Properties

Label 538.4.a.d.1.10
Level $538$
Weight $4$
Character 538.1
Self dual yes
Analytic conductor $31.743$
Analytic rank $0$
Dimension $21$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(1,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(21\)
Twist minimal: yes
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.10
Character \(\chi\) \(=\) 538.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.00000 q^{2} -1.07079 q^{3} +4.00000 q^{4} +3.57975 q^{5} -2.14158 q^{6} +21.8456 q^{7} +8.00000 q^{8} -25.8534 q^{9} +7.15950 q^{10} -8.22614 q^{11} -4.28316 q^{12} +58.2254 q^{13} +43.6912 q^{14} -3.83316 q^{15} +16.0000 q^{16} +96.3094 q^{17} -51.7068 q^{18} -60.2758 q^{19} +14.3190 q^{20} -23.3921 q^{21} -16.4523 q^{22} -6.40795 q^{23} -8.56633 q^{24} -112.185 q^{25} +116.451 q^{26} +56.5949 q^{27} +87.3825 q^{28} -4.93073 q^{29} -7.66633 q^{30} +233.572 q^{31} +32.0000 q^{32} +8.80847 q^{33} +192.619 q^{34} +78.2019 q^{35} -103.414 q^{36} +412.339 q^{37} -120.552 q^{38} -62.3472 q^{39} +28.6380 q^{40} +164.282 q^{41} -46.7842 q^{42} -370.699 q^{43} -32.9045 q^{44} -92.5487 q^{45} -12.8159 q^{46} +280.972 q^{47} -17.1327 q^{48} +134.231 q^{49} -224.371 q^{50} -103.127 q^{51} +232.901 q^{52} -538.290 q^{53} +113.190 q^{54} -29.4475 q^{55} +174.765 q^{56} +64.5428 q^{57} -9.86146 q^{58} +109.523 q^{59} -15.3327 q^{60} +94.6721 q^{61} +467.143 q^{62} -564.784 q^{63} +64.0000 q^{64} +208.432 q^{65} +17.6169 q^{66} +886.190 q^{67} +385.238 q^{68} +6.86157 q^{69} +156.404 q^{70} +785.631 q^{71} -206.827 q^{72} +397.954 q^{73} +824.679 q^{74} +120.127 q^{75} -241.103 q^{76} -179.705 q^{77} -124.694 q^{78} -860.750 q^{79} +57.2760 q^{80} +637.441 q^{81} +328.564 q^{82} +546.057 q^{83} -93.5684 q^{84} +344.764 q^{85} -741.399 q^{86} +5.27978 q^{87} -65.8091 q^{88} +774.506 q^{89} -185.097 q^{90} +1271.97 q^{91} -25.6318 q^{92} -250.106 q^{93} +561.944 q^{94} -215.772 q^{95} -34.2653 q^{96} -815.667 q^{97} +268.463 q^{98} +212.674 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 21 q + 42 q^{2} + 6 q^{3} + 84 q^{4} + 54 q^{5} + 12 q^{6} + 52 q^{7} + 168 q^{8} + 309 q^{9} + 108 q^{10} + 99 q^{11} + 24 q^{12} + 81 q^{13} + 104 q^{14} + 277 q^{15} + 336 q^{16} + 228 q^{17} + 618 q^{18}+ \cdots - 4470 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000 0.707107
\(3\) −1.07079 −0.206074 −0.103037 0.994678i \(-0.532856\pi\)
−0.103037 + 0.994678i \(0.532856\pi\)
\(4\) 4.00000 0.500000
\(5\) 3.57975 0.320183 0.160091 0.987102i \(-0.448821\pi\)
0.160091 + 0.987102i \(0.448821\pi\)
\(6\) −2.14158 −0.145716
\(7\) 21.8456 1.17955 0.589776 0.807567i \(-0.299216\pi\)
0.589776 + 0.807567i \(0.299216\pi\)
\(8\) 8.00000 0.353553
\(9\) −25.8534 −0.957534
\(10\) 7.15950 0.226403
\(11\) −8.22614 −0.225479 −0.112740 0.993625i \(-0.535963\pi\)
−0.112740 + 0.993625i \(0.535963\pi\)
\(12\) −4.28316 −0.103037
\(13\) 58.2254 1.24222 0.621108 0.783725i \(-0.286683\pi\)
0.621108 + 0.783725i \(0.286683\pi\)
\(14\) 43.6912 0.834070
\(15\) −3.83316 −0.0659812
\(16\) 16.0000 0.250000
\(17\) 96.3094 1.37403 0.687014 0.726644i \(-0.258921\pi\)
0.687014 + 0.726644i \(0.258921\pi\)
\(18\) −51.7068 −0.677078
\(19\) −60.2758 −0.727801 −0.363901 0.931438i \(-0.618555\pi\)
−0.363901 + 0.931438i \(0.618555\pi\)
\(20\) 14.3190 0.160091
\(21\) −23.3921 −0.243075
\(22\) −16.4523 −0.159438
\(23\) −6.40795 −0.0580935 −0.0290467 0.999578i \(-0.509247\pi\)
−0.0290467 + 0.999578i \(0.509247\pi\)
\(24\) −8.56633 −0.0728581
\(25\) −112.185 −0.897483
\(26\) 116.451 0.878379
\(27\) 56.5949 0.403396
\(28\) 87.3825 0.589776
\(29\) −4.93073 −0.0315729 −0.0157864 0.999875i \(-0.505025\pi\)
−0.0157864 + 0.999875i \(0.505025\pi\)
\(30\) −7.66633 −0.0466558
\(31\) 233.572 1.35325 0.676625 0.736328i \(-0.263442\pi\)
0.676625 + 0.736328i \(0.263442\pi\)
\(32\) 32.0000 0.176777
\(33\) 8.80847 0.0464654
\(34\) 192.619 0.971584
\(35\) 78.2019 0.377672
\(36\) −103.414 −0.478767
\(37\) 412.339 1.83211 0.916056 0.401049i \(-0.131354\pi\)
0.916056 + 0.401049i \(0.131354\pi\)
\(38\) −120.552 −0.514633
\(39\) −62.3472 −0.255988
\(40\) 28.6380 0.113202
\(41\) 164.282 0.625769 0.312885 0.949791i \(-0.398705\pi\)
0.312885 + 0.949791i \(0.398705\pi\)
\(42\) −46.7842 −0.171880
\(43\) −370.699 −1.31468 −0.657339 0.753595i \(-0.728318\pi\)
−0.657339 + 0.753595i \(0.728318\pi\)
\(44\) −32.9045 −0.112740
\(45\) −92.5487 −0.306586
\(46\) −12.8159 −0.0410783
\(47\) 280.972 0.871999 0.436000 0.899947i \(-0.356395\pi\)
0.436000 + 0.899947i \(0.356395\pi\)
\(48\) −17.1327 −0.0515184
\(49\) 134.231 0.391345
\(50\) −224.371 −0.634616
\(51\) −103.127 −0.283151
\(52\) 232.901 0.621108
\(53\) −538.290 −1.39509 −0.697545 0.716541i \(-0.745724\pi\)
−0.697545 + 0.716541i \(0.745724\pi\)
\(54\) 113.190 0.285244
\(55\) −29.4475 −0.0721946
\(56\) 174.765 0.417035
\(57\) 64.5428 0.149981
\(58\) −9.86146 −0.0223254
\(59\) 109.523 0.241673 0.120837 0.992672i \(-0.461442\pi\)
0.120837 + 0.992672i \(0.461442\pi\)
\(60\) −15.3327 −0.0329906
\(61\) 94.6721 0.198713 0.0993567 0.995052i \(-0.468322\pi\)
0.0993567 + 0.995052i \(0.468322\pi\)
\(62\) 467.143 0.956892
\(63\) −564.784 −1.12946
\(64\) 64.0000 0.125000
\(65\) 208.432 0.397736
\(66\) 17.6169 0.0328560
\(67\) 886.190 1.61590 0.807950 0.589251i \(-0.200577\pi\)
0.807950 + 0.589251i \(0.200577\pi\)
\(68\) 385.238 0.687014
\(69\) 6.86157 0.0119715
\(70\) 156.404 0.267055
\(71\) 785.631 1.31320 0.656600 0.754239i \(-0.271994\pi\)
0.656600 + 0.754239i \(0.271994\pi\)
\(72\) −206.827 −0.338539
\(73\) 397.954 0.638041 0.319020 0.947748i \(-0.396646\pi\)
0.319020 + 0.947748i \(0.396646\pi\)
\(74\) 824.679 1.29550
\(75\) 120.127 0.184948
\(76\) −241.103 −0.363901
\(77\) −179.705 −0.265965
\(78\) −124.694 −0.181011
\(79\) −860.750 −1.22585 −0.612924 0.790142i \(-0.710007\pi\)
−0.612924 + 0.790142i \(0.710007\pi\)
\(80\) 57.2760 0.0800456
\(81\) 637.441 0.874404
\(82\) 328.564 0.442486
\(83\) 546.057 0.722140 0.361070 0.932539i \(-0.382412\pi\)
0.361070 + 0.932539i \(0.382412\pi\)
\(84\) −93.5684 −0.121537
\(85\) 344.764 0.439940
\(86\) −741.399 −0.929617
\(87\) 5.27978 0.00650634
\(88\) −65.8091 −0.0797190
\(89\) 774.506 0.922443 0.461222 0.887285i \(-0.347411\pi\)
0.461222 + 0.887285i \(0.347411\pi\)
\(90\) −185.097 −0.216789
\(91\) 1271.97 1.46526
\(92\) −25.6318 −0.0290467
\(93\) −250.106 −0.278869
\(94\) 561.944 0.616597
\(95\) −215.772 −0.233029
\(96\) −34.2653 −0.0364290
\(97\) −815.667 −0.853798 −0.426899 0.904299i \(-0.640394\pi\)
−0.426899 + 0.904299i \(0.640394\pi\)
\(98\) 268.463 0.276723
\(99\) 212.674 0.215904
\(100\) −448.742 −0.448742
\(101\) 502.110 0.494671 0.247336 0.968930i \(-0.420445\pi\)
0.247336 + 0.968930i \(0.420445\pi\)
\(102\) −206.254 −0.200218
\(103\) −185.721 −0.177666 −0.0888331 0.996047i \(-0.528314\pi\)
−0.0888331 + 0.996047i \(0.528314\pi\)
\(104\) 465.803 0.439190
\(105\) −83.7379 −0.0778284
\(106\) −1076.58 −0.986477
\(107\) −1365.90 −1.23408 −0.617042 0.786930i \(-0.711669\pi\)
−0.617042 + 0.786930i \(0.711669\pi\)
\(108\) 226.380 0.201698
\(109\) −2096.35 −1.84215 −0.921074 0.389388i \(-0.872686\pi\)
−0.921074 + 0.389388i \(0.872686\pi\)
\(110\) −58.8950 −0.0510493
\(111\) −441.529 −0.377550
\(112\) 349.530 0.294888
\(113\) 2208.72 1.83875 0.919374 0.393385i \(-0.128696\pi\)
0.919374 + 0.393385i \(0.128696\pi\)
\(114\) 129.086 0.106052
\(115\) −22.9389 −0.0186005
\(116\) −19.7229 −0.0157864
\(117\) −1505.32 −1.18946
\(118\) 219.046 0.170889
\(119\) 2103.94 1.62074
\(120\) −30.6653 −0.0233279
\(121\) −1263.33 −0.949159
\(122\) 189.344 0.140512
\(123\) −175.912 −0.128955
\(124\) 934.287 0.676625
\(125\) −849.064 −0.607541
\(126\) −1129.57 −0.798650
\(127\) −1467.93 −1.02565 −0.512826 0.858493i \(-0.671401\pi\)
−0.512826 + 0.858493i \(0.671401\pi\)
\(128\) 128.000 0.0883883
\(129\) 396.942 0.270921
\(130\) 416.864 0.281242
\(131\) 1897.13 1.26529 0.632645 0.774442i \(-0.281969\pi\)
0.632645 + 0.774442i \(0.281969\pi\)
\(132\) 35.2339 0.0232327
\(133\) −1316.76 −0.858480
\(134\) 1772.38 1.14261
\(135\) 202.596 0.129160
\(136\) 770.475 0.485792
\(137\) −2858.81 −1.78281 −0.891404 0.453210i \(-0.850279\pi\)
−0.891404 + 0.453210i \(0.850279\pi\)
\(138\) 13.7231 0.00846516
\(139\) 617.009 0.376504 0.188252 0.982121i \(-0.439718\pi\)
0.188252 + 0.982121i \(0.439718\pi\)
\(140\) 312.807 0.188836
\(141\) −300.862 −0.179696
\(142\) 1571.26 0.928573
\(143\) −478.970 −0.280094
\(144\) −413.655 −0.239383
\(145\) −17.6508 −0.0101091
\(146\) 795.908 0.451163
\(147\) −143.734 −0.0806459
\(148\) 1649.36 0.916056
\(149\) −62.6156 −0.0344273 −0.0172137 0.999852i \(-0.505480\pi\)
−0.0172137 + 0.999852i \(0.505480\pi\)
\(150\) 240.254 0.130778
\(151\) −1001.39 −0.539683 −0.269841 0.962905i \(-0.586971\pi\)
−0.269841 + 0.962905i \(0.586971\pi\)
\(152\) −482.207 −0.257317
\(153\) −2489.93 −1.31568
\(154\) −359.410 −0.188066
\(155\) 836.128 0.433287
\(156\) −249.389 −0.127994
\(157\) 2783.04 1.41472 0.707358 0.706855i \(-0.249887\pi\)
0.707358 + 0.706855i \(0.249887\pi\)
\(158\) −1721.50 −0.866805
\(159\) 576.396 0.287491
\(160\) 114.552 0.0566008
\(161\) −139.986 −0.0685243
\(162\) 1274.88 0.618297
\(163\) −2128.83 −1.02296 −0.511480 0.859295i \(-0.670903\pi\)
−0.511480 + 0.859295i \(0.670903\pi\)
\(164\) 657.128 0.312885
\(165\) 31.5321 0.0148774
\(166\) 1092.11 0.510630
\(167\) −325.804 −0.150967 −0.0754834 0.997147i \(-0.524050\pi\)
−0.0754834 + 0.997147i \(0.524050\pi\)
\(168\) −187.137 −0.0859400
\(169\) 1193.19 0.543101
\(170\) 689.527 0.311084
\(171\) 1558.34 0.696894
\(172\) −1482.80 −0.657339
\(173\) −3267.42 −1.43594 −0.717969 0.696075i \(-0.754928\pi\)
−0.717969 + 0.696075i \(0.754928\pi\)
\(174\) 10.5596 0.00460068
\(175\) −2450.76 −1.05863
\(176\) −131.618 −0.0563698
\(177\) −117.276 −0.0498025
\(178\) 1549.01 0.652266
\(179\) −3804.63 −1.58867 −0.794335 0.607481i \(-0.792180\pi\)
−0.794335 + 0.607481i \(0.792180\pi\)
\(180\) −370.195 −0.153293
\(181\) 1711.08 0.702674 0.351337 0.936249i \(-0.385727\pi\)
0.351337 + 0.936249i \(0.385727\pi\)
\(182\) 2543.94 1.03609
\(183\) −101.374 −0.0409496
\(184\) −51.2636 −0.0205391
\(185\) 1476.07 0.586611
\(186\) −500.213 −0.197190
\(187\) −792.254 −0.309815
\(188\) 1123.89 0.436000
\(189\) 1236.35 0.475827
\(190\) −431.545 −0.164777
\(191\) 152.979 0.0579536 0.0289768 0.999580i \(-0.490775\pi\)
0.0289768 + 0.999580i \(0.490775\pi\)
\(192\) −68.5306 −0.0257592
\(193\) −1941.96 −0.724275 −0.362138 0.932125i \(-0.617953\pi\)
−0.362138 + 0.932125i \(0.617953\pi\)
\(194\) −1631.33 −0.603727
\(195\) −223.187 −0.0819630
\(196\) 536.925 0.195672
\(197\) −3797.57 −1.37343 −0.686715 0.726927i \(-0.740948\pi\)
−0.686715 + 0.726927i \(0.740948\pi\)
\(198\) 425.347 0.152667
\(199\) −3201.64 −1.14049 −0.570246 0.821474i \(-0.693152\pi\)
−0.570246 + 0.821474i \(0.693152\pi\)
\(200\) −897.483 −0.317308
\(201\) −948.924 −0.332995
\(202\) 1004.22 0.349785
\(203\) −107.715 −0.0372419
\(204\) −412.509 −0.141576
\(205\) 588.088 0.200360
\(206\) −371.442 −0.125629
\(207\) 165.667 0.0556264
\(208\) 931.606 0.310554
\(209\) 495.837 0.164104
\(210\) −167.476 −0.0550330
\(211\) −3485.21 −1.13712 −0.568559 0.822642i \(-0.692499\pi\)
−0.568559 + 0.822642i \(0.692499\pi\)
\(212\) −2153.16 −0.697545
\(213\) −841.246 −0.270616
\(214\) −2731.81 −0.872629
\(215\) −1327.01 −0.420937
\(216\) 452.760 0.142622
\(217\) 5102.52 1.59623
\(218\) −4192.70 −1.30259
\(219\) −426.125 −0.131483
\(220\) −117.790 −0.0360973
\(221\) 5607.65 1.70684
\(222\) −883.059 −0.266968
\(223\) −4524.34 −1.35862 −0.679309 0.733852i \(-0.737721\pi\)
−0.679309 + 0.733852i \(0.737721\pi\)
\(224\) 699.060 0.208517
\(225\) 2900.37 0.859370
\(226\) 4417.43 1.30019
\(227\) −5620.04 −1.64324 −0.821620 0.570036i \(-0.806929\pi\)
−0.821620 + 0.570036i \(0.806929\pi\)
\(228\) 258.171 0.0749904
\(229\) 6124.22 1.76725 0.883624 0.468198i \(-0.155097\pi\)
0.883624 + 0.468198i \(0.155097\pi\)
\(230\) −45.8777 −0.0131526
\(231\) 192.427 0.0548084
\(232\) −39.4458 −0.0111627
\(233\) 2786.25 0.783404 0.391702 0.920092i \(-0.371886\pi\)
0.391702 + 0.920092i \(0.371886\pi\)
\(234\) −3010.65 −0.841078
\(235\) 1005.81 0.279199
\(236\) 438.093 0.120837
\(237\) 921.684 0.252615
\(238\) 4207.88 1.14603
\(239\) −4121.43 −1.11545 −0.557727 0.830025i \(-0.688326\pi\)
−0.557727 + 0.830025i \(0.688326\pi\)
\(240\) −61.3306 −0.0164953
\(241\) −3587.84 −0.958976 −0.479488 0.877548i \(-0.659178\pi\)
−0.479488 + 0.877548i \(0.659178\pi\)
\(242\) −2526.66 −0.671157
\(243\) −2210.63 −0.583588
\(244\) 378.688 0.0993567
\(245\) 480.515 0.125302
\(246\) −351.823 −0.0911847
\(247\) −3509.58 −0.904086
\(248\) 1868.57 0.478446
\(249\) −584.713 −0.148814
\(250\) −1698.13 −0.429596
\(251\) −741.237 −0.186400 −0.0932001 0.995647i \(-0.529710\pi\)
−0.0932001 + 0.995647i \(0.529710\pi\)
\(252\) −2259.14 −0.564731
\(253\) 52.7127 0.0130989
\(254\) −2935.86 −0.725245
\(255\) −369.170 −0.0906600
\(256\) 256.000 0.0625000
\(257\) 4479.55 1.08726 0.543632 0.839324i \(-0.317049\pi\)
0.543632 + 0.839324i \(0.317049\pi\)
\(258\) 793.883 0.191570
\(259\) 9007.81 2.16107
\(260\) 833.729 0.198868
\(261\) 127.476 0.0302321
\(262\) 3794.26 0.894695
\(263\) −4976.09 −1.16669 −0.583343 0.812226i \(-0.698256\pi\)
−0.583343 + 0.812226i \(0.698256\pi\)
\(264\) 70.4678 0.0164280
\(265\) −1926.94 −0.446683
\(266\) −2633.53 −0.607037
\(267\) −829.334 −0.190091
\(268\) 3544.76 0.807950
\(269\) 269.000 0.0609711
\(270\) 405.192 0.0913303
\(271\) 7800.47 1.74850 0.874252 0.485472i \(-0.161352\pi\)
0.874252 + 0.485472i \(0.161352\pi\)
\(272\) 1540.95 0.343507
\(273\) −1362.01 −0.301952
\(274\) −5717.62 −1.26064
\(275\) 922.852 0.202364
\(276\) 27.4463 0.00598577
\(277\) −613.914 −0.133164 −0.0665821 0.997781i \(-0.521209\pi\)
−0.0665821 + 0.997781i \(0.521209\pi\)
\(278\) 1234.02 0.266228
\(279\) −6038.62 −1.29578
\(280\) 625.615 0.133527
\(281\) 6835.54 1.45115 0.725576 0.688142i \(-0.241573\pi\)
0.725576 + 0.688142i \(0.241573\pi\)
\(282\) −601.724 −0.127064
\(283\) −4487.09 −0.942508 −0.471254 0.881998i \(-0.656198\pi\)
−0.471254 + 0.881998i \(0.656198\pi\)
\(284\) 3142.52 0.656600
\(285\) 231.047 0.0480212
\(286\) −957.939 −0.198056
\(287\) 3588.84 0.738128
\(288\) −827.309 −0.169270
\(289\) 4362.50 0.887951
\(290\) −35.3016 −0.00714820
\(291\) 873.409 0.175945
\(292\) 1591.82 0.319020
\(293\) 2822.15 0.562703 0.281351 0.959605i \(-0.409217\pi\)
0.281351 + 0.959605i \(0.409217\pi\)
\(294\) −287.467 −0.0570253
\(295\) 392.066 0.0773795
\(296\) 3298.72 0.647750
\(297\) −465.558 −0.0909576
\(298\) −125.231 −0.0243438
\(299\) −373.105 −0.0721646
\(300\) 480.508 0.0924739
\(301\) −8098.16 −1.55073
\(302\) −2002.78 −0.381613
\(303\) −537.654 −0.101939
\(304\) −964.413 −0.181950
\(305\) 338.902 0.0636246
\(306\) −4979.85 −0.930324
\(307\) −4371.54 −0.812694 −0.406347 0.913719i \(-0.633198\pi\)
−0.406347 + 0.913719i \(0.633198\pi\)
\(308\) −718.820 −0.132982
\(309\) 198.868 0.0366124
\(310\) 1672.26 0.306380
\(311\) 2304.21 0.420127 0.210064 0.977688i \(-0.432633\pi\)
0.210064 + 0.977688i \(0.432633\pi\)
\(312\) −498.777 −0.0905055
\(313\) −1436.95 −0.259493 −0.129747 0.991547i \(-0.541416\pi\)
−0.129747 + 0.991547i \(0.541416\pi\)
\(314\) 5566.07 1.00036
\(315\) −2021.78 −0.361634
\(316\) −3443.00 −0.612924
\(317\) 1132.55 0.200664 0.100332 0.994954i \(-0.468010\pi\)
0.100332 + 0.994954i \(0.468010\pi\)
\(318\) 1152.79 0.203287
\(319\) 40.5609 0.00711903
\(320\) 229.104 0.0400228
\(321\) 1462.60 0.254312
\(322\) −279.971 −0.0484540
\(323\) −5805.13 −1.00002
\(324\) 2549.76 0.437202
\(325\) −6532.03 −1.11487
\(326\) −4257.65 −0.723343
\(327\) 2244.75 0.379618
\(328\) 1314.26 0.221243
\(329\) 6138.01 1.02857
\(330\) 63.0642 0.0105199
\(331\) 7127.43 1.18356 0.591781 0.806099i \(-0.298425\pi\)
0.591781 + 0.806099i \(0.298425\pi\)
\(332\) 2184.23 0.361070
\(333\) −10660.4 −1.75431
\(334\) −651.607 −0.106750
\(335\) 3172.34 0.517383
\(336\) −374.274 −0.0607687
\(337\) 823.690 0.133143 0.0665716 0.997782i \(-0.478794\pi\)
0.0665716 + 0.997782i \(0.478794\pi\)
\(338\) 2386.38 0.384030
\(339\) −2365.07 −0.378918
\(340\) 1379.05 0.219970
\(341\) −1921.39 −0.305130
\(342\) 3116.67 0.492778
\(343\) −4560.68 −0.717941
\(344\) −2965.60 −0.464809
\(345\) 24.5627 0.00383308
\(346\) −6534.84 −1.01536
\(347\) 690.577 0.106836 0.0534180 0.998572i \(-0.482988\pi\)
0.0534180 + 0.998572i \(0.482988\pi\)
\(348\) 21.1191 0.00325317
\(349\) −12611.4 −1.93430 −0.967151 0.254204i \(-0.918186\pi\)
−0.967151 + 0.254204i \(0.918186\pi\)
\(350\) −4901.52 −0.748564
\(351\) 3295.26 0.501105
\(352\) −263.236 −0.0398595
\(353\) 6730.47 1.01481 0.507403 0.861709i \(-0.330606\pi\)
0.507403 + 0.861709i \(0.330606\pi\)
\(354\) −234.553 −0.0352157
\(355\) 2812.36 0.420464
\(356\) 3098.02 0.461222
\(357\) −2252.88 −0.333992
\(358\) −7609.27 −1.12336
\(359\) −9445.25 −1.38858 −0.694292 0.719694i \(-0.744282\pi\)
−0.694292 + 0.719694i \(0.744282\pi\)
\(360\) −740.390 −0.108394
\(361\) −3225.83 −0.470306
\(362\) 3422.17 0.496865
\(363\) 1352.76 0.195597
\(364\) 5087.88 0.732630
\(365\) 1424.58 0.204290
\(366\) −202.748 −0.0289558
\(367\) −4695.88 −0.667910 −0.333955 0.942589i \(-0.608383\pi\)
−0.333955 + 0.942589i \(0.608383\pi\)
\(368\) −102.527 −0.0145234
\(369\) −4247.25 −0.599195
\(370\) 2952.14 0.414796
\(371\) −11759.3 −1.64558
\(372\) −1000.43 −0.139435
\(373\) 9084.77 1.26110 0.630552 0.776147i \(-0.282829\pi\)
0.630552 + 0.776147i \(0.282829\pi\)
\(374\) −1584.51 −0.219072
\(375\) 909.170 0.125198
\(376\) 2247.78 0.308298
\(377\) −287.094 −0.0392203
\(378\) 2472.70 0.336461
\(379\) 5892.69 0.798647 0.399324 0.916810i \(-0.369245\pi\)
0.399324 + 0.916810i \(0.369245\pi\)
\(380\) −863.089 −0.116515
\(381\) 1571.85 0.211360
\(382\) 305.957 0.0409794
\(383\) −933.493 −0.124541 −0.0622706 0.998059i \(-0.519834\pi\)
−0.0622706 + 0.998059i \(0.519834\pi\)
\(384\) −137.061 −0.0182145
\(385\) −643.299 −0.0851573
\(386\) −3883.91 −0.512140
\(387\) 9583.84 1.25885
\(388\) −3262.67 −0.426899
\(389\) 2777.53 0.362022 0.181011 0.983481i \(-0.442063\pi\)
0.181011 + 0.983481i \(0.442063\pi\)
\(390\) −446.375 −0.0579566
\(391\) −617.146 −0.0798220
\(392\) 1073.85 0.138361
\(393\) −2031.43 −0.260743
\(394\) −7595.14 −0.971161
\(395\) −3081.27 −0.392495
\(396\) 850.695 0.107952
\(397\) −7805.98 −0.986828 −0.493414 0.869794i \(-0.664251\pi\)
−0.493414 + 0.869794i \(0.664251\pi\)
\(398\) −6403.28 −0.806450
\(399\) 1409.98 0.176910
\(400\) −1794.97 −0.224371
\(401\) 8022.81 0.999103 0.499551 0.866284i \(-0.333498\pi\)
0.499551 + 0.866284i \(0.333498\pi\)
\(402\) −1897.85 −0.235463
\(403\) 13599.8 1.68103
\(404\) 2008.44 0.247336
\(405\) 2281.88 0.279969
\(406\) −215.430 −0.0263340
\(407\) −3391.96 −0.413104
\(408\) −825.018 −0.100109
\(409\) 9213.29 1.11386 0.556929 0.830560i \(-0.311980\pi\)
0.556929 + 0.830560i \(0.311980\pi\)
\(410\) 1176.18 0.141676
\(411\) 3061.19 0.367390
\(412\) −742.884 −0.0888331
\(413\) 2392.60 0.285066
\(414\) 331.335 0.0393338
\(415\) 1954.75 0.231217
\(416\) 1863.21 0.219595
\(417\) −660.687 −0.0775875
\(418\) 991.674 0.116039
\(419\) 11521.7 1.34337 0.671684 0.740838i \(-0.265571\pi\)
0.671684 + 0.740838i \(0.265571\pi\)
\(420\) −334.951 −0.0389142
\(421\) 8085.69 0.936038 0.468019 0.883718i \(-0.344968\pi\)
0.468019 + 0.883718i \(0.344968\pi\)
\(422\) −6970.42 −0.804064
\(423\) −7264.08 −0.834969
\(424\) −4306.32 −0.493239
\(425\) −10804.5 −1.23317
\(426\) −1682.49 −0.191354
\(427\) 2068.17 0.234393
\(428\) −5463.62 −0.617042
\(429\) 512.876 0.0577201
\(430\) −2654.02 −0.297647
\(431\) −4853.07 −0.542376 −0.271188 0.962526i \(-0.587417\pi\)
−0.271188 + 0.962526i \(0.587417\pi\)
\(432\) 905.519 0.100849
\(433\) 13920.7 1.54500 0.772500 0.635015i \(-0.219006\pi\)
0.772500 + 0.635015i \(0.219006\pi\)
\(434\) 10205.0 1.12870
\(435\) 18.9003 0.00208322
\(436\) −8385.41 −0.921074
\(437\) 386.244 0.0422805
\(438\) −852.251 −0.0929729
\(439\) −3973.50 −0.431993 −0.215996 0.976394i \(-0.569300\pi\)
−0.215996 + 0.976394i \(0.569300\pi\)
\(440\) −235.580 −0.0255246
\(441\) −3470.34 −0.374726
\(442\) 11215.3 1.20692
\(443\) −6421.16 −0.688665 −0.344332 0.938848i \(-0.611895\pi\)
−0.344332 + 0.938848i \(0.611895\pi\)
\(444\) −1766.12 −0.188775
\(445\) 2772.54 0.295350
\(446\) −9048.67 −0.960688
\(447\) 67.0482 0.00709456
\(448\) 1398.12 0.147444
\(449\) 2952.10 0.310285 0.155143 0.987892i \(-0.450416\pi\)
0.155143 + 0.987892i \(0.450416\pi\)
\(450\) 5800.75 0.607667
\(451\) −1351.41 −0.141098
\(452\) 8834.86 0.919374
\(453\) 1072.28 0.111214
\(454\) −11240.1 −1.16195
\(455\) 4553.33 0.469151
\(456\) 516.342 0.0530262
\(457\) −8150.75 −0.834302 −0.417151 0.908837i \(-0.636971\pi\)
−0.417151 + 0.908837i \(0.636971\pi\)
\(458\) 12248.4 1.24963
\(459\) 5450.63 0.554278
\(460\) −91.7554 −0.00930026
\(461\) 7658.84 0.773769 0.386885 0.922128i \(-0.373551\pi\)
0.386885 + 0.922128i \(0.373551\pi\)
\(462\) 384.853 0.0387554
\(463\) −4448.60 −0.446532 −0.223266 0.974758i \(-0.571672\pi\)
−0.223266 + 0.974758i \(0.571672\pi\)
\(464\) −78.8917 −0.00789322
\(465\) −895.319 −0.0892890
\(466\) 5572.49 0.553950
\(467\) 12558.2 1.24437 0.622187 0.782869i \(-0.286244\pi\)
0.622187 + 0.782869i \(0.286244\pi\)
\(468\) −6021.30 −0.594732
\(469\) 19359.4 1.90604
\(470\) 2011.62 0.197423
\(471\) −2980.05 −0.291536
\(472\) 876.186 0.0854443
\(473\) 3049.42 0.296433
\(474\) 1843.37 0.178626
\(475\) 6762.07 0.653189
\(476\) 8415.76 0.810369
\(477\) 13916.6 1.33585
\(478\) −8242.87 −0.788745
\(479\) 3513.52 0.335150 0.167575 0.985859i \(-0.446406\pi\)
0.167575 + 0.985859i \(0.446406\pi\)
\(480\) −122.661 −0.0116639
\(481\) 24008.6 2.27588
\(482\) −7175.68 −0.678098
\(483\) 149.895 0.0141211
\(484\) −5053.32 −0.474580
\(485\) −2919.88 −0.273371
\(486\) −4421.26 −0.412659
\(487\) 3237.81 0.301271 0.150636 0.988589i \(-0.451868\pi\)
0.150636 + 0.988589i \(0.451868\pi\)
\(488\) 757.377 0.0702558
\(489\) 2279.53 0.210805
\(490\) 961.029 0.0886018
\(491\) 10817.6 0.994283 0.497141 0.867670i \(-0.334383\pi\)
0.497141 + 0.867670i \(0.334383\pi\)
\(492\) −703.647 −0.0644773
\(493\) −474.876 −0.0433820
\(494\) −7019.16 −0.639285
\(495\) 761.318 0.0691287
\(496\) 3737.15 0.338312
\(497\) 17162.6 1.54899
\(498\) −1169.43 −0.105227
\(499\) 1503.59 0.134890 0.0674448 0.997723i \(-0.478515\pi\)
0.0674448 + 0.997723i \(0.478515\pi\)
\(500\) −3396.26 −0.303771
\(501\) 348.868 0.0311103
\(502\) −1482.47 −0.131805
\(503\) 6539.69 0.579702 0.289851 0.957072i \(-0.406394\pi\)
0.289851 + 0.957072i \(0.406394\pi\)
\(504\) −4518.27 −0.399325
\(505\) 1797.43 0.158385
\(506\) 105.425 0.00926231
\(507\) −1277.66 −0.111919
\(508\) −5871.72 −0.512826
\(509\) −20298.1 −1.76758 −0.883791 0.467882i \(-0.845017\pi\)
−0.883791 + 0.467882i \(0.845017\pi\)
\(510\) −738.340 −0.0641063
\(511\) 8693.55 0.752603
\(512\) 512.000 0.0441942
\(513\) −3411.31 −0.293592
\(514\) 8959.10 0.768811
\(515\) −664.834 −0.0568856
\(516\) 1587.77 0.135460
\(517\) −2311.31 −0.196618
\(518\) 18015.6 1.52811
\(519\) 3498.72 0.295909
\(520\) 1667.46 0.140621
\(521\) −11072.1 −0.931048 −0.465524 0.885035i \(-0.654134\pi\)
−0.465524 + 0.885035i \(0.654134\pi\)
\(522\) 254.952 0.0213773
\(523\) 17025.7 1.42348 0.711741 0.702442i \(-0.247907\pi\)
0.711741 + 0.702442i \(0.247907\pi\)
\(524\) 7588.52 0.632645
\(525\) 2624.25 0.218156
\(526\) −9952.17 −0.824972
\(527\) 22495.2 1.85940
\(528\) 140.936 0.0116163
\(529\) −12125.9 −0.996625
\(530\) −3853.88 −0.315853
\(531\) −2831.55 −0.231410
\(532\) −5267.05 −0.429240
\(533\) 9565.38 0.777340
\(534\) −1658.67 −0.134415
\(535\) −4889.60 −0.395132
\(536\) 7089.52 0.571307
\(537\) 4073.97 0.327383
\(538\) 538.000 0.0431131
\(539\) −1104.20 −0.0882402
\(540\) 810.383 0.0645802
\(541\) −18983.3 −1.50861 −0.754304 0.656525i \(-0.772026\pi\)
−0.754304 + 0.656525i \(0.772026\pi\)
\(542\) 15600.9 1.23638
\(543\) −1832.21 −0.144803
\(544\) 3081.90 0.242896
\(545\) −7504.41 −0.589823
\(546\) −2724.03 −0.213512
\(547\) −15459.3 −1.20839 −0.604197 0.796835i \(-0.706506\pi\)
−0.604197 + 0.796835i \(0.706506\pi\)
\(548\) −11435.2 −0.891404
\(549\) −2447.60 −0.190275
\(550\) 1845.70 0.143093
\(551\) 297.204 0.0229788
\(552\) 54.8926 0.00423258
\(553\) −18803.6 −1.44595
\(554\) −1227.83 −0.0941613
\(555\) −1580.56 −0.120885
\(556\) 2468.03 0.188252
\(557\) 1001.16 0.0761588 0.0380794 0.999275i \(-0.487876\pi\)
0.0380794 + 0.999275i \(0.487876\pi\)
\(558\) −12077.2 −0.916256
\(559\) −21584.1 −1.63311
\(560\) 1251.23 0.0944181
\(561\) 848.339 0.0638447
\(562\) 13671.1 1.02612
\(563\) −17512.2 −1.31093 −0.655463 0.755227i \(-0.727527\pi\)
−0.655463 + 0.755227i \(0.727527\pi\)
\(564\) −1203.45 −0.0898481
\(565\) 7906.65 0.588735
\(566\) −8974.18 −0.666454
\(567\) 13925.3 1.03141
\(568\) 6285.04 0.464286
\(569\) −2267.59 −0.167069 −0.0835346 0.996505i \(-0.526621\pi\)
−0.0835346 + 0.996505i \(0.526621\pi\)
\(570\) 462.094 0.0339561
\(571\) −18349.0 −1.34481 −0.672403 0.740186i \(-0.734738\pi\)
−0.672403 + 0.740186i \(0.734738\pi\)
\(572\) −1915.88 −0.140047
\(573\) −163.808 −0.0119427
\(574\) 7177.68 0.521935
\(575\) 718.878 0.0521379
\(576\) −1654.62 −0.119692
\(577\) 19403.1 1.39993 0.699966 0.714176i \(-0.253198\pi\)
0.699966 + 0.714176i \(0.253198\pi\)
\(578\) 8725.01 0.627876
\(579\) 2079.43 0.149254
\(580\) −70.6031 −0.00505454
\(581\) 11929.0 0.851802
\(582\) 1746.82 0.124412
\(583\) 4428.04 0.314564
\(584\) 3183.63 0.225581
\(585\) −5388.68 −0.380846
\(586\) 5644.30 0.397891
\(587\) 323.054 0.0227153 0.0113576 0.999935i \(-0.496385\pi\)
0.0113576 + 0.999935i \(0.496385\pi\)
\(588\) −574.935 −0.0403230
\(589\) −14078.7 −0.984896
\(590\) 784.132 0.0547156
\(591\) 4066.40 0.283028
\(592\) 6597.43 0.458028
\(593\) −8308.92 −0.575390 −0.287695 0.957722i \(-0.592889\pi\)
−0.287695 + 0.957722i \(0.592889\pi\)
\(594\) −931.115 −0.0643167
\(595\) 7531.58 0.518932
\(596\) −250.462 −0.0172137
\(597\) 3428.28 0.235026
\(598\) −746.210 −0.0510281
\(599\) 11217.2 0.765145 0.382572 0.923925i \(-0.375038\pi\)
0.382572 + 0.923925i \(0.375038\pi\)
\(600\) 961.017 0.0653889
\(601\) 20658.0 1.40209 0.701046 0.713116i \(-0.252717\pi\)
0.701046 + 0.713116i \(0.252717\pi\)
\(602\) −16196.3 −1.09653
\(603\) −22911.0 −1.54728
\(604\) −4005.57 −0.269841
\(605\) −4522.41 −0.303904
\(606\) −1075.31 −0.0720816
\(607\) −18832.4 −1.25928 −0.629642 0.776885i \(-0.716798\pi\)
−0.629642 + 0.776885i \(0.716798\pi\)
\(608\) −1928.83 −0.128658
\(609\) 115.340 0.00767458
\(610\) 677.805 0.0449894
\(611\) 16359.7 1.08321
\(612\) −9959.71 −0.657839
\(613\) 526.582 0.0346956 0.0173478 0.999850i \(-0.494478\pi\)
0.0173478 + 0.999850i \(0.494478\pi\)
\(614\) −8743.08 −0.574661
\(615\) −629.720 −0.0412890
\(616\) −1437.64 −0.0940328
\(617\) 24329.0 1.58744 0.793718 0.608286i \(-0.208143\pi\)
0.793718 + 0.608286i \(0.208143\pi\)
\(618\) 397.736 0.0258888
\(619\) −2155.18 −0.139942 −0.0699709 0.997549i \(-0.522291\pi\)
−0.0699709 + 0.997549i \(0.522291\pi\)
\(620\) 3344.51 0.216643
\(621\) −362.658 −0.0234347
\(622\) 4608.42 0.297075
\(623\) 16919.6 1.08807
\(624\) −997.555 −0.0639970
\(625\) 10983.7 0.702959
\(626\) −2873.91 −0.183489
\(627\) −530.938 −0.0338176
\(628\) 11132.1 0.707358
\(629\) 39712.2 2.51737
\(630\) −4043.57 −0.255714
\(631\) 6719.25 0.423913 0.211957 0.977279i \(-0.432016\pi\)
0.211957 + 0.977279i \(0.432016\pi\)
\(632\) −6886.00 −0.433403
\(633\) 3731.93 0.234330
\(634\) 2265.10 0.141891
\(635\) −5254.83 −0.328396
\(636\) 2305.58 0.143746
\(637\) 7815.67 0.486135
\(638\) 81.1217 0.00503392
\(639\) −20311.2 −1.25743
\(640\) 458.208 0.0283004
\(641\) 22238.9 1.37033 0.685167 0.728386i \(-0.259729\pi\)
0.685167 + 0.728386i \(0.259729\pi\)
\(642\) 2925.20 0.179826
\(643\) 11950.4 0.732934 0.366467 0.930431i \(-0.380567\pi\)
0.366467 + 0.930431i \(0.380567\pi\)
\(644\) −559.943 −0.0342622
\(645\) 1420.95 0.0867440
\(646\) −11610.3 −0.707120
\(647\) 13860.5 0.842213 0.421107 0.907011i \(-0.361642\pi\)
0.421107 + 0.907011i \(0.361642\pi\)
\(648\) 5099.53 0.309149
\(649\) −900.953 −0.0544923
\(650\) −13064.1 −0.788331
\(651\) −5463.73 −0.328941
\(652\) −8515.31 −0.511480
\(653\) 19213.2 1.15141 0.575706 0.817657i \(-0.304727\pi\)
0.575706 + 0.817657i \(0.304727\pi\)
\(654\) 4489.51 0.268431
\(655\) 6791.25 0.405124
\(656\) 2628.51 0.156442
\(657\) −10288.5 −0.610945
\(658\) 12276.0 0.727308
\(659\) −27657.4 −1.63487 −0.817436 0.576019i \(-0.804605\pi\)
−0.817436 + 0.576019i \(0.804605\pi\)
\(660\) 126.128 0.00743870
\(661\) −26363.2 −1.55130 −0.775651 0.631162i \(-0.782578\pi\)
−0.775651 + 0.631162i \(0.782578\pi\)
\(662\) 14254.9 0.836904
\(663\) −6004.62 −0.351735
\(664\) 4368.46 0.255315
\(665\) −4713.68 −0.274870
\(666\) −21320.8 −1.24048
\(667\) 31.5959 0.00183418
\(668\) −1303.21 −0.0754834
\(669\) 4844.62 0.279976
\(670\) 6344.68 0.365845
\(671\) −778.786 −0.0448058
\(672\) −748.547 −0.0429700
\(673\) 19235.4 1.10174 0.550870 0.834591i \(-0.314296\pi\)
0.550870 + 0.834591i \(0.314296\pi\)
\(674\) 1647.38 0.0941464
\(675\) −6349.13 −0.362041
\(676\) 4772.77 0.271550
\(677\) −10104.2 −0.573614 −0.286807 0.957988i \(-0.592594\pi\)
−0.286807 + 0.957988i \(0.592594\pi\)
\(678\) −4730.15 −0.267935
\(679\) −17818.8 −1.00710
\(680\) 2758.11 0.155542
\(681\) 6017.89 0.338629
\(682\) −3842.79 −0.215759
\(683\) −28965.6 −1.62275 −0.811376 0.584524i \(-0.801281\pi\)
−0.811376 + 0.584524i \(0.801281\pi\)
\(684\) 6233.34 0.348447
\(685\) −10233.8 −0.570824
\(686\) −9121.36 −0.507661
\(687\) −6557.75 −0.364183
\(688\) −5931.19 −0.328669
\(689\) −31342.1 −1.73300
\(690\) 49.1254 0.00271040
\(691\) −9945.49 −0.547532 −0.273766 0.961796i \(-0.588269\pi\)
−0.273766 + 0.961796i \(0.588269\pi\)
\(692\) −13069.7 −0.717969
\(693\) 4645.99 0.254670
\(694\) 1381.15 0.0755445
\(695\) 2208.74 0.120550
\(696\) 42.2382 0.00230034
\(697\) 15821.9 0.859824
\(698\) −25222.7 −1.36776
\(699\) −2983.49 −0.161439
\(700\) −9803.04 −0.529314
\(701\) 19180.8 1.03345 0.516726 0.856151i \(-0.327151\pi\)
0.516726 + 0.856151i \(0.327151\pi\)
\(702\) 6590.52 0.354335
\(703\) −24854.1 −1.33341
\(704\) −526.473 −0.0281849
\(705\) −1077.01 −0.0575356
\(706\) 13460.9 0.717576
\(707\) 10968.9 0.583491
\(708\) −469.106 −0.0249012
\(709\) −24843.9 −1.31598 −0.657992 0.753025i \(-0.728594\pi\)
−0.657992 + 0.753025i \(0.728594\pi\)
\(710\) 5624.72 0.297313
\(711\) 22253.3 1.17379
\(712\) 6196.05 0.326133
\(713\) −1496.72 −0.0786149
\(714\) −4505.76 −0.236168
\(715\) −1714.59 −0.0896813
\(716\) −15218.5 −0.794335
\(717\) 4413.19 0.229866
\(718\) −18890.5 −0.981877
\(719\) 15118.5 0.784180 0.392090 0.919927i \(-0.371752\pi\)
0.392090 + 0.919927i \(0.371752\pi\)
\(720\) −1480.78 −0.0766464
\(721\) −4057.19 −0.209567
\(722\) −6451.65 −0.332556
\(723\) 3841.83 0.197620
\(724\) 6844.34 0.351337
\(725\) 553.156 0.0283361
\(726\) 2705.53 0.138308
\(727\) −25394.6 −1.29551 −0.647753 0.761850i \(-0.724291\pi\)
−0.647753 + 0.761850i \(0.724291\pi\)
\(728\) 10175.8 0.518047
\(729\) −14843.8 −0.754142
\(730\) 2849.15 0.144455
\(731\) −35701.8 −1.80640
\(732\) −405.496 −0.0204748
\(733\) −5116.13 −0.257802 −0.128901 0.991657i \(-0.541145\pi\)
−0.128901 + 0.991657i \(0.541145\pi\)
\(734\) −9391.77 −0.472284
\(735\) −514.531 −0.0258214
\(736\) −205.054 −0.0102696
\(737\) −7289.92 −0.364352
\(738\) −8494.50 −0.423695
\(739\) 31608.5 1.57339 0.786696 0.617340i \(-0.211790\pi\)
0.786696 + 0.617340i \(0.211790\pi\)
\(740\) 5904.29 0.293305
\(741\) 3758.03 0.186308
\(742\) −23518.5 −1.16360
\(743\) −15791.3 −0.779712 −0.389856 0.920876i \(-0.627475\pi\)
−0.389856 + 0.920876i \(0.627475\pi\)
\(744\) −2000.85 −0.0985951
\(745\) −224.148 −0.0110230
\(746\) 18169.5 0.891735
\(747\) −14117.4 −0.691473
\(748\) −3169.02 −0.154907
\(749\) −29839.0 −1.45567
\(750\) 1818.34 0.0885286
\(751\) 957.250 0.0465120 0.0232560 0.999730i \(-0.492597\pi\)
0.0232560 + 0.999730i \(0.492597\pi\)
\(752\) 4495.55 0.218000
\(753\) 793.710 0.0384122
\(754\) −574.187 −0.0277330
\(755\) −3584.73 −0.172797
\(756\) 4945.41 0.237914
\(757\) 2875.44 0.138058 0.0690288 0.997615i \(-0.478010\pi\)
0.0690288 + 0.997615i \(0.478010\pi\)
\(758\) 11785.4 0.564729
\(759\) −56.4442 −0.00269934
\(760\) −1726.18 −0.0823883
\(761\) −23338.6 −1.11173 −0.555863 0.831274i \(-0.687612\pi\)
−0.555863 + 0.831274i \(0.687612\pi\)
\(762\) 3143.69 0.149454
\(763\) −45796.1 −2.17291
\(764\) 611.914 0.0289768
\(765\) −8913.31 −0.421257
\(766\) −1866.99 −0.0880639
\(767\) 6377.03 0.300210
\(768\) −274.122 −0.0128796
\(769\) −23060.7 −1.08139 −0.540695 0.841219i \(-0.681839\pi\)
−0.540695 + 0.841219i \(0.681839\pi\)
\(770\) −1286.60 −0.0602153
\(771\) −4796.66 −0.224056
\(772\) −7767.83 −0.362138
\(773\) 265.574 0.0123571 0.00617855 0.999981i \(-0.498033\pi\)
0.00617855 + 0.999981i \(0.498033\pi\)
\(774\) 19167.7 0.890140
\(775\) −26203.3 −1.21452
\(776\) −6525.34 −0.301863
\(777\) −9645.48 −0.445341
\(778\) 5555.07 0.255988
\(779\) −9902.23 −0.455435
\(780\) −892.749 −0.0409815
\(781\) −6462.70 −0.296100
\(782\) −1234.29 −0.0564427
\(783\) −279.054 −0.0127364
\(784\) 2147.70 0.0978362
\(785\) 9962.57 0.452967
\(786\) −4062.86 −0.184373
\(787\) 6091.06 0.275887 0.137943 0.990440i \(-0.455951\pi\)
0.137943 + 0.990440i \(0.455951\pi\)
\(788\) −15190.3 −0.686715
\(789\) 5328.35 0.240424
\(790\) −6162.54 −0.277536
\(791\) 48250.8 2.16890
\(792\) 1701.39 0.0763336
\(793\) 5512.32 0.246845
\(794\) −15612.0 −0.697793
\(795\) 2063.35 0.0920497
\(796\) −12806.6 −0.570246
\(797\) 41859.8 1.86041 0.930206 0.367038i \(-0.119628\pi\)
0.930206 + 0.367038i \(0.119628\pi\)
\(798\) 2819.96 0.125094
\(799\) 27060.2 1.19815
\(800\) −3589.93 −0.158654
\(801\) −20023.6 −0.883270
\(802\) 16045.6 0.706472
\(803\) −3273.62 −0.143865
\(804\) −3795.70 −0.166497
\(805\) −501.114 −0.0219403
\(806\) 27199.6 1.18867
\(807\) −288.043 −0.0125645
\(808\) 4016.88 0.174893
\(809\) 43545.0 1.89241 0.946205 0.323569i \(-0.104883\pi\)
0.946205 + 0.323569i \(0.104883\pi\)
\(810\) 4563.76 0.197968
\(811\) −39925.7 −1.72871 −0.864354 0.502884i \(-0.832272\pi\)
−0.864354 + 0.502884i \(0.832272\pi\)
\(812\) −430.860 −0.0186209
\(813\) −8352.67 −0.360321
\(814\) −6783.92 −0.292108
\(815\) −7620.67 −0.327534
\(816\) −1650.04 −0.0707878
\(817\) 22344.2 0.956824
\(818\) 18426.6 0.787616
\(819\) −32884.7 −1.40304
\(820\) 2352.35 0.100180
\(821\) 17214.7 0.731789 0.365894 0.930656i \(-0.380763\pi\)
0.365894 + 0.930656i \(0.380763\pi\)
\(822\) 6122.38 0.259784
\(823\) −29224.4 −1.23779 −0.618893 0.785476i \(-0.712418\pi\)
−0.618893 + 0.785476i \(0.712418\pi\)
\(824\) −1485.77 −0.0628145
\(825\) −988.182 −0.0417019
\(826\) 4785.21 0.201572
\(827\) −16267.4 −0.684008 −0.342004 0.939699i \(-0.611106\pi\)
−0.342004 + 0.939699i \(0.611106\pi\)
\(828\) 662.669 0.0278132
\(829\) −26702.5 −1.11872 −0.559358 0.828926i \(-0.688952\pi\)
−0.559358 + 0.828926i \(0.688952\pi\)
\(830\) 3909.50 0.163495
\(831\) 657.373 0.0274417
\(832\) 3726.42 0.155277
\(833\) 12927.7 0.537719
\(834\) −1321.37 −0.0548627
\(835\) −1166.30 −0.0483369
\(836\) 1983.35 0.0820521
\(837\) 13219.0 0.545896
\(838\) 23043.4 0.949905
\(839\) 6917.49 0.284646 0.142323 0.989820i \(-0.454543\pi\)
0.142323 + 0.989820i \(0.454543\pi\)
\(840\) −669.903 −0.0275165
\(841\) −24364.7 −0.999003
\(842\) 16171.4 0.661879
\(843\) −7319.43 −0.299045
\(844\) −13940.8 −0.568559
\(845\) 4271.33 0.173891
\(846\) −14528.2 −0.590412
\(847\) −27598.2 −1.11958
\(848\) −8612.63 −0.348772
\(849\) 4804.73 0.194226
\(850\) −21609.0 −0.871980
\(851\) −2642.25 −0.106434
\(852\) −3364.98 −0.135308
\(853\) 34464.8 1.38341 0.691707 0.722178i \(-0.256859\pi\)
0.691707 + 0.722178i \(0.256859\pi\)
\(854\) 4136.34 0.165741
\(855\) 5578.45 0.223133
\(856\) −10927.2 −0.436314
\(857\) 35655.3 1.42119 0.710595 0.703601i \(-0.248426\pi\)
0.710595 + 0.703601i \(0.248426\pi\)
\(858\) 1025.75 0.0408142
\(859\) −32614.7 −1.29546 −0.647729 0.761871i \(-0.724281\pi\)
−0.647729 + 0.761871i \(0.724281\pi\)
\(860\) −5308.04 −0.210468
\(861\) −3842.90 −0.152109
\(862\) −9706.14 −0.383518
\(863\) 47219.5 1.86254 0.931268 0.364334i \(-0.118703\pi\)
0.931268 + 0.364334i \(0.118703\pi\)
\(864\) 1811.04 0.0713111
\(865\) −11696.5 −0.459762
\(866\) 27841.4 1.09248
\(867\) −4671.33 −0.182983
\(868\) 20410.1 0.798114
\(869\) 7080.65 0.276403
\(870\) 37.8006 0.00147306
\(871\) 51598.7 2.00730
\(872\) −16770.8 −0.651297
\(873\) 21087.8 0.817541
\(874\) 772.489 0.0298968
\(875\) −18548.3 −0.716627
\(876\) −1704.50 −0.0657417
\(877\) −17600.9 −0.677698 −0.338849 0.940841i \(-0.610038\pi\)
−0.338849 + 0.940841i \(0.610038\pi\)
\(878\) −7947.00 −0.305465
\(879\) −3021.93 −0.115958
\(880\) −471.160 −0.0180486
\(881\) −16179.3 −0.618723 −0.309362 0.950944i \(-0.600115\pi\)
−0.309362 + 0.950944i \(0.600115\pi\)
\(882\) −6940.67 −0.264971
\(883\) −17880.9 −0.681472 −0.340736 0.940159i \(-0.610676\pi\)
−0.340736 + 0.940159i \(0.610676\pi\)
\(884\) 22430.6 0.853419
\(885\) −419.820 −0.0159459
\(886\) −12842.3 −0.486960
\(887\) −45387.9 −1.71812 −0.859062 0.511872i \(-0.828952\pi\)
−0.859062 + 0.511872i \(0.828952\pi\)
\(888\) −3532.23 −0.133484
\(889\) −32067.9 −1.20981
\(890\) 5545.07 0.208844
\(891\) −5243.67 −0.197160
\(892\) −18097.3 −0.679309
\(893\) −16935.8 −0.634642
\(894\) 134.096 0.00501661
\(895\) −13619.6 −0.508664
\(896\) 2796.24 0.104259
\(897\) 399.518 0.0148712
\(898\) 5904.19 0.219405
\(899\) −1151.68 −0.0427260
\(900\) 11601.5 0.429685
\(901\) −51842.4 −1.91689
\(902\) −2702.81 −0.0997714
\(903\) 8671.44 0.319565
\(904\) 17669.7 0.650095
\(905\) 6125.25 0.224984
\(906\) 2144.56 0.0786405
\(907\) −6376.42 −0.233435 −0.116717 0.993165i \(-0.537237\pi\)
−0.116717 + 0.993165i \(0.537237\pi\)
\(908\) −22480.2 −0.821620
\(909\) −12981.2 −0.473664
\(910\) 9106.66 0.331740
\(911\) −18032.0 −0.655793 −0.327896 0.944714i \(-0.606340\pi\)
−0.327896 + 0.944714i \(0.606340\pi\)
\(912\) 1032.68 0.0374952
\(913\) −4491.94 −0.162828
\(914\) −16301.5 −0.589941
\(915\) −362.894 −0.0131114
\(916\) 24496.9 0.883624
\(917\) 41444.0 1.49248
\(918\) 10901.3 0.391934
\(919\) 17176.0 0.616522 0.308261 0.951302i \(-0.400253\pi\)
0.308261 + 0.951302i \(0.400253\pi\)
\(920\) −183.511 −0.00657628
\(921\) 4681.01 0.167475
\(922\) 15317.7 0.547138
\(923\) 45743.6 1.63128
\(924\) 769.706 0.0274042
\(925\) −46258.5 −1.64429
\(926\) −8897.21 −0.315745
\(927\) 4801.52 0.170121
\(928\) −157.783 −0.00558135
\(929\) 11842.9 0.418249 0.209124 0.977889i \(-0.432939\pi\)
0.209124 + 0.977889i \(0.432939\pi\)
\(930\) −1790.64 −0.0631369
\(931\) −8090.90 −0.284821
\(932\) 11145.0 0.391702
\(933\) −2467.32 −0.0865773
\(934\) 25116.3 0.879905
\(935\) −2836.07 −0.0991973
\(936\) −12042.6 −0.420539
\(937\) 45534.5 1.58756 0.793782 0.608202i \(-0.208109\pi\)
0.793782 + 0.608202i \(0.208109\pi\)
\(938\) 38718.7 1.34777
\(939\) 1538.68 0.0534747
\(940\) 4023.24 0.139599
\(941\) −16808.3 −0.582291 −0.291146 0.956679i \(-0.594036\pi\)
−0.291146 + 0.956679i \(0.594036\pi\)
\(942\) −5960.10 −0.206147
\(943\) −1052.71 −0.0363531
\(944\) 1752.37 0.0604183
\(945\) 4425.83 0.152352
\(946\) 6098.85 0.209610
\(947\) −10403.1 −0.356974 −0.178487 0.983942i \(-0.557120\pi\)
−0.178487 + 0.983942i \(0.557120\pi\)
\(948\) 3686.73 0.126308
\(949\) 23171.0 0.792584
\(950\) 13524.1 0.461874
\(951\) −1212.72 −0.0413515
\(952\) 16831.5 0.573017
\(953\) −9475.84 −0.322091 −0.161045 0.986947i \(-0.551487\pi\)
−0.161045 + 0.986947i \(0.551487\pi\)
\(954\) 27833.2 0.944585
\(955\) 547.625 0.0185557
\(956\) −16485.7 −0.557727
\(957\) −43.4322 −0.00146705
\(958\) 7027.03 0.236987
\(959\) −62452.5 −2.10292
\(960\) −245.322 −0.00824765
\(961\) 24764.8 0.831283
\(962\) 48017.2 1.60929
\(963\) 35313.3 1.18168
\(964\) −14351.4 −0.479488
\(965\) −6951.72 −0.231900
\(966\) 299.791 0.00998510
\(967\) 39930.0 1.32788 0.663942 0.747784i \(-0.268882\pi\)
0.663942 + 0.747784i \(0.268882\pi\)
\(968\) −10106.6 −0.335578
\(969\) 6216.08 0.206078
\(970\) −5839.77 −0.193303
\(971\) −27957.2 −0.923984 −0.461992 0.886884i \(-0.652865\pi\)
−0.461992 + 0.886884i \(0.652865\pi\)
\(972\) −8842.52 −0.291794
\(973\) 13478.9 0.444106
\(974\) 6475.62 0.213031
\(975\) 6994.44 0.229745
\(976\) 1514.75 0.0496784
\(977\) −30853.6 −1.01033 −0.505166 0.863022i \(-0.668569\pi\)
−0.505166 + 0.863022i \(0.668569\pi\)
\(978\) 4559.06 0.149062
\(979\) −6371.19 −0.207992
\(980\) 1922.06 0.0626509
\(981\) 54197.8 1.76392
\(982\) 21635.3 0.703064
\(983\) −46.9863 −0.00152455 −0.000762274 1.00000i \(-0.500243\pi\)
−0.000762274 1.00000i \(0.500243\pi\)
\(984\) −1407.29 −0.0455923
\(985\) −13594.3 −0.439748
\(986\) −949.752 −0.0306757
\(987\) −6572.52 −0.211961
\(988\) −14038.3 −0.452043
\(989\) 2375.42 0.0763742
\(990\) 1522.64 0.0488814
\(991\) −42948.4 −1.37669 −0.688346 0.725383i \(-0.741663\pi\)
−0.688346 + 0.725383i \(0.741663\pi\)
\(992\) 7474.30 0.239223
\(993\) −7631.98 −0.243901
\(994\) 34325.2 1.09530
\(995\) −11461.1 −0.365166
\(996\) −2338.85 −0.0744070
\(997\) 14125.8 0.448714 0.224357 0.974507i \(-0.427972\pi\)
0.224357 + 0.974507i \(0.427972\pi\)
\(998\) 3007.18 0.0953814
\(999\) 23336.3 0.739068
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.a.d.1.10 21
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.a.d.1.10 21 1.1 even 1 trivial