 q^{73} -245.591 q^{74} +148.199 q^{75} -149.767 q^{76} -134.781 q^{77} +145.757 q^{78} -235.836 q^{79} -34.1485 q^{80} +608.662 q^{81} -527.188 q^{82} +2.23481 q^{83} -40.1183 q^{84} -203.262 q^{85} -682.106 q^{86} +203.919 q^{87} +132.279 q^{88} -1256.72 q^{89} -108.789 q^{90} +482.804 q^{91} -475.407 q^{92} -172.071 q^{93} +529.056 q^{94} +79.9111 q^{95} +39.3737 q^{96} +208.162 q^{97} +553.113 q^{98} +421.410 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 18 q - 36 q^{2} - 10 q^{3} + 72 q^{4} - 26 q^{5} + 20 q^{6} - 9 q^{7} - 144 q^{8} + 178 q^{9} + 52 q^{10} - 130 q^{11} - 40 q^{12} - 27 q^{13} + 18 q^{14} - 143 q^{15} + 288 q^{16} - 110 q^{17} - 356 q^{18}+ \cdots - 9455 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −2.00000 −0.707107
\(3\) −1.23043 −0.236796 −0.118398 0.992966i \(-0.537776\pi\)
−0.118398 + 0.992966i \(0.537776\pi\)
\(4\) 4.00000 0.500000
\(5\) −2.13428 −0.190896 −0.0954480 0.995434i \(-0.530428\pi\)
−0.0954480 + 0.995434i \(0.530428\pi\)
\(6\) 2.46085 0.167440
\(7\) 8.15129 0.440128 0.220064 0.975485i \(-0.429373\pi\)
0.220064 + 0.975485i \(0.429373\pi\)
\(8\) −8.00000 −0.353553
\(9\) −25.4860 −0.943928
\(10\) 4.26856 0.134984
\(11\) −16.5349 −0.453224 −0.226612 0.973985i \(-0.572765\pi\)
−0.226612 + 0.973985i \(0.572765\pi\)
\(12\) −4.92171 −0.118398
\(13\) 59.2303 1.26366 0.631829 0.775108i \(-0.282305\pi\)
0.631829 + 0.775108i \(0.282305\pi\)
\(14\) −16.3026 −0.311218
\(15\) 2.62608 0.0452034
\(16\) 16.0000 0.250000
\(17\) 95.2369 1.35873 0.679363 0.733802i \(-0.262256\pi\)
0.679363 + 0.733802i \(0.262256\pi\)
\(18\) 50.9721 0.667458
\(19\) −37.4417 −0.452090 −0.226045 0.974117i \(-0.572580\pi\)
−0.226045 + 0.974117i \(0.572580\pi\)
\(20\) −8.53713 −0.0954480
\(21\) −10.0296 −0.104220
\(22\) 33.0698 0.320478
\(23\) −118.852 −1.07749 −0.538745 0.842469i \(-0.681101\pi\)
−0.538745 + 0.842469i \(0.681101\pi\)
\(24\) 9.84342 0.0837199
\(25\) −120.445 −0.963559
\(26\) −118.461 −0.893541
\(27\) 64.5802 0.460314
\(28\) 32.6052 0.220064
\(29\) −165.730 −1.06122 −0.530610 0.847616i \(-0.678037\pi\)
−0.530610 + 0.847616i \(0.678037\pi\)
\(30\) −5.25216 −0.0319636
\(31\) 139.847 0.810234 0.405117 0.914265i \(-0.367231\pi\)
0.405117 + 0.914265i \(0.367231\pi\)
\(32\) −32.0000 −0.176777
\(33\) 20.3450 0.107322
\(34\) −190.474 −0.960765
\(35\) −17.3971 −0.0840187
\(36\) −101.944 −0.471964
\(37\) 122.795 0.545607 0.272803 0.962070i \(-0.412049\pi\)
0.272803 + 0.962070i \(0.412049\pi\)
\(38\) 74.8834 0.319676
\(39\) −72.8786 −0.299229
\(40\) 17.0743 0.0674919
\(41\) 263.594 1.00406 0.502030 0.864850i \(-0.332587\pi\)
0.502030 + 0.864850i \(0.332587\pi\)
\(42\) 20.0591 0.0736950
\(43\) 341.053 1.20954 0.604769 0.796401i \(-0.293265\pi\)
0.604769 + 0.796401i \(0.293265\pi\)
\(44\) −66.1397 −0.226612
\(45\) 54.3944 0.180192
\(46\) 237.703 0.761901
\(47\) −264.528 −0.820965 −0.410483 0.911868i \(-0.634640\pi\)
−0.410483 + 0.911868i \(0.634640\pi\)
\(48\) −19.6868 −0.0591989
\(49\) −276.557 −0.806287
\(50\) 240.890 0.681339
\(51\) −117.182 −0.321741
\(52\) 236.921 0.631829
\(53\) 369.221 0.956912 0.478456 0.878112i \(-0.341197\pi\)
0.478456 + 0.878112i \(0.341197\pi\)
\(54\) −129.160 −0.325491
\(55\) 35.2902 0.0865186
\(56\) −65.2103 −0.155609
\(57\) 46.0693 0.107053
\(58\) 331.461 0.750396
\(59\) −664.882 −1.46712 −0.733561 0.679623i \(-0.762143\pi\)
−0.733561 + 0.679623i \(0.762143\pi\)
\(60\) 10.5043 0.0226017
\(61\) −113.669 −0.238586 −0.119293 0.992859i \(-0.538063\pi\)
−0.119293 + 0.992859i \(0.538063\pi\)
\(62\) −279.694 −0.572922
\(63\) −207.744 −0.415449
\(64\) 64.0000 0.125000
\(65\) −126.414 −0.241227
\(66\) −40.6900 −0.0758878
\(67\) −314.601 −0.573651 −0.286825 0.957983i \(-0.592600\pi\)
−0.286825 + 0.957983i \(0.592600\pi\)
\(68\) 380.948 0.679363
\(69\) 146.238 0.255145
\(70\) 34.7943 0.0594102
\(71\) −995.728 −1.66438 −0.832191 0.554489i \(-0.812914\pi\)
−0.832191 + 0.554489i \(0.812914\pi\)
\(72\) 203.888 0.333729
\(73\) −1102.49 −1.76762 −0.883810 0.467847i \(-0.845030\pi\)
−0.883810 + 0.467847i \(0.845030\pi\)
\(74\) −245.591 −0.385802
\(75\) 148.199 0.228167
\(76\) −149.767 −0.226045
\(77\) −134.781 −0.199477
\(78\) 145.757 0.211587
\(79\) −235.836 −0.335868 −0.167934 0.985798i \(-0.553710\pi\)
−0.167934 + 0.985798i \(0.553710\pi\)
\(80\) −34.1485 −0.0477240
\(81\) 608.662 0.834927
\(82\) −527.188 −0.709978
\(83\) 2.23481 0.00295546 0.00147773 0.999999i \(-0.499530\pi\)
0.00147773 + 0.999999i \(0.499530\pi\)
\(84\) −40.1183 −0.0521102
\(85\) −203.262 −0.259375
\(86\) −682.106 −0.855272
\(87\) 203.919 0.251292
\(88\) 132.279 0.160239
\(89\) −1256.72 −1.49677 −0.748384 0.663266i \(-0.769170\pi\)
−0.748384 + 0.663266i \(0.769170\pi\)
\(90\) −108.789 −0.127415
\(91\) 482.804 0.556171
\(92\) −475.407 −0.538745
\(93\) −172.071 −0.191860
\(94\) 529.056 0.580510
\(95\) 79.9111 0.0863022
\(96\) 39.3737 0.0418600
\(97\) 208.162 0.217894 0.108947 0.994048i \(-0.465252\pi\)
0.108947 + 0.994048i \(0.465252\pi\)
\(98\) 553.113 0.570131
\(99\) 421.410 0.427811
\(100\) −481.779 −0.481779
\(101\) −935.092 −0.921239 −0.460619 0.887598i \(-0.652373\pi\)
−0.460619 + 0.887598i \(0.652373\pi\)
\(102\) 234.364 0.227505
\(103\) 739.654 0.707575 0.353788 0.935326i \(-0.384894\pi\)
0.353788 + 0.935326i \(0.384894\pi\)
\(104\) −473.843 −0.446770
\(105\) 21.4059 0.0198953
\(106\) −738.441 −0.676639
\(107\) −1281.40 −1.15773 −0.578867 0.815422i \(-0.696505\pi\)
−0.578867 + 0.815422i \(0.696505\pi\)
\(108\) 258.321 0.230157
\(109\) −1507.80 −1.32496 −0.662482 0.749078i \(-0.730497\pi\)
−0.662482 + 0.749078i \(0.730497\pi\)
\(110\) −70.5803 −0.0611779
\(111\) −151.091 −0.129197
\(112\) 130.421 0.110032
\(113\) −425.931 −0.354586 −0.177293 0.984158i \(-0.556734\pi\)
−0.177293 + 0.984158i \(0.556734\pi\)
\(114\) −92.1386 −0.0756979
\(115\) 253.663 0.205689
\(116\) −662.922 −0.530610
\(117\) −1509.55 −1.19280
\(118\) 1329.76 1.03741
\(119\) 776.304 0.598014
\(120\) −21.0086 −0.0159818
\(121\) −1057.60 −0.794588
\(122\) 227.337 0.168706
\(123\) −324.333 −0.237757
\(124\) 559.388 0.405117
\(125\) 523.848 0.374835
\(126\) 415.488 0.293767
\(127\) 1079.91 0.754541 0.377270 0.926103i \(-0.376863\pi\)
0.377270 + 0.926103i \(0.376863\pi\)
\(128\) −128.000 −0.0883883
\(129\) −419.641 −0.286413
\(130\) 252.828 0.170573
\(131\) −2272.32 −1.51553 −0.757763 0.652530i \(-0.773708\pi\)
−0.757763 + 0.652530i \(0.773708\pi\)
\(132\) 81.3800 0.0536608
\(133\) −305.198 −0.198978
\(134\) 629.202 0.405632
\(135\) −137.832 −0.0878721
\(136\) −761.895 −0.480382
\(137\) 1819.26 1.13452 0.567262 0.823538i \(-0.308003\pi\)
0.567262 + 0.823538i \(0.308003\pi\)
\(138\) −292.477 −0.180415
\(139\) 25.0859 0.0153076 0.00765381 0.999971i \(-0.497564\pi\)
0.00765381 + 0.999971i \(0.497564\pi\)
\(140\) −69.5886 −0.0420093
\(141\) 325.482 0.194401
\(142\) 1991.46 1.17690
\(143\) −979.369 −0.572720
\(144\) −407.777 −0.235982
\(145\) 353.715 0.202583
\(146\) 2204.97 1.24990
\(147\) 340.283 0.190925
\(148\) 491.182 0.272803
\(149\) −1957.09 −1.07605 −0.538023 0.842930i \(-0.680828\pi\)
−0.538023 + 0.842930i \(0.680828\pi\)
\(150\) −296.397 −0.161338
\(151\) 643.252 0.346669 0.173335 0.984863i \(-0.444546\pi\)
0.173335 + 0.984863i \(0.444546\pi\)
\(152\) 299.534 0.159838
\(153\) −2427.21 −1.28254
\(154\) 269.562 0.141051
\(155\) −298.473 −0.154670
\(156\) −291.514 −0.149614
\(157\) −2697.68 −1.37132 −0.685662 0.727920i \(-0.740487\pi\)
−0.685662 + 0.727920i \(0.740487\pi\)
\(158\) 471.671 0.237495
\(159\) −454.299 −0.226593
\(160\) 68.2970 0.0337460
\(161\) −968.794 −0.474234
\(162\) −1217.32 −0.590383
\(163\) 650.005 0.312346 0.156173 0.987730i \(-0.450084\pi\)
0.156173 + 0.987730i \(0.450084\pi\)
\(164\) 1054.38 0.502030
\(165\) −43.4220 −0.0204872
\(166\) −4.46963 −0.00208982
\(167\) −2899.78 −1.34366 −0.671830 0.740705i \(-0.734492\pi\)
−0.671830 + 0.740705i \(0.734492\pi\)
\(168\) 80.2365 0.0368475
\(169\) 1311.23 0.596829
\(170\) 406.525 0.183406
\(171\) 954.241 0.426741
\(172\) 1364.21 0.604769
\(173\) −383.602 −0.168582 −0.0842911 0.996441i \(-0.526863\pi\)
−0.0842911 + 0.996441i \(0.526863\pi\)
\(174\) −407.838 −0.177691
\(175\) −981.781 −0.424089
\(176\) −264.559 −0.113306
\(177\) 818.089 0.347409
\(178\) 2513.44 1.05837
\(179\) 3302.17 1.37886 0.689430 0.724353i \(-0.257861\pi\)
0.689430 + 0.724353i \(0.257861\pi\)
\(180\) 217.578 0.0900960
\(181\) 3337.10 1.37041 0.685206 0.728349i \(-0.259712\pi\)
0.685206 + 0.728349i \(0.259712\pi\)
\(182\) −965.607 −0.393272
\(183\) 139.861 0.0564962
\(184\) 950.813 0.380950
\(185\) −262.080 −0.104154
\(186\) 344.143 0.135666
\(187\) −1574.73 −0.615808
\(188\) −1058.11 −0.410483
\(189\) 526.412 0.202597
\(190\) −159.822 −0.0610249
\(191\) −1331.17 −0.504293 −0.252147 0.967689i \(-0.581137\pi\)
−0.252147 + 0.967689i \(0.581137\pi\)
\(192\) −78.7473 −0.0295995
\(193\) 3529.85 1.31650 0.658249 0.752800i \(-0.271297\pi\)
0.658249 + 0.752800i \(0.271297\pi\)
\(194\) −416.325 −0.154074
\(195\) 155.543 0.0571215
\(196\) −1106.23 −0.403144
\(197\) 3747.40 1.35529 0.677643 0.735391i \(-0.263002\pi\)
0.677643 + 0.735391i \(0.263002\pi\)
\(198\) −842.819 −0.302508
\(199\) −4548.90 −1.62042 −0.810209 0.586142i \(-0.800646\pi\)
−0.810209 + 0.586142i \(0.800646\pi\)
\(200\) 963.559 0.340669
\(201\) 387.093 0.135838
\(202\) 1870.18 0.651414
\(203\) −1350.92 −0.467073
\(204\) −468.728 −0.160870
\(205\) −562.584 −0.191671
\(206\) −1479.31 −0.500331
\(207\) 3029.06 1.01707
\(208\) 947.686 0.315914
\(209\) 619.095 0.204898
\(210\) −42.8118 −0.0140681
\(211\) −156.427 −0.0510373 −0.0255186 0.999674i \(-0.508124\pi\)
−0.0255186 + 0.999674i \(0.508124\pi\)
\(212\) 1476.88 0.478456
\(213\) 1225.17 0.394119
\(214\) 2562.80 0.818641
\(215\) −727.904 −0.230896
\(216\) −516.642 −0.162746
\(217\) 1139.93 0.356607
\(218\) 3015.60 0.936891
\(219\) 1356.53 0.418565
\(220\) 141.161 0.0432593
\(221\) 5640.92 1.71696
\(222\) 302.182 0.0913564
\(223\) 2522.13 0.757372 0.378686 0.925525i \(-0.376376\pi\)
0.378686 + 0.925525i \(0.376376\pi\)
\(224\) −260.841 −0.0778044
\(225\) 3069.66 0.909530
\(226\) 851.862 0.250730
\(227\) −847.591 −0.247826 −0.123913 0.992293i \(-0.539544\pi\)
−0.123913 + 0.992293i \(0.539544\pi\)
\(228\) 184.277 0.0535265
\(229\) −1771.22 −0.511115 −0.255557 0.966794i \(-0.582259\pi\)
−0.255557 + 0.966794i \(0.582259\pi\)
\(230\) −507.326 −0.145444
\(231\) 165.838 0.0472352
\(232\) 1325.84 0.375198
\(233\) 2763.35 0.776965 0.388482 0.921456i \(-0.372999\pi\)
0.388482 + 0.921456i \(0.372999\pi\)
\(234\) 3019.10 0.843438
\(235\) 564.577 0.156719
\(236\) −2659.53 −0.733561
\(237\) 290.178 0.0795321
\(238\) −1552.61 −0.422860
\(239\) 661.640 0.179071 0.0895354 0.995984i \(-0.471462\pi\)
0.0895354 + 0.995984i \(0.471462\pi\)
\(240\) 42.0172 0.0113008
\(241\) 1545.53 0.413096 0.206548 0.978436i \(-0.433777\pi\)
0.206548 + 0.978436i \(0.433777\pi\)
\(242\) 2115.19 0.561859
\(243\) −2492.58 −0.658021
\(244\) −454.674 −0.119293
\(245\) 590.249 0.153917
\(246\) 648.667 0.168120
\(247\) −2217.68 −0.571287
\(248\) −1118.78 −0.286461
\(249\) −2.74978 −0.000699839 0
\(250\) −1047.70 −0.265049
\(251\) 4065.59 1.02238 0.511191 0.859467i \(-0.329204\pi\)
0.511191 + 0.859467i \(0.329204\pi\)
\(252\) −830.976 −0.207725
\(253\) 1965.20 0.488345
\(254\) −2159.82 −0.533541
\(255\) 250.100 0.0614190
\(256\) 256.000 0.0625000
\(257\) 5024.75 1.21959 0.609796 0.792558i \(-0.291251\pi\)
0.609796 + 0.792558i \(0.291251\pi\)
\(258\) 839.282 0.202525
\(259\) 1000.94 0.240137
\(260\) −505.657 −0.120614
\(261\) 4223.81 1.00171
\(262\) 4544.65 1.07164
\(263\) −8270.68 −1.93913 −0.969567 0.244826i \(-0.921269\pi\)
−0.969567 + 0.244826i \(0.921269\pi\)
\(264\) −162.760 −0.0379439
\(265\) −788.021 −0.182671
\(266\) 610.396 0.140698
\(267\) 1546.31 0.354428
\(268\) −1258.40 −0.286825
\(269\) 269.000 0.0609711
\(270\) 275.665 0.0621349
\(271\) −7038.15 −1.57763 −0.788813 0.614633i \(-0.789304\pi\)
−0.788813 + 0.614633i \(0.789304\pi\)
\(272\) 1523.79 0.339682
\(273\) −594.055 −0.131699
\(274\) −3638.52 −0.802229
\(275\) 1991.55 0.436708
\(276\) 584.953 0.127573
\(277\) −1318.88 −0.286078 −0.143039 0.989717i \(-0.545687\pi\)
−0.143039 + 0.989717i \(0.545687\pi\)
\(278\) −50.1718 −0.0108241
\(279\) −3564.15 −0.764802
\(280\) 139.177 0.0297051
\(281\) 4708.52 0.999597 0.499798 0.866142i \(-0.333407\pi\)
0.499798 + 0.866142i \(0.333407\pi\)
\(282\) −650.965 −0.137462
\(283\) 2780.25 0.583989 0.291995 0.956420i \(-0.405681\pi\)
0.291995 + 0.956420i \(0.405681\pi\)
\(284\) −3982.91 −0.832191
\(285\) −98.3248 −0.0204360
\(286\) 1958.74 0.404974
\(287\) 2148.63 0.441915
\(288\) 815.554 0.166864
\(289\) 4157.07 0.846137
\(290\) −707.431 −0.143247
\(291\) −256.129 −0.0515963
\(292\) −4409.94 −0.883810
\(293\) −8323.53 −1.65961 −0.829805 0.558053i \(-0.811548\pi\)
−0.829805 + 0.558053i \(0.811548\pi\)
\(294\) −680.565 −0.135005
\(295\) 1419.05 0.280068
\(296\) −982.364 −0.192901
\(297\) −1067.83 −0.208625
\(298\) 3914.17 0.760879
\(299\) −7039.62 −1.36158
\(300\) 592.794 0.114083
\(301\) 2780.02 0.532352
\(302\) −1286.50 −0.245132
\(303\) 1150.56 0.218145
\(304\) −599.067 −0.113023
\(305\) 242.601 0.0455452
\(306\) 4854.43 0.906892
\(307\) −2964.43 −0.551105 −0.275552 0.961286i \(-0.588861\pi\)
−0.275552 + 0.961286i \(0.588861\pi\)
\(308\) −539.123 −0.0997383
\(309\) −910.090 −0.167551
\(310\) 596.946 0.109368
\(311\) 2667.86 0.486432 0.243216 0.969972i \(-0.421798\pi\)
0.243216 + 0.969972i \(0.421798\pi\)
\(312\) 583.029 0.105793
\(313\) 4965.94 0.896778 0.448389 0.893839i \(-0.351998\pi\)
0.448389 + 0.893839i \(0.351998\pi\)
\(314\) 5395.35 0.969673
\(315\) 443.384 0.0793076
\(316\) −943.342 −0.167934
\(317\) −8792.08 −1.55777 −0.778884 0.627168i \(-0.784214\pi\)
−0.778884 + 0.627168i \(0.784214\pi\)
\(318\) 908.598 0.160225
\(319\) 2740.34 0.480970
\(320\) −136.594 −0.0238620
\(321\) 1576.67 0.274146
\(322\) 1937.59 0.335334
\(323\) −3565.83 −0.614267
\(324\) 2434.65 0.417464
\(325\) −7133.99 −1.21761
\(326\) −1300.01 −0.220862
\(327\) 1855.24 0.313746
\(328\) −2108.75 −0.354989
\(329\) −2156.24 −0.361330
\(330\) 86.8439 0.0144867
\(331\) 11409.5 1.89463 0.947314 0.320305i \(-0.103786\pi\)
0.947314 + 0.320305i \(0.103786\pi\)
\(332\) 8.93926 0.00147773
\(333\) −3129.57 −0.515014
\(334\) 5799.55 0.950112
\(335\) 671.447 0.109508
\(336\) −160.473 −0.0260551
\(337\) 2233.26 0.360989 0.180495 0.983576i \(-0.442230\pi\)
0.180495 + 0.983576i \(0.442230\pi\)
\(338\) −2622.47 −0.422022
\(339\) 524.077 0.0839645
\(340\) −813.050 −0.129688
\(341\) −2312.36 −0.367218
\(342\) −1908.48 −0.301751
\(343\) −5050.18 −0.794998
\(344\) −2728.43 −0.427636
\(345\) −312.114 −0.0487062
\(346\) 767.204 0.119206
\(347\) −10816.1 −1.67330 −0.836651 0.547736i \(-0.815490\pi\)
−0.836651 + 0.547736i \(0.815490\pi\)
\(348\) 815.677 0.125646
\(349\) 10411.5 1.59689 0.798445 0.602068i \(-0.205656\pi\)
0.798445 + 0.602068i \(0.205656\pi\)
\(350\) 1963.56 0.299876
\(351\) 3825.11 0.581679
\(352\) 529.117 0.0801195
\(353\) 7610.41 1.14748 0.573742 0.819036i \(-0.305491\pi\)
0.573742 + 0.819036i \(0.305491\pi\)
\(354\) −1636.18 −0.245655
\(355\) 2125.16 0.317724
\(356\) −5026.89 −0.748384
\(357\) −955.185 −0.141607
\(358\) −6604.34 −0.975001
\(359\) 2551.23 0.375067 0.187533 0.982258i \(-0.439951\pi\)
0.187533 + 0.982258i \(0.439951\pi\)
\(360\) −435.155 −0.0637075
\(361\) −5457.12 −0.795614
\(362\) −6674.20 −0.969028
\(363\) 1301.30 0.188155
\(364\) 1931.21 0.278086
\(365\) 2353.02 0.337431
\(366\) −279.722 −0.0399489
\(367\) −4050.30 −0.576087 −0.288044 0.957617i \(-0.593005\pi\)
−0.288044 + 0.957617i \(0.593005\pi\)
\(368\) −1901.63 −0.269373
\(369\) −6717.97 −0.947761
\(370\) 524.160 0.0736481
\(371\) 3009.62 0.421164
\(372\) −688.286 −0.0959300
\(373\) 5732.09 0.795701 0.397851 0.917450i \(-0.369756\pi\)
0.397851 + 0.917450i \(0.369756\pi\)
\(374\) 3149.47 0.435442
\(375\) −644.557 −0.0887594
\(376\) 2116.22 0.290255
\(377\) −9816.27 −1.34102
\(378\) −1052.82 −0.143258
\(379\) 195.715 0.0265257 0.0132628 0.999912i \(-0.495778\pi\)
0.0132628 + 0.999912i \(0.495778\pi\)
\(380\) 319.645 0.0431511
\(381\) −1328.75 −0.178672
\(382\) 2662.34 0.356589
\(383\) −2145.44 −0.286233 −0.143116 0.989706i \(-0.545712\pi\)
−0.143116 + 0.989706i \(0.545712\pi\)
\(384\) 157.495 0.0209300
\(385\) 287.660 0.0380793
\(386\) −7059.70 −0.930904
\(387\) −8692.10 −1.14172
\(388\) 832.650 0.108947
\(389\) 7821.65 1.01947 0.509734 0.860332i \(-0.329744\pi\)
0.509734 + 0.860332i \(0.329744\pi\)
\(390\) −311.087 −0.0403910
\(391\) −11319.1 −1.46401
\(392\) 2212.45 0.285066
\(393\) 2795.93 0.358870
\(394\) −7494.80 −0.958331
\(395\) 503.339 0.0641158
\(396\) 1685.64 0.213905
\(397\) 6997.18 0.884580 0.442290 0.896872i \(-0.354166\pi\)
0.442290 + 0.896872i \(0.354166\pi\)
\(398\) 9097.80 1.14581
\(399\) 375.524 0.0471171
\(400\) −1927.12 −0.240890
\(401\) −7213.18 −0.898277 −0.449139 0.893462i \(-0.648269\pi\)
−0.449139 + 0.893462i \(0.648269\pi\)
\(402\) −774.187 −0.0960520
\(403\) 8283.18 1.02386
\(404\) −3740.37 −0.460619
\(405\) −1299.06 −0.159384
\(406\) 2701.83 0.330270
\(407\) −2030.41 −0.247282
\(408\) 937.457 0.113753
\(409\) 11412.1 1.37968 0.689842 0.723960i \(-0.257680\pi\)
0.689842 + 0.723960i \(0.257680\pi\)
\(410\) 1125.17 0.135532
\(411\) −2238.46 −0.268650
\(412\) 2958.62 0.353788
\(413\) −5419.64 −0.645722
\(414\) −6058.12 −0.719179
\(415\) −4.76972 −0.000564184 0
\(416\) −1895.37 −0.223385
\(417\) −30.8664 −0.00362478
\(418\) −1238.19 −0.144885
\(419\) 3380.29 0.394124 0.197062 0.980391i \(-0.436860\pi\)
0.197062 + 0.980391i \(0.436860\pi\)
\(420\) 85.6237 0.00994763
\(421\) 12950.8 1.49925 0.749623 0.661865i \(-0.230235\pi\)
0.749623 + 0.661865i \(0.230235\pi\)
\(422\) 312.854 0.0360888
\(423\) 6741.77 0.774932
\(424\) −2953.76 −0.338320
\(425\) −11470.8 −1.30921
\(426\) −2450.34 −0.278684
\(427\) −926.545 −0.105009
\(428\) −5125.59 −0.578867
\(429\) 1205.04 0.135618
\(430\) 1455.81 0.163268
\(431\) 834.923 0.0933105 0.0466553 0.998911i \(-0.485144\pi\)
0.0466553 + 0.998911i \(0.485144\pi\)
\(432\) 1033.28 0.115078
\(433\) −10245.5 −1.13711 −0.568553 0.822647i \(-0.692497\pi\)
−0.568553 + 0.822647i \(0.692497\pi\)
\(434\) −2279.87 −0.252159
\(435\) −435.221 −0.0479707
\(436\) −6031.20 −0.662482
\(437\) 4450.01 0.487123
\(438\) −2713.06 −0.295970
\(439\) 12080.6 1.31338 0.656690 0.754161i \(-0.271956\pi\)
0.656690 + 0.754161i \(0.271956\pi\)
\(440\) −282.321 −0.0305890
\(441\) 7048.33 0.761077
\(442\) −11281.8 −1.21408
\(443\) −8754.41 −0.938905 −0.469452 0.882958i \(-0.655549\pi\)
−0.469452 + 0.882958i \(0.655549\pi\)
\(444\) −604.364 −0.0645987
\(445\) 2682.20 0.285727
\(446\) −5044.25 −0.535543
\(447\) 2408.05 0.254803
\(448\) 521.682 0.0550160
\(449\) 13118.5 1.37884 0.689419 0.724362i \(-0.257866\pi\)
0.689419 + 0.724362i \(0.257866\pi\)
\(450\) −6139.33 −0.643135
\(451\) −4358.51 −0.455065
\(452\) −1703.72 −0.177293
\(453\) −791.474 −0.0820898
\(454\) 1695.18 0.175240
\(455\) −1030.44 −0.106171
\(456\) −368.554 −0.0378490
\(457\) 17317.2 1.77257 0.886285 0.463140i \(-0.153277\pi\)
0.886285 + 0.463140i \(0.153277\pi\)
\(458\) 3542.43 0.361413
\(459\) 6150.42 0.625441
\(460\) 1014.65 0.102844
\(461\) −12118.4 −1.22431 −0.612157 0.790736i \(-0.709698\pi\)
−0.612157 + 0.790736i \(0.709698\pi\)
\(462\) −331.676 −0.0334004
\(463\) −10836.1 −1.08768 −0.543841 0.839188i \(-0.683031\pi\)
−0.543841 + 0.839188i \(0.683031\pi\)
\(464\) −2651.69 −0.265305
\(465\) 367.249 0.0366253
\(466\) −5526.69 −0.549397
\(467\) −17119.4 −1.69634 −0.848172 0.529721i \(-0.822297\pi\)
−0.848172 + 0.529721i \(0.822297\pi\)
\(468\) −6038.19 −0.596401
\(469\) −2564.40 −0.252480
\(470\) −1129.15 −0.110817
\(471\) 3319.29 0.324724
\(472\) 5319.06 0.518706
\(473\) −5639.29 −0.548192
\(474\) −580.357 −0.0562377
\(475\) 4509.66 0.435616
\(476\) 3105.21 0.299007
\(477\) −9409.97 −0.903256
\(478\) −1323.28 −0.126622
\(479\) 4707.84 0.449075 0.224537 0.974465i \(-0.427913\pi\)
0.224537 + 0.974465i \(0.427913\pi\)
\(480\) −84.0345 −0.00799090
\(481\) 7273.22 0.689460
\(482\) −3091.05 −0.292103
\(483\) 1192.03 0.112297
\(484\) −4230.39 −0.397294
\(485\) −444.277 −0.0415950
\(486\) 4985.16 0.465291
\(487\) −15440.3 −1.43669 −0.718344 0.695688i \(-0.755100\pi\)
−0.718344 + 0.695688i \(0.755100\pi\)
\(488\) 909.349 0.0843530
\(489\) −799.784 −0.0739621
\(490\) −1180.50 −0.108836
\(491\) −10836.9 −0.996056 −0.498028 0.867161i \(-0.665942\pi\)
−0.498028 + 0.867161i \(0.665942\pi\)
\(492\) −1297.33 −0.118879
\(493\) −15783.7 −1.44191
\(494\) 4435.37 0.403961
\(495\) −899.407 −0.0816674
\(496\) 2237.55 0.202559
\(497\) −8116.46 −0.732542
\(498\) 5.49955 0.000494861 0
\(499\) −7847.68 −0.704029 −0.352014 0.935995i \(-0.614503\pi\)
−0.352014 + 0.935995i \(0.614503\pi\)
\(500\) 2095.39 0.187418
\(501\) 3567.96 0.318173
\(502\) −8131.19 −0.722933
\(503\) −15376.6 −1.36304 −0.681521 0.731798i \(-0.738681\pi\)
−0.681521 + 0.731798i \(0.738681\pi\)
\(504\) 1661.95 0.146883
\(505\) 1995.75 0.175861
\(506\) −3930.40 −0.345312
\(507\) −1613.38 −0.141327
\(508\) 4319.65 0.377270
\(509\) −6273.95 −0.546342 −0.273171 0.961966i \(-0.588072\pi\)
−0.273171 + 0.961966i \(0.588072\pi\)
\(510\) −500.199 −0.0434298
\(511\) −8986.68 −0.777979
\(512\) −512.000 −0.0441942
\(513\) −2417.99 −0.208103
\(514\) −10049.5 −0.862382
\(515\) −1578.63 −0.135073
\(516\) −1678.56 −0.143207
\(517\) 4373.95 0.372081
\(518\) −2001.88 −0.169802
\(519\) 471.994 0.0399196
\(520\) 1011.31 0.0852866
\(521\) 3752.22 0.315524 0.157762 0.987477i \(-0.449572\pi\)
0.157762 + 0.987477i \(0.449572\pi\)
\(522\) −8447.63 −0.708319
\(523\) −10006.4 −0.836615 −0.418308 0.908305i \(-0.637377\pi\)
−0.418308 + 0.908305i \(0.637377\pi\)
\(524\) −9089.30 −0.757763
\(525\) 1208.01 0.100423
\(526\) 16541.4 1.37117
\(527\) 13318.6 1.10089
\(528\) 325.520 0.0268304
\(529\) 1958.72 0.160986
\(530\) 1576.04 0.129168
\(531\) 16945.2 1.38486
\(532\) −1220.79 −0.0994888
\(533\) 15612.8 1.26879
\(534\) −3092.61 −0.250619
\(535\) 2734.87 0.221007
\(536\) 2516.81 0.202816
\(537\) −4063.08 −0.326508
\(538\) −538.000 −0.0431131
\(539\) 4572.84 0.365429
\(540\) −551.330 −0.0439360
\(541\) −14744.0 −1.17170 −0.585852 0.810418i \(-0.699240\pi\)
−0.585852 + 0.810418i \(0.699240\pi\)
\(542\) 14076.3 1.11555
\(543\) −4106.06 −0.324508
\(544\) −3047.58 −0.240191
\(545\) 3218.07 0.252930
\(546\) 1188.11 0.0931252
\(547\) 16000.4 1.25069 0.625347 0.780347i \(-0.284958\pi\)
0.625347 + 0.780347i \(0.284958\pi\)
\(548\) 7277.03 0.567262
\(549\) 2896.96 0.225208
\(550\) −3983.09 −0.308799
\(551\) 6205.23 0.479767
\(552\) −1169.91 −0.0902075
\(553\) −1922.36 −0.147825
\(554\) 2637.76 0.202288
\(555\) 322.471 0.0246633
\(556\) 100.344 0.00765381
\(557\) 9128.35 0.694400 0.347200 0.937791i \(-0.387133\pi\)
0.347200 + 0.937791i \(0.387133\pi\)
\(558\) 7128.29 0.540797
\(559\) 20200.7 1.52844
\(560\) −278.354 −0.0210047
\(561\) 1937.60 0.145821
\(562\) −9417.04 −0.706822
\(563\) 1825.29 0.136637 0.0683187 0.997664i \(-0.478237\pi\)
0.0683187 + 0.997664i \(0.478237\pi\)
\(564\) 1301.93 0.0972005
\(565\) 909.057 0.0676890
\(566\) −5560.51 −0.412943
\(567\) 4961.38 0.367475
\(568\) 7965.82 0.588448
\(569\) −7517.79 −0.553888 −0.276944 0.960886i \(-0.589322\pi\)
−0.276944 + 0.960886i \(0.589322\pi\)
\(570\) 196.650 0.0144504
\(571\) 12799.0 0.938044 0.469022 0.883186i \(-0.344606\pi\)
0.469022 + 0.883186i \(0.344606\pi\)
\(572\) −3917.48 −0.286360
\(573\) 1637.91 0.119415
\(574\) −4297.26 −0.312481
\(575\) 14315.1 1.03823
\(576\) −1631.11 −0.117991
\(577\) −15147.2 −1.09287 −0.546435 0.837501i \(-0.684016\pi\)
−0.546435 + 0.837501i \(0.684016\pi\)
\(578\) −8314.15 −0.598309
\(579\) −4343.22 −0.311741
\(580\) 1414.86 0.101291
\(581\) 18.2166 0.00130078
\(582\) 512.257 0.0364841
\(583\) −6105.03 −0.433696
\(584\) 8819.89 0.624948
\(585\) 3221.80 0.227701
\(586\) 16647.1 1.17352
\(587\) −12803.4 −0.900258 −0.450129 0.892964i \(-0.648622\pi\)
−0.450129 + 0.892964i \(0.648622\pi\)
\(588\) 1361.13 0.0954627
\(589\) −5236.11 −0.366299
\(590\) −2838.09 −0.198038
\(591\) −4610.90 −0.320926
\(592\) 1964.73 0.136402
\(593\) 23807.7 1.64868 0.824338 0.566098i \(-0.191548\pi\)
0.824338 + 0.566098i \(0.191548\pi\)
\(594\) 2135.66 0.147520
\(595\) −1656.85 −0.114158
\(596\) −7828.34 −0.538023
\(597\) 5597.09 0.383708
\(598\) 14079.2 0.962781
\(599\) 7322.84 0.499505 0.249752 0.968310i \(-0.419651\pi\)
0.249752 + 0.968310i \(0.419651\pi\)
\(600\) −1185.59 −0.0806691
\(601\) −3911.17 −0.265457 −0.132729 0.991152i \(-0.542374\pi\)
−0.132729 + 0.991152i \(0.542374\pi\)
\(602\) −5560.05 −0.376430
\(603\) 8017.93 0.541485
\(604\) 2573.01 0.173335
\(605\) 2257.21 0.151684
\(606\) −2301.12 −0.154252
\(607\) −21163.3 −1.41514 −0.707572 0.706642i \(-0.750209\pi\)
−0.707572 + 0.706642i \(0.750209\pi\)
\(608\) 1198.13 0.0799190
\(609\) 1662.20 0.110601
\(610\) −485.201 −0.0322053
\(611\) −15668.1 −1.03742
\(612\) −9708.85 −0.641270
\(613\) 3201.80 0.210962 0.105481 0.994421i \(-0.466362\pi\)
0.105481 + 0.994421i \(0.466362\pi\)
\(614\) 5928.87 0.389690
\(615\) 692.219 0.0453869
\(616\) 1078.25 0.0705257
\(617\) −1824.73 −0.119061 −0.0595306 0.998226i \(-0.518960\pi\)
−0.0595306 + 0.998226i \(0.518960\pi\)
\(618\) 1820.18 0.118476
\(619\) −15545.2 −1.00939 −0.504696 0.863297i \(-0.668395\pi\)
−0.504696 + 0.863297i \(0.668395\pi\)
\(620\) −1193.89 −0.0773352
\(621\) −7675.47 −0.495984
\(622\) −5335.72 −0.343959
\(623\) −10243.9 −0.658770
\(624\) −1166.06 −0.0748072
\(625\) 13937.6 0.892004
\(626\) −9931.88 −0.634118
\(627\) −761.752 −0.0485190
\(628\) −10790.7 −0.685662
\(629\) 11694.7 0.741330
\(630\) −886.769 −0.0560789
\(631\) 18701.6 1.17987 0.589934 0.807451i \(-0.299154\pi\)
0.589934 + 0.807451i \(0.299154\pi\)
\(632\) 1886.68 0.118747
\(633\) 192.472 0.0120854
\(634\) 17584.2 1.10151
\(635\) −2304.84 −0.144039
\(636\) −1817.20 −0.113296
\(637\) −16380.5 −1.01887
\(638\) −5480.68 −0.340097
\(639\) 25377.2 1.57106
\(640\) 273.188 0.0168730
\(641\) −2403.44 −0.148097 −0.0740484 0.997255i \(-0.523592\pi\)
−0.0740484 + 0.997255i \(0.523592\pi\)
\(642\) −3153.34 −0.193851
\(643\) −9633.29 −0.590824 −0.295412 0.955370i \(-0.595457\pi\)
−0.295412 + 0.955370i \(0.595457\pi\)
\(644\) −3875.18 −0.237117
\(645\) 895.632 0.0546752
\(646\) 7131.67 0.434352
\(647\) −8284.08 −0.503370 −0.251685 0.967809i \(-0.580985\pi\)
−0.251685 + 0.967809i \(0.580985\pi\)
\(648\) −4869.30 −0.295191
\(649\) 10993.8 0.664935
\(650\) 14268.0 0.860979
\(651\) −1402.60 −0.0844430
\(652\) 2600.02 0.156173
\(653\) 2412.64 0.144585 0.0722924 0.997383i \(-0.476969\pi\)
0.0722924 + 0.997383i \(0.476969\pi\)
\(654\) −3710.48 −0.221852
\(655\) 4849.78 0.289308
\(656\) 4217.51 0.251015
\(657\) 28098.0 1.66850
\(658\) 4312.49 0.255499
\(659\) −26634.0 −1.57437 −0.787187 0.616715i \(-0.788463\pi\)
−0.787187 + 0.616715i \(0.788463\pi\)
\(660\) −173.688 −0.0102436
\(661\) 25991.1 1.52940 0.764702 0.644385i \(-0.222886\pi\)
0.764702 + 0.644385i \(0.222886\pi\)
\(662\) −22819.0 −1.33970
\(663\) −6940.74 −0.406570
\(664\) −17.8785 −0.00104491
\(665\) 651.379 0.0379840
\(666\) 6259.14 0.364170
\(667\) 19697.3 1.14345
\(668\) −11599.1 −0.671830
\(669\) −3103.29 −0.179343
\(670\) −1342.89 −0.0774336
\(671\) 1879.50 0.108133
\(672\) 320.946 0.0184238
\(673\) −12627.3 −0.723251 −0.361626 0.932323i \(-0.617778\pi\)
−0.361626 + 0.932323i \(0.617778\pi\)
\(674\) −4466.52 −0.255258
\(675\) −7778.36 −0.443539
\(676\) 5244.94 0.298415
\(677\) 27501.3 1.56124 0.780622 0.625003i \(-0.214902\pi\)
0.780622 + 0.625003i \(0.214902\pi\)
\(678\) −1048.15 −0.0593718
\(679\) 1696.79 0.0959012
\(680\) 1626.10 0.0917030
\(681\) 1042.90 0.0586842
\(682\) 4624.72 0.259662
\(683\) −28416.2 −1.59197 −0.795986 0.605315i \(-0.793047\pi\)
−0.795986 + 0.605315i \(0.793047\pi\)
\(684\) 3816.96 0.213370
\(685\) −3882.81 −0.216576
\(686\) 10100.4 0.562148
\(687\) 2179.35 0.121030
\(688\) 5456.85 0.302384
\(689\) 21869.1 1.20921
\(690\) 624.227 0.0344405
\(691\) 20800.5 1.14513 0.572567 0.819858i \(-0.305948\pi\)
0.572567 + 0.819858i \(0.305948\pi\)
\(692\) −1534.41 −0.0842911
\(693\) 3435.03 0.188292
\(694\) 21632.1 1.18320
\(695\) −53.5404 −0.00292216
\(696\) −1631.35 −0.0888453
\(697\) 25103.9 1.36424
\(698\) −20823.0 −1.12917
\(699\) −3400.10 −0.183982
\(700\) −3927.12 −0.212045
\(701\) −11944.7 −0.643573 −0.321786 0.946812i \(-0.604283\pi\)
−0.321786 + 0.946812i \(0.604283\pi\)
\(702\) −7650.22 −0.411309
\(703\) −4597.67 −0.246664
\(704\) −1058.23 −0.0566530
\(705\) −694.671 −0.0371104
\(706\) −15220.8 −0.811393
\(707\) −7622.20 −0.405463
\(708\) 3272.35 0.173704
\(709\) −2907.44 −0.154007 −0.0770037 0.997031i \(-0.524535\pi\)
−0.0770037 + 0.997031i \(0.524535\pi\)
\(710\) −4250.33 −0.224665
\(711\) 6010.52 0.317035
\(712\) 10053.8 0.529187
\(713\) −16621.0 −0.873020
\(714\) 1910.37 0.100131
\(715\) 2090.25 0.109330
\(716\) 13208.7 0.689430
\(717\) −814.100 −0.0424032
\(718\) −5102.47 −0.265212
\(719\) 5091.46 0.264088 0.132044 0.991244i \(-0.457846\pi\)
0.132044 + 0.991244i \(0.457846\pi\)
\(720\) 870.310 0.0450480
\(721\) 6029.13 0.311424
\(722\) 10914.2 0.562584
\(723\) −1901.66 −0.0978194
\(724\) 13348.4 0.685206
\(725\) 19961.4 1.02255
\(726\) −2602.59 −0.133046
\(727\) 4145.87 0.211502 0.105751 0.994393i \(-0.466275\pi\)
0.105751 + 0.994393i \(0.466275\pi\)
\(728\) −3862.43 −0.196636
\(729\) −13366.9 −0.679111
\(730\) −4706.03 −0.238600
\(731\) 32480.9 1.64343
\(732\) 559.443 0.0282481
\(733\) −7814.79 −0.393787 −0.196893 0.980425i \(-0.563085\pi\)
−0.196893 + 0.980425i \(0.563085\pi\)
\(734\) 8100.61 0.407355
\(735\) −726.259 −0.0364469
\(736\) 3803.25 0.190475
\(737\) 5201.90 0.259992
\(738\) 13435.9 0.670168
\(739\) −32097.9 −1.59775 −0.798877 0.601494i \(-0.794572\pi\)
−0.798877 + 0.601494i \(0.794572\pi\)
\(740\) −1048.32 −0.0520771
\(741\) 2728.70 0.135278
\(742\) −6019.25 −0.297808
\(743\) 18737.8 0.925199 0.462599 0.886567i \(-0.346917\pi\)
0.462599 + 0.886567i \(0.346917\pi\)
\(744\) 1376.57 0.0678328
\(745\) 4176.97 0.205413
\(746\) −11464.2 −0.562646
\(747\) −56.9566 −0.00278974
\(748\) −6298.94 −0.307904
\(749\) −10445.0 −0.509551
\(750\) 1289.11 0.0627624
\(751\) 26251.7 1.27555 0.637776 0.770222i \(-0.279855\pi\)
0.637776 + 0.770222i \(0.279855\pi\)
\(752\) −4232.45 −0.205241
\(753\) −5002.42 −0.242096
\(754\) 19632.5 0.948243
\(755\) −1372.88 −0.0661778
\(756\) 2105.65 0.101299
\(757\) 33356.3 1.60152 0.800762 0.598982i \(-0.204428\pi\)
0.800762 + 0.598982i \(0.204428\pi\)
\(758\) −391.431 −0.0187565
\(759\) −2418.04 −0.115638
\(760\) −639.289 −0.0305124
\(761\) −23455.3 −1.11729 −0.558643 0.829408i \(-0.688678\pi\)
−0.558643 + 0.829408i \(0.688678\pi\)
\(762\) 2657.50 0.126340
\(763\) −12290.5 −0.583154
\(764\) −5324.68 −0.252147
\(765\) 5180.36 0.244832
\(766\) 4290.89 0.202397
\(767\) −39381.2 −1.85394
\(768\) −314.989 −0.0147997
\(769\) 22391.0 1.04999 0.524993 0.851107i \(-0.324068\pi\)
0.524993 + 0.851107i \(0.324068\pi\)
\(770\) −575.321 −0.0269261
\(771\) −6182.59 −0.288794
\(772\) 14119.4 0.658249
\(773\) 35148.6 1.63546 0.817728 0.575604i \(-0.195233\pi\)
0.817728 + 0.575604i \(0.195233\pi\)
\(774\) 17384.2 0.807315
\(775\) −16843.8 −0.780708
\(776\) −1665.30 −0.0770371
\(777\) −1231.59 −0.0568634
\(778\) −15643.3 −0.720873
\(779\) −9869.41 −0.453926
\(780\) 622.174 0.0285608
\(781\) 16464.3 0.754338
\(782\) 22638.1 1.03521
\(783\) −10702.9 −0.488494
\(784\) −4424.90 −0.201572
\(785\) 5757.60 0.261780
\(786\) −5591.86 −0.253759
\(787\) −25387.0 −1.14987 −0.574936 0.818198i \(-0.694973\pi\)
−0.574936 + 0.818198i \(0.694973\pi\)
\(788\) 14989.6 0.677643
\(789\) 10176.5 0.459179
\(790\) −1006.68 −0.0453367
\(791\) −3471.89 −0.156063
\(792\) −3371.28 −0.151254
\(793\) −6732.63 −0.301491
\(794\) −13994.4 −0.625493
\(795\) 969.602 0.0432556
\(796\) −18195.6 −0.810209
\(797\) −5392.73 −0.239674 −0.119837 0.992794i \(-0.538237\pi\)
−0.119837 + 0.992794i \(0.538237\pi\)
\(798\) −751.048 −0.0333168
\(799\) −25192.8 −1.11547
\(800\) 3854.23 0.170335
\(801\) 32028.9 1.41284
\(802\) 14426.4 0.635178
\(803\) 18229.5 0.801128
\(804\) 1548.37 0.0679190
\(805\) 2067.68 0.0905293
\(806\) −16566.4 −0.723977
\(807\) −330.985 −0.0144377
\(808\) 7480.73 0.325707
\(809\) −44240.2 −1.92262 −0.961312 0.275461i \(-0.911170\pi\)
−0.961312 + 0.275461i \(0.911170\pi\)
\(810\) 2598.11 0.112702
\(811\) 7346.89 0.318106 0.159053 0.987270i \(-0.449156\pi\)
0.159053 + 0.987270i \(0.449156\pi\)
\(812\) −5403.67 −0.233536
\(813\) 8659.92 0.373575
\(814\) 4060.83 0.174855
\(815\) −1387.29 −0.0596255
\(816\) −1874.91 −0.0804352
\(817\) −12769.6 −0.546820
\(818\) −22824.1 −0.975584
\(819\) −12304.8 −0.524985
\(820\) −2250.34 −0.0958356
\(821\) −16510.9 −0.701870 −0.350935 0.936400i \(-0.614136\pi\)
−0.350935 + 0.936400i \(0.614136\pi\)
\(822\) 4476.93 0.189964
\(823\) 6466.03 0.273866 0.136933 0.990580i \(-0.456276\pi\)
0.136933 + 0.990580i \(0.456276\pi\)
\(824\) −5917.23 −0.250166
\(825\) −2450.45 −0.103411
\(826\) 10839.3 0.456595
\(827\) −8438.91 −0.354836 −0.177418 0.984136i \(-0.556774\pi\)
−0.177418 + 0.984136i \(0.556774\pi\)
\(828\) 12116.2 0.508537
\(829\) −35505.6 −1.48753 −0.743764 0.668442i \(-0.766962\pi\)
−0.743764 + 0.668442i \(0.766962\pi\)
\(830\) 9.53945 0.000398939 0
\(831\) 1622.78 0.0677421
\(832\) 3790.74 0.157957
\(833\) −26338.4 −1.09552
\(834\) 61.7328 0.00256311
\(835\) 6188.94 0.256499
\(836\) 2476.38 0.102449
\(837\) 9031.35 0.372962
\(838\) −6760.58 −0.278688
\(839\) 33317.6 1.37098 0.685489 0.728083i \(-0.259589\pi\)
0.685489 + 0.728083i \(0.259589\pi\)
\(840\) −171.247 −0.00703404
\(841\) 3077.58 0.126187
\(842\) −25901.6 −1.06013
\(843\) −5793.49 −0.236700
\(844\) −625.707 −0.0255186
\(845\) −2798.54 −0.113932
\(846\) −13483.5 −0.547959
\(847\) −8620.77 −0.349721
\(848\) 5907.53 0.239228
\(849\) −3420.90 −0.138286
\(850\) 22941.6 0.925753
\(851\) −14594.4 −0.587886
\(852\) 4900.68 0.197059
\(853\) −4221.70 −0.169459 −0.0847293 0.996404i \(-0.527003\pi\)
−0.0847293 + 0.996404i \(0.527003\pi\)
\(854\) 1853.09 0.0742523
\(855\) −2036.62 −0.0814630
\(856\) 10251.2 0.409321
\(857\) −1594.32 −0.0635483 −0.0317742 0.999495i \(-0.510116\pi\)
−0.0317742 + 0.999495i \(0.510116\pi\)
\(858\) −2410.08 −0.0958962
\(859\) −19987.9 −0.793923 −0.396961 0.917835i \(-0.629935\pi\)
−0.396961 + 0.917835i \(0.629935\pi\)
\(860\) −2911.61 −0.115448
\(861\) −2643.73 −0.104644
\(862\) −1669.85 −0.0659805
\(863\) 37458.6 1.47753 0.738763 0.673966i \(-0.235410\pi\)
0.738763 + 0.673966i \(0.235410\pi\)
\(864\) −2066.57 −0.0813728
\(865\) 818.715 0.0321817
\(866\) 20491.0 0.804056
\(867\) −5114.97 −0.200362
\(868\) 4559.73 0.178303
\(869\) 3899.52 0.152223
\(870\) 870.442 0.0339204
\(871\) −18633.9 −0.724898
\(872\) 12062.4 0.468446
\(873\) −5305.24 −0.205676
\(874\) −8900.02 −0.344448
\(875\) 4270.04 0.164976
\(876\) 5426.11 0.209282
\(877\) 13588.7 0.523215 0.261607 0.965174i \(-0.415747\pi\)
0.261607 + 0.965174i \(0.415747\pi\)
\(878\) −24161.1 −0.928699
\(879\) 10241.5 0.392989
\(880\) 564.643 0.0216297
\(881\) −7580.82 −0.289903 −0.144951 0.989439i \(-0.546303\pi\)
−0.144951 + 0.989439i \(0.546303\pi\)
\(882\) −14096.7 −0.538163
\(883\) 4915.42 0.187335 0.0936677 0.995604i \(-0.470141\pi\)
0.0936677 + 0.995604i \(0.470141\pi\)
\(884\) 22563.7 0.858482
\(885\) −1746.03 −0.0663189
\(886\) 17508.8 0.663906
\(887\) 44126.4 1.67037 0.835186 0.549968i \(-0.185360\pi\)
0.835186 + 0.549968i \(0.185360\pi\)
\(888\) 1208.73 0.0456782
\(889\) 8802.67 0.332095
\(890\) −5364.40 −0.202039
\(891\) −10064.2 −0.378409
\(892\) 10088.5 0.378686
\(893\) 9904.37 0.371150
\(894\) −4816.10 −0.180173
\(895\) −7047.76 −0.263219
\(896\) −1043.36 −0.0389022
\(897\) 8661.74 0.322416
\(898\) −26236.9 −0.974986
\(899\) −23176.9 −0.859836
\(900\) 12278.7 0.454765
\(901\) 35163.4 1.30018
\(902\) 8717.02 0.321779
\(903\) −3420.62 −0.126059
\(904\) 3407.45 0.125365
\(905\) −7122.31 −0.261606
\(906\) 1582.95 0.0580463
\(907\) 37834.0 1.38507 0.692535 0.721384i \(-0.256494\pi\)
0.692535 + 0.721384i \(0.256494\pi\)
\(908\) −3390.36 −0.123913
\(909\) 23831.8 0.869583
\(910\) 2060.88 0.0750741
\(911\) 33705.5 1.22581 0.612905 0.790156i \(-0.290001\pi\)
0.612905 + 0.790156i \(0.290001\pi\)
\(912\) 737.108 0.0267633
\(913\) −36.9525 −0.00133948
\(914\) −34634.4 −1.25340
\(915\) −298.502 −0.0107849
\(916\) −7084.86 −0.255557
\(917\) −18522.4 −0.667026
\(918\) −12300.8 −0.442253
\(919\) −5349.66 −0.192023 −0.0960114 0.995380i \(-0.530609\pi\)
−0.0960114 + 0.995380i \(0.530609\pi\)
\(920\) −2029.30 −0.0727219
\(921\) 3647.52 0.130499
\(922\) 24236.7 0.865721
\(923\) −58977.3 −2.10321
\(924\) 663.352 0.0236176
\(925\) −14790.1 −0.525724
\(926\) 21672.2 0.769108
\(927\) −18850.9 −0.667900
\(928\) 5303.37 0.187599
\(929\) −18521.5 −0.654112 −0.327056 0.945005i \(-0.606057\pi\)
−0.327056 + 0.945005i \(0.606057\pi\)
\(930\) −734.498 −0.0258980
\(931\) 10354.7 0.364515
\(932\) 11053.4 0.388482
\(933\) −3282.61 −0.115185
\(934\) 34238.8 1.19950
\(935\) 3360.93 0.117555
\(936\) 12076.4 0.421719
\(937\) 25150.1 0.876859 0.438429 0.898766i \(-0.355535\pi\)
0.438429 + 0.898766i \(0.355535\pi\)
\(938\) 5128.80 0.178530
\(939\) −6110.23 −0.212353
\(940\) 2258.31 0.0783595
\(941\) −17136.6 −0.593664 −0.296832 0.954930i \(-0.595930\pi\)
−0.296832 + 0.954930i \(0.595930\pi\)
\(942\) −6638.59 −0.229614
\(943\) −31328.6 −1.08187
\(944\) −10638.1 −0.366781
\(945\) −1123.51 −0.0386750
\(946\) 11278.6 0.387630
\(947\) −36524.5 −1.25331 −0.626656 0.779296i \(-0.715577\pi\)
−0.626656 + 0.779296i \(0.715577\pi\)
\(948\) 1160.71 0.0397661
\(949\) −65300.6 −2.23366
\(950\) −9019.32 −0.308027
\(951\) 10818.0 0.368873
\(952\) −6210.43 −0.211430
\(953\) 22894.0 0.778185 0.389092 0.921199i \(-0.372789\pi\)
0.389092 + 0.921199i \(0.372789\pi\)
\(954\) 18819.9 0.638698
\(955\) 2841.09 0.0962675
\(956\) 2646.56 0.0895354
\(957\) −3371.79 −0.113892
\(958\) −9415.68 −0.317544
\(959\) 14829.3 0.499336
\(960\) 168.069 0.00565042
\(961\) −10233.8 −0.343521
\(962\) −14546.4 −0.487522
\(963\) 32657.8 1.09282
\(964\) 6182.11 0.206548
\(965\) −7533.69 −0.251314
\(966\) −2384.06 −0.0794057
\(967\) −3358.80 −0.111698 −0.0558489 0.998439i \(-0.517787\pi\)
−0.0558489 + 0.998439i \(0.517787\pi\)
\(968\) 8460.77 0.280929
\(969\) 4387.50 0.145456
\(970\) 888.554 0.0294121
\(971\) −4021.97 −0.132926 −0.0664629 0.997789i \(-0.521171\pi\)
−0.0664629 + 0.997789i \(0.521171\pi\)
\(972\) −9970.32 −0.329011
\(973\) 204.483 0.00673732
\(974\) 30880.6 1.01589
\(975\) 8777.85 0.288324
\(976\) −1818.70 −0.0596466
\(977\) 34172.6 1.11901 0.559507 0.828825i \(-0.310990\pi\)
0.559507 + 0.828825i \(0.310990\pi\)
\(978\) 1599.57 0.0522991
\(979\) 20779.8 0.678371
\(980\) 2361.00 0.0769585
\(981\) 38427.9 1.25067
\(982\) 21673.8 0.704318
\(983\) 24587.3 0.797774 0.398887 0.917000i \(-0.369396\pi\)
0.398887 + 0.917000i \(0.369396\pi\)
\(984\) 2594.67 0.0840599
\(985\) −7998.01 −0.258718
\(986\) 31567.3 1.01958
\(987\) 2653.10 0.0855614
\(988\) −8870.74 −0.285644
\(989\) −40534.7 −1.30327
\(990\) 1798.81 0.0577475
\(991\) 1181.56 0.0378742 0.0189371 0.999821i \(-0.493972\pi\)
0.0189371 + 0.999821i \(0.493972\pi\)
\(992\) −4475.10 −0.143231
\(993\) −14038.5 −0.448640
\(994\) 16232.9 0.517985
\(995\) 9708.63 0.309331
\(996\) −10.9991 −0.000349920 0
\(997\) 53886.2 1.71173 0.855864 0.517200i \(-0.173026\pi\)
0.855864 + 0.517200i \(0.173026\pi\)
\(998\) 15695.4 0.497824
\(999\) 7930.16 0.251150
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.c.1.9 18
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.c.1.9 18 1.1 even 1 trivial