Defining parameters
Level: | \( N \) | \(=\) | \( 54 = 2 \cdot 3^{3} \) |
Weight: | \( k \) | \(=\) | \( 9 \) |
Character orbit: | \([\chi]\) | \(=\) | 54.b (of order \(2\) and degree \(1\)) |
Character conductor: | \(\operatorname{cond}(\chi)\) | \(=\) | \( 3 \) |
Character field: | \(\Q\) | ||
Newform subspaces: | \( 3 \) | ||
Sturm bound: | \(81\) | ||
Trace bound: | \(7\) | ||
Distinguishing \(T_p\): | \(5\) |
Dimensions
The following table gives the dimensions of various subspaces of \(M_{9}(54, [\chi])\).
Total | New | Old | |
---|---|---|---|
Modular forms | 78 | 10 | 68 |
Cusp forms | 66 | 10 | 56 |
Eisenstein series | 12 | 0 | 12 |
Trace form
Decomposition of \(S_{9}^{\mathrm{new}}(54, [\chi])\) into newform subspaces
Label | Dim | $A$ | Field | CM | Traces | $q$-expansion | |||
---|---|---|---|---|---|---|---|---|---|
$a_{2}$ | $a_{3}$ | $a_{5}$ | $a_{7}$ | ||||||
54.9.b.a | $2$ | $21.998$ | \(\Q(\sqrt{-2}) \) | None | \(0\) | \(0\) | \(0\) | \(-4130\) | \(q+\beta q^{2}-2^{7}q^{4}+60\beta q^{5}-2065q^{7}+\cdots\) |
54.9.b.b | $4$ | $21.998$ | \(\Q(\sqrt{-2}, \sqrt{79})\) | None | \(0\) | \(0\) | \(0\) | \(164\) | \(q+\beta _{1}q^{2}-2^{7}q^{4}+(-21\beta _{1}+\beta _{2})q^{5}+\cdots\) |
54.9.b.c | $4$ | $21.998$ | \(\Q(\zeta_{8})\) | None | \(0\) | \(0\) | \(0\) | \(308\) | \(q-2\beta_{2} q^{2}-128 q^{4}+(51\beta_{2}-11\beta_1)q^{5}+\cdots\) |
Decomposition of \(S_{9}^{\mathrm{old}}(54, [\chi])\) into lower level spaces
\( S_{9}^{\mathrm{old}}(54, [\chi]) \simeq \) \(S_{9}^{\mathrm{new}}(3, [\chi])\)\(^{\oplus 6}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(6, [\chi])\)\(^{\oplus 3}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(9, [\chi])\)\(^{\oplus 4}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(18, [\chi])\)\(^{\oplus 2}\)\(\oplus\)\(S_{9}^{\mathrm{new}}(27, [\chi])\)\(^{\oplus 2}\)