Properties

Label 54.10.a.a
Level $54$
Weight $10$
Character orbit 54.a
Self dual yes
Analytic conductor $27.812$
Analytic rank $0$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,10,Mod(1,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0]))
 
N = Newforms(chi, 10, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.1");
 
S:= CuspForms(chi, 10);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 10 \)
Character orbit: \([\chi]\) \(=\) 54.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(27.8119351528\)
Analytic rank: \(0\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q - 16 q^{2} + 256 q^{4} - 1176 q^{5} - 11473 q^{7} - 4096 q^{8} + 18816 q^{10} + 58488 q^{11} - 106171 q^{13} + 183568 q^{14} + 65536 q^{16} - 593352 q^{17} - 210967 q^{19} - 301056 q^{20} - 935808 q^{22}+ \cdots - 1460417952 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
−16.0000 0 256.000 −1176.00 0 −11473.0 −4096.00 0 18816.0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(3\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 54.10.a.a 1
3.b odd 2 1 54.10.a.d yes 1
9.c even 3 2 162.10.c.j 2
9.d odd 6 2 162.10.c.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
54.10.a.a 1 1.a even 1 1 trivial
54.10.a.d yes 1 3.b odd 2 1
162.10.c.a 2 9.d odd 6 2
162.10.c.j 2 9.c even 3 2

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5} + 1176 \) acting on \(S_{10}^{\mathrm{new}}(\Gamma_0(54))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T + 16 \) Copy content Toggle raw display
$3$ \( T \) Copy content Toggle raw display
$5$ \( T + 1176 \) Copy content Toggle raw display
$7$ \( T + 11473 \) Copy content Toggle raw display
$11$ \( T - 58488 \) Copy content Toggle raw display
$13$ \( T + 106171 \) Copy content Toggle raw display
$17$ \( T + 593352 \) Copy content Toggle raw display
$19$ \( T + 210967 \) Copy content Toggle raw display
$23$ \( T - 2087832 \) Copy content Toggle raw display
$29$ \( T - 2399424 \) Copy content Toggle raw display
$31$ \( T + 1188772 \) Copy content Toggle raw display
$37$ \( T - 11578187 \) Copy content Toggle raw display
$41$ \( T - 23941632 \) Copy content Toggle raw display
$43$ \( T + 10659832 \) Copy content Toggle raw display
$47$ \( T - 34054008 \) Copy content Toggle raw display
$53$ \( T + 42741072 \) Copy content Toggle raw display
$59$ \( T - 74207928 \) Copy content Toggle raw display
$61$ \( T - 81024095 \) Copy content Toggle raw display
$67$ \( T + 19650859 \) Copy content Toggle raw display
$71$ \( T + 184185360 \) Copy content Toggle raw display
$73$ \( T + 257037703 \) Copy content Toggle raw display
$79$ \( T - 651592289 \) Copy content Toggle raw display
$83$ \( T + 17638608 \) Copy content Toggle raw display
$89$ \( T + 516254760 \) Copy content Toggle raw display
$97$ \( T + 434232691 \) Copy content Toggle raw display
show more
show less