Properties

Label 538.4.b.a.537.17
Level $538$
Weight $4$
Character 538.537
Analytic conductor $31.743$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(537,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.537");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(68\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 537.17
Character \(\chi\) \(=\) 538.537
Dual form 538.4.b.a.537.52

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -0.122336i q^{3} -4.00000 q^{4} +7.26358 q^{5} -0.244671 q^{6} +31.0626i q^{7} +8.00000i q^{8} +26.9850 q^{9} -14.5272i q^{10} -3.20731 q^{11} +0.489343i q^{12} -10.0275 q^{13} +62.1251 q^{14} -0.888595i q^{15} +16.0000 q^{16} -27.1710i q^{17} -53.9701i q^{18} +41.3494i q^{19} -29.0543 q^{20} +3.80006 q^{21} +6.41461i q^{22} -160.747 q^{23} +0.978685 q^{24} -72.2404 q^{25} +20.0551i q^{26} -6.60430i q^{27} -124.250i q^{28} +265.809i q^{29} -1.77719 q^{30} +85.9313i q^{31} -32.0000i q^{32} +0.392368i q^{33} -54.3420 q^{34} +225.625i q^{35} -107.940 q^{36} -320.328 q^{37} +82.6987 q^{38} +1.22673i q^{39} +58.1086i q^{40} -357.805 q^{41} -7.60012i q^{42} +263.079 q^{43} +12.8292 q^{44} +196.008 q^{45} +321.494i q^{46} +577.976 q^{47} -1.95737i q^{48} -621.883 q^{49} +144.481i q^{50} -3.32398 q^{51} +40.1102 q^{52} -482.084 q^{53} -13.2086 q^{54} -23.2965 q^{55} -248.501 q^{56} +5.05850 q^{57} +531.617 q^{58} -377.297i q^{59} +3.55438i q^{60} +695.295 q^{61} +171.863 q^{62} +838.225i q^{63} -64.0000 q^{64} -72.8359 q^{65} +0.784736 q^{66} +383.312 q^{67} +108.684i q^{68} +19.6651i q^{69} +451.251 q^{70} +1054.15i q^{71} +215.880i q^{72} +685.580 q^{73} +640.656i q^{74} +8.83758i q^{75} -165.397i q^{76} -99.6271i q^{77} +2.45345 q^{78} -707.008 q^{79} +116.217 q^{80} +727.788 q^{81} +715.609i q^{82} -66.6066i q^{83} -15.2002 q^{84} -197.359i q^{85} -526.158i q^{86} +32.5179 q^{87} -25.6584i q^{88} -1138.10 q^{89} -392.016i q^{90} -311.481i q^{91} +642.988 q^{92} +10.5125 q^{93} -1155.95i q^{94} +300.344i q^{95} -3.91474 q^{96} +29.1175 q^{97} +1243.77i q^{98} -86.5492 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 272 q^{4} + 38 q^{5} - 4 q^{6} - 594 q^{9} + 18 q^{11} - 114 q^{13} + 8 q^{14} + 1088 q^{16} - 152 q^{20} - 20 q^{21} - 224 q^{23} + 16 q^{24} + 1098 q^{25} + 384 q^{30} - 600 q^{34} + 2376 q^{36}+ \cdots + 3370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 0.122336i 0.0235435i −0.999931 0.0117718i \(-0.996253\pi\)
0.999931 0.0117718i \(-0.00374715\pi\)
\(4\) −4.00000 −0.500000
\(5\) 7.26358 0.649674 0.324837 0.945770i \(-0.394690\pi\)
0.324837 + 0.945770i \(0.394690\pi\)
\(6\) −0.244671 −0.0166478
\(7\) 31.0626i 1.67722i 0.544731 + 0.838611i \(0.316632\pi\)
−0.544731 + 0.838611i \(0.683368\pi\)
\(8\) 8.00000i 0.353553i
\(9\) 26.9850 0.999446
\(10\) 14.5272i 0.459389i
\(11\) −3.20731 −0.0879126 −0.0439563 0.999033i \(-0.513996\pi\)
−0.0439563 + 0.999033i \(0.513996\pi\)
\(12\) 0.489343i 0.0117718i
\(13\) −10.0275 −0.213934 −0.106967 0.994263i \(-0.534114\pi\)
−0.106967 + 0.994263i \(0.534114\pi\)
\(14\) 62.1251 1.18597
\(15\) 0.888595i 0.0152956i
\(16\) 16.0000 0.250000
\(17\) 27.1710i 0.387643i −0.981037 0.193821i \(-0.937912\pi\)
0.981037 0.193821i \(-0.0620883\pi\)
\(18\) 53.9701i 0.706715i
\(19\) 41.3494i 0.499273i 0.968340 + 0.249637i \(0.0803112\pi\)
−0.968340 + 0.249637i \(0.919689\pi\)
\(20\) −29.0543 −0.324837
\(21\) 3.80006 0.0394877
\(22\) 6.41461i 0.0621636i
\(23\) −160.747 −1.45731 −0.728654 0.684882i \(-0.759854\pi\)
−0.728654 + 0.684882i \(0.759854\pi\)
\(24\) 0.978685 0.00832389
\(25\) −72.2404 −0.577923
\(26\) 20.0551i 0.151274i
\(27\) 6.60430i 0.0470740i
\(28\) 124.250i 0.838611i
\(29\) 265.809i 1.70205i 0.525127 + 0.851024i \(0.324018\pi\)
−0.525127 + 0.851024i \(0.675982\pi\)
\(30\) −1.77719 −0.0108156
\(31\) 85.9313i 0.497862i 0.968521 + 0.248931i \(0.0800792\pi\)
−0.968521 + 0.248931i \(0.919921\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 0.392368i 0.00206977i
\(34\) −54.3420 −0.274105
\(35\) 225.625i 1.08965i
\(36\) −107.940 −0.499723
\(37\) −320.328 −1.42329 −0.711644 0.702541i \(-0.752049\pi\)
−0.711644 + 0.702541i \(0.752049\pi\)
\(38\) 82.6987 0.353040
\(39\) 1.22673i 0.00503676i
\(40\) 58.1086i 0.229695i
\(41\) −357.805 −1.36292 −0.681460 0.731856i \(-0.738654\pi\)
−0.681460 + 0.731856i \(0.738654\pi\)
\(42\) 7.60012i 0.0279220i
\(43\) 263.079 0.933004 0.466502 0.884520i \(-0.345514\pi\)
0.466502 + 0.884520i \(0.345514\pi\)
\(44\) 12.8292 0.0439563
\(45\) 196.008 0.649314
\(46\) 321.494i 1.03047i
\(47\) 577.976 1.79375 0.896877 0.442280i \(-0.145830\pi\)
0.896877 + 0.442280i \(0.145830\pi\)
\(48\) 1.95737i 0.00588588i
\(49\) −621.883 −1.81307
\(50\) 144.481i 0.408653i
\(51\) −3.32398 −0.00912648
\(52\) 40.1102 0.106967
\(53\) −482.084 −1.24942 −0.624711 0.780856i \(-0.714783\pi\)
−0.624711 + 0.780856i \(0.714783\pi\)
\(54\) −13.2086 −0.0332863
\(55\) −23.2965 −0.0571146
\(56\) −248.501 −0.592987
\(57\) 5.05850 0.0117546
\(58\) 531.617 1.20353
\(59\) 377.297i 0.832539i −0.909241 0.416270i \(-0.863337\pi\)
0.909241 0.416270i \(-0.136663\pi\)
\(60\) 3.55438i 0.00764781i
\(61\) 695.295 1.45940 0.729700 0.683767i \(-0.239660\pi\)
0.729700 + 0.683767i \(0.239660\pi\)
\(62\) 171.863 0.352041
\(63\) 838.225i 1.67629i
\(64\) −64.0000 −0.125000
\(65\) −72.8359 −0.138987
\(66\) 0.784736 0.00146355
\(67\) 383.312 0.698940 0.349470 0.936948i \(-0.386362\pi\)
0.349470 + 0.936948i \(0.386362\pi\)
\(68\) 108.684i 0.193821i
\(69\) 19.6651i 0.0343102i
\(70\) 451.251 0.770497
\(71\) 1054.15i 1.76204i 0.473081 + 0.881019i \(0.343142\pi\)
−0.473081 + 0.881019i \(0.656858\pi\)
\(72\) 215.880i 0.353357i
\(73\) 685.580 1.09919 0.549596 0.835430i \(-0.314782\pi\)
0.549596 + 0.835430i \(0.314782\pi\)
\(74\) 640.656i 1.00642i
\(75\) 8.83758i 0.0136063i
\(76\) 165.397i 0.249637i
\(77\) 99.6271i 0.147449i
\(78\) 2.45345 0.00356153
\(79\) −707.008 −1.00689 −0.503447 0.864026i \(-0.667935\pi\)
−0.503447 + 0.864026i \(0.667935\pi\)
\(80\) 116.217 0.162419
\(81\) 727.788 0.998337
\(82\) 715.609i 0.963729i
\(83\) 66.6066i 0.0880847i −0.999030 0.0440423i \(-0.985976\pi\)
0.999030 0.0440423i \(-0.0140236\pi\)
\(84\) −15.2002 −0.0197438
\(85\) 197.359i 0.251842i
\(86\) 526.158i 0.659734i
\(87\) 32.5179 0.0400722
\(88\) 25.6584i 0.0310818i
\(89\) −1138.10 −1.35549 −0.677746 0.735296i \(-0.737043\pi\)
−0.677746 + 0.735296i \(0.737043\pi\)
\(90\) 392.016i 0.459134i
\(91\) 311.481i 0.358815i
\(92\) 642.988 0.728654
\(93\) 10.5125 0.0117214
\(94\) 1155.95i 1.26838i
\(95\) 300.344i 0.324365i
\(96\) −3.91474 −0.00416194
\(97\) 29.1175 0.0304787 0.0152393 0.999884i \(-0.495149\pi\)
0.0152393 + 0.999884i \(0.495149\pi\)
\(98\) 1243.77i 1.28203i
\(99\) −86.5492 −0.0878639
\(100\) 288.962 0.288962
\(101\) 691.301i 0.681059i 0.940234 + 0.340530i \(0.110606\pi\)
−0.940234 + 0.340530i \(0.889394\pi\)
\(102\) 6.64796i 0.00645339i
\(103\) 495.942 0.474433 0.237217 0.971457i \(-0.423765\pi\)
0.237217 + 0.971457i \(0.423765\pi\)
\(104\) 80.2204i 0.0756371i
\(105\) 27.6020 0.0256541
\(106\) 964.169i 0.883475i
\(107\) 1846.33i 1.66814i 0.551657 + 0.834071i \(0.313996\pi\)
−0.551657 + 0.834071i \(0.686004\pi\)
\(108\) 26.4172i 0.0235370i
\(109\) 1176.18i 1.03356i −0.856118 0.516780i \(-0.827130\pi\)
0.856118 0.516780i \(-0.172870\pi\)
\(110\) 46.5930i 0.0403861i
\(111\) 39.1876i 0.0335092i
\(112\) 497.001i 0.419305i
\(113\) 1643.91i 1.36855i 0.729225 + 0.684274i \(0.239881\pi\)
−0.729225 + 0.684274i \(0.760119\pi\)
\(114\) 10.1170i 0.00831179i
\(115\) −1167.60 −0.946776
\(116\) 1063.23i 0.851024i
\(117\) −270.594 −0.213815
\(118\) −754.593 −0.588694
\(119\) 844.000 0.650163
\(120\) 7.10876 0.00540782
\(121\) −1320.71 −0.992271
\(122\) 1390.59i 1.03195i
\(123\) 43.7723i 0.0320879i
\(124\) 343.725i 0.248931i
\(125\) −1432.67 −1.02514
\(126\) 1676.45 1.18532
\(127\) 1520.34 1.06227 0.531136 0.847287i \(-0.321765\pi\)
0.531136 + 0.847287i \(0.321765\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 32.1840i 0.0219662i
\(130\) 145.672i 0.0982789i
\(131\) 1277.37 0.851939 0.425969 0.904738i \(-0.359933\pi\)
0.425969 + 0.904738i \(0.359933\pi\)
\(132\) 1.56947i 0.00103489i
\(133\) −1284.42 −0.837392
\(134\) 766.623i 0.494225i
\(135\) 47.9708i 0.0305828i
\(136\) 217.368 0.137052
\(137\) 2021.91i 1.26090i 0.776230 + 0.630450i \(0.217129\pi\)
−0.776230 + 0.630450i \(0.782871\pi\)
\(138\) 39.3302 0.0242609
\(139\) 269.209i 0.164274i −0.996621 0.0821368i \(-0.973826\pi\)
0.996621 0.0821368i \(-0.0261744\pi\)
\(140\) 902.502i 0.544824i
\(141\) 70.7071i 0.0422313i
\(142\) 2108.30 1.24595
\(143\) 32.1614 0.0188075
\(144\) 431.761 0.249861
\(145\) 1930.72i 1.10578i
\(146\) 1371.16i 0.777247i
\(147\) 76.0785i 0.0426861i
\(148\) 1281.31 0.711644
\(149\) 280.768 0.154372 0.0771860 0.997017i \(-0.475406\pi\)
0.0771860 + 0.997017i \(0.475406\pi\)
\(150\) 17.6752 0.00962114
\(151\) 2271.80 1.22435 0.612174 0.790723i \(-0.290295\pi\)
0.612174 + 0.790723i \(0.290295\pi\)
\(152\) −330.795 −0.176520
\(153\) 733.210i 0.387428i
\(154\) −199.254 −0.104262
\(155\) 624.169i 0.323448i
\(156\) 4.90691i 0.00251838i
\(157\) 162.060i 0.0823808i −0.999151 0.0411904i \(-0.986885\pi\)
0.999151 0.0411904i \(-0.0131150\pi\)
\(158\) 1414.02i 0.711981i
\(159\) 58.9761i 0.0294158i
\(160\) 232.435i 0.114847i
\(161\) 4993.22i 2.44423i
\(162\) 1455.58i 0.705931i
\(163\) 2598.91i 1.24885i −0.781085 0.624425i \(-0.785333\pi\)
0.781085 0.624425i \(-0.214667\pi\)
\(164\) 1431.22 0.681460
\(165\) 2.85000i 0.00134468i
\(166\) −133.213 −0.0622853
\(167\) 436.551i 0.202283i −0.994872 0.101142i \(-0.967750\pi\)
0.994872 0.101142i \(-0.0322495\pi\)
\(168\) 30.4005i 0.0139610i
\(169\) −2096.45 −0.954232
\(170\) −394.717 −0.178079
\(171\) 1115.81i 0.498997i
\(172\) −1052.32 −0.466502
\(173\) 4047.07 1.77857 0.889286 0.457351i \(-0.151202\pi\)
0.889286 + 0.457351i \(0.151202\pi\)
\(174\) 65.0357i 0.0283353i
\(175\) 2243.97i 0.969305i
\(176\) −51.3169 −0.0219782
\(177\) −46.1568 −0.0196009
\(178\) 2276.21i 0.958478i
\(179\) 1628.93i 0.680179i −0.940393 0.340089i \(-0.889543\pi\)
0.940393 0.340089i \(-0.110457\pi\)
\(180\) −784.032 −0.324657
\(181\) 3241.10i 1.33099i 0.746403 + 0.665495i \(0.231779\pi\)
−0.746403 + 0.665495i \(0.768221\pi\)
\(182\) −622.963 −0.253720
\(183\) 85.0594i 0.0343594i
\(184\) 1285.98i 0.515236i
\(185\) −2326.73 −0.924673
\(186\) 21.0249i 0.00828829i
\(187\) 87.1456i 0.0340787i
\(188\) −2311.90 −0.896877
\(189\) 205.146 0.0789535
\(190\) 600.689 0.229361
\(191\) −3075.70 −1.16518 −0.582591 0.812765i \(-0.697961\pi\)
−0.582591 + 0.812765i \(0.697961\pi\)
\(192\) 7.82948i 0.00294294i
\(193\) 1969.70i 0.734621i −0.930098 0.367310i \(-0.880279\pi\)
0.930098 0.367310i \(-0.119721\pi\)
\(194\) 58.2350i 0.0215517i
\(195\) 8.91043i 0.00327225i
\(196\) 2487.53 0.906535
\(197\) 1090.38i 0.394347i 0.980369 + 0.197174i \(0.0631762\pi\)
−0.980369 + 0.197174i \(0.936824\pi\)
\(198\) 173.098i 0.0621292i
\(199\) 1851.20 0.659436 0.329718 0.944079i \(-0.393046\pi\)
0.329718 + 0.944079i \(0.393046\pi\)
\(200\) 577.923i 0.204327i
\(201\) 46.8927i 0.0164555i
\(202\) 1382.60 0.481582
\(203\) −8256.70 −2.85471
\(204\) 13.2959 0.00456324
\(205\) −2598.94 −0.885454
\(206\) 991.884i 0.335475i
\(207\) −4337.77 −1.45650
\(208\) −160.441 −0.0534835
\(209\) 132.620i 0.0438924i
\(210\) 55.2041i 0.0181402i
\(211\) −2123.86 −0.692952 −0.346476 0.938059i \(-0.612622\pi\)
−0.346476 + 0.938059i \(0.612622\pi\)
\(212\) 1928.34 0.624711
\(213\) 128.960 0.0414846
\(214\) 3692.65 1.17955
\(215\) 1910.90 0.606149
\(216\) 52.8344 0.0166432
\(217\) −2669.25 −0.835024
\(218\) −2352.37 −0.730838
\(219\) 83.8709i 0.0258789i
\(220\) 93.1861 0.0285573
\(221\) 272.458i 0.0829300i
\(222\) 78.3751 0.0236946
\(223\) 2167.13i 0.650770i 0.945582 + 0.325385i \(0.105494\pi\)
−0.945582 + 0.325385i \(0.894506\pi\)
\(224\) 994.002 0.296494
\(225\) −1949.41 −0.577603
\(226\) 3287.82 0.967709
\(227\) 4523.56i 1.32264i 0.750104 + 0.661320i \(0.230004\pi\)
−0.750104 + 0.661320i \(0.769996\pi\)
\(228\) −20.2340 −0.00587732
\(229\) 493.569i 0.142428i −0.997461 0.0712139i \(-0.977313\pi\)
0.997461 0.0712139i \(-0.0226873\pi\)
\(230\) 2335.20i 0.669471i
\(231\) −12.1880 −0.00347147
\(232\) −2126.47 −0.601765
\(233\) −417.669 −0.117435 −0.0587177 0.998275i \(-0.518701\pi\)
−0.0587177 + 0.998275i \(0.518701\pi\)
\(234\) 541.188i 0.151190i
\(235\) 4198.17 1.16536
\(236\) 1509.19i 0.416270i
\(237\) 86.4923i 0.0237058i
\(238\) 1688.00i 0.459735i
\(239\) −1920.77 −0.519850 −0.259925 0.965629i \(-0.583698\pi\)
−0.259925 + 0.965629i \(0.583698\pi\)
\(240\) 14.2175i 0.00382390i
\(241\) 3148.64i 0.841584i −0.907157 0.420792i \(-0.861752\pi\)
0.907157 0.420792i \(-0.138248\pi\)
\(242\) 2641.43i 0.701642i
\(243\) 267.350i 0.0705783i
\(244\) −2781.18 −0.729700
\(245\) −4517.10 −1.17791
\(246\) 87.5445 0.0226896
\(247\) 414.633i 0.106812i
\(248\) −687.450 −0.176021
\(249\) −8.14837 −0.00207382
\(250\) 2865.34i 0.724881i
\(251\) 1308.03i 0.328934i 0.986383 + 0.164467i \(0.0525904\pi\)
−0.986383 + 0.164467i \(0.947410\pi\)
\(252\) 3352.90i 0.838146i
\(253\) 515.565 0.128116
\(254\) 3040.68i 0.751139i
\(255\) −24.1440 −0.00592924
\(256\) 256.000 0.0625000
\(257\) 8167.52i 1.98240i −0.132382 0.991199i \(-0.542263\pi\)
0.132382 0.991199i \(-0.457737\pi\)
\(258\) −64.3679 −0.0155325
\(259\) 9950.22i 2.38717i
\(260\) 291.344 0.0694937
\(261\) 7172.85i 1.70110i
\(262\) 2554.73i 0.602412i
\(263\) −185.643 −0.0435256 −0.0217628 0.999763i \(-0.506928\pi\)
−0.0217628 + 0.999763i \(0.506928\pi\)
\(264\) −3.13894 −0.000731775
\(265\) −3501.66 −0.811718
\(266\) 2568.83i 0.592125i
\(267\) 139.231i 0.0319131i
\(268\) −1533.25 −0.349470
\(269\) 4197.58 + 1358.48i 0.951416 + 0.307910i
\(270\) −95.9417 −0.0216253
\(271\) 5940.84i 1.33166i −0.746103 0.665831i \(-0.768077\pi\)
0.746103 0.665831i \(-0.231923\pi\)
\(272\) 434.736i 0.0969107i
\(273\) −38.1053 −0.00844776
\(274\) 4043.82 0.891591
\(275\) 231.697 0.0508068
\(276\) 78.6604i 0.0171551i
\(277\) 1194.15i 0.259022i 0.991578 + 0.129511i \(0.0413408\pi\)
−0.991578 + 0.129511i \(0.958659\pi\)
\(278\) −538.418 −0.116159
\(279\) 2318.86i 0.497586i
\(280\) −1805.00 −0.385249
\(281\) 6228.31i 1.32224i −0.750280 0.661120i \(-0.770081\pi\)
0.750280 0.661120i \(-0.229919\pi\)
\(282\) −141.414 −0.0298620
\(283\) −5882.70 −1.23566 −0.617828 0.786314i \(-0.711987\pi\)
−0.617828 + 0.786314i \(0.711987\pi\)
\(284\) 4216.60i 0.881019i
\(285\) 36.7428 0.00763669
\(286\) 64.3228i 0.0132989i
\(287\) 11114.3i 2.28592i
\(288\) 863.521i 0.176679i
\(289\) 4174.74 0.849733
\(290\) 3861.44 0.781902
\(291\) 3.56211i 0.000717575i
\(292\) −2742.32 −0.549596
\(293\) −2627.25 −0.523841 −0.261921 0.965089i \(-0.584356\pi\)
−0.261921 + 0.965089i \(0.584356\pi\)
\(294\) 152.157 0.0301836
\(295\) 2740.52i 0.540879i
\(296\) 2562.62i 0.503208i
\(297\) 21.1820i 0.00413840i
\(298\) 561.537i 0.109158i
\(299\) 1611.90 0.311768
\(300\) 35.3503i 0.00680317i
\(301\) 8171.91i 1.56485i
\(302\) 4543.60i 0.865745i
\(303\) 84.5708 0.0160345
\(304\) 661.590i 0.124818i
\(305\) 5050.33 0.948135
\(306\) −1466.42 −0.273953
\(307\) 2129.41 0.395870 0.197935 0.980215i \(-0.436577\pi\)
0.197935 + 0.980215i \(0.436577\pi\)
\(308\) 398.509i 0.0737245i
\(309\) 60.6714i 0.0111698i
\(310\) 1248.34 0.228712
\(311\) 6693.56i 1.22044i −0.792232 0.610220i \(-0.791081\pi\)
0.792232 0.610220i \(-0.208919\pi\)
\(312\) −9.81382 −0.00178076
\(313\) 6519.74 1.17737 0.588686 0.808362i \(-0.299646\pi\)
0.588686 + 0.808362i \(0.299646\pi\)
\(314\) −324.120 −0.0582520
\(315\) 6088.51i 1.08904i
\(316\) 2828.03 0.503447
\(317\) 5992.74i 1.06178i −0.847439 0.530892i \(-0.821857\pi\)
0.847439 0.530892i \(-0.178143\pi\)
\(318\) 117.952 0.0208001
\(319\) 852.529i 0.149632i
\(320\) −464.869 −0.0812093
\(321\) 225.872 0.0392739
\(322\) −9986.44 −1.72833
\(323\) 1123.50 0.193540
\(324\) −2911.15 −0.499169
\(325\) 724.394 0.123637
\(326\) −5197.82 −0.883070
\(327\) −143.889 −0.0243336
\(328\) 2862.44i 0.481865i
\(329\) 17953.4i 3.00852i
\(330\) 5.69999 0.000950831
\(331\) 7466.81 1.23992 0.619959 0.784634i \(-0.287149\pi\)
0.619959 + 0.784634i \(0.287149\pi\)
\(332\) 266.427i 0.0440423i
\(333\) −8644.07 −1.42250
\(334\) −873.102 −0.143036
\(335\) 2784.21 0.454083
\(336\) 60.8010 0.00987192
\(337\) 308.183i 0.0498154i 0.999690 + 0.0249077i \(0.00792919\pi\)
−0.999690 + 0.0249077i \(0.992071\pi\)
\(338\) 4192.90i 0.674744i
\(339\) 201.109 0.0322204
\(340\) 789.434i 0.125921i
\(341\) 275.608i 0.0437683i
\(342\) 2231.63 0.352844
\(343\) 8662.83i 1.36370i
\(344\) 2104.63i 0.329867i
\(345\) 142.839i 0.0222904i
\(346\) 8094.14i 1.25764i
\(347\) 2712.41 0.419625 0.209812 0.977742i \(-0.432715\pi\)
0.209812 + 0.977742i \(0.432715\pi\)
\(348\) −130.071 −0.0200361
\(349\) −5057.24 −0.775668 −0.387834 0.921729i \(-0.626777\pi\)
−0.387834 + 0.921729i \(0.626777\pi\)
\(350\) −4487.95 −0.685402
\(351\) 66.2249i 0.0100707i
\(352\) 102.634i 0.0155409i
\(353\) 7714.10 1.16312 0.581558 0.813505i \(-0.302443\pi\)
0.581558 + 0.813505i \(0.302443\pi\)
\(354\) 92.3137i 0.0138599i
\(355\) 7656.91i 1.14475i
\(356\) 4552.42 0.677746
\(357\) 103.251i 0.0153071i
\(358\) −3257.86 −0.480959
\(359\) 12270.4i 1.80392i 0.431823 + 0.901959i \(0.357871\pi\)
−0.431823 + 0.901959i \(0.642129\pi\)
\(360\) 1568.06i 0.229567i
\(361\) 5149.23 0.750726
\(362\) 6482.20 0.941151
\(363\) 161.570i 0.0233616i
\(364\) 1245.93i 0.179407i
\(365\) 4979.76 0.714117
\(366\) −170.119 −0.0242958
\(367\) 2970.62i 0.422520i 0.977430 + 0.211260i \(0.0677567\pi\)
−0.977430 + 0.211260i \(0.932243\pi\)
\(368\) −2571.95 −0.364327
\(369\) −9655.37 −1.36216
\(370\) 4653.46i 0.653843i
\(371\) 14974.8i 2.09556i
\(372\) −42.0498 −0.00586071
\(373\) 9243.34i 1.28312i 0.767075 + 0.641558i \(0.221712\pi\)
−0.767075 + 0.641558i \(0.778288\pi\)
\(374\) 174.291 0.0240973
\(375\) 175.267i 0.0241353i
\(376\) 4623.81i 0.634188i
\(377\) 2665.41i 0.364126i
\(378\) 410.293i 0.0558285i
\(379\) 13810.3i 1.87174i −0.352349 0.935869i \(-0.614617\pi\)
0.352349 0.935869i \(-0.385383\pi\)
\(380\) 1201.38i 0.162183i
\(381\) 185.992i 0.0250096i
\(382\) 6151.40i 0.823908i
\(383\) 13891.0i 1.85326i 0.375975 + 0.926630i \(0.377308\pi\)
−0.375975 + 0.926630i \(0.622692\pi\)
\(384\) 15.6590 0.00208097
\(385\) 723.650i 0.0957938i
\(386\) −3939.39 −0.519455
\(387\) 7099.20 0.932487
\(388\) −116.470 −0.0152393
\(389\) −7854.08 −1.02370 −0.511848 0.859076i \(-0.671039\pi\)
−0.511848 + 0.859076i \(0.671039\pi\)
\(390\) 17.8209 0.00231383
\(391\) 4367.66i 0.564915i
\(392\) 4975.07i 0.641017i
\(393\) 156.267i 0.0200576i
\(394\) 2180.76 0.278846
\(395\) −5135.41 −0.654153
\(396\) 346.197 0.0439319
\(397\) 9957.88i 1.25887i 0.777053 + 0.629436i \(0.216714\pi\)
−0.777053 + 0.629436i \(0.783286\pi\)
\(398\) 3702.39i 0.466292i
\(399\) 157.130i 0.0197151i
\(400\) −1155.85 −0.144481
\(401\) 8394.48i 1.04539i −0.852520 0.522694i \(-0.824927\pi\)
0.852520 0.522694i \(-0.175073\pi\)
\(402\) −93.7854 −0.0116358
\(403\) 861.680i 0.106510i
\(404\) 2765.20i 0.340530i
\(405\) 5286.35 0.648594
\(406\) 16513.4i 2.01859i
\(407\) 1027.39 0.125125
\(408\) 26.5918i 0.00322670i
\(409\) 3999.23i 0.483495i −0.970339 0.241747i \(-0.922279\pi\)
0.970339 0.241747i \(-0.0777205\pi\)
\(410\) 5197.88i 0.626110i
\(411\) 247.351 0.0296860
\(412\) −1983.77 −0.237217
\(413\) 11719.8 1.39635
\(414\) 8675.53i 1.02990i
\(415\) 483.803i 0.0572264i
\(416\) 320.882i 0.0378185i
\(417\) −32.9339 −0.00386758
\(418\) −265.240 −0.0310366
\(419\) 12862.8 1.49974 0.749870 0.661585i \(-0.230116\pi\)
0.749870 + 0.661585i \(0.230116\pi\)
\(420\) −110.408 −0.0128271
\(421\) 6298.92 0.729194 0.364597 0.931165i \(-0.381207\pi\)
0.364597 + 0.931165i \(0.381207\pi\)
\(422\) 4247.73i 0.489991i
\(423\) 15596.7 1.79276
\(424\) 3856.68i 0.441738i
\(425\) 1962.84i 0.224028i
\(426\) 257.921i 0.0293340i
\(427\) 21597.7i 2.44774i
\(428\) 7385.31i 0.834071i
\(429\) 3.93449i 0.000442795i
\(430\) 3821.79i 0.428612i
\(431\) 6881.85i 0.769112i −0.923102 0.384556i \(-0.874355\pi\)
0.923102 0.384556i \(-0.125645\pi\)
\(432\) 105.669i 0.0117685i
\(433\) −8331.33 −0.924661 −0.462330 0.886708i \(-0.652987\pi\)
−0.462330 + 0.886708i \(0.652987\pi\)
\(434\) 5338.49i 0.590451i
\(435\) 236.196 0.0260339
\(436\) 4704.74i 0.516780i
\(437\) 6646.79i 0.727595i
\(438\) −167.742 −0.0182991
\(439\) 16612.5 1.80609 0.903045 0.429545i \(-0.141326\pi\)
0.903045 + 0.429545i \(0.141326\pi\)
\(440\) 186.372i 0.0201931i
\(441\) −16781.5 −1.81207
\(442\) 544.917 0.0586404
\(443\) 4223.25i 0.452941i −0.974018 0.226470i \(-0.927281\pi\)
0.974018 0.226470i \(-0.0727186\pi\)
\(444\) 156.750i 0.0167546i
\(445\) −8266.71 −0.880629
\(446\) 4334.26 0.460164
\(447\) 34.3480i 0.00363446i
\(448\) 1988.00i 0.209653i
\(449\) −7728.23 −0.812289 −0.406145 0.913809i \(-0.633127\pi\)
−0.406145 + 0.913809i \(0.633127\pi\)
\(450\) 3898.82i 0.408427i
\(451\) 1147.59 0.119818
\(452\) 6575.63i 0.684274i
\(453\) 277.922i 0.0288255i
\(454\) 9047.13 0.935248
\(455\) 2262.47i 0.233113i
\(456\) 40.4680i 0.00415590i
\(457\) 17690.5 1.81078 0.905388 0.424586i \(-0.139580\pi\)
0.905388 + 0.424586i \(0.139580\pi\)
\(458\) −987.138 −0.100712
\(459\) −179.445 −0.0182479
\(460\) 4670.40 0.473388
\(461\) 7931.13i 0.801279i −0.916236 0.400639i \(-0.868788\pi\)
0.916236 0.400639i \(-0.131212\pi\)
\(462\) 24.3759i 0.00245470i
\(463\) 427.435i 0.0429040i 0.999770 + 0.0214520i \(0.00682891\pi\)
−0.999770 + 0.0214520i \(0.993171\pi\)
\(464\) 4252.94i 0.425512i
\(465\) 76.3581 0.00761510
\(466\) 835.339i 0.0830393i
\(467\) 13725.1i 1.36000i 0.733212 + 0.680000i \(0.238020\pi\)
−0.733212 + 0.680000i \(0.761980\pi\)
\(468\) 1082.38 0.106908
\(469\) 11906.6i 1.17228i
\(470\) 8396.35i 0.824031i
\(471\) −19.8257 −0.00193953
\(472\) 3018.37 0.294347
\(473\) −843.775 −0.0820229
\(474\) 172.985 0.0167625
\(475\) 2987.09i 0.288542i
\(476\) −3376.00 −0.325081
\(477\) −13009.1 −1.24873
\(478\) 3841.54i 0.367590i
\(479\) 7925.52i 0.756005i −0.925805 0.378002i \(-0.876611\pi\)
0.925805 0.378002i \(-0.123389\pi\)
\(480\) −28.4350 −0.00270391
\(481\) 3212.11 0.304489
\(482\) −6297.28 −0.595090
\(483\) −610.849 −0.0575457
\(484\) 5282.85 0.496136
\(485\) 211.497 0.0198012
\(486\) −534.701 −0.0499064
\(487\) 21429.7 1.99399 0.996993 0.0774867i \(-0.0246895\pi\)
0.996993 + 0.0774867i \(0.0246895\pi\)
\(488\) 5562.36i 0.515976i
\(489\) −317.940 −0.0294023
\(490\) 9034.20i 0.832905i
\(491\) −5643.24 −0.518688 −0.259344 0.965785i \(-0.583506\pi\)
−0.259344 + 0.965785i \(0.583506\pi\)
\(492\) 175.089i 0.0160440i
\(493\) 7222.28 0.659787
\(494\) −829.265 −0.0755271
\(495\) −628.657 −0.0570829
\(496\) 1374.90i 0.124465i
\(497\) −32744.6 −2.95533
\(498\) 16.2967i 0.00146641i
\(499\) 19020.6i 1.70637i 0.521604 + 0.853187i \(0.325334\pi\)
−0.521604 + 0.853187i \(0.674666\pi\)
\(500\) 5730.69 0.512568
\(501\) −53.4058 −0.00476246
\(502\) 2616.07 0.232591
\(503\) 10333.1i 0.915965i −0.888961 0.457982i \(-0.848572\pi\)
0.888961 0.457982i \(-0.151428\pi\)
\(504\) −6705.80 −0.592659
\(505\) 5021.32i 0.442467i
\(506\) 1031.13i 0.0905915i
\(507\) 256.470i 0.0224660i
\(508\) −6081.36 −0.531136
\(509\) 11741.1i 1.02243i 0.859453 + 0.511215i \(0.170805\pi\)
−0.859453 + 0.511215i \(0.829195\pi\)
\(510\) 48.2880i 0.00419260i
\(511\) 21295.9i 1.84359i
\(512\) 512.000i 0.0441942i
\(513\) 273.083 0.0235028
\(514\) −16335.0 −1.40177
\(515\) 3602.31 0.308227
\(516\) 128.736i 0.0109831i
\(517\) −1853.74 −0.157694
\(518\) −19900.4 −1.68798
\(519\) 495.101i 0.0418739i
\(520\) 582.687i 0.0491395i
\(521\) 23455.7i 1.97238i −0.165605 0.986192i \(-0.552958\pi\)
0.165605 0.986192i \(-0.447042\pi\)
\(522\) 14345.7 1.20286
\(523\) 4737.20i 0.396067i −0.980195 0.198034i \(-0.936544\pi\)
0.980195 0.198034i \(-0.0634555\pi\)
\(524\) −5109.46 −0.425969
\(525\) −274.518 −0.0228208
\(526\) 371.286i 0.0307772i
\(527\) 2334.84 0.192993
\(528\) 6.27789i 0.000517443i
\(529\) 13672.6 1.12375
\(530\) 7003.32i 0.573971i
\(531\) 10181.4i 0.832078i
\(532\) 5137.67 0.418696
\(533\) 3587.90 0.291575
\(534\) 278.462 0.0225659
\(535\) 13410.9i 1.08375i
\(536\) 3066.49i 0.247112i
\(537\) −199.276 −0.0160138
\(538\) 2716.95 8395.15i 0.217725 0.672752i
\(539\) 1994.57 0.159392
\(540\) 191.883i 0.0152914i
\(541\) 16504.9i 1.31165i −0.754915 0.655823i \(-0.772322\pi\)
0.754915 0.655823i \(-0.227678\pi\)
\(542\) −11881.7 −0.941627
\(543\) 396.502 0.0313362
\(544\) −869.471 −0.0685262
\(545\) 8543.31i 0.671478i
\(546\) 76.2106i 0.00597347i
\(547\) 2430.36 0.189972 0.0949861 0.995479i \(-0.469719\pi\)
0.0949861 + 0.995479i \(0.469719\pi\)
\(548\) 8087.63i 0.630450i
\(549\) 18762.6 1.45859
\(550\) 463.394i 0.0359258i
\(551\) −10991.0 −0.849787
\(552\) −157.321 −0.0121305
\(553\) 21961.5i 1.68878i
\(554\) 2388.29 0.183157
\(555\) 284.642i 0.0217701i
\(556\) 1076.84i 0.0821368i
\(557\) 19699.4i 1.49854i 0.662263 + 0.749272i \(0.269596\pi\)
−0.662263 + 0.749272i \(0.730404\pi\)
\(558\) 4637.72 0.351846
\(559\) −2638.04 −0.199601
\(560\) 3610.01i 0.272412i
\(561\) 10.6610 0.000802333
\(562\) −12456.6 −0.934965
\(563\) −10922.1 −0.817606 −0.408803 0.912623i \(-0.634054\pi\)
−0.408803 + 0.912623i \(0.634054\pi\)
\(564\) 282.828i 0.0211156i
\(565\) 11940.7i 0.889110i
\(566\) 11765.4i 0.873740i
\(567\) 22607.0i 1.67443i
\(568\) −8433.21 −0.622975
\(569\) 2918.32i 0.215013i −0.994204 0.107506i \(-0.965713\pi\)
0.994204 0.107506i \(-0.0342866\pi\)
\(570\) 73.4857i 0.00539996i
\(571\) 7609.77i 0.557722i −0.960332 0.278861i \(-0.910043\pi\)
0.960332 0.278861i \(-0.0899568\pi\)
\(572\) −128.646 −0.00940375
\(573\) 376.268i 0.0274325i
\(574\) −22228.7 −1.61639
\(575\) 11612.4 0.842212
\(576\) −1727.04 −0.124931
\(577\) 16744.6i 1.20813i 0.796937 + 0.604063i \(0.206452\pi\)
−0.796937 + 0.604063i \(0.793548\pi\)
\(578\) 8349.48i 0.600852i
\(579\) −240.964 −0.0172956
\(580\) 7722.89i 0.552889i
\(581\) 2068.97 0.147737
\(582\) −7.12421 −0.000507402
\(583\) 1546.19 0.109840
\(584\) 5484.64i 0.388623i
\(585\) −1965.48 −0.138910
\(586\) 5254.50i 0.370412i
\(587\) 6105.40 0.429296 0.214648 0.976691i \(-0.431140\pi\)
0.214648 + 0.976691i \(0.431140\pi\)
\(588\) 304.314i 0.0213430i
\(589\) −3553.20 −0.248569
\(590\) −5481.05 −0.382460
\(591\) 133.392 0.00928432
\(592\) −5125.25 −0.355822
\(593\) −24079.3 −1.66749 −0.833743 0.552152i \(-0.813807\pi\)
−0.833743 + 0.552152i \(0.813807\pi\)
\(594\) 42.3640 0.00292629
\(595\) 6130.46 0.422394
\(596\) −1123.07 −0.0771860
\(597\) 226.467i 0.0155254i
\(598\) 3223.80i 0.220453i
\(599\) −13036.2 −0.889224 −0.444612 0.895723i \(-0.646658\pi\)
−0.444612 + 0.895723i \(0.646658\pi\)
\(600\) −70.7006 −0.00481057
\(601\) 23316.0i 1.58250i 0.611495 + 0.791248i \(0.290568\pi\)
−0.611495 + 0.791248i \(0.709432\pi\)
\(602\) 16343.8 1.10652
\(603\) 10343.7 0.698552
\(604\) −9087.20 −0.612174
\(605\) −9593.11 −0.644653
\(606\) 169.142i 0.0113381i
\(607\) 5393.06i 0.360622i −0.983610 0.180311i \(-0.942290\pi\)
0.983610 0.180311i \(-0.0577104\pi\)
\(608\) 1323.18 0.0882599
\(609\) 1010.09i 0.0672099i
\(610\) 10100.7i 0.670433i
\(611\) −5795.68 −0.383745
\(612\) 2932.84i 0.193714i
\(613\) 3038.78i 0.200221i 0.994976 + 0.100110i \(0.0319196\pi\)
−0.994976 + 0.100110i \(0.968080\pi\)
\(614\) 4258.82i 0.279922i
\(615\) 317.943i 0.0208467i
\(616\) 797.017 0.0521311
\(617\) 13293.5 0.867385 0.433692 0.901061i \(-0.357210\pi\)
0.433692 + 0.901061i \(0.357210\pi\)
\(618\) −121.343 −0.00789826
\(619\) 7323.81 0.475555 0.237778 0.971320i \(-0.423581\pi\)
0.237778 + 0.971320i \(0.423581\pi\)
\(620\) 2496.67i 0.161724i
\(621\) 1061.62i 0.0686013i
\(622\) −13387.1 −0.862982
\(623\) 35352.5i 2.27346i
\(624\) 19.6276i 0.00125919i
\(625\) −1376.27 −0.0880814
\(626\) 13039.5i 0.832527i
\(627\) −16.2242 −0.00103338
\(628\) 648.240i 0.0411904i
\(629\) 8703.63i 0.551727i
\(630\) 12177.0 0.770070
\(631\) −10301.6 −0.649922 −0.324961 0.945727i \(-0.605351\pi\)
−0.324961 + 0.945727i \(0.605351\pi\)
\(632\) 5656.06i 0.355991i
\(633\) 259.824i 0.0163145i
\(634\) −11985.5 −0.750795
\(635\) 11043.1 0.690130
\(636\) 235.905i 0.0147079i
\(637\) 6235.97 0.387877
\(638\) −1705.06 −0.105805
\(639\) 28446.3i 1.76106i
\(640\) 929.738i 0.0574236i
\(641\) −28814.6 −1.77552 −0.887761 0.460304i \(-0.847740\pi\)
−0.887761 + 0.460304i \(0.847740\pi\)
\(642\) 451.743i 0.0277709i
\(643\) 21689.4 1.33024 0.665121 0.746736i \(-0.268380\pi\)
0.665121 + 0.746736i \(0.268380\pi\)
\(644\) 19972.9i 1.22211i
\(645\) 233.771i 0.0142709i
\(646\) 2247.00i 0.136853i
\(647\) 8098.38i 0.492087i 0.969259 + 0.246044i \(0.0791306\pi\)
−0.969259 + 0.246044i \(0.920869\pi\)
\(648\) 5822.30i 0.352966i
\(649\) 1210.11i 0.0731907i
\(650\) 1448.79i 0.0874249i
\(651\) 326.544i 0.0196594i
\(652\) 10395.6i 0.624425i
\(653\) −8898.08 −0.533244 −0.266622 0.963801i \(-0.585908\pi\)
−0.266622 + 0.963801i \(0.585908\pi\)
\(654\) 287.779i 0.0172065i
\(655\) 9278.25 0.553483
\(656\) −5724.87 −0.340730
\(657\) 18500.4 1.09858
\(658\) 35906.8 2.12735
\(659\) 29685.7 1.75477 0.877383 0.479790i \(-0.159287\pi\)
0.877383 + 0.479790i \(0.159287\pi\)
\(660\) 11.4000i 0.000672339i
\(661\) 20652.3i 1.21525i −0.794224 0.607625i \(-0.792123\pi\)
0.794224 0.607625i \(-0.207877\pi\)
\(662\) 14933.6i 0.876755i
\(663\) 33.3314 0.00195246
\(664\) 532.853 0.0311426
\(665\) −9329.47 −0.544032
\(666\) 17288.1i 1.00586i
\(667\) 42727.9i 2.48041i
\(668\) 1746.20i 0.101142i
\(669\) 265.117 0.0153214
\(670\) 5568.43i 0.321085i
\(671\) −2230.02 −0.128300
\(672\) 121.602i 0.00698050i
\(673\) 10310.0i 0.590525i −0.955416 0.295262i \(-0.904593\pi\)
0.955416 0.295262i \(-0.0954070\pi\)
\(674\) 616.366 0.0352248
\(675\) 477.097i 0.0272051i
\(676\) 8385.79 0.477116
\(677\) 23022.6i 1.30699i −0.756932 0.653494i \(-0.773303\pi\)
0.756932 0.653494i \(-0.226697\pi\)
\(678\) 402.217i 0.0227833i
\(679\) 904.464i 0.0511195i
\(680\) 1578.87 0.0890395
\(681\) 553.393 0.0311396
\(682\) −551.216 −0.0309489
\(683\) 16684.0i 0.934691i 0.884075 + 0.467346i \(0.154790\pi\)
−0.884075 + 0.467346i \(0.845210\pi\)
\(684\) 4463.25i 0.249498i
\(685\) 14686.3i 0.819174i
\(686\) −17325.7 −0.964281
\(687\) −60.3811 −0.00335325
\(688\) 4209.27 0.233251
\(689\) 4834.13 0.267294
\(690\) 285.678 0.0157617
\(691\) 778.602i 0.0428645i −0.999770 0.0214323i \(-0.993177\pi\)
0.999770 0.0214323i \(-0.00682263\pi\)
\(692\) −16188.3 −0.889286
\(693\) 2688.44i 0.147367i
\(694\) 5424.82i 0.296719i
\(695\) 1955.42i 0.106724i
\(696\) 260.143i 0.0141677i
\(697\) 9721.90i 0.528326i
\(698\) 10114.5i 0.548480i
\(699\) 51.0959i 0.00276484i
\(700\) 8975.89i 0.484653i
\(701\) 15688.2i 0.845271i −0.906300 0.422636i \(-0.861105\pi\)
0.906300 0.422636i \(-0.138895\pi\)
\(702\) 132.450 0.00712108
\(703\) 13245.4i 0.710609i
\(704\) 205.268 0.0109891
\(705\) 513.586i 0.0274366i
\(706\) 15428.2i 0.822448i
\(707\) −21473.6 −1.14229
\(708\) 184.627 0.00980045
\(709\) 20712.4i 1.09714i 0.836106 + 0.548568i \(0.184827\pi\)
−0.836106 + 0.548568i \(0.815173\pi\)
\(710\) 15313.8 0.809461
\(711\) −19078.6 −1.00634
\(712\) 9104.84i 0.479239i
\(713\) 13813.2i 0.725538i
\(714\) −206.503 −0.0108238
\(715\) 233.607 0.0122187
\(716\) 6515.72i 0.340089i
\(717\) 234.979i 0.0122391i
\(718\) 24540.8 1.27556
\(719\) 17274.8i 0.896024i −0.894028 0.448012i \(-0.852132\pi\)
0.894028 0.448012i \(-0.147868\pi\)
\(720\) 3136.13 0.162329
\(721\) 15405.2i 0.795729i
\(722\) 10298.5i 0.530844i
\(723\) −385.191 −0.0198138
\(724\) 12964.4i 0.665495i
\(725\) 19202.1i 0.983653i
\(726\) 323.141 0.0165191
\(727\) −9015.71 −0.459937 −0.229968 0.973198i \(-0.573862\pi\)
−0.229968 + 0.973198i \(0.573862\pi\)
\(728\) 2491.85 0.126860
\(729\) 19617.6 0.996676
\(730\) 9959.53i 0.504957i
\(731\) 7148.12i 0.361673i
\(732\) 340.238i 0.0171797i
\(733\) 19576.5i 0.986458i 0.869899 + 0.493229i \(0.164184\pi\)
−0.869899 + 0.493229i \(0.835816\pi\)
\(734\) 5941.23 0.298767
\(735\) 552.602i 0.0277320i
\(736\) 5143.91i 0.257618i
\(737\) −1229.40 −0.0614456
\(738\) 19310.7i 0.963195i
\(739\) 3744.57i 0.186396i −0.995648 0.0931978i \(-0.970291\pi\)
0.995648 0.0931978i \(-0.0297089\pi\)
\(740\) 9306.92 0.462337
\(741\) −50.7244 −0.00251472
\(742\) −29949.6 −1.48178
\(743\) 33774.0 1.66763 0.833814 0.552046i \(-0.186153\pi\)
0.833814 + 0.552046i \(0.186153\pi\)
\(744\) 84.0997i 0.00414414i
\(745\) 2039.38 0.100292
\(746\) 18486.7 0.907300
\(747\) 1797.38i 0.0880359i
\(748\) 348.582i 0.0170394i
\(749\) −57351.7 −2.79784
\(750\) 350.534 0.0170662
\(751\) −8064.59 −0.391852 −0.195926 0.980619i \(-0.562771\pi\)
−0.195926 + 0.980619i \(0.562771\pi\)
\(752\) 9247.61 0.448438
\(753\) 160.019 0.00774426
\(754\) −5330.82 −0.257476
\(755\) 16501.4 0.795428
\(756\) −820.586 −0.0394767
\(757\) 5247.19i 0.251932i −0.992035 0.125966i \(-0.959797\pi\)
0.992035 0.125966i \(-0.0402030\pi\)
\(758\) −27620.6 −1.32352
\(759\) 63.0720i 0.00301630i
\(760\) −2402.75 −0.114680
\(761\) 26230.0i 1.24946i −0.780842 0.624729i \(-0.785210\pi\)
0.780842 0.624729i \(-0.214790\pi\)
\(762\) −371.984 −0.0176845
\(763\) 36535.3 1.73351
\(764\) 12302.8 0.582591
\(765\) 5325.73i 0.251702i
\(766\) 27782.1 1.31045
\(767\) 3783.36i 0.178108i
\(768\) 31.3179i 0.00147147i
\(769\) −22118.8 −1.03722 −0.518611 0.855010i \(-0.673551\pi\)
−0.518611 + 0.855010i \(0.673551\pi\)
\(770\) −1447.30 −0.0677364
\(771\) −999.180 −0.0466726
\(772\) 7878.78i 0.367310i
\(773\) 14551.5 0.677076 0.338538 0.940953i \(-0.390068\pi\)
0.338538 + 0.940953i \(0.390068\pi\)
\(774\) 14198.4i 0.659368i
\(775\) 6207.71i 0.287726i
\(776\) 232.940i 0.0107758i
\(777\) −1217.27 −0.0562023
\(778\) 15708.2i 0.723862i
\(779\) 14795.0i 0.680469i
\(780\) 35.6417i 0.00163613i
\(781\) 3380.98i 0.154905i
\(782\) 8735.31 0.399455
\(783\) 1755.48 0.0801222
\(784\) −9950.13 −0.453268
\(785\) 1177.14i 0.0535207i
\(786\) −312.535 −0.0141829
\(787\) −15917.0 −0.720940 −0.360470 0.932771i \(-0.617384\pi\)
−0.360470 + 0.932771i \(0.617384\pi\)
\(788\) 4361.52i 0.197174i
\(789\) 22.7108i 0.00102475i
\(790\) 10270.8i 0.462556i
\(791\) −51064.0 −2.29536
\(792\) 692.394i 0.0310646i
\(793\) −6972.10 −0.312215
\(794\) 19915.8 0.890156
\(795\) 428.378i 0.0191107i
\(796\) −7404.79 −0.329718
\(797\) 27816.6i 1.23628i −0.786068 0.618140i \(-0.787886\pi\)
0.786068 0.618140i \(-0.212114\pi\)
\(798\) 314.260 0.0139407
\(799\) 15704.2i 0.695336i
\(800\) 2311.69i 0.102163i
\(801\) −30711.8 −1.35474
\(802\) −16789.0 −0.739201
\(803\) −2198.86 −0.0966329
\(804\) 187.571i 0.00822775i
\(805\) 36268.6i 1.58795i
\(806\) −1723.36 −0.0753136
\(807\) 166.190 513.513i 0.00724928 0.0223997i
\(808\) −5530.41 −0.240791
\(809\) 125.653i 0.00546073i −0.999996 0.00273037i \(-0.999131\pi\)
0.999996 0.00273037i \(-0.000869104\pi\)
\(810\) 10572.7i 0.458625i
\(811\) −23561.6 −1.02017 −0.510086 0.860123i \(-0.670387\pi\)
−0.510086 + 0.860123i \(0.670387\pi\)
\(812\) 33026.8 1.42736
\(813\) −726.777 −0.0313520
\(814\) 2054.78i 0.0884767i
\(815\) 18877.4i 0.811345i
\(816\) −53.1837 −0.00228162
\(817\) 10878.2i 0.465824i
\(818\) −7998.47 −0.341882
\(819\) 8405.34i 0.358616i
\(820\) 10395.8 0.442727
\(821\) −13635.4 −0.579631 −0.289816 0.957083i \(-0.593594\pi\)
−0.289816 + 0.957083i \(0.593594\pi\)
\(822\) 494.703i 0.0209912i
\(823\) 10832.5 0.458804 0.229402 0.973332i \(-0.426323\pi\)
0.229402 + 0.973332i \(0.426323\pi\)
\(824\) 3967.54i 0.167737i
\(825\) 28.3448i 0.00119617i
\(826\) 23439.6i 0.987371i
\(827\) −32051.0 −1.34767 −0.673835 0.738882i \(-0.735354\pi\)
−0.673835 + 0.738882i \(0.735354\pi\)
\(828\) 17351.1 0.728250
\(829\) 8792.02i 0.368347i 0.982894 + 0.184173i \(0.0589608\pi\)
−0.982894 + 0.184173i \(0.941039\pi\)
\(830\) −967.605 −0.0404651
\(831\) 146.087 0.00609830
\(832\) 641.763 0.0267417
\(833\) 16897.2i 0.702824i
\(834\) 65.8678i 0.00273479i
\(835\) 3170.92i 0.131418i
\(836\) 530.480i 0.0219462i
\(837\) 567.515 0.0234363
\(838\) 25725.7i 1.06048i
\(839\) 20675.3i 0.850765i −0.905014 0.425382i \(-0.860140\pi\)
0.905014 0.425382i \(-0.139860\pi\)
\(840\) 220.816i 0.00907011i
\(841\) −46265.2 −1.89697
\(842\) 12597.8i 0.515618i
\(843\) −761.944 −0.0311302
\(844\) 8495.46 0.346476
\(845\) −15227.7 −0.619940
\(846\) 31193.4i 1.26767i
\(847\) 41024.7i 1.66426i
\(848\) −7713.35 −0.312356
\(849\) 719.665i 0.0290917i
\(850\) 3925.68 0.158412
\(851\) 51491.8 2.07417
\(852\) −515.841 −0.0207423
\(853\) 31131.7i 1.24962i −0.780776 0.624811i \(-0.785176\pi\)
0.780776 0.624811i \(-0.214824\pi\)
\(854\) 43195.3 1.73081
\(855\) 8104.80i 0.324185i
\(856\) −14770.6 −0.589777
\(857\) 44684.1i 1.78107i 0.454910 + 0.890537i \(0.349671\pi\)
−0.454910 + 0.890537i \(0.650329\pi\)
\(858\) −7.86898 −0.000313103
\(859\) 30638.1 1.21695 0.608474 0.793574i \(-0.291782\pi\)
0.608474 + 0.793574i \(0.291782\pi\)
\(860\) −7643.58 −0.303075
\(861\) −1359.68 −0.0538185
\(862\) −13763.7 −0.543844
\(863\) 26688.4 1.05271 0.526353 0.850266i \(-0.323559\pi\)
0.526353 + 0.850266i \(0.323559\pi\)
\(864\) −211.337 −0.00832158
\(865\) 29396.2 1.15549
\(866\) 16662.7i 0.653834i
\(867\) 510.719i 0.0200057i
\(868\) 10677.0 0.417512
\(869\) 2267.59 0.0885186
\(870\) 472.392i 0.0184087i
\(871\) −3843.68 −0.149527
\(872\) 9409.48 0.365419
\(873\) 785.736 0.0304618
\(874\) −13293.6 −0.514487
\(875\) 44502.5i 1.71938i
\(876\) 335.484i 0.0129394i
\(877\) −22694.3 −0.873809 −0.436905 0.899508i \(-0.643925\pi\)
−0.436905 + 0.899508i \(0.643925\pi\)
\(878\) 33225.1i 1.27710i
\(879\) 321.406i 0.0123331i
\(880\) −372.744 −0.0142786
\(881\) 8706.87i 0.332965i −0.986044 0.166482i \(-0.946759\pi\)
0.986044 0.166482i \(-0.0532409\pi\)
\(882\) 33563.1i 1.28132i
\(883\) 21582.4i 0.822543i 0.911513 + 0.411272i \(0.134915\pi\)
−0.911513 + 0.411272i \(0.865085\pi\)
\(884\) 1089.83i 0.0414650i
\(885\) −335.264 −0.0127342
\(886\) −8446.50 −0.320277
\(887\) 15786.3 0.597579 0.298790 0.954319i \(-0.403417\pi\)
0.298790 + 0.954319i \(0.403417\pi\)
\(888\) −313.500 −0.0118473
\(889\) 47225.7i 1.78166i
\(890\) 16533.4i 0.622699i
\(891\) −2334.24 −0.0877665
\(892\) 8668.52i 0.325385i
\(893\) 23898.9i 0.895573i
\(894\) −68.6960 −0.00256995
\(895\) 11831.9i 0.441895i
\(896\) −3976.01 −0.148247
\(897\) 197.193i 0.00734011i
\(898\) 15456.5i 0.574375i
\(899\) −22841.3 −0.847385
\(900\) 7797.64 0.288801
\(901\) 13098.7i 0.484330i
\(902\) 2295.18i 0.0847240i
\(903\) 999.717 0.0368422
\(904\) −13151.3 −0.483855
\(905\) 23542.0i 0.864709i
\(906\) −555.845 −0.0203827
\(907\) 9745.82 0.356786 0.178393 0.983959i \(-0.442910\pi\)
0.178393 + 0.983959i \(0.442910\pi\)
\(908\) 18094.3i 0.661320i
\(909\) 18654.8i 0.680682i
\(910\) −4524.94 −0.164836
\(911\) 646.928i 0.0235276i 0.999931 + 0.0117638i \(0.00374463\pi\)
−0.999931 + 0.0117638i \(0.996255\pi\)
\(912\) 80.9360 0.00293866
\(913\) 213.628i 0.00774376i
\(914\) 35380.9i 1.28041i
\(915\) 617.836i 0.0223224i
\(916\) 1974.28i 0.0712139i
\(917\) 39678.3i 1.42889i
\(918\) 358.890i 0.0129032i
\(919\) 10915.2i 0.391795i 0.980624 + 0.195897i \(0.0627620\pi\)
−0.980624 + 0.195897i \(0.937238\pi\)
\(920\) 9340.79i 0.334736i
\(921\) 260.503i 0.00932016i
\(922\) −15862.3 −0.566590
\(923\) 10570.6i 0.376960i
\(924\) 48.7518 0.00173573
\(925\) 23140.6 0.822551
\(926\) 854.869 0.0303377
\(927\) 13383.0 0.474170
\(928\) 8505.87 0.300882
\(929\) 31007.7i 1.09508i 0.836780 + 0.547540i \(0.184436\pi\)
−0.836780 + 0.547540i \(0.815564\pi\)
\(930\) 152.716i 0.00538469i
\(931\) 25714.5i 0.905218i
\(932\) 1670.68 0.0587177
\(933\) −818.861 −0.0287335
\(934\) 27450.1 0.961665
\(935\) 632.989i 0.0221401i
\(936\) 2164.75i 0.0755952i
\(937\) 8644.64i 0.301396i 0.988580 + 0.150698i \(0.0481521\pi\)
−0.988580 + 0.150698i \(0.951848\pi\)
\(938\) 23813.3 0.828925
\(939\) 797.596i 0.0277195i
\(940\) −16792.7 −0.582678
\(941\) 18563.7i 0.643102i 0.946892 + 0.321551i \(0.104204\pi\)
−0.946892 + 0.321551i \(0.895796\pi\)
\(942\) 39.6514i 0.00137146i
\(943\) 57516.0 1.98619
\(944\) 6036.74i 0.208135i
\(945\) 1490.10 0.0512940
\(946\) 1687.55i 0.0579989i
\(947\) 56236.7i 1.92972i 0.262758 + 0.964862i \(0.415368\pi\)
−0.262758 + 0.964862i \(0.584632\pi\)
\(948\) 345.969i 0.0118529i
\(949\) −6874.69 −0.235155
\(950\) −5974.19 −0.204030
\(951\) −733.126 −0.0249981
\(952\) 6752.00i 0.229867i
\(953\) 18539.4i 0.630169i −0.949064 0.315084i \(-0.897967\pi\)
0.949064 0.315084i \(-0.102033\pi\)
\(954\) 26018.1i 0.882985i
\(955\) −22340.6 −0.756989
\(956\) 7683.08 0.259925
\(957\) −104.295 −0.00352285
\(958\) −15851.0 −0.534576
\(959\) −62805.6 −2.11481
\(960\) 56.8701i 0.00191195i
\(961\) 22406.8 0.752134
\(962\) 6424.21i 0.215307i
\(963\) 49823.2i 1.66722i
\(964\) 12594.6i 0.420792i
\(965\) 14307.0i 0.477264i
\(966\) 1221.70i 0.0406910i
\(967\) 39149.7i 1.30193i 0.759106 + 0.650967i \(0.225637\pi\)
−0.759106 + 0.650967i \(0.774363\pi\)
\(968\) 10565.7i 0.350821i
\(969\) 137.444i 0.00455661i
\(970\) 422.994i 0.0140016i
\(971\) −32454.4 −1.07262 −0.536308 0.844022i \(-0.680181\pi\)
−0.536308 + 0.844022i \(0.680181\pi\)
\(972\) 1069.40i 0.0352892i
\(973\) 8362.33 0.275523
\(974\) 42859.4i 1.40996i
\(975\) 88.6193i 0.00291086i
\(976\) 11124.7 0.364850
\(977\) 22864.2 0.748712 0.374356 0.927285i \(-0.377864\pi\)
0.374356 + 0.927285i \(0.377864\pi\)
\(978\) 635.879i 0.0207906i
\(979\) 3650.25 0.119165
\(980\) 18068.4 0.588953
\(981\) 31739.4i 1.03299i
\(982\) 11286.5i 0.366768i
\(983\) 25559.0 0.829304 0.414652 0.909980i \(-0.363903\pi\)
0.414652 + 0.909980i \(0.363903\pi\)
\(984\) −350.178 −0.0113448
\(985\) 7920.06i 0.256197i
\(986\) 14444.6i 0.466540i
\(987\) 2196.34 0.0708312
\(988\) 1658.53i 0.0534058i
\(989\) −42289.2 −1.35967
\(990\) 1257.31i 0.0403637i
\(991\) 8692.11i 0.278622i 0.990249 + 0.139311i \(0.0444887\pi\)
−0.990249 + 0.139311i \(0.955511\pi\)
\(992\) 2749.80 0.0880103
\(993\) 913.457i 0.0291920i
\(994\) 65489.3i 2.08973i
\(995\) 13446.3 0.428419
\(996\) 32.5935 0.00103691
\(997\) −12135.9 −0.385505 −0.192752 0.981247i \(-0.561741\pi\)
−0.192752 + 0.981247i \(0.561741\pi\)
\(998\) 38041.3 1.20659
\(999\) 2115.54i 0.0669998i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.b.a.537.17 68
269.268 even 2 inner 538.4.b.a.537.52 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.b.a.537.17 68 1.1 even 1 trivial
538.4.b.a.537.52 yes 68 269.268 even 2 inner