Properties

Label 538.4.b.a.537.2
Level $538$
Weight $4$
Character 538.537
Analytic conductor $31.743$
Analytic rank $0$
Dimension $68$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [538,4,Mod(537,538)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(538, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([1]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("538.537");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 538 = 2 \cdot 269 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 538.b (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(31.7430275831\)
Analytic rank: \(0\)
Dimension: \(68\)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

Embedding invariants

Embedding label 537.2
Character \(\chi\) \(=\) 538.537
Dual form 538.4.b.a.537.67

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.00000i q^{2} -9.56359i q^{3} -4.00000 q^{4} -14.2576 q^{5} -19.1272 q^{6} -26.9416i q^{7} +8.00000i q^{8} -64.4623 q^{9} +28.5153i q^{10} -0.346824 q^{11} +38.2544i q^{12} -23.3585 q^{13} -53.8833 q^{14} +136.354i q^{15} +16.0000 q^{16} -24.9509i q^{17} +128.925i q^{18} +47.1782i q^{19} +57.0305 q^{20} -257.659 q^{21} +0.693648i q^{22} +35.8457 q^{23} +76.5087 q^{24} +78.2799 q^{25} +46.7170i q^{26} +358.274i q^{27} +107.767i q^{28} -302.462i q^{29} +272.708 q^{30} -273.996i q^{31} -32.0000i q^{32} +3.31688i q^{33} -49.9019 q^{34} +384.124i q^{35} +257.849 q^{36} -72.6312 q^{37} +94.3564 q^{38} +223.391i q^{39} -114.061i q^{40} -65.4647 q^{41} +515.318i q^{42} +331.031 q^{43} +1.38730 q^{44} +919.079 q^{45} -71.6914i q^{46} -303.561 q^{47} -153.017i q^{48} -382.852 q^{49} -156.560i q^{50} -238.620 q^{51} +93.4341 q^{52} -276.628 q^{53} +716.548 q^{54} +4.94489 q^{55} +215.533 q^{56} +451.193 q^{57} -604.924 q^{58} +245.103i q^{59} -545.416i q^{60} +653.364 q^{61} -547.991 q^{62} +1736.72i q^{63} -64.0000 q^{64} +333.037 q^{65} +6.63377 q^{66} -201.060 q^{67} +99.8037i q^{68} -342.814i q^{69} +768.248 q^{70} -443.585i q^{71} -515.698i q^{72} -216.738 q^{73} +145.262i q^{74} -748.637i q^{75} -188.713i q^{76} +9.34401i q^{77} +446.783 q^{78} +857.697 q^{79} -228.122 q^{80} +1685.90 q^{81} +130.929i q^{82} -804.747i q^{83} +1030.64 q^{84} +355.741i q^{85} -662.061i q^{86} -2892.62 q^{87} -2.77459i q^{88} +1065.44 q^{89} -1838.16i q^{90} +629.317i q^{91} -143.383 q^{92} -2620.38 q^{93} +607.123i q^{94} -672.649i q^{95} -306.035 q^{96} +933.748 q^{97} +765.705i q^{98} +22.3571 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 68 q - 272 q^{4} + 38 q^{5} - 4 q^{6} - 594 q^{9} + 18 q^{11} - 114 q^{13} + 8 q^{14} + 1088 q^{16} - 152 q^{20} - 20 q^{21} - 224 q^{23} + 16 q^{24} + 1098 q^{25} + 384 q^{30} - 600 q^{34} + 2376 q^{36}+ \cdots + 3370 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/538\mathbb{Z}\right)^\times\).

\(n\) \(271\)
\(\chi(n)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.00000i 0.707107i
\(3\) 9.56359i 1.84051i −0.391315 0.920257i \(-0.627980\pi\)
0.391315 0.920257i \(-0.372020\pi\)
\(4\) −4.00000 −0.500000
\(5\) −14.2576 −1.27524 −0.637620 0.770351i \(-0.720081\pi\)
−0.637620 + 0.770351i \(0.720081\pi\)
\(6\) −19.1272 −1.30144
\(7\) 26.9416i 1.45471i −0.686260 0.727356i \(-0.740749\pi\)
0.686260 0.727356i \(-0.259251\pi\)
\(8\) 8.00000i 0.353553i
\(9\) −64.4623 −2.38749
\(10\) 28.5153i 0.901731i
\(11\) −0.346824 −0.00950649 −0.00475325 0.999989i \(-0.501513\pi\)
−0.00475325 + 0.999989i \(0.501513\pi\)
\(12\) 38.2544i 0.920257i
\(13\) −23.3585 −0.498345 −0.249173 0.968459i \(-0.580159\pi\)
−0.249173 + 0.968459i \(0.580159\pi\)
\(14\) −53.8833 −1.02864
\(15\) 136.354i 2.34710i
\(16\) 16.0000 0.250000
\(17\) 24.9509i 0.355970i −0.984033 0.177985i \(-0.943042\pi\)
0.984033 0.177985i \(-0.0569579\pi\)
\(18\) 128.925i 1.68821i
\(19\) 47.1782i 0.569654i 0.958579 + 0.284827i \(0.0919362\pi\)
−0.958579 + 0.284827i \(0.908064\pi\)
\(20\) 57.0305 0.637620
\(21\) −257.659 −2.67742
\(22\) 0.693648i 0.00672211i
\(23\) 35.8457 0.324972 0.162486 0.986711i \(-0.448049\pi\)
0.162486 + 0.986711i \(0.448049\pi\)
\(24\) 76.5087 0.650720
\(25\) 78.2799 0.626239
\(26\) 46.7170i 0.352383i
\(27\) 358.274i 2.55370i
\(28\) 107.767i 0.727356i
\(29\) 302.462i 1.93675i −0.249500 0.968375i \(-0.580266\pi\)
0.249500 0.968375i \(-0.419734\pi\)
\(30\) 272.708 1.65965
\(31\) 273.996i 1.58745i −0.608274 0.793727i \(-0.708138\pi\)
0.608274 0.793727i \(-0.291862\pi\)
\(32\) 32.0000i 0.176777i
\(33\) 3.31688i 0.0174968i
\(34\) −49.9019 −0.251709
\(35\) 384.124i 1.85511i
\(36\) 257.849 1.19375
\(37\) −72.6312 −0.322716 −0.161358 0.986896i \(-0.551587\pi\)
−0.161358 + 0.986896i \(0.551587\pi\)
\(38\) 94.3564 0.402806
\(39\) 223.391i 0.917211i
\(40\) 114.061i 0.450866i
\(41\) −65.4647 −0.249363 −0.124681 0.992197i \(-0.539791\pi\)
−0.124681 + 0.992197i \(0.539791\pi\)
\(42\) 515.318i 1.89322i
\(43\) 331.031 1.17399 0.586996 0.809590i \(-0.300310\pi\)
0.586996 + 0.809590i \(0.300310\pi\)
\(44\) 1.38730 0.00475325
\(45\) 919.079 3.04463
\(46\) 71.6914i 0.229790i
\(47\) −303.561 −0.942106 −0.471053 0.882105i \(-0.656126\pi\)
−0.471053 + 0.882105i \(0.656126\pi\)
\(48\) 153.017i 0.460128i
\(49\) −382.852 −1.11619
\(50\) 156.560i 0.442818i
\(51\) −238.620 −0.655168
\(52\) 93.4341 0.249173
\(53\) −276.628 −0.716939 −0.358470 0.933541i \(-0.616701\pi\)
−0.358470 + 0.933541i \(0.616701\pi\)
\(54\) 716.548 1.80574
\(55\) 4.94489 0.0121231
\(56\) 215.533 0.514318
\(57\) 451.193 1.04846
\(58\) −604.924 −1.36949
\(59\) 245.103i 0.540842i 0.962742 + 0.270421i \(0.0871629\pi\)
−0.962742 + 0.270421i \(0.912837\pi\)
\(60\) 545.416i 1.17355i
\(61\) 653.364 1.37139 0.685694 0.727890i \(-0.259499\pi\)
0.685694 + 0.727890i \(0.259499\pi\)
\(62\) −547.991 −1.12250
\(63\) 1736.72i 3.47311i
\(64\) −64.0000 −0.125000
\(65\) 333.037 0.635510
\(66\) 6.63377 0.0123721
\(67\) −201.060 −0.366617 −0.183309 0.983055i \(-0.558681\pi\)
−0.183309 + 0.983055i \(0.558681\pi\)
\(68\) 99.8037i 0.177985i
\(69\) 342.814i 0.598115i
\(70\) 768.248 1.31176
\(71\) 443.585i 0.741463i −0.928740 0.370732i \(-0.879107\pi\)
0.928740 0.370732i \(-0.120893\pi\)
\(72\) 515.698i 0.844106i
\(73\) −216.738 −0.347496 −0.173748 0.984790i \(-0.555588\pi\)
−0.173748 + 0.984790i \(0.555588\pi\)
\(74\) 145.262i 0.228195i
\(75\) 748.637i 1.15260i
\(76\) 188.713i 0.284827i
\(77\) 9.34401i 0.0138292i
\(78\) 446.783 0.648566
\(79\) 857.697 1.22150 0.610749 0.791824i \(-0.290868\pi\)
0.610749 + 0.791824i \(0.290868\pi\)
\(80\) −228.122 −0.318810
\(81\) 1685.90 2.31262
\(82\) 130.929i 0.176326i
\(83\) 804.747i 1.06425i −0.846667 0.532123i \(-0.821394\pi\)
0.846667 0.532123i \(-0.178606\pi\)
\(84\) 1030.64 1.33871
\(85\) 355.741i 0.453947i
\(86\) 662.061i 0.830138i
\(87\) −2892.62 −3.56461
\(88\) 2.77459i 0.00336105i
\(89\) 1065.44 1.26895 0.634476 0.772942i \(-0.281216\pi\)
0.634476 + 0.772942i \(0.281216\pi\)
\(90\) 1838.16i 2.15288i
\(91\) 629.317i 0.724949i
\(92\) −143.383 −0.162486
\(93\) −2620.38 −2.92173
\(94\) 607.123i 0.666169i
\(95\) 672.649i 0.726446i
\(96\) −306.035 −0.325360
\(97\) 933.748 0.977399 0.488700 0.872452i \(-0.337471\pi\)
0.488700 + 0.872452i \(0.337471\pi\)
\(98\) 765.705i 0.789264i
\(99\) 22.3571 0.0226967
\(100\) −313.120 −0.313120
\(101\) 185.401i 0.182655i −0.995821 0.0913274i \(-0.970889\pi\)
0.995821 0.0913274i \(-0.0291110\pi\)
\(102\) 477.241i 0.463274i
\(103\) −514.660 −0.492339 −0.246170 0.969227i \(-0.579172\pi\)
−0.246170 + 0.969227i \(0.579172\pi\)
\(104\) 186.868i 0.176192i
\(105\) 3673.60 3.41435
\(106\) 553.256i 0.506953i
\(107\) 392.691i 0.354794i −0.984139 0.177397i \(-0.943232\pi\)
0.984139 0.177397i \(-0.0567676\pi\)
\(108\) 1433.10i 1.27685i
\(109\) 1235.67i 1.08583i −0.839787 0.542917i \(-0.817320\pi\)
0.839787 0.542917i \(-0.182680\pi\)
\(110\) 9.88978i 0.00857230i
\(111\) 694.615i 0.593963i
\(112\) 431.066i 0.363678i
\(113\) 928.456i 0.772937i −0.922303 0.386468i \(-0.873695\pi\)
0.922303 0.386468i \(-0.126305\pi\)
\(114\) 902.386i 0.741370i
\(115\) −511.075 −0.414417
\(116\) 1209.85i 0.968375i
\(117\) 1505.74 1.18979
\(118\) 490.206 0.382433
\(119\) −672.219 −0.517834
\(120\) −1090.83 −0.829825
\(121\) −1330.88 −0.999910
\(122\) 1306.73i 0.969718i
\(123\) 626.078i 0.458956i
\(124\) 1095.98i 0.793727i
\(125\) 666.118 0.476635
\(126\) 3473.44 2.45586
\(127\) 504.854 0.352744 0.176372 0.984324i \(-0.443564\pi\)
0.176372 + 0.984324i \(0.443564\pi\)
\(128\) 128.000i 0.0883883i
\(129\) 3165.84i 2.16075i
\(130\) 666.074i 0.449373i
\(131\) −2146.56 −1.43165 −0.715825 0.698280i \(-0.753949\pi\)
−0.715825 + 0.698280i \(0.753949\pi\)
\(132\) 13.2675i 0.00874842i
\(133\) 1271.06 0.828683
\(134\) 402.120i 0.259238i
\(135\) 5108.13i 3.25658i
\(136\) 199.607 0.125854
\(137\) 2998.64i 1.87001i 0.354633 + 0.935005i \(0.384606\pi\)
−0.354633 + 0.935005i \(0.615394\pi\)
\(138\) −685.627 −0.422931
\(139\) 2373.35i 1.44823i 0.689677 + 0.724117i \(0.257753\pi\)
−0.689677 + 0.724117i \(0.742247\pi\)
\(140\) 1536.50i 0.927554i
\(141\) 2903.14i 1.73396i
\(142\) −887.171 −0.524294
\(143\) 8.10130 0.00473751
\(144\) −1031.40 −0.596873
\(145\) 4312.39i 2.46982i
\(146\) 433.475i 0.245717i
\(147\) 3661.44i 2.05436i
\(148\) 290.525 0.161358
\(149\) −81.2644 −0.0446808 −0.0223404 0.999750i \(-0.507112\pi\)
−0.0223404 + 0.999750i \(0.507112\pi\)
\(150\) −1497.27 −0.815012
\(151\) 2683.65 1.44631 0.723154 0.690686i \(-0.242691\pi\)
0.723154 + 0.690686i \(0.242691\pi\)
\(152\) −377.426 −0.201403
\(153\) 1608.39i 0.849875i
\(154\) 18.6880 0.00977873
\(155\) 3906.53i 2.02439i
\(156\) 893.565i 0.458606i
\(157\) 268.464i 0.136470i −0.997669 0.0682348i \(-0.978263\pi\)
0.997669 0.0682348i \(-0.0217367\pi\)
\(158\) 1715.39i 0.863730i
\(159\) 2645.56i 1.31954i
\(160\) 456.244i 0.225433i
\(161\) 965.742i 0.472740i
\(162\) 3371.81i 1.63527i
\(163\) 2770.72i 1.33141i 0.746215 + 0.665705i \(0.231869\pi\)
−0.746215 + 0.665705i \(0.768131\pi\)
\(164\) 261.859 0.124681
\(165\) 47.2909i 0.0223127i
\(166\) −1609.49 −0.752535
\(167\) 3441.58i 1.59472i 0.603507 + 0.797358i \(0.293770\pi\)
−0.603507 + 0.797358i \(0.706230\pi\)
\(168\) 2061.27i 0.946610i
\(169\) −1651.38 −0.751652
\(170\) 711.482 0.320989
\(171\) 3041.22i 1.36004i
\(172\) −1324.12 −0.586996
\(173\) 1187.14 0.521716 0.260858 0.965377i \(-0.415995\pi\)
0.260858 + 0.965377i \(0.415995\pi\)
\(174\) 5785.24i 2.52056i
\(175\) 2108.99i 0.910998i
\(176\) −5.54919 −0.00237662
\(177\) 2344.06 0.995427
\(178\) 2130.89i 0.897285i
\(179\) 848.139i 0.354150i 0.984197 + 0.177075i \(0.0566636\pi\)
−0.984197 + 0.177075i \(0.943336\pi\)
\(180\) −3676.32 −1.52231
\(181\) 2805.89i 1.15227i 0.817356 + 0.576133i \(0.195439\pi\)
−0.817356 + 0.576133i \(0.804561\pi\)
\(182\) 1258.63 0.512616
\(183\) 6248.51i 2.52406i
\(184\) 286.766i 0.114895i
\(185\) 1035.55 0.411541
\(186\) 5240.76i 2.06598i
\(187\) 8.65359i 0.00338403i
\(188\) 1214.25 0.471053
\(189\) 9652.49 3.71489
\(190\) −1345.30 −0.513675
\(191\) −4713.20 −1.78552 −0.892762 0.450529i \(-0.851235\pi\)
−0.892762 + 0.450529i \(0.851235\pi\)
\(192\) 612.070i 0.230064i
\(193\) 2310.77i 0.861829i −0.902393 0.430914i \(-0.858191\pi\)
0.902393 0.430914i \(-0.141809\pi\)
\(194\) 1867.50i 0.691126i
\(195\) 3185.03i 1.16967i
\(196\) 1531.41 0.558094
\(197\) 5266.35i 1.90463i 0.305120 + 0.952314i \(0.401304\pi\)
−0.305120 + 0.952314i \(0.598696\pi\)
\(198\) 44.7141i 0.0160490i
\(199\) 4285.74 1.52667 0.763337 0.646000i \(-0.223560\pi\)
0.763337 + 0.646000i \(0.223560\pi\)
\(200\) 626.239i 0.221409i
\(201\) 1922.85i 0.674765i
\(202\) −370.803 −0.129156
\(203\) −8148.82 −2.81741
\(204\) 954.482 0.327584
\(205\) 933.372 0.317998
\(206\) 1029.32i 0.348136i
\(207\) −2310.70 −0.775867
\(208\) −373.736 −0.124586
\(209\) 16.3625i 0.00541541i
\(210\) 7347.21i 2.41431i
\(211\) −1808.55 −0.590074 −0.295037 0.955486i \(-0.595332\pi\)
−0.295037 + 0.955486i \(0.595332\pi\)
\(212\) 1106.51 0.358470
\(213\) −4242.27 −1.36467
\(214\) −785.383 −0.250877
\(215\) −4719.71 −1.49712
\(216\) −2866.19 −0.902868
\(217\) −7381.89 −2.30929
\(218\) −2471.34 −0.767800
\(219\) 2072.79i 0.639571i
\(220\) −19.7796 −0.00606153
\(221\) 582.817i 0.177396i
\(222\) 1389.23 0.419996
\(223\) 1282.99i 0.385271i −0.981270 0.192635i \(-0.938297\pi\)
0.981270 0.192635i \(-0.0617034\pi\)
\(224\) −862.133 −0.257159
\(225\) −5046.10 −1.49514
\(226\) −1856.91 −0.546549
\(227\) 729.687i 0.213353i −0.994294 0.106676i \(-0.965979\pi\)
0.994294 0.106676i \(-0.0340208\pi\)
\(228\) −1804.77 −0.524228
\(229\) 4127.32i 1.19101i −0.803352 0.595504i \(-0.796952\pi\)
0.803352 0.595504i \(-0.203048\pi\)
\(230\) 1022.15i 0.293037i
\(231\) 89.3623 0.0254529
\(232\) 2419.69 0.684744
\(233\) −6507.96 −1.82983 −0.914916 0.403644i \(-0.867743\pi\)
−0.914916 + 0.403644i \(0.867743\pi\)
\(234\) 3011.49i 0.841312i
\(235\) 4328.06 1.20141
\(236\) 980.412i 0.270421i
\(237\) 8202.66i 2.24819i
\(238\) 1344.44i 0.366164i
\(239\) 3981.03 1.07745 0.538727 0.842480i \(-0.318905\pi\)
0.538727 + 0.842480i \(0.318905\pi\)
\(240\) 2181.67i 0.586775i
\(241\) 4314.62i 1.15323i −0.817015 0.576616i \(-0.804373\pi\)
0.817015 0.576616i \(-0.195627\pi\)
\(242\) 2661.76i 0.707043i
\(243\) 6449.89i 1.70272i
\(244\) −2613.46 −0.685694
\(245\) 5458.57 1.42341
\(246\) 1252.16 0.324531
\(247\) 1102.01i 0.283884i
\(248\) 2191.97 0.561250
\(249\) −7696.27 −1.95876
\(250\) 1332.24i 0.337032i
\(251\) 6343.86i 1.59530i −0.603118 0.797652i \(-0.706075\pi\)
0.603118 0.797652i \(-0.293925\pi\)
\(252\) 6946.88i 1.73656i
\(253\) −12.4322 −0.00308934
\(254\) 1009.71i 0.249428i
\(255\) 3402.16 0.835497
\(256\) 256.000 0.0625000
\(257\) 4333.01i 1.05170i −0.850578 0.525848i \(-0.823748\pi\)
0.850578 0.525848i \(-0.176252\pi\)
\(258\) −6331.68 −1.52788
\(259\) 1956.80i 0.469459i
\(260\) −1332.15 −0.317755
\(261\) 19497.4i 4.62397i
\(262\) 4293.13i 1.01233i
\(263\) −1683.63 −0.394741 −0.197370 0.980329i \(-0.563240\pi\)
−0.197370 + 0.980329i \(0.563240\pi\)
\(264\) −26.5351 −0.00618606
\(265\) 3944.06 0.914270
\(266\) 2542.12i 0.585967i
\(267\) 10189.5i 2.33553i
\(268\) 804.239 0.183309
\(269\) 900.216 + 4319.11i 0.204041 + 0.978962i
\(270\) −10216.3 −2.30275
\(271\) 1844.59i 0.413473i 0.978397 + 0.206736i \(0.0662842\pi\)
−0.978397 + 0.206736i \(0.933716\pi\)
\(272\) 399.215i 0.0889925i
\(273\) 6018.53 1.33428
\(274\) 5997.29 1.32230
\(275\) −27.1494 −0.00595334
\(276\) 1371.25i 0.299057i
\(277\) 1833.01i 0.397599i 0.980040 + 0.198800i \(0.0637043\pi\)
−0.980040 + 0.198800i \(0.936296\pi\)
\(278\) 4746.69 1.02406
\(279\) 17662.4i 3.79003i
\(280\) −3072.99 −0.655880
\(281\) 7945.63i 1.68682i 0.537269 + 0.843411i \(0.319456\pi\)
−0.537269 + 0.843411i \(0.680544\pi\)
\(282\) 5806.27 1.22609
\(283\) 3932.96 0.826114 0.413057 0.910705i \(-0.364461\pi\)
0.413057 + 0.910705i \(0.364461\pi\)
\(284\) 1774.34i 0.370732i
\(285\) −6432.94 −1.33703
\(286\) 16.2026i 0.00334993i
\(287\) 1763.73i 0.362751i
\(288\) 2062.79i 0.422053i
\(289\) 4290.45 0.873285
\(290\) 8624.77 1.74643
\(291\) 8929.98i 1.79892i
\(292\) 866.950 0.173748
\(293\) −4206.12 −0.838649 −0.419325 0.907836i \(-0.637733\pi\)
−0.419325 + 0.907836i \(0.637733\pi\)
\(294\) 7322.89 1.45265
\(295\) 3494.59i 0.689704i
\(296\) 581.050i 0.114097i
\(297\) 124.258i 0.0242767i
\(298\) 162.529i 0.0315941i
\(299\) −837.303 −0.161948
\(300\) 2994.55i 0.576301i
\(301\) 8918.51i 1.70782i
\(302\) 5367.31i 1.02269i
\(303\) −1773.10 −0.336179
\(304\) 754.852i 0.142414i
\(305\) −9315.42 −1.74885
\(306\) 3216.79 0.600953
\(307\) 4616.12 0.858162 0.429081 0.903266i \(-0.358838\pi\)
0.429081 + 0.903266i \(0.358838\pi\)
\(308\) 37.3761i 0.00691461i
\(309\) 4922.00i 0.906157i
\(310\) 7813.05 1.43146
\(311\) 6447.94i 1.17566i 0.808986 + 0.587828i \(0.200017\pi\)
−0.808986 + 0.587828i \(0.799983\pi\)
\(312\) −1787.13 −0.324283
\(313\) −9115.22 −1.64608 −0.823040 0.567984i \(-0.807723\pi\)
−0.823040 + 0.567984i \(0.807723\pi\)
\(314\) −536.927 −0.0964986
\(315\) 24761.5i 4.42906i
\(316\) −3430.79 −0.610749
\(317\) 4851.22i 0.859531i −0.902940 0.429766i \(-0.858596\pi\)
0.902940 0.429766i \(-0.141404\pi\)
\(318\) 5291.12 0.933054
\(319\) 104.901i 0.0184117i
\(320\) 912.488 0.159405
\(321\) −3755.54 −0.653003
\(322\) −1931.48 −0.334278
\(323\) 1177.14 0.202780
\(324\) −6743.61 −1.15631
\(325\) −1828.50 −0.312083
\(326\) 5541.45 0.941449
\(327\) −11817.5 −1.99849
\(328\) 523.718i 0.0881631i
\(329\) 8178.44i 1.37049i
\(330\) −94.5818 −0.0157774
\(331\) −10073.2 −1.67273 −0.836363 0.548176i \(-0.815322\pi\)
−0.836363 + 0.548176i \(0.815322\pi\)
\(332\) 3218.99i 0.532123i
\(333\) 4681.97 0.770482
\(334\) 6883.16 1.12763
\(335\) 2866.64 0.467526
\(336\) −4122.54 −0.669355
\(337\) 716.368i 0.115795i 0.998323 + 0.0578977i \(0.0184397\pi\)
−0.998323 + 0.0578977i \(0.981560\pi\)
\(338\) 3302.76i 0.531498i
\(339\) −8879.38 −1.42260
\(340\) 1422.96i 0.226974i
\(341\) 95.0283i 0.0150911i
\(342\) −6082.43 −0.961696
\(343\) 1073.69i 0.169020i
\(344\) 2648.24i 0.415069i
\(345\) 4887.71i 0.762740i
\(346\) 2374.29i 0.368909i
\(347\) 4793.79 0.741626 0.370813 0.928707i \(-0.379079\pi\)
0.370813 + 0.928707i \(0.379079\pi\)
\(348\) 11570.5 1.78231
\(349\) 8842.28 1.35621 0.678104 0.734966i \(-0.262802\pi\)
0.678104 + 0.734966i \(0.262802\pi\)
\(350\) −4217.98 −0.644173
\(351\) 8368.74i 1.27262i
\(352\) 11.0984i 0.00168053i
\(353\) −8455.54 −1.27491 −0.637454 0.770488i \(-0.720013\pi\)
−0.637454 + 0.770488i \(0.720013\pi\)
\(354\) 4688.13i 0.703873i
\(355\) 6324.47i 0.945544i
\(356\) −4261.77 −0.634476
\(357\) 6428.83i 0.953080i
\(358\) 1696.28 0.250422
\(359\) 9150.79i 1.34529i 0.739964 + 0.672646i \(0.234842\pi\)
−0.739964 + 0.672646i \(0.765158\pi\)
\(360\) 7352.63i 1.07644i
\(361\) 4633.22 0.675494
\(362\) 5611.78 0.814775
\(363\) 12728.0i 1.84035i
\(364\) 2517.27i 0.362474i
\(365\) 3090.16 0.443141
\(366\) −12497.0 −1.78478
\(367\) 7829.22i 1.11357i −0.830655 0.556787i \(-0.812034\pi\)
0.830655 0.556787i \(-0.187966\pi\)
\(368\) 573.531 0.0812429
\(369\) 4220.01 0.595352
\(370\) 2071.10i 0.291003i
\(371\) 7452.82i 1.04294i
\(372\) 10481.5 1.46087
\(373\) 5.42489i 0.000753056i 1.00000 0.000376528i \(0.000119853\pi\)
−1.00000 0.000376528i \(0.999880\pi\)
\(374\) 17.3072 0.00239287
\(375\) 6370.48i 0.877254i
\(376\) 2428.49i 0.333085i
\(377\) 7065.06i 0.965170i
\(378\) 19305.0i 2.62683i
\(379\) 7786.46i 1.05531i −0.849458 0.527656i \(-0.823071\pi\)
0.849458 0.527656i \(-0.176929\pi\)
\(380\) 2690.60i 0.363223i
\(381\) 4828.22i 0.649231i
\(382\) 9426.40i 1.26256i
\(383\) 3165.06i 0.422264i 0.977458 + 0.211132i \(0.0677150\pi\)
−0.977458 + 0.211132i \(0.932285\pi\)
\(384\) 1224.14 0.162680
\(385\) 133.223i 0.0176356i
\(386\) −4621.54 −0.609405
\(387\) −21339.0 −2.80290
\(388\) −3734.99 −0.488700
\(389\) −2591.46 −0.337769 −0.168885 0.985636i \(-0.554017\pi\)
−0.168885 + 0.985636i \(0.554017\pi\)
\(390\) −6370.06 −0.827078
\(391\) 894.384i 0.115680i
\(392\) 3062.82i 0.394632i
\(393\) 20528.9i 2.63497i
\(394\) 10532.7 1.34678
\(395\) −12228.7 −1.55771
\(396\) −89.4283 −0.0113483
\(397\) 14460.4i 1.82808i −0.405628 0.914038i \(-0.632947\pi\)
0.405628 0.914038i \(-0.367053\pi\)
\(398\) 8571.48i 1.07952i
\(399\) 12155.9i 1.52520i
\(400\) 1252.48 0.156560
\(401\) 7839.19i 0.976236i −0.872778 0.488118i \(-0.837684\pi\)
0.872778 0.488118i \(-0.162316\pi\)
\(402\) 3845.71 0.477131
\(403\) 6400.13i 0.791100i
\(404\) 741.606i 0.0913274i
\(405\) −24037.0 −2.94915
\(406\) 16297.6i 1.99221i
\(407\) 25.1903 0.00306790
\(408\) 1908.96i 0.231637i
\(409\) 14087.3i 1.70311i −0.524264 0.851556i \(-0.675659\pi\)
0.524264 0.851556i \(-0.324341\pi\)
\(410\) 1866.74i 0.224858i
\(411\) 28677.8 3.44178
\(412\) 2058.64 0.246170
\(413\) 6603.48 0.786770
\(414\) 4621.39i 0.548621i
\(415\) 11473.8i 1.35717i
\(416\) 747.473i 0.0880958i
\(417\) 22697.7 2.66550
\(418\) −32.7251 −0.00382927
\(419\) −517.862 −0.0603799 −0.0301900 0.999544i \(-0.509611\pi\)
−0.0301900 + 0.999544i \(0.509611\pi\)
\(420\) −14694.4 −1.70718
\(421\) 14856.4 1.71986 0.859928 0.510416i \(-0.170509\pi\)
0.859928 + 0.510416i \(0.170509\pi\)
\(422\) 3617.10i 0.417245i
\(423\) 19568.2 2.24927
\(424\) 2213.02i 0.253476i
\(425\) 1953.16i 0.222922i
\(426\) 8484.54i 0.964970i
\(427\) 17602.7i 1.99498i
\(428\) 1570.77i 0.177397i
\(429\) 77.4775i 0.00871946i
\(430\) 9439.42i 1.05863i
\(431\) 4099.39i 0.458145i 0.973409 + 0.229073i \(0.0735693\pi\)
−0.973409 + 0.229073i \(0.926431\pi\)
\(432\) 5732.38i 0.638424i
\(433\) 42.9027 0.00476160 0.00238080 0.999997i \(-0.499242\pi\)
0.00238080 + 0.999997i \(0.499242\pi\)
\(434\) 14763.8i 1.63291i
\(435\) 41241.9 4.54574
\(436\) 4942.69i 0.542917i
\(437\) 1691.14i 0.185121i
\(438\) 4145.58 0.452245
\(439\) −10516.7 −1.14336 −0.571678 0.820478i \(-0.693707\pi\)
−0.571678 + 0.820478i \(0.693707\pi\)
\(440\) 39.5591i 0.00428615i
\(441\) 24679.5 2.66489
\(442\) 1165.63 0.125438
\(443\) 7146.01i 0.766405i 0.923664 + 0.383202i \(0.125179\pi\)
−0.923664 + 0.383202i \(0.874821\pi\)
\(444\) 2778.46i 0.296982i
\(445\) −15190.7 −1.61822
\(446\) −2565.98 −0.272427
\(447\) 777.180i 0.0822357i
\(448\) 1724.27i 0.181839i
\(449\) 4319.81 0.454041 0.227020 0.973890i \(-0.427102\pi\)
0.227020 + 0.973890i \(0.427102\pi\)
\(450\) 10092.2i 1.05722i
\(451\) 22.7048 0.00237057
\(452\) 3713.83i 0.386468i
\(453\) 25665.4i 2.66195i
\(454\) −1459.37 −0.150863
\(455\) 8972.57i 0.924484i
\(456\) 3609.55i 0.370685i
\(457\) −8335.47 −0.853209 −0.426605 0.904438i \(-0.640290\pi\)
−0.426605 + 0.904438i \(0.640290\pi\)
\(458\) −8254.64 −0.842170
\(459\) 8939.26 0.909039
\(460\) 2044.30 0.207209
\(461\) 9688.52i 0.978827i 0.872052 + 0.489413i \(0.162789\pi\)
−0.872052 + 0.489413i \(0.837211\pi\)
\(462\) 178.725i 0.0179979i
\(463\) 12914.8i 1.29633i −0.761500 0.648165i \(-0.775537\pi\)
0.761500 0.648165i \(-0.224463\pi\)
\(464\) 4839.39i 0.484187i
\(465\) 37360.4 3.72591
\(466\) 13015.9i 1.29389i
\(467\) 15570.3i 1.54284i −0.636324 0.771422i \(-0.719546\pi\)
0.636324 0.771422i \(-0.280454\pi\)
\(468\) −6022.97 −0.594897
\(469\) 5416.88i 0.533323i
\(470\) 8656.13i 0.849526i
\(471\) −2567.48 −0.251174
\(472\) −1960.82 −0.191217
\(473\) −114.809 −0.0111606
\(474\) −16405.3 −1.58971
\(475\) 3693.11i 0.356740i
\(476\) 2688.88 0.258917
\(477\) 17832.1 1.71169
\(478\) 7962.07i 0.761875i
\(479\) 2367.56i 0.225839i −0.993604 0.112919i \(-0.963980\pi\)
0.993604 0.112919i \(-0.0360201\pi\)
\(480\) 4363.33 0.414912
\(481\) 1696.56 0.160824
\(482\) −8629.24 −0.815458
\(483\) −9235.97 −0.870085
\(484\) 5323.52 0.499955
\(485\) −13313.0 −1.24642
\(486\) −12899.8 −1.20400
\(487\) −9266.89 −0.862265 −0.431132 0.902289i \(-0.641886\pi\)
−0.431132 + 0.902289i \(0.641886\pi\)
\(488\) 5226.91i 0.484859i
\(489\) 26498.1 2.45048
\(490\) 10917.1i 1.00650i
\(491\) −6708.71 −0.616619 −0.308309 0.951286i \(-0.599763\pi\)
−0.308309 + 0.951286i \(0.599763\pi\)
\(492\) 2504.31i 0.229478i
\(493\) −7546.70 −0.689425
\(494\) −2204.03 −0.200737
\(495\) −318.759 −0.0289437
\(496\) 4383.93i 0.396863i
\(497\) −11950.9 −1.07862
\(498\) 15392.5i 1.38505i
\(499\) 4033.98i 0.361895i 0.983493 + 0.180948i \(0.0579165\pi\)
−0.983493 + 0.180948i \(0.942084\pi\)
\(500\) −2664.47 −0.238318
\(501\) 32913.9 2.93510
\(502\) −12687.7 −1.12805
\(503\) 8071.90i 0.715523i −0.933813 0.357762i \(-0.883540\pi\)
0.933813 0.357762i \(-0.116460\pi\)
\(504\) −13893.8 −1.22793
\(505\) 2643.38i 0.232929i
\(506\) 24.8643i 0.00218449i
\(507\) 15793.1i 1.38343i
\(508\) −2019.42 −0.176372
\(509\) 8417.36i 0.732992i 0.930420 + 0.366496i \(0.119443\pi\)
−0.930420 + 0.366496i \(0.880557\pi\)
\(510\) 6804.32i 0.590785i
\(511\) 5839.27i 0.505507i
\(512\) 512.000i 0.0441942i
\(513\) −16902.7 −1.45472
\(514\) −8666.03 −0.743662
\(515\) 7337.83 0.627851
\(516\) 12663.4i 1.08038i
\(517\) 105.282 0.00895612
\(518\) 3913.61 0.331958
\(519\) 11353.4i 0.960225i
\(520\) 2664.30i 0.224687i
\(521\) 20975.0i 1.76378i −0.471453 0.881891i \(-0.656270\pi\)
0.471453 0.881891i \(-0.343730\pi\)
\(522\) 38994.7 3.26964
\(523\) 562.357i 0.0470175i −0.999724 0.0235088i \(-0.992516\pi\)
0.999724 0.0235088i \(-0.00748376\pi\)
\(524\) 8586.25 0.715825
\(525\) −20169.5 −1.67670
\(526\) 3367.25i 0.279124i
\(527\) −6836.45 −0.565086
\(528\) 53.0701i 0.00437421i
\(529\) −10882.1 −0.894393
\(530\) 7888.12i 0.646487i
\(531\) 15799.9i 1.29126i
\(532\) −5084.24 −0.414341
\(533\) 1529.16 0.124269
\(534\) −20378.9 −1.65147
\(535\) 5598.85i 0.452447i
\(536\) 1608.48i 0.129619i
\(537\) 8111.26 0.651818
\(538\) 8638.22 1800.43i 0.692231 0.144279i
\(539\) 132.782 0.0106110
\(540\) 20432.5i 1.62829i
\(541\) 8812.88i 0.700361i 0.936682 + 0.350180i \(0.113880\pi\)
−0.936682 + 0.350180i \(0.886120\pi\)
\(542\) 3689.19 0.292369
\(543\) 26834.4 2.12076
\(544\) −798.430 −0.0629272
\(545\) 17617.7i 1.38470i
\(546\) 12037.1i 0.943477i
\(547\) 13171.3 1.02955 0.514775 0.857325i \(-0.327876\pi\)
0.514775 + 0.857325i \(0.327876\pi\)
\(548\) 11994.6i 0.935005i
\(549\) −42117.3 −3.27418
\(550\) 54.2987i 0.00420964i
\(551\) 14269.6 1.10328
\(552\) 2742.51 0.211465
\(553\) 23107.8i 1.77693i
\(554\) 3666.02 0.281145
\(555\) 9903.56i 0.757446i
\(556\) 9493.39i 0.724117i
\(557\) 7094.31i 0.539669i −0.962907 0.269834i \(-0.913031\pi\)
0.962907 0.269834i \(-0.0869689\pi\)
\(558\) 35324.8 2.67996
\(559\) −7732.38 −0.585054
\(560\) 6145.98i 0.463777i
\(561\) 82.7594 0.00622835
\(562\) 15891.3 1.19276
\(563\) 5851.12 0.438002 0.219001 0.975725i \(-0.429720\pi\)
0.219001 + 0.975725i \(0.429720\pi\)
\(564\) 11612.5i 0.866979i
\(565\) 13237.6i 0.985680i
\(566\) 7865.92i 0.584151i
\(567\) 45421.0i 3.36420i
\(568\) 3548.68 0.262147
\(569\) 11893.5i 0.876274i −0.898908 0.438137i \(-0.855639\pi\)
0.898908 0.438137i \(-0.144361\pi\)
\(570\) 12865.9i 0.945426i
\(571\) 15906.0i 1.16575i 0.812562 + 0.582875i \(0.198072\pi\)
−0.812562 + 0.582875i \(0.801928\pi\)
\(572\) −32.4052 −0.00236876
\(573\) 45075.1i 3.28628i
\(574\) 3527.46 0.256504
\(575\) 2806.00 0.203510
\(576\) 4125.59 0.298436
\(577\) 320.673i 0.0231366i −0.999933 0.0115683i \(-0.996318\pi\)
0.999933 0.0115683i \(-0.00368238\pi\)
\(578\) 8580.90i 0.617506i
\(579\) −22099.3 −1.58621
\(580\) 17249.5i 1.23491i
\(581\) −21681.2 −1.54817
\(582\) −17860.0 −1.27203
\(583\) 95.9413 0.00681558
\(584\) 1733.90i 0.122858i
\(585\) −21468.3 −1.51727
\(586\) 8412.24i 0.593014i
\(587\) −9129.42 −0.641928 −0.320964 0.947091i \(-0.604007\pi\)
−0.320964 + 0.947091i \(0.604007\pi\)
\(588\) 14645.8i 1.02718i
\(589\) 12926.6 0.904299
\(590\) −6989.17 −0.487694
\(591\) 50365.2 3.50549
\(592\) −1162.10 −0.0806790
\(593\) −1090.60 −0.0755237 −0.0377619 0.999287i \(-0.512023\pi\)
−0.0377619 + 0.999287i \(0.512023\pi\)
\(594\) −248.516 −0.0171662
\(595\) 9584.25 0.660363
\(596\) 325.058 0.0223404
\(597\) 40987.1i 2.80987i
\(598\) 1674.61i 0.114515i
\(599\) −4370.22 −0.298101 −0.149050 0.988830i \(-0.547622\pi\)
−0.149050 + 0.988830i \(0.547622\pi\)
\(600\) 5989.09 0.407506
\(601\) 10814.8i 0.734020i −0.930217 0.367010i \(-0.880382\pi\)
0.930217 0.367010i \(-0.119618\pi\)
\(602\) −17837.0 −1.20761
\(603\) 12960.8 0.875296
\(604\) −10734.6 −0.723154
\(605\) 18975.2 1.27513
\(606\) 3546.21i 0.237714i
\(607\) 28235.1i 1.88802i −0.329923 0.944008i \(-0.607023\pi\)
0.329923 0.944008i \(-0.392977\pi\)
\(608\) 1509.70 0.100702
\(609\) 77932.0i 5.18549i
\(610\) 18630.8i 1.23662i
\(611\) 7090.74 0.469494
\(612\) 6433.57i 0.424938i
\(613\) 25067.1i 1.65163i 0.563939 + 0.825816i \(0.309285\pi\)
−0.563939 + 0.825816i \(0.690715\pi\)
\(614\) 9232.23i 0.606812i
\(615\) 8926.39i 0.585279i
\(616\) −74.7521 −0.00488936
\(617\) −21859.9 −1.42633 −0.713165 0.700997i \(-0.752739\pi\)
−0.713165 + 0.700997i \(0.752739\pi\)
\(618\) 9843.99 0.640750
\(619\) 21636.1 1.40489 0.702446 0.711737i \(-0.252091\pi\)
0.702446 + 0.711737i \(0.252091\pi\)
\(620\) 15626.1i 1.01219i
\(621\) 12842.6i 0.829879i
\(622\) 12895.9 0.831314
\(623\) 28704.8i 1.84596i
\(624\) 3574.26i 0.229303i
\(625\) −19282.2 −1.23406
\(626\) 18230.4i 1.16395i
\(627\) −156.485 −0.00996714
\(628\) 1073.85i 0.0682348i
\(629\) 1812.22i 0.114877i
\(630\) −49523.0 −3.13182
\(631\) −14629.4 −0.922961 −0.461481 0.887150i \(-0.652682\pi\)
−0.461481 + 0.887150i \(0.652682\pi\)
\(632\) 6861.57i 0.431865i
\(633\) 17296.2i 1.08604i
\(634\) −9702.43 −0.607781
\(635\) −7198.02 −0.449834
\(636\) 10582.2i 0.659769i
\(637\) 8942.87 0.556247
\(638\) 209.802 0.0130190
\(639\) 28594.5i 1.77024i
\(640\) 1824.98i 0.112716i
\(641\) −30108.7 −1.85526 −0.927629 0.373502i \(-0.878157\pi\)
−0.927629 + 0.373502i \(0.878157\pi\)
\(642\) 7511.08i 0.461743i
\(643\) 11114.6 0.681675 0.340837 0.940122i \(-0.389289\pi\)
0.340837 + 0.940122i \(0.389289\pi\)
\(644\) 3862.97i 0.236370i
\(645\) 45137.4i 2.75548i
\(646\) 2354.28i 0.143387i
\(647\) 6161.95i 0.374422i −0.982320 0.187211i \(-0.940055\pi\)
0.982320 0.187211i \(-0.0599448\pi\)
\(648\) 13487.2i 0.817636i
\(649\) 85.0076i 0.00514151i
\(650\) 3657.00i 0.220676i
\(651\) 70597.4i 4.25028i
\(652\) 11082.9i 0.665705i
\(653\) −18594.3 −1.11432 −0.557160 0.830405i \(-0.688109\pi\)
−0.557160 + 0.830405i \(0.688109\pi\)
\(654\) 23634.9i 1.41315i
\(655\) 30604.9 1.82570
\(656\) −1047.44 −0.0623407
\(657\) 13971.4 0.829644
\(658\) 16356.9 0.969085
\(659\) 19648.2 1.16143 0.580716 0.814106i \(-0.302772\pi\)
0.580716 + 0.814106i \(0.302772\pi\)
\(660\) 189.164i 0.0111563i
\(661\) 4200.79i 0.247189i −0.992333 0.123594i \(-0.960558\pi\)
0.992333 0.123594i \(-0.0394421\pi\)
\(662\) 20146.4i 1.18280i
\(663\) 5573.82 0.326500
\(664\) 6437.97 0.376268
\(665\) −18122.3 −1.05677
\(666\) 9363.94i 0.544813i
\(667\) 10842.0i 0.629389i
\(668\) 13766.3i 0.797358i
\(669\) −12270.0 −0.709096
\(670\) 5733.27i 0.330590i
\(671\) −226.602 −0.0130371
\(672\) 8245.08i 0.473305i
\(673\) 1662.17i 0.0952035i 0.998866 + 0.0476018i \(0.0151578\pi\)
−0.998866 + 0.0476018i \(0.984842\pi\)
\(674\) 1432.74 0.0818797
\(675\) 28045.6i 1.59922i
\(676\) 6605.52 0.375826
\(677\) 19318.9i 1.09673i 0.836239 + 0.548365i \(0.184749\pi\)
−0.836239 + 0.548365i \(0.815251\pi\)
\(678\) 17758.8i 1.00593i
\(679\) 25156.7i 1.42184i
\(680\) −2845.93 −0.160495
\(681\) −6978.43 −0.392678
\(682\) 190.057 0.0106710
\(683\) 13463.9i 0.754293i −0.926154 0.377146i \(-0.876905\pi\)
0.926154 0.377146i \(-0.123095\pi\)
\(684\) 12164.9i 0.680022i
\(685\) 42753.6i 2.38471i
\(686\) 2147.38 0.119515
\(687\) −39472.0 −2.19207
\(688\) 5296.49 0.293498
\(689\) 6461.62 0.357283
\(690\) 9775.42 0.539339
\(691\) 14909.1i 0.820792i 0.911907 + 0.410396i \(0.134610\pi\)
−0.911907 + 0.410396i \(0.865390\pi\)
\(692\) −4748.57 −0.260858
\(693\) 602.336i 0.0330171i
\(694\) 9587.59i 0.524409i
\(695\) 33838.3i 1.84685i
\(696\) 23141.0i 1.26028i
\(697\) 1633.41i 0.0887657i
\(698\) 17684.6i 0.958984i
\(699\) 62239.5i 3.36783i
\(700\) 8435.96i 0.455499i
\(701\) 25048.6i 1.34960i −0.737999 0.674802i \(-0.764229\pi\)
0.737999 0.674802i \(-0.235771\pi\)
\(702\) −16737.5 −0.899880
\(703\) 3426.61i 0.183836i
\(704\) 22.1967 0.00118831
\(705\) 41391.8i 2.21121i
\(706\) 16911.1i 0.901497i
\(707\) −4995.02 −0.265710
\(708\) −9376.26 −0.497714
\(709\) 34140.1i 1.80840i 0.427107 + 0.904201i \(0.359533\pi\)
−0.427107 + 0.904201i \(0.640467\pi\)
\(710\) 12648.9 0.668601
\(711\) −55289.1 −2.91632
\(712\) 8523.55i 0.448643i
\(713\) 9821.57i 0.515877i
\(714\) 12857.7 0.673930
\(715\) −115.505 −0.00604147
\(716\) 3392.56i 0.177075i
\(717\) 38073.0i 1.98307i
\(718\) 18301.6 0.951265
\(719\) 8695.64i 0.451033i 0.974239 + 0.225517i \(0.0724070\pi\)
−0.974239 + 0.225517i \(0.927593\pi\)
\(720\) 14705.3 0.761157
\(721\) 13865.8i 0.716212i
\(722\) 9266.43i 0.477647i
\(723\) −41263.2 −2.12254
\(724\) 11223.6i 0.576133i
\(725\) 23676.7i 1.21287i
\(726\) 25456.0 1.30132
\(727\) 17895.4 0.912934 0.456467 0.889740i \(-0.349115\pi\)
0.456467 + 0.889740i \(0.349115\pi\)
\(728\) −5034.54 −0.256308
\(729\) −16164.7 −0.821254
\(730\) 6180.33i 0.313348i
\(731\) 8259.52i 0.417906i
\(732\) 24994.0i 1.26203i
\(733\) 23167.4i 1.16741i 0.811967 + 0.583703i \(0.198397\pi\)
−0.811967 + 0.583703i \(0.801603\pi\)
\(734\) −15658.4 −0.787416
\(735\) 52203.5i 2.61980i
\(736\) 1147.06i 0.0574474i
\(737\) 69.7324 0.00348525
\(738\) 8440.01i 0.420977i
\(739\) 6585.41i 0.327805i −0.986477 0.163903i \(-0.947592\pi\)
0.986477 0.163903i \(-0.0524083\pi\)
\(740\) −4142.19 −0.205770
\(741\) −10539.2 −0.522493
\(742\) 14905.6 0.737470
\(743\) −10429.5 −0.514968 −0.257484 0.966283i \(-0.582893\pi\)
−0.257484 + 0.966283i \(0.582893\pi\)
\(744\) 20963.1i 1.03299i
\(745\) 1158.64 0.0569788
\(746\) 10.8498 0.000532491
\(747\) 51875.8i 2.54088i
\(748\) 34.6143i 0.00169201i
\(749\) −10579.8 −0.516123
\(750\) −12741.0 −0.620312
\(751\) 11440.4 0.555881 0.277941 0.960598i \(-0.410348\pi\)
0.277941 + 0.960598i \(0.410348\pi\)
\(752\) −4856.98 −0.235526
\(753\) −60670.1 −2.93618
\(754\) 14130.1 0.682478
\(755\) −38262.5 −1.84439
\(756\) −38609.9 −1.85745
\(757\) 13434.2i 0.645011i −0.946568 0.322506i \(-0.895475\pi\)
0.946568 0.322506i \(-0.104525\pi\)
\(758\) −15572.9 −0.746219
\(759\) 118.896i 0.00568597i
\(760\) 5381.20 0.256837
\(761\) 11860.5i 0.564972i −0.959271 0.282486i \(-0.908841\pi\)
0.959271 0.282486i \(-0.0911590\pi\)
\(762\) −9656.43 −0.459076
\(763\) −33291.0 −1.57958
\(764\) 18852.8 0.892762
\(765\) 22931.9i 1.08380i
\(766\) 6330.12 0.298586
\(767\) 5725.24i 0.269526i
\(768\) 2448.28i 0.115032i
\(769\) 35760.1 1.67691 0.838453 0.544974i \(-0.183460\pi\)
0.838453 + 0.544974i \(0.183460\pi\)
\(770\) −266.447 −0.0124702
\(771\) −41439.2 −1.93566
\(772\) 9243.09i 0.430914i
\(773\) 21358.1 0.993785 0.496893 0.867812i \(-0.334474\pi\)
0.496893 + 0.867812i \(0.334474\pi\)
\(774\) 42678.0i 1.98195i
\(775\) 21448.3i 0.994126i
\(776\) 7469.98i 0.345563i
\(777\) 18714.1 0.864046
\(778\) 5182.92i 0.238839i
\(779\) 3088.51i 0.142051i
\(780\) 12740.1i 0.584833i
\(781\) 153.846i 0.00704872i
\(782\) −1788.77 −0.0817982
\(783\) 108364. 4.94587
\(784\) −6125.64 −0.279047
\(785\) 3827.65i 0.174032i
\(786\) 41057.7 1.86321
\(787\) 4530.70 0.205212 0.102606 0.994722i \(-0.467282\pi\)
0.102606 + 0.994722i \(0.467282\pi\)
\(788\) 21065.4i 0.952314i
\(789\) 16101.5i 0.726526i
\(790\) 24457.4i 1.10146i
\(791\) −25014.1 −1.12440
\(792\) 178.857i 0.00802448i
\(793\) −15261.6 −0.683425
\(794\) −28920.8 −1.29265
\(795\) 37719.4i 1.68273i
\(796\) −17143.0 −0.763337
\(797\) 26456.9i 1.17585i 0.808916 + 0.587924i \(0.200055\pi\)
−0.808916 + 0.587924i \(0.799945\pi\)
\(798\) −24311.8 −1.07848
\(799\) 7574.14i 0.335361i
\(800\) 2504.96i 0.110704i
\(801\) −68680.9 −3.02961
\(802\) −15678.4 −0.690303
\(803\) 75.1698 0.00330347
\(804\) 7691.42i 0.337382i
\(805\) 13769.2i 0.602858i
\(806\) 12800.3 0.559392
\(807\) 41306.2 8609.30i 1.80179 0.375541i
\(808\) 1483.21 0.0645782
\(809\) 2255.60i 0.0980254i 0.998798 + 0.0490127i \(0.0156075\pi\)
−0.998798 + 0.0490127i \(0.984393\pi\)
\(810\) 48073.9i 2.08537i
\(811\) −27661.7 −1.19770 −0.598848 0.800862i \(-0.704375\pi\)
−0.598848 + 0.800862i \(0.704375\pi\)
\(812\) 32595.3 1.40871
\(813\) 17640.9 0.761002
\(814\) 50.3805i 0.00216933i
\(815\) 39503.9i 1.69787i
\(816\) −3817.93 −0.163792
\(817\) 15617.4i 0.668770i
\(818\) −28174.6 −1.20428
\(819\) 40567.2i 1.73081i
\(820\) −3733.49 −0.158999
\(821\) 11811.7 0.502107 0.251053 0.967973i \(-0.419223\pi\)
0.251053 + 0.967973i \(0.419223\pi\)
\(822\) 57355.6i 2.43371i
\(823\) −19909.1 −0.843241 −0.421620 0.906772i \(-0.638539\pi\)
−0.421620 + 0.906772i \(0.638539\pi\)
\(824\) 4117.28i 0.174068i
\(825\) 259.645i 0.0109572i
\(826\) 13207.0i 0.556330i
\(827\) −13270.1 −0.557977 −0.278988 0.960294i \(-0.589999\pi\)
−0.278988 + 0.960294i \(0.589999\pi\)
\(828\) 9242.78 0.387933
\(829\) 32425.2i 1.35847i −0.733920 0.679236i \(-0.762311\pi\)
0.733920 0.679236i \(-0.237689\pi\)
\(830\) 22947.5 0.959664
\(831\) 17530.2 0.731787
\(832\) 1494.95 0.0622931
\(833\) 9552.52i 0.397329i
\(834\) 45395.4i 1.88479i
\(835\) 49068.8i 2.03365i
\(836\) 65.4502i 0.00270771i
\(837\) 98165.5 4.05388
\(838\) 1035.72i 0.0426951i
\(839\) 17115.1i 0.704265i 0.935950 + 0.352132i \(0.114543\pi\)
−0.935950 + 0.352132i \(0.885457\pi\)
\(840\) 29388.8i 1.20716i
\(841\) −67094.1 −2.75100
\(842\) 29712.9i 1.21612i
\(843\) 75988.8 3.10462
\(844\) 7234.20 0.295037
\(845\) 23544.8 0.958537
\(846\) 39136.5i 1.59047i
\(847\) 35856.1i 1.45458i
\(848\) −4426.05 −0.179235
\(849\) 37613.2i 1.52047i
\(850\) −3906.31 −0.157630
\(851\) −2603.52 −0.104874
\(852\) 16969.1 0.682337
\(853\) 8631.92i 0.346485i −0.984879 0.173242i \(-0.944576\pi\)
0.984879 0.173242i \(-0.0554244\pi\)
\(854\) −35205.4 −1.41066
\(855\) 43360.5i 1.73438i
\(856\) 3141.53 0.125438
\(857\) 1518.59i 0.0605299i −0.999542 0.0302649i \(-0.990365\pi\)
0.999542 0.0302649i \(-0.00963510\pi\)
\(858\) −154.955 −0.00616559
\(859\) 36266.8 1.44052 0.720260 0.693704i \(-0.244023\pi\)
0.720260 + 0.693704i \(0.244023\pi\)
\(860\) 18878.8 0.748562
\(861\) 16867.6 0.667649
\(862\) 8198.77 0.323957
\(863\) −20517.9 −0.809314 −0.404657 0.914468i \(-0.632609\pi\)
−0.404657 + 0.914468i \(0.632609\pi\)
\(864\) 11464.8 0.451434
\(865\) −16925.8 −0.665313
\(866\) 85.8054i 0.00336696i
\(867\) 41032.1i 1.60729i
\(868\) 29527.6 1.15464
\(869\) −297.470 −0.0116122
\(870\) 82483.8i 3.21433i
\(871\) 4696.46 0.182702
\(872\) 9885.37 0.383900
\(873\) −60191.5 −2.33353
\(874\) 3382.27 0.130901
\(875\) 17946.3i 0.693367i
\(876\) 8291.16i 0.319786i
\(877\) 46547.6 1.79225 0.896123 0.443806i \(-0.146372\pi\)
0.896123 + 0.443806i \(0.146372\pi\)
\(878\) 21033.4i 0.808475i
\(879\) 40225.6i 1.54355i
\(880\) 79.1182 0.00303077
\(881\) 17266.9i 0.660313i −0.943926 0.330156i \(-0.892899\pi\)
0.943926 0.330156i \(-0.107101\pi\)
\(882\) 49359.1i 1.88436i
\(883\) 43073.3i 1.64160i 0.571217 + 0.820799i \(0.306471\pi\)
−0.571217 + 0.820799i \(0.693529\pi\)
\(884\) 2331.27i 0.0886980i
\(885\) −33420.8 −1.26941
\(886\) 14292.0 0.541930
\(887\) 2416.16 0.0914620 0.0457310 0.998954i \(-0.485438\pi\)
0.0457310 + 0.998954i \(0.485438\pi\)
\(888\) −5556.92 −0.209998
\(889\) 13601.6i 0.513142i
\(890\) 30381.4i 1.14425i
\(891\) −584.712 −0.0219849
\(892\) 5131.96i 0.192635i
\(893\) 14321.5i 0.536674i
\(894\) 1554.36 0.0581494
\(895\) 12092.4i 0.451627i
\(896\) 3448.53 0.128580
\(897\) 8007.62i 0.298068i
\(898\) 8639.62i 0.321055i
\(899\) −82873.2 −3.07450
\(900\) 20184.4 0.747570
\(901\) 6902.13i 0.255209i
\(902\) 45.4095i 0.00167624i
\(903\) −85293.0 −3.14327
\(904\) 7427.65 0.273274
\(905\) 40005.3i 1.46942i
\(906\) −51330.7 −1.88228
\(907\) −13571.6 −0.496845 −0.248423 0.968652i \(-0.579912\pi\)
−0.248423 + 0.968652i \(0.579912\pi\)
\(908\) 2918.75i 0.106676i
\(909\) 11951.4i 0.436087i
\(910\) −17945.1 −0.653709
\(911\) 40223.9i 1.46287i −0.681909 0.731437i \(-0.738850\pi\)
0.681909 0.731437i \(-0.261150\pi\)
\(912\) 7219.09 0.262114
\(913\) 279.106i 0.0101172i
\(914\) 16670.9i 0.603310i
\(915\) 89088.8i 3.21878i
\(916\) 16509.3i 0.595504i
\(917\) 57832.0i 2.08264i
\(918\) 17878.5i 0.642788i
\(919\) 37047.5i 1.32980i −0.746933 0.664899i \(-0.768475\pi\)
0.746933 0.664899i \(-0.231525\pi\)
\(920\) 4088.60i 0.146519i
\(921\) 44146.6i 1.57946i
\(922\) 19377.0 0.692135
\(923\) 10361.5i 0.369505i
\(924\) −357.449 −0.0127264
\(925\) −5685.56 −0.202097
\(926\) −25829.6 −0.916644
\(927\) 33176.1 1.17546
\(928\) −9678.78 −0.342372
\(929\) 48867.0i 1.72581i 0.505369 + 0.862903i \(0.331356\pi\)
−0.505369 + 0.862903i \(0.668644\pi\)
\(930\) 74720.9i 2.63462i
\(931\) 18062.3i 0.635841i
\(932\) 26031.9 0.914916
\(933\) 61665.5 2.16381
\(934\) −31140.6 −1.09095
\(935\) 123.380i 0.00431545i
\(936\) 12045.9i 0.420656i
\(937\) 2338.49i 0.0815318i −0.999169 0.0407659i \(-0.987020\pi\)
0.999169 0.0407659i \(-0.0129798\pi\)
\(938\) 10833.8 0.377116
\(939\) 87174.2i 3.02963i
\(940\) −17312.3 −0.600706
\(941\) 42784.1i 1.48217i −0.671411 0.741085i \(-0.734311\pi\)
0.671411 0.741085i \(-0.265689\pi\)
\(942\) 5134.95i 0.177607i
\(943\) −2346.63 −0.0810358
\(944\) 3921.65i 0.135211i
\(945\) −137622. −4.73738
\(946\) 229.619i 0.00789170i
\(947\) 1892.81i 0.0649503i 0.999473 + 0.0324752i \(0.0103390\pi\)
−0.999473 + 0.0324752i \(0.989661\pi\)
\(948\) 32810.6i 1.12409i
\(949\) 5062.67 0.173173
\(950\) 7386.21 0.252253
\(951\) −46395.1 −1.58198
\(952\) 5377.75i 0.183082i
\(953\) 44072.0i 1.49804i 0.662548 + 0.749019i \(0.269475\pi\)
−0.662548 + 0.749019i \(0.730525\pi\)
\(954\) 35664.1i 1.21035i
\(955\) 67199.0 2.27697
\(956\) −15924.1 −0.538727
\(957\) 1003.23 0.0338870
\(958\) −4735.12 −0.159692
\(959\) 80788.4 2.72033
\(960\) 8726.66i 0.293387i
\(961\) −45282.6 −1.52001
\(962\) 3393.11i 0.113720i
\(963\) 25313.8i 0.847067i
\(964\) 17258.5i 0.576616i
\(965\) 32946.1i 1.09904i
\(966\) 18471.9i 0.615243i
\(967\) 21965.8i 0.730477i 0.930914 + 0.365239i \(0.119013\pi\)
−0.930914 + 0.365239i \(0.880987\pi\)
\(968\) 10647.0i 0.353521i
\(969\) 11257.7i 0.373219i
\(970\) 26626.1i 0.881352i
\(971\) 6115.06 0.202103 0.101051 0.994881i \(-0.467779\pi\)
0.101051 + 0.994881i \(0.467779\pi\)
\(972\) 25799.6i 0.851359i
\(973\) 63941.9 2.10677
\(974\) 18533.8i 0.609713i
\(975\) 17487.0i 0.574393i
\(976\) 10453.8 0.342847
\(977\) −27007.3 −0.884382 −0.442191 0.896921i \(-0.645799\pi\)
−0.442191 + 0.896921i \(0.645799\pi\)
\(978\) 52996.1i 1.73275i
\(979\) −369.522 −0.0120633
\(980\) −21834.3 −0.711704
\(981\) 79654.2i 2.59242i
\(982\) 13417.4i 0.436015i
\(983\) −15755.3 −0.511207 −0.255603 0.966782i \(-0.582274\pi\)
−0.255603 + 0.966782i \(0.582274\pi\)
\(984\) −5008.62 −0.162265
\(985\) 75085.6i 2.42886i
\(986\) 15093.4i 0.487497i
\(987\) 78215.3 2.52241
\(988\) 4408.05i 0.141942i
\(989\) 11866.0 0.381514
\(990\) 637.518i 0.0204663i
\(991\) 9810.59i 0.314474i 0.987561 + 0.157237i \(0.0502587\pi\)
−0.987561 + 0.157237i \(0.949741\pi\)
\(992\) −8767.86 −0.280625
\(993\) 96335.8i 3.07867i
\(994\) 23901.8i 0.762697i
\(995\) −61104.5 −1.94688
\(996\) 30785.1 0.979380
\(997\) 32678.8 1.03806 0.519031 0.854756i \(-0.326293\pi\)
0.519031 + 0.854756i \(0.326293\pi\)
\(998\) 8067.96 0.255899
\(999\) 26021.9i 0.824119i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 538.4.b.a.537.2 68
269.268 even 2 inner 538.4.b.a.537.67 yes 68
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
538.4.b.a.537.2 68 1.1 even 1 trivial
538.4.b.a.537.67 yes 68 269.268 even 2 inner