Properties

Label 5408.2.a.bc
Level 54085408
Weight 22
Character orbit 5408.a
Self dual yes
Analytic conductor 43.18343.183
Analytic rank 11
Dimension 22
CM discriminant -4
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5408=25132 5408 = 2^{5} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 43.183097413143.1830974131
Analytic rank: 11
Dimension: 22
Coefficient field: Q(3)\Q(\sqrt{3})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x23 x^{2} - 3 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 1 1
Twist minimal: no (minimal twist has level 416)
Fricke sign: +1+1
Sato-Tate group: N(U(1))N(\mathrm{U}(1))

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=3\beta = \sqrt{3}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β+2)q53q9+(4β1)q17+(4β+2)q25+(2β5)q29+(β6)q37+(5β+4)q41+(3β6)q457q49+(2β7)q53+8q97+O(q100) q + ( - \beta + 2) q^{5} - 3 q^{9} + (4 \beta - 1) q^{17} + ( - 4 \beta + 2) q^{25} + (2 \beta - 5) q^{29} + (\beta - 6) q^{37} + ( - 5 \beta + 4) q^{41} + (3 \beta - 6) q^{45} - 7 q^{49} + (2 \beta - 7) q^{53}+ \cdots - 8 q^{97}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+4q56q92q17+4q2510q2912q37+8q4112q4514q4914q53+10q61+16q73+18q8128q8532q8916q97+O(q100) 2 q + 4 q^{5} - 6 q^{9} - 2 q^{17} + 4 q^{25} - 10 q^{29} - 12 q^{37} + 8 q^{41} - 12 q^{45} - 14 q^{49} - 14 q^{53} + 10 q^{61} + 16 q^{73} + 18 q^{81} - 28 q^{85} - 32 q^{89} - 16 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.73205
−1.73205
0 0 0 0.267949 0 0 0 −3.00000 0
1.2 0 0 0 3.73205 0 0 0 −3.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 1 -1
1313 1 -1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 CM by Q(1)\Q(\sqrt{-1})

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.bc 2
4.b odd 2 1 CM 5408.2.a.bc 2
13.b even 2 1 5408.2.a.r 2
13.f odd 12 2 416.2.w.b 4
52.b odd 2 1 5408.2.a.r 2
52.l even 12 2 416.2.w.b 4
104.u even 12 2 832.2.w.f 4
104.x odd 12 2 832.2.w.f 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.w.b 4 13.f odd 12 2
416.2.w.b 4 52.l even 12 2
832.2.w.f 4 104.u even 12 2
832.2.w.f 4 104.x odd 12 2
5408.2.a.r 2 13.b even 2 1
5408.2.a.r 2 52.b odd 2 1
5408.2.a.bc 2 1.a even 1 1 trivial
5408.2.a.bc 2 4.b odd 2 1 CM

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5408))S_{2}^{\mathrm{new}}(\Gamma_0(5408)):

T3 T_{3} Copy content Toggle raw display
T524T5+1 T_{5}^{2} - 4T_{5} + 1 Copy content Toggle raw display
T7 T_{7} Copy content Toggle raw display
T372+12T37+33 T_{37}^{2} + 12T_{37} + 33 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T2 T^{2} Copy content Toggle raw display
55 T24T+1 T^{2} - 4T + 1 Copy content Toggle raw display
77 T2 T^{2} Copy content Toggle raw display
1111 T2 T^{2} Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 T2+2T47 T^{2} + 2T - 47 Copy content Toggle raw display
1919 T2 T^{2} Copy content Toggle raw display
2323 T2 T^{2} Copy content Toggle raw display
2929 T2+10T+13 T^{2} + 10T + 13 Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 T2+12T+33 T^{2} + 12T + 33 Copy content Toggle raw display
4141 T28T59 T^{2} - 8T - 59 Copy content Toggle raw display
4343 T2 T^{2} Copy content Toggle raw display
4747 T2 T^{2} Copy content Toggle raw display
5353 T2+14T+37 T^{2} + 14T + 37 Copy content Toggle raw display
5959 T2 T^{2} Copy content Toggle raw display
6161 T210T83 T^{2} - 10T - 83 Copy content Toggle raw display
6767 T2 T^{2} Copy content Toggle raw display
7171 T2 T^{2} Copy content Toggle raw display
7373 T216T+37 T^{2} - 16T + 37 Copy content Toggle raw display
7979 T2 T^{2} Copy content Toggle raw display
8383 T2 T^{2} Copy content Toggle raw display
8989 (T+16)2 (T + 16)^{2} Copy content Toggle raw display
9797 (T+8)2 (T + 8)^{2} Copy content Toggle raw display
show more
show less