Properties

Label 54.8.c.b.37.3
Level $54$
Weight $8$
Character 54.37
Analytic conductor $16.869$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [54,8,Mod(19,54)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(54, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([4]))
 
N = Newforms(chi, 8, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("54.19");
 
S:= CuspForms(chi, 8);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 54 = 2 \cdot 3^{3} \)
Weight: \( k \) \(=\) \( 8 \)
Character orbit: \([\chi]\) \(=\) 54.c (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(16.8687913761\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(4\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 1336x^{6} + 633664x^{4} + 125389995x^{2} + 8783438400 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{4}\cdot 3^{18} \)
Twist minimal: no (minimal twist has level 18)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 37.3
Root \(22.3446i\) of defining polynomial
Character \(\chi\) \(=\) 54.37
Dual form 54.8.c.b.19.3

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-4.00000 - 6.92820i) q^{2} +(-32.0000 + 55.4256i) q^{4} +(47.1766 - 81.7123i) q^{5} +(-101.366 - 175.572i) q^{7} +512.000 q^{8} -754.826 q^{10} +(-1560.90 - 2703.55i) q^{11} +(-1560.70 + 2703.22i) q^{13} +(-810.932 + 1404.57i) q^{14} +(-2048.00 - 3547.24i) q^{16} -34230.3 q^{17} +19665.3 q^{19} +(3019.30 + 5229.59i) q^{20} +(-12487.2 + 21628.4i) q^{22} +(-46889.1 + 81214.4i) q^{23} +(34611.2 + 59948.4i) q^{25} +24971.2 q^{26} +12974.9 q^{28} +(-9197.41 - 15930.4i) q^{29} +(-158690. + 274859. i) q^{31} +(-16384.0 + 28377.9i) q^{32} +(136921. + 237155. i) q^{34} -19128.5 q^{35} -128628. q^{37} +(-78661.1 - 136245. i) q^{38} +(24154.4 - 41836.7i) q^{40} +(-301188. + 521673. i) q^{41} +(-342153. - 592626. i) q^{43} +199795. q^{44} +750226. q^{46} +(-182693. - 316433. i) q^{47} +(391221. - 677615. i) q^{49} +(276890. - 479587. i) q^{50} +(-99884.9 - 173006. i) q^{52} -82663.8 q^{53} -294552. q^{55} +(-51899.6 - 89892.8i) q^{56} +(-73579.2 + 127443. i) q^{58} +(440225. - 762493. i) q^{59} +(-1.44867e6 - 2.50917e6i) q^{61} +2.53904e6 q^{62} +262144. q^{64} +(147257. + 255057. i) q^{65} +(-1.32111e6 + 2.28823e6i) q^{67} +(1.09537e6 - 1.89724e6i) q^{68} +(76514.0 + 132526. i) q^{70} +213917. q^{71} +3.73155e6 q^{73} +(514510. + 891158. i) q^{74} +(-629289. + 1.08996e6i) q^{76} +(-316445. + 548099. i) q^{77} +(-1.78704e6 - 3.09524e6i) q^{79} -386471. q^{80} +4.81901e6 q^{82} +(1.71280e6 + 2.96666e6i) q^{83} +(-1.61487e6 + 2.79704e6i) q^{85} +(-2.73722e6 + 4.74100e6i) q^{86} +(-799180. - 1.38422e6i) q^{88} -1.01749e7 q^{89} +632811. q^{91} +(-3.00091e6 - 5.19772e6i) q^{92} +(-1.46154e6 + 2.53146e6i) q^{94} +(927742. - 1.60690e6i) q^{95} +(1.07912e6 + 1.86909e6i) q^{97} -6.25954e6 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q - 32 q^{2} - 256 q^{4} - 54 q^{5} - 44 q^{7} + 4096 q^{8} + 864 q^{10} - 2172 q^{11} - 6398 q^{13} - 352 q^{14} - 16384 q^{16} + 51972 q^{17} + 90712 q^{19} - 3456 q^{20} - 17376 q^{22} + 2028 q^{23}+ \cdots + 20368608 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/54\mathbb{Z}\right)^\times\).

\(n\) \(29\)
\(\chi(n)\) \(e\left(\frac{1}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −4.00000 6.92820i −0.353553 0.612372i
\(3\) 0 0
\(4\) −32.0000 + 55.4256i −0.250000 + 0.433013i
\(5\) 47.1766 81.7123i 0.168784 0.292343i −0.769208 0.638998i \(-0.779349\pi\)
0.937993 + 0.346655i \(0.112683\pi\)
\(6\) 0 0
\(7\) −101.366 175.572i −0.111699 0.193469i 0.804756 0.593606i \(-0.202296\pi\)
−0.916456 + 0.400136i \(0.868963\pi\)
\(8\) 512.000 0.353553
\(9\) 0 0
\(10\) −754.826 −0.238697
\(11\) −1560.90 2703.55i −0.353590 0.612436i 0.633286 0.773918i \(-0.281706\pi\)
−0.986876 + 0.161482i \(0.948373\pi\)
\(12\) 0 0
\(13\) −1560.70 + 2703.22i −0.197024 + 0.341255i −0.947562 0.319572i \(-0.896461\pi\)
0.750538 + 0.660827i \(0.229794\pi\)
\(14\) −810.932 + 1404.57i −0.0789835 + 0.136803i
\(15\) 0 0
\(16\) −2048.00 3547.24i −0.125000 0.216506i
\(17\) −34230.3 −1.68982 −0.844909 0.534910i \(-0.820345\pi\)
−0.844909 + 0.534910i \(0.820345\pi\)
\(18\) 0 0
\(19\) 19665.3 0.657753 0.328876 0.944373i \(-0.393330\pi\)
0.328876 + 0.944373i \(0.393330\pi\)
\(20\) 3019.30 + 5229.59i 0.0843921 + 0.146171i
\(21\) 0 0
\(22\) −12487.2 + 21628.4i −0.250026 + 0.433058i
\(23\) −46889.1 + 81214.4i −0.803572 + 1.39183i 0.113679 + 0.993518i \(0.463737\pi\)
−0.917251 + 0.398310i \(0.869597\pi\)
\(24\) 0 0
\(25\) 34611.2 + 59948.4i 0.443024 + 0.767340i
\(26\) 24971.2 0.278633
\(27\) 0 0
\(28\) 12974.9 0.111699
\(29\) −9197.41 15930.4i −0.0700281 0.121292i 0.828885 0.559419i \(-0.188976\pi\)
−0.898913 + 0.438126i \(0.855642\pi\)
\(30\) 0 0
\(31\) −158690. + 274859.i −0.956716 + 1.65708i −0.226324 + 0.974052i \(0.572671\pi\)
−0.730392 + 0.683028i \(0.760662\pi\)
\(32\) −16384.0 + 28377.9i −0.0883883 + 0.153093i
\(33\) 0 0
\(34\) 136921. + 237155.i 0.597441 + 1.03480i
\(35\) −19128.5 −0.0754124
\(36\) 0 0
\(37\) −128628. −0.417473 −0.208736 0.977972i \(-0.566935\pi\)
−0.208736 + 0.977972i \(0.566935\pi\)
\(38\) −78661.1 136245.i −0.232551 0.402790i
\(39\) 0 0
\(40\) 24154.4 41836.7i 0.0596742 0.103359i
\(41\) −301188. + 521673.i −0.682487 + 1.18210i 0.291732 + 0.956500i \(0.405768\pi\)
−0.974219 + 0.225602i \(0.927565\pi\)
\(42\) 0 0
\(43\) −342153. 592626.i −0.656266 1.13669i −0.981575 0.191079i \(-0.938801\pi\)
0.325308 0.945608i \(-0.394532\pi\)
\(44\) 199795. 0.353590
\(45\) 0 0
\(46\) 750226. 1.13642
\(47\) −182693. 316433.i −0.256672 0.444569i 0.708676 0.705534i \(-0.249293\pi\)
−0.965348 + 0.260965i \(0.915959\pi\)
\(48\) 0 0
\(49\) 391221. 677615.i 0.475046 0.822805i
\(50\) 276890. 479587.i 0.313265 0.542591i
\(51\) 0 0
\(52\) −99884.9 173006.i −0.0985118 0.170627i
\(53\) −82663.8 −0.0762693 −0.0381346 0.999273i \(-0.512142\pi\)
−0.0381346 + 0.999273i \(0.512142\pi\)
\(54\) 0 0
\(55\) −294552. −0.238722
\(56\) −51899.6 89892.8i −0.0394917 0.0684017i
\(57\) 0 0
\(58\) −73579.2 + 127443.i −0.0495173 + 0.0857666i
\(59\) 440225. 762493.i 0.279057 0.483341i −0.692094 0.721808i \(-0.743311\pi\)
0.971151 + 0.238467i \(0.0766448\pi\)
\(60\) 0 0
\(61\) −1.44867e6 2.50917e6i −0.817176 1.41539i −0.907755 0.419501i \(-0.862205\pi\)
0.0905789 0.995889i \(-0.471128\pi\)
\(62\) 2.53904e6 1.35300
\(63\) 0 0
\(64\) 262144. 0.125000
\(65\) 147257. + 255057.i 0.0665090 + 0.115197i
\(66\) 0 0
\(67\) −1.32111e6 + 2.28823e6i −0.536634 + 0.929477i 0.462449 + 0.886646i \(0.346971\pi\)
−0.999082 + 0.0428308i \(0.986362\pi\)
\(68\) 1.09537e6 1.89724e6i 0.422454 0.731713i
\(69\) 0 0
\(70\) 76514.0 + 132526.i 0.0266623 + 0.0461805i
\(71\) 213917. 0.0709317 0.0354658 0.999371i \(-0.488709\pi\)
0.0354658 + 0.999371i \(0.488709\pi\)
\(72\) 0 0
\(73\) 3.73155e6 1.12269 0.561344 0.827583i \(-0.310285\pi\)
0.561344 + 0.827583i \(0.310285\pi\)
\(74\) 514510. + 891158.i 0.147599 + 0.255649i
\(75\) 0 0
\(76\) −629289. + 1.08996e6i −0.164438 + 0.284815i
\(77\) −316445. + 548099.i −0.0789917 + 0.136818i
\(78\) 0 0
\(79\) −1.78704e6 3.09524e6i −0.407793 0.706317i 0.586850 0.809696i \(-0.300368\pi\)
−0.994642 + 0.103379i \(0.967035\pi\)
\(80\) −386471. −0.0843921
\(81\) 0 0
\(82\) 4.81901e6 0.965182
\(83\) 1.71280e6 + 2.96666e6i 0.328802 + 0.569501i 0.982274 0.187449i \(-0.0600219\pi\)
−0.653473 + 0.756950i \(0.726689\pi\)
\(84\) 0 0
\(85\) −1.61487e6 + 2.79704e6i −0.285215 + 0.494006i
\(86\) −2.73722e6 + 4.74100e6i −0.464050 + 0.803759i
\(87\) 0 0
\(88\) −799180. 1.38422e6i −0.125013 0.216529i
\(89\) −1.01749e7 −1.52990 −0.764950 0.644089i \(-0.777236\pi\)
−0.764950 + 0.644089i \(0.777236\pi\)
\(90\) 0 0
\(91\) 632811. 0.0880298
\(92\) −3.00091e6 5.19772e6i −0.401786 0.695914i
\(93\) 0 0
\(94\) −1.46154e6 + 2.53146e6i −0.181494 + 0.314358i
\(95\) 927742. 1.60690e6i 0.111018 0.192289i
\(96\) 0 0
\(97\) 1.07912e6 + 1.86909e6i 0.120052 + 0.207936i 0.919788 0.392416i \(-0.128361\pi\)
−0.799736 + 0.600352i \(0.795027\pi\)
\(98\) −6.25954e6 −0.671817
\(99\) 0 0
\(100\) −4.43024e6 −0.443024
\(101\) 2.04374e6 + 3.53986e6i 0.197379 + 0.341870i 0.947678 0.319229i \(-0.103424\pi\)
−0.750299 + 0.661099i \(0.770090\pi\)
\(102\) 0 0
\(103\) −7.81646e6 + 1.35385e7i −0.704822 + 1.22079i 0.261933 + 0.965086i \(0.415640\pi\)
−0.966756 + 0.255702i \(0.917693\pi\)
\(104\) −799080. + 1.38405e6i −0.0696584 + 0.120652i
\(105\) 0 0
\(106\) 330655. + 572711.i 0.0269653 + 0.0467052i
\(107\) −284943. −0.0224861 −0.0112431 0.999937i \(-0.503579\pi\)
−0.0112431 + 0.999937i \(0.503579\pi\)
\(108\) 0 0
\(109\) 1.18746e7 0.878265 0.439132 0.898422i \(-0.355286\pi\)
0.439132 + 0.898422i \(0.355286\pi\)
\(110\) 1.17821e6 + 2.04071e6i 0.0844009 + 0.146187i
\(111\) 0 0
\(112\) −415197. + 719142.i −0.0279249 + 0.0483673i
\(113\) 6.55768e6 1.13582e7i 0.427539 0.740519i −0.569115 0.822258i \(-0.692714\pi\)
0.996654 + 0.0817392i \(0.0260475\pi\)
\(114\) 0 0
\(115\) 4.42414e6 + 7.66284e6i 0.271261 + 0.469837i
\(116\) 1.17727e6 0.0700281
\(117\) 0 0
\(118\) −7.04361e6 −0.394646
\(119\) 3.46981e6 + 6.00988e6i 0.188752 + 0.326928i
\(120\) 0 0
\(121\) 4.87078e6 8.43644e6i 0.249948 0.432923i
\(122\) −1.15894e7 + 2.00734e7i −0.577831 + 1.00083i
\(123\) 0 0
\(124\) −1.01561e7 1.75910e7i −0.478358 0.828540i
\(125\) 1.39027e7 0.636670
\(126\) 0 0
\(127\) 1.84235e7 0.798102 0.399051 0.916929i \(-0.369340\pi\)
0.399051 + 0.916929i \(0.369340\pi\)
\(128\) −1.04858e6 1.81619e6i −0.0441942 0.0765466i
\(129\) 0 0
\(130\) 1.17806e6 2.04046e6i 0.0470289 0.0814565i
\(131\) 2.44448e6 4.23397e6i 0.0950031 0.164550i −0.814607 0.580014i \(-0.803047\pi\)
0.909610 + 0.415463i \(0.136381\pi\)
\(132\) 0 0
\(133\) −1.99340e6 3.45267e6i −0.0734706 0.127255i
\(134\) 2.11378e7 0.758915
\(135\) 0 0
\(136\) −1.75259e7 −0.597441
\(137\) −6.85934e6 1.18807e7i −0.227908 0.394749i 0.729280 0.684216i \(-0.239855\pi\)
−0.957188 + 0.289467i \(0.906522\pi\)
\(138\) 0 0
\(139\) 7.60628e6 1.31745e7i 0.240226 0.416084i −0.720552 0.693400i \(-0.756112\pi\)
0.960779 + 0.277317i \(0.0894451\pi\)
\(140\) 612112. 1.06021e6i 0.0188531 0.0326545i
\(141\) 0 0
\(142\) −855666. 1.48206e6i −0.0250781 0.0434366i
\(143\) 9.74439e6 0.278662
\(144\) 0 0
\(145\) −1.73561e6 −0.0472785
\(146\) −1.49262e7 2.58529e7i −0.396930 0.687503i
\(147\) 0 0
\(148\) 4.11608e6 7.12926e6i 0.104368 0.180771i
\(149\) 3.54711e7 6.14377e7i 0.878461 1.52154i 0.0254308 0.999677i \(-0.491904\pi\)
0.853030 0.521862i \(-0.174762\pi\)
\(150\) 0 0
\(151\) −1.44987e7 2.51124e7i −0.342696 0.593567i 0.642236 0.766507i \(-0.278007\pi\)
−0.984932 + 0.172940i \(0.944673\pi\)
\(152\) 1.00686e7 0.232551
\(153\) 0 0
\(154\) 5.06313e6 0.111711
\(155\) 1.49729e7 + 2.59338e7i 0.322957 + 0.559378i
\(156\) 0 0
\(157\) 2.01208e7 3.48503e7i 0.414951 0.718716i −0.580472 0.814280i \(-0.697132\pi\)
0.995423 + 0.0955638i \(0.0304654\pi\)
\(158\) −1.42963e7 + 2.47619e7i −0.288353 + 0.499442i
\(159\) 0 0
\(160\) 1.54588e6 + 2.67755e6i 0.0298371 + 0.0516794i
\(161\) 1.90119e7 0.359034
\(162\) 0 0
\(163\) −8.72763e7 −1.57848 −0.789241 0.614084i \(-0.789526\pi\)
−0.789241 + 0.614084i \(0.789526\pi\)
\(164\) −1.92760e7 3.33871e7i −0.341244 0.591051i
\(165\) 0 0
\(166\) 1.37024e7 2.37333e7i 0.232498 0.402698i
\(167\) −3.76355e7 + 6.51866e7i −0.625302 + 1.08305i 0.363180 + 0.931719i \(0.381691\pi\)
−0.988482 + 0.151336i \(0.951642\pi\)
\(168\) 0 0
\(169\) 2.65027e7 + 4.59040e7i 0.422363 + 0.731555i
\(170\) 2.58379e7 0.403354
\(171\) 0 0
\(172\) 4.37955e7 0.656266
\(173\) −1.33635e7 2.31463e7i −0.196227 0.339875i 0.751075 0.660217i \(-0.229536\pi\)
−0.947302 + 0.320341i \(0.896202\pi\)
\(174\) 0 0
\(175\) 7.01684e6 1.21535e7i 0.0989711 0.171423i
\(176\) −6.39344e6 + 1.10738e7i −0.0883975 + 0.153109i
\(177\) 0 0
\(178\) 4.06994e7 + 7.04935e7i 0.540902 + 0.936869i
\(179\) −1.38513e8 −1.80511 −0.902557 0.430571i \(-0.858312\pi\)
−0.902557 + 0.430571i \(0.858312\pi\)
\(180\) 0 0
\(181\) −4.41336e7 −0.553216 −0.276608 0.960983i \(-0.589210\pi\)
−0.276608 + 0.960983i \(0.589210\pi\)
\(182\) −2.53125e6 4.38425e6i −0.0311232 0.0539070i
\(183\) 0 0
\(184\) −2.40072e7 + 4.15818e7i −0.284106 + 0.492085i
\(185\) −6.06821e6 + 1.05105e7i −0.0704628 + 0.122045i
\(186\) 0 0
\(187\) 5.34300e7 + 9.25436e7i 0.597503 + 1.03491i
\(188\) 2.33846e7 0.256672
\(189\) 0 0
\(190\) −1.48439e7 −0.157004
\(191\) 8.99835e7 + 1.55856e8i 0.934429 + 1.61848i 0.775649 + 0.631164i \(0.217423\pi\)
0.158780 + 0.987314i \(0.449244\pi\)
\(192\) 0 0
\(193\) 1.05609e7 1.82920e7i 0.105743 0.183152i −0.808299 0.588773i \(-0.799611\pi\)
0.914041 + 0.405621i \(0.132945\pi\)
\(194\) 8.63298e6 1.49528e7i 0.0848896 0.147033i
\(195\) 0 0
\(196\) 2.50382e7 + 4.33674e7i 0.237523 + 0.411402i
\(197\) −1.37374e8 −1.28018 −0.640091 0.768299i \(-0.721103\pi\)
−0.640091 + 0.768299i \(0.721103\pi\)
\(198\) 0 0
\(199\) −9.69789e7 −0.872351 −0.436176 0.899862i \(-0.643667\pi\)
−0.436176 + 0.899862i \(0.643667\pi\)
\(200\) 1.77210e7 + 3.06936e7i 0.156633 + 0.271296i
\(201\) 0 0
\(202\) 1.63499e7 2.83189e7i 0.139568 0.241739i
\(203\) −1.86462e6 + 3.22961e6i −0.0156442 + 0.0270966i
\(204\) 0 0
\(205\) 2.84181e7 + 4.92216e7i 0.230386 + 0.399040i
\(206\) 1.25063e8 0.996769
\(207\) 0 0
\(208\) 1.27853e7 0.0985118
\(209\) −3.06955e7 5.31662e7i −0.232575 0.402831i
\(210\) 0 0
\(211\) −7.89721e7 + 1.36784e8i −0.578742 + 1.00241i 0.416882 + 0.908961i \(0.363123\pi\)
−0.995624 + 0.0934499i \(0.970211\pi\)
\(212\) 2.64524e6 4.58169e6i 0.0190673 0.0330256i
\(213\) 0 0
\(214\) 1.13977e6 + 1.97414e6i 0.00795005 + 0.0137699i
\(215\) −6.45664e7 −0.443070
\(216\) 0 0
\(217\) 6.43433e7 0.427459
\(218\) −4.74983e7 8.22695e7i −0.310513 0.537825i
\(219\) 0 0
\(220\) 9.42565e6 1.63257e7i 0.0596804 0.103370i
\(221\) 5.34234e7 9.25320e7i 0.332934 0.576659i
\(222\) 0 0
\(223\) −5.69079e7 9.85673e7i −0.343641 0.595204i 0.641465 0.767153i \(-0.278327\pi\)
−0.985106 + 0.171948i \(0.944994\pi\)
\(224\) 6.64315e6 0.0394917
\(225\) 0 0
\(226\) −1.04923e8 −0.604631
\(227\) 1.40643e7 + 2.43601e7i 0.0798046 + 0.138226i 0.903166 0.429292i \(-0.141237\pi\)
−0.823361 + 0.567518i \(0.807904\pi\)
\(228\) 0 0
\(229\) 1.53057e8 2.65103e8i 0.842227 1.45878i −0.0457801 0.998952i \(-0.514577\pi\)
0.888007 0.459829i \(-0.152089\pi\)
\(230\) 3.53931e7 6.13027e7i 0.191810 0.332225i
\(231\) 0 0
\(232\) −4.70907e6 8.15635e6i −0.0247587 0.0428833i
\(233\) −2.62576e7 −0.135991 −0.0679955 0.997686i \(-0.521660\pi\)
−0.0679955 + 0.997686i \(0.521660\pi\)
\(234\) 0 0
\(235\) −3.44753e7 −0.173289
\(236\) 2.81744e7 + 4.87995e7i 0.139529 + 0.241671i
\(237\) 0 0
\(238\) 2.77585e7 4.80791e7i 0.133468 0.231173i
\(239\) −8.30493e6 + 1.43846e7i −0.0393499 + 0.0681560i −0.885030 0.465535i \(-0.845862\pi\)
0.845680 + 0.533691i \(0.179195\pi\)
\(240\) 0 0
\(241\) −1.70901e8 2.96010e8i −0.786477 1.36222i −0.928113 0.372299i \(-0.878570\pi\)
0.141636 0.989919i \(-0.454764\pi\)
\(242\) −7.79325e7 −0.353480
\(243\) 0 0
\(244\) 1.85430e8 0.817176
\(245\) −3.69130e7 6.39352e7i −0.160361 0.277753i
\(246\) 0 0
\(247\) −3.06917e7 + 5.31595e7i −0.129593 + 0.224461i
\(248\) −8.12492e7 + 1.40728e8i −0.338250 + 0.585866i
\(249\) 0 0
\(250\) −5.56108e7 9.63208e7i −0.225097 0.389879i
\(251\) 3.56672e8 1.42368 0.711838 0.702344i \(-0.247863\pi\)
0.711838 + 0.702344i \(0.247863\pi\)
\(252\) 0 0
\(253\) 2.92757e8 1.13654
\(254\) −7.36939e7 1.27642e8i −0.282172 0.488736i
\(255\) 0 0
\(256\) −8.38861e6 + 1.45295e7i −0.0312500 + 0.0541266i
\(257\) 1.48578e8 2.57345e8i 0.545996 0.945693i −0.452548 0.891740i \(-0.649485\pi\)
0.998544 0.0539525i \(-0.0171820\pi\)
\(258\) 0 0
\(259\) 1.30385e7 + 2.25834e7i 0.0466315 + 0.0807681i
\(260\) −1.88489e7 −0.0665090
\(261\) 0 0
\(262\) −3.91117e7 −0.134355
\(263\) 1.29033e8 + 2.23491e8i 0.437376 + 0.757558i 0.997486 0.0708605i \(-0.0225745\pi\)
−0.560110 + 0.828418i \(0.689241\pi\)
\(264\) 0 0
\(265\) −3.89980e6 + 6.75465e6i −0.0128730 + 0.0222968i
\(266\) −1.59472e7 + 2.76214e7i −0.0519516 + 0.0899828i
\(267\) 0 0
\(268\) −8.45512e7 1.46447e8i −0.268317 0.464738i
\(269\) 3.07369e8 0.962779 0.481389 0.876507i \(-0.340132\pi\)
0.481389 + 0.876507i \(0.340132\pi\)
\(270\) 0 0
\(271\) −2.93409e8 −0.895531 −0.447766 0.894151i \(-0.647780\pi\)
−0.447766 + 0.894151i \(0.647780\pi\)
\(272\) 7.01037e7 + 1.21423e8i 0.211227 + 0.365856i
\(273\) 0 0
\(274\) −5.48747e7 + 9.50458e7i −0.161156 + 0.279130i
\(275\) 1.08049e8 1.87147e8i 0.313298 0.542647i
\(276\) 0 0
\(277\) 1.51779e8 + 2.62889e8i 0.429074 + 0.743178i 0.996791 0.0800459i \(-0.0255067\pi\)
−0.567717 + 0.823224i \(0.692173\pi\)
\(278\) −1.21700e8 −0.339731
\(279\) 0 0
\(280\) −9.79380e6 −0.0266623
\(281\) −1.11756e8 1.93566e8i −0.300467 0.520424i 0.675775 0.737108i \(-0.263809\pi\)
−0.976242 + 0.216684i \(0.930476\pi\)
\(282\) 0 0
\(283\) −2.77546e8 + 4.80724e8i −0.727918 + 1.26079i 0.229844 + 0.973228i \(0.426179\pi\)
−0.957762 + 0.287563i \(0.907155\pi\)
\(284\) −6.84533e6 + 1.18565e7i −0.0177329 + 0.0307143i
\(285\) 0 0
\(286\) −3.89775e7 6.75111e7i −0.0985220 0.170645i
\(287\) 1.22122e8 0.304934
\(288\) 0 0
\(289\) 7.61377e8 1.85548
\(290\) 6.94244e6 + 1.20247e7i 0.0167155 + 0.0289521i
\(291\) 0 0
\(292\) −1.19409e8 + 2.06823e8i −0.280672 + 0.486138i
\(293\) −2.60121e8 + 4.50543e8i −0.604142 + 1.04640i 0.388045 + 0.921641i \(0.373151\pi\)
−0.992186 + 0.124764i \(0.960183\pi\)
\(294\) 0 0
\(295\) −4.15367e7 7.19437e7i −0.0942009 0.163161i
\(296\) −6.58573e7 −0.147599
\(297\) 0 0
\(298\) −5.67537e8 −1.24233
\(299\) −1.46360e8 2.53503e8i −0.316645 0.548446i
\(300\) 0 0
\(301\) −6.93656e7 + 1.20145e8i −0.146609 + 0.253935i
\(302\) −1.15989e8 + 2.00899e8i −0.242323 + 0.419715i
\(303\) 0 0
\(304\) −4.02745e7 6.97575e7i −0.0822191 0.142408i
\(305\) −2.73374e8 −0.551706
\(306\) 0 0
\(307\) 5.16023e8 1.01785 0.508926 0.860810i \(-0.330043\pi\)
0.508926 + 0.860810i \(0.330043\pi\)
\(308\) −2.02525e7 3.50784e7i −0.0394958 0.0684088i
\(309\) 0 0
\(310\) 1.19783e8 2.07470e8i 0.228365 0.395540i
\(311\) −3.58607e8 + 6.21125e8i −0.676017 + 1.17089i 0.300154 + 0.953891i \(0.402962\pi\)
−0.976171 + 0.217004i \(0.930371\pi\)
\(312\) 0 0
\(313\) −1.17928e7 2.04257e7i −0.0217375 0.0376505i 0.854952 0.518707i \(-0.173586\pi\)
−0.876690 + 0.481057i \(0.840253\pi\)
\(314\) −3.21933e8 −0.586829
\(315\) 0 0
\(316\) 2.28741e8 0.407793
\(317\) −3.08327e8 5.34038e8i −0.543631 0.941597i −0.998692 0.0511365i \(-0.983716\pi\)
0.455060 0.890461i \(-0.349618\pi\)
\(318\) 0 0
\(319\) −2.87124e7 + 4.97314e7i −0.0495225 + 0.0857755i
\(320\) 1.23671e7 2.14204e7i 0.0210980 0.0365429i
\(321\) 0 0
\(322\) −7.60478e7 1.31719e8i −0.126938 0.219863i
\(323\) −6.73149e8 −1.11148
\(324\) 0 0
\(325\) −2.16071e8 −0.349145
\(326\) 3.49105e8 + 6.04668e8i 0.558077 + 0.966619i
\(327\) 0 0
\(328\) −1.54208e8 + 2.67097e8i −0.241296 + 0.417936i
\(329\) −3.70378e7 + 6.41513e7i −0.0573402 + 0.0993162i
\(330\) 0 0
\(331\) 2.31847e8 + 4.01571e8i 0.351402 + 0.608645i 0.986495 0.163790i \(-0.0523719\pi\)
−0.635094 + 0.772435i \(0.719039\pi\)
\(332\) −2.19239e8 −0.328802
\(333\) 0 0
\(334\) 6.02168e8 0.884311
\(335\) 1.24651e8 + 2.15902e8i 0.181151 + 0.313762i
\(336\) 0 0
\(337\) −5.27262e7 + 9.13245e7i −0.0750450 + 0.129982i −0.901106 0.433599i \(-0.857243\pi\)
0.826061 + 0.563581i \(0.190577\pi\)
\(338\) 2.12021e8 3.67232e8i 0.298656 0.517287i
\(339\) 0 0
\(340\) −1.03352e8 1.79011e8i −0.142607 0.247003i
\(341\) 9.90794e8 1.35314
\(342\) 0 0
\(343\) −3.25586e8 −0.435649
\(344\) −1.75182e8 3.03424e8i −0.232025 0.401879i
\(345\) 0 0
\(346\) −1.06908e8 + 1.85170e8i −0.138754 + 0.240328i
\(347\) 5.83453e7 1.01057e8i 0.0749640 0.129841i −0.826107 0.563514i \(-0.809449\pi\)
0.901071 + 0.433672i \(0.142782\pi\)
\(348\) 0 0
\(349\) −4.91223e8 8.50823e8i −0.618571 1.07140i −0.989747 0.142834i \(-0.954378\pi\)
0.371175 0.928563i \(-0.378955\pi\)
\(350\) −1.12269e8 −0.139966
\(351\) 0 0
\(352\) 1.02295e8 0.125013
\(353\) 1.69007e8 + 2.92728e8i 0.204499 + 0.354203i 0.949973 0.312332i \(-0.101110\pi\)
−0.745474 + 0.666535i \(0.767777\pi\)
\(354\) 0 0
\(355\) 1.00919e7 1.74796e7i 0.0119721 0.0207364i
\(356\) 3.25595e8 5.63948e8i 0.382475 0.662466i
\(357\) 0 0
\(358\) 5.54052e8 + 9.59645e8i 0.638204 + 1.10540i
\(359\) 3.59044e8 0.409559 0.204780 0.978808i \(-0.434352\pi\)
0.204780 + 0.978808i \(0.434352\pi\)
\(360\) 0 0
\(361\) −5.07148e8 −0.567361
\(362\) 1.76535e8 + 3.05767e8i 0.195591 + 0.338774i
\(363\) 0 0
\(364\) −2.02500e7 + 3.50740e7i −0.0220074 + 0.0381180i
\(365\) 1.76042e8 3.04913e8i 0.189492 0.328210i
\(366\) 0 0
\(367\) −2.56996e8 4.45131e8i −0.271391 0.470064i 0.697827 0.716266i \(-0.254150\pi\)
−0.969218 + 0.246203i \(0.920817\pi\)
\(368\) 3.84116e8 0.401786
\(369\) 0 0
\(370\) 9.70914e7 0.0996494
\(371\) 8.37933e6 + 1.45134e7i 0.00851924 + 0.0147558i
\(372\) 0 0
\(373\) −5.28875e8 + 9.16039e8i −0.527682 + 0.913972i 0.471797 + 0.881707i \(0.343605\pi\)
−0.999479 + 0.0322652i \(0.989728\pi\)
\(374\) 4.27440e8 7.40348e8i 0.422498 0.731788i
\(375\) 0 0
\(376\) −9.35386e7 1.62014e8i −0.0907472 0.157179i
\(377\) 5.74176e7 0.0551888
\(378\) 0 0
\(379\) −2.50117e8 −0.235997 −0.117999 0.993014i \(-0.537648\pi\)
−0.117999 + 0.993014i \(0.537648\pi\)
\(380\) 5.93755e7 + 1.02841e8i 0.0555091 + 0.0961446i
\(381\) 0 0
\(382\) 7.19868e8 1.24685e9i 0.660741 1.14444i
\(383\) 1.51148e8 2.61795e8i 0.137469 0.238104i −0.789069 0.614305i \(-0.789436\pi\)
0.926538 + 0.376201i \(0.122770\pi\)
\(384\) 0 0
\(385\) 2.98576e7 + 5.17150e7i 0.0266651 + 0.0461853i
\(386\) −1.68974e8 −0.149543
\(387\) 0 0
\(388\) −1.38128e8 −0.120052
\(389\) 3.65061e7 + 6.32303e7i 0.0314443 + 0.0544631i 0.881319 0.472521i \(-0.156656\pi\)
−0.849875 + 0.526984i \(0.823323\pi\)
\(390\) 0 0
\(391\) 1.60503e9 2.78000e9i 1.35789 2.35194i
\(392\) 2.00305e8 3.46939e8i 0.167954 0.290905i
\(393\) 0 0
\(394\) 5.49494e8 + 9.51752e8i 0.452612 + 0.783948i
\(395\) −3.37226e8 −0.275316
\(396\) 0 0
\(397\) −9.92702e8 −0.796255 −0.398127 0.917330i \(-0.630340\pi\)
−0.398127 + 0.917330i \(0.630340\pi\)
\(398\) 3.87915e8 + 6.71889e8i 0.308423 + 0.534204i
\(399\) 0 0
\(400\) 1.41768e8 2.45549e8i 0.110756 0.191835i
\(401\) −5.54239e8 + 9.59970e8i −0.429232 + 0.743451i −0.996805 0.0798719i \(-0.974549\pi\)
0.567574 + 0.823323i \(0.307882\pi\)
\(402\) 0 0
\(403\) −4.95335e8 8.57945e8i −0.376991 0.652968i
\(404\) −2.61598e8 −0.197379
\(405\) 0 0
\(406\) 2.98339e7 0.0221242
\(407\) 2.00774e8 + 3.47752e8i 0.147614 + 0.255675i
\(408\) 0 0
\(409\) 7.15003e8 1.23842e9i 0.516745 0.895028i −0.483066 0.875584i \(-0.660477\pi\)
0.999811 0.0194442i \(-0.00618969\pi\)
\(410\) 2.27345e8 3.93772e8i 0.162908 0.282164i
\(411\) 0 0
\(412\) −5.00253e8 8.66464e8i −0.352411 0.610394i
\(413\) −1.78496e8 −0.124682
\(414\) 0 0
\(415\) 3.23217e8 0.221986
\(416\) −5.11411e7 8.85790e7i −0.0348292 0.0603259i
\(417\) 0 0
\(418\) −2.45564e8 + 4.25329e8i −0.164455 + 0.284845i
\(419\) 2.04771e8 3.54674e8i 0.135994 0.235548i −0.789983 0.613129i \(-0.789911\pi\)
0.925977 + 0.377581i \(0.123244\pi\)
\(420\) 0 0
\(421\) 1.16626e9 + 2.02002e9i 0.761743 + 1.31938i 0.941952 + 0.335749i \(0.108989\pi\)
−0.180209 + 0.983628i \(0.557677\pi\)
\(422\) 1.26355e9 0.818465
\(423\) 0 0
\(424\) −4.23238e7 −0.0269653
\(425\) −1.18475e9 2.05205e9i −0.748629 1.29666i
\(426\) 0 0
\(427\) −2.93693e8 + 5.08692e8i −0.182556 + 0.316197i
\(428\) 9.11818e6 1.57932e7i 0.00562154 0.00973679i
\(429\) 0 0
\(430\) 2.58266e8 + 4.47329e8i 0.156649 + 0.271324i
\(431\) −1.45263e9 −0.873948 −0.436974 0.899474i \(-0.643950\pi\)
−0.436974 + 0.899474i \(0.643950\pi\)
\(432\) 0 0
\(433\) −3.06024e9 −1.81154 −0.905770 0.423769i \(-0.860707\pi\)
−0.905770 + 0.423769i \(0.860707\pi\)
\(434\) −2.57373e8 4.45783e8i −0.151129 0.261764i
\(435\) 0 0
\(436\) −3.79986e8 + 6.58156e8i −0.219566 + 0.380300i
\(437\) −9.22088e8 + 1.59710e9i −0.528552 + 0.915479i
\(438\) 0 0
\(439\) 7.84435e8 + 1.35868e9i 0.442518 + 0.766464i 0.997876 0.0651480i \(-0.0207519\pi\)
−0.555358 + 0.831612i \(0.687419\pi\)
\(440\) −1.50810e8 −0.0844009
\(441\) 0 0
\(442\) −8.54774e8 −0.470840
\(443\) −9.61980e8 1.66620e9i −0.525718 0.910571i −0.999551 0.0299561i \(-0.990463\pi\)
0.473833 0.880615i \(-0.342870\pi\)
\(444\) 0 0
\(445\) −4.80015e8 + 8.31411e8i −0.258223 + 0.447255i
\(446\) −4.55263e8 + 7.88539e8i −0.242991 + 0.420873i
\(447\) 0 0
\(448\) −2.65726e7 4.60251e7i −0.0139624 0.0241836i
\(449\) 1.96841e9 1.02625 0.513124 0.858315i \(-0.328488\pi\)
0.513124 + 0.858315i \(0.328488\pi\)
\(450\) 0 0
\(451\) 1.88050e9 0.965283
\(452\) 4.19691e8 + 7.26927e8i 0.213769 + 0.370259i
\(453\) 0 0
\(454\) 1.12515e8 1.94881e8i 0.0564304 0.0977403i
\(455\) 2.98539e7 5.17085e7i 0.0148580 0.0257349i
\(456\) 0 0
\(457\) 5.71536e8 + 9.89929e8i 0.280115 + 0.485174i 0.971413 0.237396i \(-0.0762939\pi\)
−0.691298 + 0.722570i \(0.742961\pi\)
\(458\) −2.44891e9 −1.19109
\(459\) 0 0
\(460\) −5.66290e8 −0.271261
\(461\) 1.76632e9 + 3.05936e9i 0.839687 + 1.45438i 0.890157 + 0.455655i \(0.150595\pi\)
−0.0504698 + 0.998726i \(0.516072\pi\)
\(462\) 0 0
\(463\) −9.78759e8 + 1.69526e9i −0.458292 + 0.793785i −0.998871 0.0475084i \(-0.984872\pi\)
0.540579 + 0.841293i \(0.318205\pi\)
\(464\) −3.76726e7 + 6.52508e7i −0.0175070 + 0.0303231i
\(465\) 0 0
\(466\) 1.05031e8 + 1.81918e8i 0.0480801 + 0.0832771i
\(467\) 6.48657e8 0.294718 0.147359 0.989083i \(-0.452923\pi\)
0.147359 + 0.989083i \(0.452923\pi\)
\(468\) 0 0
\(469\) 5.35666e8 0.239767
\(470\) 1.37901e8 + 2.38852e8i 0.0612668 + 0.106117i
\(471\) 0 0
\(472\) 2.25395e8 3.90396e8i 0.0986616 0.170887i
\(473\) −1.06813e9 + 1.85006e9i −0.464099 + 0.803842i
\(474\) 0 0
\(475\) 6.80640e8 + 1.17890e9i 0.291400 + 0.504720i
\(476\) −4.44135e8 −0.188752
\(477\) 0 0
\(478\) 1.32879e8 0.0556491
\(479\) −1.95262e8 3.38203e8i −0.0811788 0.140606i 0.822578 0.568653i \(-0.192535\pi\)
−0.903757 + 0.428047i \(0.859202\pi\)
\(480\) 0 0
\(481\) 2.00749e8 3.47708e8i 0.0822520 0.142465i
\(482\) −1.36721e9 + 2.36808e9i −0.556123 + 0.963233i
\(483\) 0 0
\(484\) 3.11730e8 + 5.39932e8i 0.124974 + 0.216461i
\(485\) 2.03637e8 0.0810516
\(486\) 0 0
\(487\) 1.14248e9 0.448228 0.224114 0.974563i \(-0.428051\pi\)
0.224114 + 0.974563i \(0.428051\pi\)
\(488\) −7.41720e8 1.28470e9i −0.288915 0.500416i
\(489\) 0 0
\(490\) −2.95304e8 + 5.11481e8i −0.113392 + 0.196401i
\(491\) 1.68396e9 2.91671e9i 0.642018 1.11201i −0.342964 0.939349i \(-0.611431\pi\)
0.984982 0.172659i \(-0.0552358\pi\)
\(492\) 0 0
\(493\) 3.14830e8 + 5.45302e8i 0.118335 + 0.204962i
\(494\) 4.91066e8 0.183272
\(495\) 0 0
\(496\) 1.29999e9 0.478358
\(497\) −2.16840e7 3.75577e7i −0.00792303 0.0137231i
\(498\) 0 0
\(499\) 9.99272e8 1.73079e9i 0.360024 0.623580i −0.627940 0.778262i \(-0.716102\pi\)
0.987964 + 0.154681i \(0.0494351\pi\)
\(500\) −4.44887e8 + 7.70566e8i −0.159168 + 0.275686i
\(501\) 0 0
\(502\) −1.42669e9 2.47110e9i −0.503345 0.871820i
\(503\) 1.14200e9 0.400110 0.200055 0.979785i \(-0.435888\pi\)
0.200055 + 0.979785i \(0.435888\pi\)
\(504\) 0 0
\(505\) 3.85666e8 0.133258
\(506\) −1.17103e9 2.02828e9i −0.401828 0.695986i
\(507\) 0 0
\(508\) −5.89551e8 + 1.02113e9i −0.199526 + 0.345588i
\(509\) −1.50303e9 + 2.60333e9i −0.505192 + 0.875018i 0.494790 + 0.869012i \(0.335245\pi\)
−0.999982 + 0.00600540i \(0.998088\pi\)
\(510\) 0 0
\(511\) −3.78254e8 6.55155e8i −0.125404 0.217205i
\(512\) 1.34218e8 0.0441942
\(513\) 0 0
\(514\) −2.37725e9 −0.772155
\(515\) 7.37508e8 + 1.27740e9i 0.237926 + 0.412099i
\(516\) 0 0
\(517\) −5.70329e8 + 9.87838e8i −0.181513 + 0.314390i
\(518\) 1.04308e8 1.80667e8i 0.0329734 0.0571117i
\(519\) 0 0
\(520\) 7.53957e7 + 1.30589e8i 0.0235145 + 0.0407282i
\(521\) −1.82411e8 −0.0565091 −0.0282545 0.999601i \(-0.508995\pi\)
−0.0282545 + 0.999601i \(0.508995\pi\)
\(522\) 0 0
\(523\) −1.10431e9 −0.337547 −0.168774 0.985655i \(-0.553981\pi\)
−0.168774 + 0.985655i \(0.553981\pi\)
\(524\) 1.56447e8 + 2.70974e8i 0.0475015 + 0.0822751i
\(525\) 0 0
\(526\) 1.03226e9 1.78793e9i 0.309272 0.535674i
\(527\) 5.43200e9 9.40851e9i 1.61668 2.80016i
\(528\) 0 0
\(529\) −2.69477e9 4.66748e9i −0.791457 1.37084i
\(530\) 6.23967e7 0.0182052
\(531\) 0 0
\(532\) 2.55155e8 0.0734706
\(533\) −9.40130e8 1.62835e9i −0.268932 0.465804i
\(534\) 0 0
\(535\) −1.34427e7 + 2.32834e7i −0.00379531 + 0.00657366i
\(536\) −6.76410e8 + 1.17158e9i −0.189729 + 0.328620i
\(537\) 0 0
\(538\) −1.22947e9 2.12951e9i −0.340394 0.589579i
\(539\) −2.44262e9 −0.671887
\(540\) 0 0
\(541\) 3.66157e9 0.994207 0.497104 0.867691i \(-0.334397\pi\)
0.497104 + 0.867691i \(0.334397\pi\)
\(542\) 1.17364e9 + 2.03280e9i 0.316618 + 0.548399i
\(543\) 0 0
\(544\) 5.60830e8 9.71386e8i 0.149360 0.258699i
\(545\) 5.60202e8 9.70299e8i 0.148237 0.256754i
\(546\) 0 0
\(547\) −9.61269e8 1.66497e9i −0.251125 0.434961i 0.712711 0.701458i \(-0.247467\pi\)
−0.963836 + 0.266497i \(0.914134\pi\)
\(548\) 8.77996e8 0.227908
\(549\) 0 0
\(550\) −1.72879e9 −0.443070
\(551\) −1.80870e8 3.13275e8i −0.0460612 0.0797803i
\(552\) 0 0
\(553\) −3.62292e8 + 6.27508e8i −0.0911004 + 0.157791i
\(554\) 1.21423e9 2.10311e9i 0.303401 0.525506i
\(555\) 0 0
\(556\) 4.86802e8 + 8.43165e8i 0.120113 + 0.208042i
\(557\) 5.21647e9 1.27904 0.639519 0.768775i \(-0.279133\pi\)
0.639519 + 0.768775i \(0.279133\pi\)
\(558\) 0 0
\(559\) 2.13599e9 0.517200
\(560\) 3.91752e7 + 6.78534e7i 0.00942655 + 0.0163273i
\(561\) 0 0
\(562\) −8.94045e8 + 1.54853e9i −0.212462 + 0.367996i
\(563\) −8.08033e8 + 1.39955e9i −0.190831 + 0.330529i −0.945526 0.325547i \(-0.894452\pi\)
0.754695 + 0.656076i \(0.227785\pi\)
\(564\) 0 0
\(565\) −6.18738e8 1.07169e9i −0.144324 0.249976i
\(566\) 4.44074e9 1.02943
\(567\) 0 0
\(568\) 1.09525e8 0.0250781
\(569\) 1.41802e9 + 2.45609e9i 0.322693 + 0.558922i 0.981043 0.193791i \(-0.0620784\pi\)
−0.658349 + 0.752713i \(0.728745\pi\)
\(570\) 0 0
\(571\) 2.29918e9 3.98230e9i 0.516829 0.895175i −0.482980 0.875632i \(-0.660446\pi\)
0.999809 0.0195431i \(-0.00622116\pi\)
\(572\) −3.11820e8 + 5.40089e8i −0.0696656 + 0.120664i
\(573\) 0 0
\(574\) −4.88486e8 8.46083e8i −0.107810 0.186733i
\(575\) −6.49156e9 −1.42401
\(576\) 0 0
\(577\) 2.74982e9 0.595921 0.297960 0.954578i \(-0.403694\pi\)
0.297960 + 0.954578i \(0.403694\pi\)
\(578\) −3.04551e9 5.27497e9i −0.656013 1.13625i
\(579\) 0 0
\(580\) 5.55395e7 9.61973e7i 0.0118196 0.0204722i
\(581\) 3.47242e8 6.01440e8i 0.0734540 0.127226i
\(582\) 0 0
\(583\) 1.29030e8 + 2.23486e8i 0.0269681 + 0.0467100i
\(584\) 1.91055e9 0.396930
\(585\) 0 0
\(586\) 4.16194e9 0.854385
\(587\) 3.91043e9 + 6.77306e9i 0.797978 + 1.38214i 0.920931 + 0.389726i \(0.127430\pi\)
−0.122953 + 0.992412i \(0.539237\pi\)
\(588\) 0 0
\(589\) −3.12068e9 + 5.40518e9i −0.629282 + 1.08995i
\(590\) −3.32294e8 + 5.75549e8i −0.0666101 + 0.115372i
\(591\) 0 0
\(592\) 2.63429e8 + 4.56273e8i 0.0521841 + 0.0903855i
\(593\) −9.03436e9 −1.77912 −0.889562 0.456815i \(-0.848990\pi\)
−0.889562 + 0.456815i \(0.848990\pi\)
\(594\) 0 0
\(595\) 6.54775e8 0.127433
\(596\) 2.27015e9 + 3.93201e9i 0.439230 + 0.760769i
\(597\) 0 0
\(598\) −1.17088e9 + 2.02802e9i −0.223902 + 0.387810i
\(599\) −5.09289e8 + 8.82115e8i −0.0968212 + 0.167699i −0.910367 0.413801i \(-0.864201\pi\)
0.813546 + 0.581501i \(0.197534\pi\)
\(600\) 0 0
\(601\) −4.75699e8 8.23935e8i −0.0893864 0.154822i 0.817866 0.575409i \(-0.195157\pi\)
−0.907252 + 0.420588i \(0.861824\pi\)
\(602\) 1.10985e9 0.207337
\(603\) 0 0
\(604\) 1.85583e9 0.342696
\(605\) −4.59574e8 7.96006e8i −0.0843746 0.146141i
\(606\) 0 0
\(607\) −3.14424e9 + 5.44599e9i −0.570631 + 0.988363i 0.425870 + 0.904784i \(0.359968\pi\)
−0.996501 + 0.0835782i \(0.973365\pi\)
\(608\) −3.22196e8 + 5.58060e8i −0.0581377 + 0.100697i
\(609\) 0 0
\(610\) 1.09349e9 + 1.89399e9i 0.195057 + 0.337849i
\(611\) 1.14051e9 0.202282
\(612\) 0 0
\(613\) −7.77531e9 −1.36335 −0.681673 0.731657i \(-0.738747\pi\)
−0.681673 + 0.731657i \(0.738747\pi\)
\(614\) −2.06409e9 3.57511e9i −0.359865 0.623304i
\(615\) 0 0
\(616\) −1.62020e8 + 2.80627e8i −0.0279278 + 0.0483723i
\(617\) −2.80552e9 + 4.85930e9i −0.480856 + 0.832867i −0.999759 0.0219663i \(-0.993007\pi\)
0.518903 + 0.854833i \(0.326341\pi\)
\(618\) 0 0
\(619\) −1.76225e9 3.05231e9i −0.298642 0.517263i 0.677184 0.735814i \(-0.263200\pi\)
−0.975826 + 0.218551i \(0.929867\pi\)
\(620\) −1.91653e9 −0.322957
\(621\) 0 0
\(622\) 5.73771e9 0.956032
\(623\) 1.03139e9 + 1.78642e9i 0.170889 + 0.295989i
\(624\) 0 0
\(625\) −2.04812e9 + 3.54745e9i −0.335564 + 0.581214i
\(626\) −9.43421e7 + 1.63405e8i −0.0153708 + 0.0266229i
\(627\) 0 0
\(628\) 1.28773e9 + 2.23042e9i 0.207475 + 0.359358i
\(629\) 4.40296e9 0.705453
\(630\) 0 0
\(631\) 1.22930e9 0.194784 0.0973921 0.995246i \(-0.468950\pi\)
0.0973921 + 0.995246i \(0.468950\pi\)
\(632\) −9.14964e8 1.58476e9i −0.144176 0.249721i
\(633\) 0 0
\(634\) −2.46662e9 + 4.27231e9i −0.384405 + 0.665810i
\(635\) 8.69157e8 1.50542e9i 0.134707 0.233319i
\(636\) 0 0
\(637\) 1.22116e9 + 2.11511e9i 0.187191 + 0.324224i
\(638\) 4.59399e8 0.0700354
\(639\) 0 0
\(640\) −1.97873e8 −0.0298371
\(641\) −3.10360e9 5.37560e9i −0.465439 0.806165i 0.533782 0.845622i \(-0.320770\pi\)
−0.999221 + 0.0394574i \(0.987437\pi\)
\(642\) 0 0
\(643\) −9.15352e8 + 1.58544e9i −0.135784 + 0.235186i −0.925897 0.377776i \(-0.876689\pi\)
0.790112 + 0.612962i \(0.210022\pi\)
\(644\) −6.08382e8 + 1.05375e9i −0.0897586 + 0.155466i
\(645\) 0 0
\(646\) 2.69260e9 + 4.66371e9i 0.392968 + 0.680641i
\(647\) −1.07212e10 −1.55624 −0.778121 0.628114i \(-0.783827\pi\)
−0.778121 + 0.628114i \(0.783827\pi\)
\(648\) 0 0
\(649\) −2.74859e9 −0.394687
\(650\) 8.64285e8 + 1.49699e9i 0.123441 + 0.213807i
\(651\) 0 0
\(652\) 2.79284e9 4.83734e9i 0.394620 0.683503i
\(653\) 5.69305e8 9.86065e8i 0.0800108 0.138583i −0.823244 0.567688i \(-0.807838\pi\)
0.903254 + 0.429106i \(0.141171\pi\)
\(654\) 0 0
\(655\) −2.30645e8 3.99489e8i −0.0320700 0.0555469i
\(656\) 2.46733e9 0.341244
\(657\) 0 0
\(658\) 5.92605e8 0.0810913
\(659\) 2.46048e8 + 4.26168e8i 0.0334905 + 0.0580072i 0.882285 0.470716i \(-0.156004\pi\)
−0.848794 + 0.528723i \(0.822671\pi\)
\(660\) 0 0
\(661\) 1.49366e9 2.58710e9i 0.201162 0.348423i −0.747741 0.663991i \(-0.768861\pi\)
0.948903 + 0.315567i \(0.102195\pi\)
\(662\) 1.85478e9 3.21257e9i 0.248478 0.430377i
\(663\) 0 0
\(664\) 8.76955e8 + 1.51893e9i 0.116249 + 0.201349i
\(665\) −3.76168e8 −0.0496027
\(666\) 0 0
\(667\) 1.72503e9 0.225091
\(668\) −2.40867e9 4.17194e9i −0.312651 0.541527i
\(669\) 0 0
\(670\) 9.97210e8 1.72722e9i 0.128093 0.221863i
\(671\) −4.52246e9 + 7.83313e9i −0.577891 + 1.00094i
\(672\) 0 0
\(673\) −4.16502e8 7.21403e8i −0.0526701 0.0912273i 0.838488 0.544920i \(-0.183440\pi\)
−0.891158 + 0.453692i \(0.850107\pi\)
\(674\) 8.43620e8 0.106130
\(675\) 0 0
\(676\) −3.39234e9 −0.422363
\(677\) 3.44143e9 + 5.96072e9i 0.426263 + 0.738310i 0.996537 0.0831446i \(-0.0264963\pi\)
−0.570274 + 0.821454i \(0.693163\pi\)
\(678\) 0 0
\(679\) 2.18774e8 3.78927e8i 0.0268195 0.0464528i
\(680\) −8.26814e8 + 1.43208e9i −0.100839 + 0.174658i
\(681\) 0 0
\(682\) −3.96318e9 6.86442e9i −0.478408 0.828626i
\(683\) −8.85672e9 −1.06365 −0.531827 0.846853i \(-0.678494\pi\)
−0.531827 + 0.846853i \(0.678494\pi\)
\(684\) 0 0
\(685\) −1.29440e9 −0.153869
\(686\) 1.30234e9 + 2.25573e9i 0.154025 + 0.266779i
\(687\) 0 0
\(688\) −1.40146e9 + 2.42739e9i −0.164067 + 0.284172i
\(689\) 1.29014e8 2.23458e8i 0.0150268 0.0260273i
\(690\) 0 0
\(691\) −1.83277e9 3.17446e9i −0.211318 0.366013i 0.740810 0.671715i \(-0.234442\pi\)
−0.952127 + 0.305702i \(0.901109\pi\)
\(692\) 1.71053e9 0.196227
\(693\) 0 0
\(694\) −9.33525e8 −0.106015
\(695\) −7.17677e8 1.24305e9i −0.0810928 0.140457i
\(696\) 0 0
\(697\) 1.03098e10 1.78570e10i 1.15328 1.99754i
\(698\) −3.92979e9 + 6.80659e9i −0.437396 + 0.757592i
\(699\) 0 0
\(700\) 4.49078e8 + 7.77825e8i 0.0494855 + 0.0857115i
\(701\) 1.49934e10 1.64395 0.821974 0.569525i \(-0.192873\pi\)
0.821974 + 0.569525i \(0.192873\pi\)
\(702\) 0 0
\(703\) −2.52950e9 −0.274594
\(704\) −4.09180e8 7.08721e8i −0.0441988 0.0765545i
\(705\) 0 0
\(706\) 1.35205e9 2.34182e9i 0.144603 0.250460i
\(707\) 4.14333e8 7.17646e8i 0.0440942 0.0763734i
\(708\) 0 0
\(709\) 6.34766e9 + 1.09945e10i 0.668886 + 1.15854i 0.978216 + 0.207589i \(0.0665618\pi\)
−0.309330 + 0.950955i \(0.600105\pi\)
\(710\) −1.61470e8 −0.0169312
\(711\) 0 0
\(712\) −5.20953e9 −0.540902
\(713\) −1.48817e10 2.57758e10i −1.53758 2.66317i
\(714\) 0 0
\(715\) 4.59707e8 7.96236e8i 0.0470338 0.0814649i
\(716\) 4.43241e9 7.67716e9i 0.451278 0.781637i
\(717\) 0 0
\(718\) −1.43618e9 2.48753e9i −0.144801 0.250803i
\(719\) 1.60779e10 1.61317 0.806583 0.591120i \(-0.201314\pi\)
0.806583 + 0.591120i \(0.201314\pi\)
\(720\) 0 0
\(721\) 3.16931e9 0.314913
\(722\) 2.02859e9 + 3.51363e9i 0.200593 + 0.347436i
\(723\) 0 0
\(724\) 1.41228e9 2.44613e9i 0.138304 0.239550i
\(725\) 6.36667e8 1.10274e9i 0.0620482 0.107471i
\(726\) 0 0
\(727\) 7.92634e9 + 1.37288e10i 0.765072 + 1.32514i 0.940209 + 0.340599i \(0.110630\pi\)
−0.175137 + 0.984544i \(0.556037\pi\)
\(728\) 3.23999e8 0.0311232
\(729\) 0 0
\(730\) −2.81667e9 −0.267982
\(731\) 1.17120e10 + 2.02858e10i 1.10897 + 1.92079i
\(732\) 0 0
\(733\) −4.13335e9 + 7.15918e9i −0.387649 + 0.671428i −0.992133 0.125190i \(-0.960046\pi\)
0.604484 + 0.796617i \(0.293379\pi\)
\(734\) −2.05597e9 + 3.56105e9i −0.191903 + 0.332385i
\(735\) 0 0
\(736\) −1.53646e9 2.66123e9i −0.142053 0.246043i
\(737\) 8.24849e9 0.758993
\(738\) 0 0
\(739\) −1.46011e10 −1.33085 −0.665424 0.746465i \(-0.731749\pi\)
−0.665424 + 0.746465i \(0.731749\pi\)
\(740\) −3.88366e8 6.72669e8i −0.0352314 0.0610226i
\(741\) 0 0
\(742\) 6.70347e7 1.16107e8i 0.00602401 0.0104339i
\(743\) 9.86519e9 1.70870e10i 0.882358 1.52829i 0.0336456 0.999434i \(-0.489288\pi\)
0.848712 0.528855i \(-0.177378\pi\)
\(744\) 0 0
\(745\) −3.34681e9 5.79685e9i −0.296541 0.513623i
\(746\) 8.46201e9 0.746255
\(747\) 0 0
\(748\) −6.83905e9 −0.597503
\(749\) 2.88837e7 + 5.00280e7i 0.00251169 + 0.00435038i
\(750\) 0 0
\(751\) 8.38564e9 1.45244e10i 0.722431 1.25129i −0.237591 0.971365i \(-0.576358\pi\)
0.960023 0.279922i \(-0.0903087\pi\)
\(752\) −7.48309e8 + 1.29611e9i −0.0641680 + 0.111142i
\(753\) 0 0
\(754\) −2.29671e8 3.97801e8i −0.0195122 0.0337961i
\(755\) −2.73599e9 −0.231367
\(756\) 0 0
\(757\) 1.74690e10 1.46363 0.731815 0.681503i \(-0.238673\pi\)
0.731815 + 0.681503i \(0.238673\pi\)
\(758\) 1.00047e9 + 1.73286e9i 0.0834376 + 0.144518i
\(759\) 0 0
\(760\) 4.75004e8 8.22731e8i 0.0392509 0.0679845i
\(761\) 5.28622e9 9.15600e9i 0.434810 0.753112i −0.562471 0.826817i \(-0.690149\pi\)
0.997280 + 0.0737051i \(0.0234824\pi\)
\(762\) 0 0
\(763\) −1.20368e9 2.08484e9i −0.0981017 0.169917i
\(764\) −1.15179e10 −0.934429
\(765\) 0 0
\(766\) −2.41836e9 −0.194411
\(767\) 1.37412e9 + 2.38005e9i 0.109962 + 0.190459i
\(768\) 0 0
\(769\) 4.83332e9 8.37155e9i 0.383268 0.663840i −0.608259 0.793739i \(-0.708132\pi\)
0.991527 + 0.129898i \(0.0414651\pi\)
\(770\) 2.38861e8 4.13720e8i 0.0188551 0.0326579i
\(771\) 0 0
\(772\) 6.75897e8 + 1.17069e9i 0.0528713 + 0.0915758i
\(773\) 8.80988e9 0.686028 0.343014 0.939330i \(-0.388552\pi\)
0.343014 + 0.939330i \(0.388552\pi\)
\(774\) 0 0
\(775\) −2.19698e10 −1.69539
\(776\) 5.52511e8 + 9.56977e8i 0.0424448 + 0.0735166i
\(777\) 0 0
\(778\) 2.92048e8 5.05843e8i 0.0222344 0.0385112i
\(779\) −5.92295e9 + 1.02589e10i −0.448908 + 0.777531i
\(780\) 0 0
\(781\) −3.33902e8 5.78335e8i −0.0250807 0.0434411i
\(782\) −2.56805e10 −1.92035
\(783\) 0 0
\(784\) −3.20488e9 −0.237523
\(785\) −1.89846e9 3.28824e9i −0.140074 0.242616i
\(786\) 0 0
\(787\) −6.40795e9 + 1.10989e10i −0.468605 + 0.811648i −0.999356 0.0358797i \(-0.988577\pi\)
0.530751 + 0.847528i \(0.321910\pi\)
\(788\) 4.39596e9 7.61402e9i 0.320045 0.554335i
\(789\) 0 0
\(790\) 1.34890e9 + 2.33637e9i 0.0973388 + 0.168596i
\(791\) −2.65891e9 −0.191023
\(792\) 0 0
\(793\) 9.04378e9 0.644012
\(794\) 3.97081e9 + 6.87764e9i 0.281518 + 0.487604i
\(795\) 0 0
\(796\) 3.10332e9 5.37511e9i 0.218088 0.377739i
\(797\) 2.37858e7 4.11982e7i 0.00166423 0.00288253i −0.865192 0.501441i \(-0.832804\pi\)
0.866856 + 0.498558i \(0.166137\pi\)
\(798\) 0 0
\(799\) 6.25363e9 + 1.08316e10i 0.433729 + 0.751240i
\(800\) −2.26828e9 −0.156633
\(801\) 0 0
\(802\) 8.86782e9 0.607025
\(803\) −5.82456e9 1.00884e10i −0.396971 0.687574i
\(804\) 0 0
\(805\) 8.96919e8 1.55351e9i 0.0605993 0.104961i
\(806\) −3.96268e9 + 6.86356e9i −0.266573 + 0.461718i
\(807\) 0 0
\(808\) 1.04639e9 + 1.81241e9i 0.0697839 + 0.120869i
\(809\) −2.20292e10 −1.46278 −0.731390 0.681959i \(-0.761128\pi\)
−0.731390 + 0.681959i \(0.761128\pi\)
\(810\) 0 0
\(811\) 1.42684e10 0.939298 0.469649 0.882853i \(-0.344380\pi\)
0.469649 + 0.882853i \(0.344380\pi\)
\(812\) −1.19335e8 2.06695e8i −0.00782210 0.0135483i
\(813\) 0 0
\(814\) 1.60620e9 2.78201e9i 0.104379 0.180790i
\(815\) −4.11740e9 + 7.13154e9i −0.266423 + 0.461458i
\(816\) 0 0
\(817\) −6.72853e9 1.16542e10i −0.431661 0.747659i
\(818\) −1.14400e10 −0.730787
\(819\) 0 0
\(820\) −3.63751e9 −0.230386
\(821\) −9.70217e8 1.68047e9i −0.0611882 0.105981i 0.833809 0.552054i \(-0.186156\pi\)
−0.894997 + 0.446073i \(0.852822\pi\)
\(822\) 0 0
\(823\) −1.18809e10 + 2.05782e10i −0.742930 + 1.28679i 0.208225 + 0.978081i \(0.433231\pi\)
−0.951155 + 0.308712i \(0.900102\pi\)
\(824\) −4.00203e9 + 6.93171e9i −0.249192 + 0.431614i
\(825\) 0 0
\(826\) 7.13986e8 + 1.23666e9i 0.0440818 + 0.0763519i
\(827\) 6.55779e9 0.403170 0.201585 0.979471i \(-0.435391\pi\)
0.201585 + 0.979471i \(0.435391\pi\)
\(828\) 0 0
\(829\) −1.56834e9 −0.0956091 −0.0478046 0.998857i \(-0.515222\pi\)
−0.0478046 + 0.998857i \(0.515222\pi\)
\(830\) −1.29287e9 2.23931e9i −0.0784840 0.135938i
\(831\) 0 0
\(832\) −4.09129e8 + 7.08632e8i −0.0246280 + 0.0426569i
\(833\) −1.33916e10 + 2.31950e10i −0.802742 + 1.39039i
\(834\) 0 0
\(835\) 3.55103e9 + 6.15056e9i 0.211082 + 0.365605i
\(836\) 3.92902e9 0.232575
\(837\) 0 0
\(838\) −3.27634e9 −0.192324
\(839\) 1.08962e10 + 1.88727e10i 0.636953 + 1.10324i 0.986098 + 0.166166i \(0.0531389\pi\)
−0.349145 + 0.937069i \(0.613528\pi\)
\(840\) 0 0
\(841\) 8.45575e9 1.46458e10i 0.490192 0.849038i
\(842\) 9.33008e9 1.61602e10i 0.538633 0.932940i
\(843\) 0 0
\(844\) −5.05421e9 8.75415e9i −0.289371 0.501205i
\(845\) 5.00123e9 0.285153
\(846\) 0 0
\(847\) −1.97494e9 −0.111676
\(848\) 1.69295e8 + 2.93228e8i 0.00953366 + 0.0165128i
\(849\) 0 0
\(850\) −9.47803e9 + 1.64164e10i −0.529361 + 0.916880i
\(851\) 6.03124e9 1.04464e10i 0.335469 0.581050i
\(852\) 0 0
\(853\) 1.44291e10 + 2.49919e10i 0.796009 + 1.37873i 0.922197 + 0.386721i \(0.126392\pi\)
−0.126188 + 0.992006i \(0.540274\pi\)
\(854\) 4.69910e9 0.258174
\(855\) 0 0
\(856\) −1.45891e8 −0.00795005
\(857\) −8.05248e9 1.39473e10i −0.437015 0.756933i 0.560442 0.828193i \(-0.310631\pi\)
−0.997458 + 0.0712606i \(0.977298\pi\)
\(858\) 0 0
\(859\) −6.38497e9 + 1.10591e10i −0.343702 + 0.595310i −0.985117 0.171884i \(-0.945014\pi\)
0.641415 + 0.767194i \(0.278348\pi\)
\(860\) 2.06612e9 3.57863e9i 0.110767 0.191855i
\(861\) 0 0
\(862\) 5.81053e9 + 1.00641e10i 0.308987 + 0.535182i
\(863\) −2.29006e10 −1.21285 −0.606427 0.795139i \(-0.707398\pi\)
−0.606427 + 0.795139i \(0.707398\pi\)
\(864\) 0 0
\(865\) −2.52178e9 −0.132480
\(866\) 1.22410e10 + 2.12020e10i 0.640476 + 1.10934i
\(867\) 0 0
\(868\) −2.05899e9 + 3.56627e9i −0.106865 + 0.185095i
\(869\) −5.57877e9 + 9.66271e9i −0.288383 + 0.499494i
\(870\) 0 0
\(871\) −4.12373e9 7.14250e9i −0.211459 0.366258i
\(872\) 6.07978e9 0.310513
\(873\) 0 0
\(874\) 1.47534e10 0.747485
\(875\) −1.40927e9 2.44092e9i −0.0711157 0.123176i
\(876\) 0 0
\(877\) −4.39522e9 + 7.61274e9i −0.220030 + 0.381103i −0.954817 0.297195i \(-0.903949\pi\)
0.734787 + 0.678298i \(0.237282\pi\)
\(878\) 6.27548e9 1.08694e10i 0.312907 0.541972i
\(879\) 0 0
\(880\) 6.03241e8 + 1.04484e9i 0.0298402 + 0.0516848i
\(881\) 2.01724e10 0.993898 0.496949 0.867780i \(-0.334454\pi\)
0.496949 + 0.867780i \(0.334454\pi\)
\(882\) 0 0
\(883\) −1.47580e10 −0.721382 −0.360691 0.932685i \(-0.617459\pi\)
−0.360691 + 0.932685i \(0.617459\pi\)
\(884\) 3.41909e9 + 5.92205e9i 0.166467 + 0.288329i
\(885\) 0 0
\(886\) −7.69584e9 + 1.33296e10i −0.371739 + 0.643871i
\(887\) −2.29636e9 + 3.97742e9i −0.110486 + 0.191368i −0.915966 0.401255i \(-0.868574\pi\)
0.805480 + 0.592623i \(0.201907\pi\)
\(888\) 0 0
\(889\) −1.86752e9 3.23464e9i −0.0891476 0.154408i
\(890\) 7.68024e9 0.365183
\(891\) 0 0
\(892\) 7.28421e9 0.343641
\(893\) −3.59270e9 6.22274e9i −0.168827 0.292416i
\(894\) 0 0
\(895\) −6.53457e9 + 1.13182e10i −0.304675 + 0.527712i
\(896\) −2.12581e8 + 3.68201e8i −0.00987293 + 0.0171004i
\(897\) 0 0
\(898\) −7.87362e9 1.36375e10i −0.362833 0.628446i
\(899\) 5.83814e9 0.267988
\(900\) 0 0
\(901\) 2.82961e9 0.128881
\(902\) −7.52198e9 1.30285e10i −0.341279 0.591112i
\(903\) 0 0
\(904\) 3.35753e9 5.81541e9i 0.151158 0.261813i
\(905\) −2.08208e9 + 3.60626e9i −0.0933741 + 0.161729i
\(906\) 0 0
\(907\) −1.22663e10 2.12458e10i −0.545868 0.945471i −0.998552 0.0537998i \(-0.982867\pi\)
0.452684 0.891671i \(-0.350467\pi\)
\(908\) −1.80023e9 −0.0798046
\(909\) 0 0
\(910\) −4.77662e8 −0.0210124
\(911\) −1.85075e9 3.20560e9i −0.0811025 0.140474i 0.822621 0.568590i \(-0.192511\pi\)
−0.903724 + 0.428116i \(0.859177\pi\)
\(912\) 0 0
\(913\) 5.34702e9 9.26131e9i 0.232522 0.402740i
\(914\) 4.57229e9 7.91944e9i 0.198071 0.343070i
\(915\) 0 0
\(916\) 9.79566e9 + 1.69666e10i 0.421114 + 0.729390i
\(917\) −9.91155e8 −0.0424472
\(918\) 0 0
\(919\) 1.83943e10 0.781771 0.390885 0.920439i \(-0.372169\pi\)
0.390885 + 0.920439i \(0.372169\pi\)
\(920\) 2.26516e9 + 3.92337e9i 0.0959051 + 0.166113i
\(921\) 0 0
\(922\) 1.41306e10 2.44749e10i 0.593748 1.02840i
\(923\) −3.33860e8 + 5.78263e8i −0.0139752 + 0.0242058i
\(924\) 0 0
\(925\) −4.45196e9 7.71102e9i −0.184950 0.320343i
\(926\) 1.56601e10 0.648123
\(927\) 0 0
\(928\) 6.02761e8 0.0247587
\(929\) −1.31887e10 2.28436e10i −0.539695 0.934778i −0.998920 0.0464587i \(-0.985206\pi\)
0.459226 0.888320i \(-0.348127\pi\)
\(930\) 0 0
\(931\) 7.69348e9 1.33255e10i 0.312463 0.541202i
\(932\) 8.40245e8 1.45535e9i 0.0339977 0.0588858i
\(933\) 0 0
\(934\) −2.59463e9 4.49403e9i −0.104198 0.180477i
\(935\) 1.00826e10 0.403396
\(936\) 0 0
\(937\) 1.51288e8 0.00600782 0.00300391 0.999995i \(-0.499044\pi\)
0.00300391 + 0.999995i \(0.499044\pi\)
\(938\) −2.14266e9 3.71120e9i −0.0847704 0.146827i
\(939\) 0 0
\(940\) 1.10321e9 1.91081e9i 0.0433222 0.0750362i
\(941\) −9.13477e9 + 1.58219e10i −0.357383 + 0.619005i −0.987523 0.157476i \(-0.949664\pi\)
0.630140 + 0.776482i \(0.282998\pi\)
\(942\) 0 0
\(943\) −2.82449e10 4.89216e10i −1.09686 1.89981i
\(944\) −3.60633e9 −0.139529
\(945\) 0 0
\(946\) 1.70901e10 0.656334
\(947\) 1.00226e10 + 1.73596e10i 0.383490 + 0.664224i 0.991558 0.129660i \(-0.0413887\pi\)
−0.608068 + 0.793885i \(0.708055\pi\)
\(948\) 0 0
\(949\) −5.82383e9 + 1.00872e10i −0.221196 + 0.383123i
\(950\) 5.44512e9 9.43122e9i 0.206051 0.356891i
\(951\) 0 0
\(952\) 1.77654e9 + 3.07706e9i 0.0667338 + 0.115586i
\(953\) −7.26479e9 −0.271893 −0.135946 0.990716i \(-0.543408\pi\)
−0.135946 + 0.990716i \(0.543408\pi\)
\(954\) 0 0
\(955\) 1.69805e10 0.630867
\(956\) −5.31516e8 9.20612e8i −0.0196749 0.0340780i
\(957\) 0 0
\(958\) −1.56209e9 + 2.70562e9i −0.0574021 + 0.0994233i
\(959\) −1.39061e9 + 2.40861e9i −0.0509145 + 0.0881865i
\(960\) 0 0
\(961\) −3.66086e10 6.34079e10i −1.33061 2.30469i
\(962\) −3.21199e9 −0.116322
\(963\) 0 0
\(964\) 2.18754e10 0.786477
\(965\) −9.96454e8 1.72591e9i −0.0356954 0.0618262i
\(966\) 0 0
\(967\) 1.11784e10 1.93616e10i 0.397547 0.688572i −0.595875 0.803077i \(-0.703195\pi\)
0.993423 + 0.114505i \(0.0365281\pi\)
\(968\) 2.49384e9 4.31946e9i 0.0883700 0.153061i
\(969\) 0 0
\(970\) −8.14550e8 1.41084e9i −0.0286561 0.0496337i
\(971\) −4.85074e9 −0.170036 −0.0850180 0.996379i \(-0.527095\pi\)
−0.0850180 + 0.996379i \(0.527095\pi\)
\(972\) 0 0
\(973\) −3.08409e9 −0.107333
\(974\) −4.56994e9 7.91537e9i −0.158473 0.274482i
\(975\) 0 0
\(976\) −5.93376e9 + 1.02776e10i −0.204294 + 0.353848i
\(977\) 1.60817e10 2.78544e10i 0.551699 0.955570i −0.446454 0.894807i \(-0.647313\pi\)
0.998152 0.0607632i \(-0.0193534\pi\)
\(978\) 0 0
\(979\) 1.58819e10 + 2.75083e10i 0.540958 + 0.936966i
\(980\) 4.72486e9 0.160361
\(981\) 0 0
\(982\) −2.69434e10 −0.907950
\(983\) 2.61035e9 + 4.52127e9i 0.0876521 + 0.151818i 0.906518 0.422167i \(-0.138730\pi\)
−0.818866 + 0.573984i \(0.805397\pi\)
\(984\) 0 0
\(985\) −6.48082e9 + 1.12251e10i −0.216074 + 0.374252i
\(986\) 2.51864e9 4.36242e9i 0.0836753 0.144930i
\(987\) 0 0
\(988\) −1.96427e9 3.40221e9i −0.0647964 0.112231i
\(989\) 6.41730e10 2.10943
\(990\) 0 0
\(991\) 2.90352e9 0.0947691 0.0473845 0.998877i \(-0.484911\pi\)
0.0473845 + 0.998877i \(0.484911\pi\)
\(992\) −5.19995e9 9.00657e9i −0.169125 0.292933i
\(993\) 0 0
\(994\) −1.73472e8 + 3.00462e8i −0.00560243 + 0.00970369i
\(995\) −4.57513e9 + 7.92437e9i −0.147239 + 0.255026i
\(996\) 0 0
\(997\) 1.66298e10 + 2.88036e10i 0.531439 + 0.920479i 0.999327 + 0.0366913i \(0.0116818\pi\)
−0.467888 + 0.883788i \(0.654985\pi\)
\(998\) −1.59884e10 −0.509151
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 54.8.c.b.37.3 8
3.2 odd 2 18.8.c.b.13.3 yes 8
4.3 odd 2 432.8.i.b.145.3 8
9.2 odd 6 18.8.c.b.7.3 8
9.4 even 3 162.8.a.i.1.2 4
9.5 odd 6 162.8.a.h.1.3 4
9.7 even 3 inner 54.8.c.b.19.3 8
12.11 even 2 144.8.i.b.49.2 8
36.7 odd 6 432.8.i.b.289.3 8
36.11 even 6 144.8.i.b.97.2 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
18.8.c.b.7.3 8 9.2 odd 6
18.8.c.b.13.3 yes 8 3.2 odd 2
54.8.c.b.19.3 8 9.7 even 3 inner
54.8.c.b.37.3 8 1.1 even 1 trivial
144.8.i.b.49.2 8 12.11 even 2
144.8.i.b.97.2 8 36.11 even 6
162.8.a.h.1.3 4 9.5 odd 6
162.8.a.i.1.2 4 9.4 even 3
432.8.i.b.145.3 8 4.3 odd 2
432.8.i.b.289.3 8 36.7 odd 6