Properties

Label 5408.2.a.bs.1.9
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $9$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(9\)
Coefficient field: \(\mathbb{Q}[x]/(x^{9} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{9} - 2x^{8} - 14x^{7} + 23x^{6} + 63x^{5} - 85x^{4} - 99x^{3} + 98x^{2} + 35x - 7 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(-2.34228\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+3.34228 q^{3} +3.54539 q^{5} +2.43267 q^{7} +8.17085 q^{9} +1.56000 q^{11} +11.8497 q^{15} -4.70875 q^{17} -5.85552 q^{19} +8.13068 q^{21} -1.89070 q^{23} +7.56979 q^{25} +17.2824 q^{27} -2.14833 q^{29} -3.62508 q^{31} +5.21397 q^{33} +8.62478 q^{35} -9.60085 q^{37} -1.62658 q^{41} +3.33570 q^{43} +28.9689 q^{45} +1.03301 q^{47} -1.08210 q^{49} -15.7380 q^{51} +10.9116 q^{53} +5.53082 q^{55} -19.5708 q^{57} +6.70920 q^{59} +1.04224 q^{61} +19.8770 q^{63} -7.98257 q^{67} -6.31927 q^{69} -1.07822 q^{71} -8.85642 q^{73} +25.3004 q^{75} +3.79498 q^{77} +8.62755 q^{79} +33.2503 q^{81} +3.37447 q^{83} -16.6944 q^{85} -7.18031 q^{87} -10.5809 q^{89} -12.1160 q^{93} -20.7601 q^{95} +6.08937 q^{97} +12.7466 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 9 q + 7 q^{3} + 6 q^{5} + 10 q^{9} - q^{11} + 18 q^{15} - 7 q^{17} - 5 q^{19} + 12 q^{21} + 12 q^{23} + 11 q^{25} + 34 q^{27} - 8 q^{29} + 20 q^{31} - 12 q^{33} + 6 q^{35} + 6 q^{37} - 31 q^{41} + 33 q^{43}+ \cdots - 47 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 3.34228 1.92967 0.964834 0.262861i \(-0.0846660\pi\)
0.964834 + 0.262861i \(0.0846660\pi\)
\(4\) 0 0
\(5\) 3.54539 1.58555 0.792773 0.609516i \(-0.208636\pi\)
0.792773 + 0.609516i \(0.208636\pi\)
\(6\) 0 0
\(7\) 2.43267 0.919464 0.459732 0.888058i \(-0.347945\pi\)
0.459732 + 0.888058i \(0.347945\pi\)
\(8\) 0 0
\(9\) 8.17085 2.72362
\(10\) 0 0
\(11\) 1.56000 0.470359 0.235179 0.971952i \(-0.424432\pi\)
0.235179 + 0.971952i \(0.424432\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 11.8497 3.05958
\(16\) 0 0
\(17\) −4.70875 −1.14204 −0.571020 0.820936i \(-0.693452\pi\)
−0.571020 + 0.820936i \(0.693452\pi\)
\(18\) 0 0
\(19\) −5.85552 −1.34335 −0.671674 0.740847i \(-0.734425\pi\)
−0.671674 + 0.740847i \(0.734425\pi\)
\(20\) 0 0
\(21\) 8.13068 1.77426
\(22\) 0 0
\(23\) −1.89070 −0.394239 −0.197119 0.980379i \(-0.563159\pi\)
−0.197119 + 0.980379i \(0.563159\pi\)
\(24\) 0 0
\(25\) 7.56979 1.51396
\(26\) 0 0
\(27\) 17.2824 3.32601
\(28\) 0 0
\(29\) −2.14833 −0.398934 −0.199467 0.979905i \(-0.563921\pi\)
−0.199467 + 0.979905i \(0.563921\pi\)
\(30\) 0 0
\(31\) −3.62508 −0.651083 −0.325542 0.945528i \(-0.605547\pi\)
−0.325542 + 0.945528i \(0.605547\pi\)
\(32\) 0 0
\(33\) 5.21397 0.907636
\(34\) 0 0
\(35\) 8.62478 1.45785
\(36\) 0 0
\(37\) −9.60085 −1.57837 −0.789185 0.614155i \(-0.789497\pi\)
−0.789185 + 0.614155i \(0.789497\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) −1.62658 −0.254030 −0.127015 0.991901i \(-0.540540\pi\)
−0.127015 + 0.991901i \(0.540540\pi\)
\(42\) 0 0
\(43\) 3.33570 0.508690 0.254345 0.967114i \(-0.418140\pi\)
0.254345 + 0.967114i \(0.418140\pi\)
\(44\) 0 0
\(45\) 28.9689 4.31842
\(46\) 0 0
\(47\) 1.03301 0.150681 0.0753403 0.997158i \(-0.475996\pi\)
0.0753403 + 0.997158i \(0.475996\pi\)
\(48\) 0 0
\(49\) −1.08210 −0.154585
\(50\) 0 0
\(51\) −15.7380 −2.20376
\(52\) 0 0
\(53\) 10.9116 1.49883 0.749415 0.662101i \(-0.230335\pi\)
0.749415 + 0.662101i \(0.230335\pi\)
\(54\) 0 0
\(55\) 5.53082 0.745776
\(56\) 0 0
\(57\) −19.5708 −2.59222
\(58\) 0 0
\(59\) 6.70920 0.873463 0.436732 0.899592i \(-0.356136\pi\)
0.436732 + 0.899592i \(0.356136\pi\)
\(60\) 0 0
\(61\) 1.04224 0.133445 0.0667226 0.997772i \(-0.478746\pi\)
0.0667226 + 0.997772i \(0.478746\pi\)
\(62\) 0 0
\(63\) 19.8770 2.50427
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) −7.98257 −0.975226 −0.487613 0.873060i \(-0.662132\pi\)
−0.487613 + 0.873060i \(0.662132\pi\)
\(68\) 0 0
\(69\) −6.31927 −0.760750
\(70\) 0 0
\(71\) −1.07822 −0.127961 −0.0639807 0.997951i \(-0.520380\pi\)
−0.0639807 + 0.997951i \(0.520380\pi\)
\(72\) 0 0
\(73\) −8.85642 −1.03657 −0.518283 0.855209i \(-0.673429\pi\)
−0.518283 + 0.855209i \(0.673429\pi\)
\(74\) 0 0
\(75\) 25.3004 2.92144
\(76\) 0 0
\(77\) 3.79498 0.432478
\(78\) 0 0
\(79\) 8.62755 0.970675 0.485337 0.874327i \(-0.338697\pi\)
0.485337 + 0.874327i \(0.338697\pi\)
\(80\) 0 0
\(81\) 33.2503 3.69447
\(82\) 0 0
\(83\) 3.37447 0.370396 0.185198 0.982701i \(-0.440707\pi\)
0.185198 + 0.982701i \(0.440707\pi\)
\(84\) 0 0
\(85\) −16.6944 −1.81076
\(86\) 0 0
\(87\) −7.18031 −0.769810
\(88\) 0 0
\(89\) −10.5809 −1.12157 −0.560785 0.827961i \(-0.689501\pi\)
−0.560785 + 0.827961i \(0.689501\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −12.1160 −1.25637
\(94\) 0 0
\(95\) −20.7601 −2.12994
\(96\) 0 0
\(97\) 6.08937 0.618282 0.309141 0.951016i \(-0.399959\pi\)
0.309141 + 0.951016i \(0.399959\pi\)
\(98\) 0 0
\(99\) 12.7466 1.28108
\(100\) 0 0
\(101\) 14.7273 1.46543 0.732713 0.680538i \(-0.238254\pi\)
0.732713 + 0.680538i \(0.238254\pi\)
\(102\) 0 0
\(103\) 15.8099 1.55780 0.778898 0.627151i \(-0.215779\pi\)
0.778898 + 0.627151i \(0.215779\pi\)
\(104\) 0 0
\(105\) 28.8264 2.81317
\(106\) 0 0
\(107\) −13.1878 −1.27492 −0.637459 0.770485i \(-0.720014\pi\)
−0.637459 + 0.770485i \(0.720014\pi\)
\(108\) 0 0
\(109\) 4.33283 0.415010 0.207505 0.978234i \(-0.433466\pi\)
0.207505 + 0.978234i \(0.433466\pi\)
\(110\) 0 0
\(111\) −32.0888 −3.04573
\(112\) 0 0
\(113\) 9.54353 0.897780 0.448890 0.893587i \(-0.351819\pi\)
0.448890 + 0.893587i \(0.351819\pi\)
\(114\) 0 0
\(115\) −6.70328 −0.625084
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −11.4549 −1.05006
\(120\) 0 0
\(121\) −8.56639 −0.778763
\(122\) 0 0
\(123\) −5.43650 −0.490193
\(124\) 0 0
\(125\) 9.11092 0.814905
\(126\) 0 0
\(127\) 10.7995 0.958300 0.479150 0.877733i \(-0.340945\pi\)
0.479150 + 0.877733i \(0.340945\pi\)
\(128\) 0 0
\(129\) 11.1489 0.981603
\(130\) 0 0
\(131\) −11.0540 −0.965792 −0.482896 0.875678i \(-0.660415\pi\)
−0.482896 + 0.875678i \(0.660415\pi\)
\(132\) 0 0
\(133\) −14.2446 −1.23516
\(134\) 0 0
\(135\) 61.2730 5.27354
\(136\) 0 0
\(137\) −12.8633 −1.09899 −0.549494 0.835498i \(-0.685179\pi\)
−0.549494 + 0.835498i \(0.685179\pi\)
\(138\) 0 0
\(139\) −14.9531 −1.26831 −0.634154 0.773206i \(-0.718652\pi\)
−0.634154 + 0.773206i \(0.718652\pi\)
\(140\) 0 0
\(141\) 3.45262 0.290763
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) −7.61666 −0.632529
\(146\) 0 0
\(147\) −3.61668 −0.298298
\(148\) 0 0
\(149\) −4.04297 −0.331213 −0.165607 0.986192i \(-0.552958\pi\)
−0.165607 + 0.986192i \(0.552958\pi\)
\(150\) 0 0
\(151\) −9.20810 −0.749345 −0.374672 0.927157i \(-0.622245\pi\)
−0.374672 + 0.927157i \(0.622245\pi\)
\(152\) 0 0
\(153\) −38.4745 −3.11048
\(154\) 0 0
\(155\) −12.8523 −1.03232
\(156\) 0 0
\(157\) −14.4979 −1.15706 −0.578529 0.815662i \(-0.696373\pi\)
−0.578529 + 0.815662i \(0.696373\pi\)
\(158\) 0 0
\(159\) 36.4698 2.89224
\(160\) 0 0
\(161\) −4.59947 −0.362489
\(162\) 0 0
\(163\) −9.46323 −0.741218 −0.370609 0.928789i \(-0.620851\pi\)
−0.370609 + 0.928789i \(0.620851\pi\)
\(164\) 0 0
\(165\) 18.4856 1.43910
\(166\) 0 0
\(167\) 15.1520 1.17249 0.586247 0.810132i \(-0.300605\pi\)
0.586247 + 0.810132i \(0.300605\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) −47.8446 −3.65877
\(172\) 0 0
\(173\) −18.9107 −1.43775 −0.718876 0.695139i \(-0.755343\pi\)
−0.718876 + 0.695139i \(0.755343\pi\)
\(174\) 0 0
\(175\) 18.4148 1.39203
\(176\) 0 0
\(177\) 22.4240 1.68549
\(178\) 0 0
\(179\) −9.57124 −0.715388 −0.357694 0.933839i \(-0.616437\pi\)
−0.357694 + 0.933839i \(0.616437\pi\)
\(180\) 0 0
\(181\) 26.0996 1.93997 0.969985 0.243166i \(-0.0781859\pi\)
0.969985 + 0.243166i \(0.0781859\pi\)
\(182\) 0 0
\(183\) 3.48346 0.257505
\(184\) 0 0
\(185\) −34.0388 −2.50258
\(186\) 0 0
\(187\) −7.34567 −0.537169
\(188\) 0 0
\(189\) 42.0426 3.05815
\(190\) 0 0
\(191\) 8.67623 0.627790 0.313895 0.949458i \(-0.398366\pi\)
0.313895 + 0.949458i \(0.398366\pi\)
\(192\) 0 0
\(193\) 14.7887 1.06451 0.532257 0.846583i \(-0.321344\pi\)
0.532257 + 0.846583i \(0.321344\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 1.89803 0.135229 0.0676145 0.997712i \(-0.478461\pi\)
0.0676145 + 0.997712i \(0.478461\pi\)
\(198\) 0 0
\(199\) −9.55304 −0.677197 −0.338598 0.940931i \(-0.609953\pi\)
−0.338598 + 0.940931i \(0.609953\pi\)
\(200\) 0 0
\(201\) −26.6800 −1.88186
\(202\) 0 0
\(203\) −5.22618 −0.366806
\(204\) 0 0
\(205\) −5.76688 −0.402776
\(206\) 0 0
\(207\) −15.4487 −1.07376
\(208\) 0 0
\(209\) −9.13464 −0.631856
\(210\) 0 0
\(211\) 8.56429 0.589590 0.294795 0.955560i \(-0.404749\pi\)
0.294795 + 0.955560i \(0.404749\pi\)
\(212\) 0 0
\(213\) −3.60372 −0.246923
\(214\) 0 0
\(215\) 11.8264 0.806552
\(216\) 0 0
\(217\) −8.81864 −0.598648
\(218\) 0 0
\(219\) −29.6007 −2.00023
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 5.28598 0.353975 0.176988 0.984213i \(-0.443365\pi\)
0.176988 + 0.984213i \(0.443365\pi\)
\(224\) 0 0
\(225\) 61.8517 4.12344
\(226\) 0 0
\(227\) −28.2562 −1.87543 −0.937715 0.347406i \(-0.887062\pi\)
−0.937715 + 0.347406i \(0.887062\pi\)
\(228\) 0 0
\(229\) −4.21203 −0.278339 −0.139170 0.990269i \(-0.544443\pi\)
−0.139170 + 0.990269i \(0.544443\pi\)
\(230\) 0 0
\(231\) 12.6839 0.834539
\(232\) 0 0
\(233\) −9.50448 −0.622659 −0.311330 0.950302i \(-0.600774\pi\)
−0.311330 + 0.950302i \(0.600774\pi\)
\(234\) 0 0
\(235\) 3.66244 0.238911
\(236\) 0 0
\(237\) 28.8357 1.87308
\(238\) 0 0
\(239\) 20.8800 1.35061 0.675307 0.737536i \(-0.264011\pi\)
0.675307 + 0.737536i \(0.264011\pi\)
\(240\) 0 0
\(241\) −19.4449 −1.25255 −0.626277 0.779600i \(-0.715422\pi\)
−0.626277 + 0.779600i \(0.715422\pi\)
\(242\) 0 0
\(243\) 59.2844 3.80310
\(244\) 0 0
\(245\) −3.83646 −0.245102
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 11.2784 0.714741
\(250\) 0 0
\(251\) 31.2802 1.97439 0.987196 0.159513i \(-0.0509924\pi\)
0.987196 + 0.159513i \(0.0509924\pi\)
\(252\) 0 0
\(253\) −2.94950 −0.185434
\(254\) 0 0
\(255\) −55.7973 −3.49416
\(256\) 0 0
\(257\) −0.649810 −0.0405340 −0.0202670 0.999795i \(-0.506452\pi\)
−0.0202670 + 0.999795i \(0.506452\pi\)
\(258\) 0 0
\(259\) −23.3557 −1.45126
\(260\) 0 0
\(261\) −17.5537 −1.08654
\(262\) 0 0
\(263\) 3.80983 0.234924 0.117462 0.993077i \(-0.462524\pi\)
0.117462 + 0.993077i \(0.462524\pi\)
\(264\) 0 0
\(265\) 38.6860 2.37646
\(266\) 0 0
\(267\) −35.3643 −2.16426
\(268\) 0 0
\(269\) −18.0883 −1.10287 −0.551433 0.834219i \(-0.685919\pi\)
−0.551433 + 0.834219i \(0.685919\pi\)
\(270\) 0 0
\(271\) −17.6833 −1.07418 −0.537092 0.843524i \(-0.680477\pi\)
−0.537092 + 0.843524i \(0.680477\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) 11.8089 0.712104
\(276\) 0 0
\(277\) −20.4411 −1.22819 −0.614093 0.789234i \(-0.710478\pi\)
−0.614093 + 0.789234i \(0.710478\pi\)
\(278\) 0 0
\(279\) −29.6200 −1.77330
\(280\) 0 0
\(281\) −4.13083 −0.246425 −0.123212 0.992380i \(-0.539320\pi\)
−0.123212 + 0.992380i \(0.539320\pi\)
\(282\) 0 0
\(283\) 11.9921 0.712854 0.356427 0.934323i \(-0.383995\pi\)
0.356427 + 0.934323i \(0.383995\pi\)
\(284\) 0 0
\(285\) −69.3861 −4.11008
\(286\) 0 0
\(287\) −3.95695 −0.233571
\(288\) 0 0
\(289\) 5.17234 0.304255
\(290\) 0 0
\(291\) 20.3524 1.19308
\(292\) 0 0
\(293\) 0.724538 0.0423279 0.0211640 0.999776i \(-0.493263\pi\)
0.0211640 + 0.999776i \(0.493263\pi\)
\(294\) 0 0
\(295\) 23.7867 1.38492
\(296\) 0 0
\(297\) 26.9607 1.56442
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) 8.11468 0.467722
\(302\) 0 0
\(303\) 49.2229 2.82778
\(304\) 0 0
\(305\) 3.69515 0.211584
\(306\) 0 0
\(307\) 2.76712 0.157928 0.0789639 0.996877i \(-0.474839\pi\)
0.0789639 + 0.996877i \(0.474839\pi\)
\(308\) 0 0
\(309\) 52.8411 3.00603
\(310\) 0 0
\(311\) 29.6292 1.68012 0.840059 0.542494i \(-0.182520\pi\)
0.840059 + 0.542494i \(0.182520\pi\)
\(312\) 0 0
\(313\) 10.7690 0.608700 0.304350 0.952560i \(-0.401561\pi\)
0.304350 + 0.952560i \(0.401561\pi\)
\(314\) 0 0
\(315\) 70.4718 3.97064
\(316\) 0 0
\(317\) 0.379391 0.0213087 0.0106544 0.999943i \(-0.496609\pi\)
0.0106544 + 0.999943i \(0.496609\pi\)
\(318\) 0 0
\(319\) −3.35140 −0.187642
\(320\) 0 0
\(321\) −44.0775 −2.46017
\(322\) 0 0
\(323\) 27.5722 1.53416
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) 14.4815 0.800831
\(328\) 0 0
\(329\) 2.51299 0.138545
\(330\) 0 0
\(331\) 24.3183 1.33665 0.668327 0.743868i \(-0.267011\pi\)
0.668327 + 0.743868i \(0.267011\pi\)
\(332\) 0 0
\(333\) −78.4471 −4.29888
\(334\) 0 0
\(335\) −28.3013 −1.54627
\(336\) 0 0
\(337\) −14.9198 −0.812733 −0.406366 0.913710i \(-0.633204\pi\)
−0.406366 + 0.913710i \(0.633204\pi\)
\(338\) 0 0
\(339\) 31.8972 1.73242
\(340\) 0 0
\(341\) −5.65514 −0.306243
\(342\) 0 0
\(343\) −19.6611 −1.06160
\(344\) 0 0
\(345\) −22.4043 −1.20620
\(346\) 0 0
\(347\) 21.4559 1.15181 0.575907 0.817515i \(-0.304649\pi\)
0.575907 + 0.817515i \(0.304649\pi\)
\(348\) 0 0
\(349\) −1.71661 −0.0918882 −0.0459441 0.998944i \(-0.514630\pi\)
−0.0459441 + 0.998944i \(0.514630\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −23.3569 −1.24316 −0.621580 0.783351i \(-0.713509\pi\)
−0.621580 + 0.783351i \(0.713509\pi\)
\(354\) 0 0
\(355\) −3.82272 −0.202889
\(356\) 0 0
\(357\) −38.2854 −2.02628
\(358\) 0 0
\(359\) 31.3222 1.65312 0.826561 0.562847i \(-0.190294\pi\)
0.826561 + 0.562847i \(0.190294\pi\)
\(360\) 0 0
\(361\) 15.2871 0.804586
\(362\) 0 0
\(363\) −28.6313 −1.50275
\(364\) 0 0
\(365\) −31.3995 −1.64352
\(366\) 0 0
\(367\) 24.2134 1.26393 0.631964 0.774998i \(-0.282249\pi\)
0.631964 + 0.774998i \(0.282249\pi\)
\(368\) 0 0
\(369\) −13.2906 −0.691880
\(370\) 0 0
\(371\) 26.5445 1.37812
\(372\) 0 0
\(373\) −32.5412 −1.68492 −0.842460 0.538759i \(-0.818893\pi\)
−0.842460 + 0.538759i \(0.818893\pi\)
\(374\) 0 0
\(375\) 30.4513 1.57250
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 26.3195 1.35194 0.675972 0.736927i \(-0.263724\pi\)
0.675972 + 0.736927i \(0.263724\pi\)
\(380\) 0 0
\(381\) 36.0949 1.84920
\(382\) 0 0
\(383\) −9.29522 −0.474964 −0.237482 0.971392i \(-0.576322\pi\)
−0.237482 + 0.971392i \(0.576322\pi\)
\(384\) 0 0
\(385\) 13.4547 0.685714
\(386\) 0 0
\(387\) 27.2555 1.38548
\(388\) 0 0
\(389\) −6.76758 −0.343130 −0.171565 0.985173i \(-0.554882\pi\)
−0.171565 + 0.985173i \(0.554882\pi\)
\(390\) 0 0
\(391\) 8.90285 0.450237
\(392\) 0 0
\(393\) −36.9456 −1.86366
\(394\) 0 0
\(395\) 30.5880 1.53905
\(396\) 0 0
\(397\) 16.2305 0.814586 0.407293 0.913298i \(-0.366473\pi\)
0.407293 + 0.913298i \(0.366473\pi\)
\(398\) 0 0
\(399\) −47.6094 −2.38345
\(400\) 0 0
\(401\) −8.12021 −0.405504 −0.202752 0.979230i \(-0.564988\pi\)
−0.202752 + 0.979230i \(0.564988\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 117.885 5.85776
\(406\) 0 0
\(407\) −14.9774 −0.742400
\(408\) 0 0
\(409\) −14.6048 −0.722161 −0.361081 0.932535i \(-0.617592\pi\)
−0.361081 + 0.932535i \(0.617592\pi\)
\(410\) 0 0
\(411\) −42.9928 −2.12068
\(412\) 0 0
\(413\) 16.3213 0.803118
\(414\) 0 0
\(415\) 11.9638 0.587280
\(416\) 0 0
\(417\) −49.9776 −2.44741
\(418\) 0 0
\(419\) −16.9755 −0.829307 −0.414654 0.909979i \(-0.636097\pi\)
−0.414654 + 0.909979i \(0.636097\pi\)
\(420\) 0 0
\(421\) −10.2034 −0.497284 −0.248642 0.968595i \(-0.579984\pi\)
−0.248642 + 0.968595i \(0.579984\pi\)
\(422\) 0 0
\(423\) 8.44060 0.410396
\(424\) 0 0
\(425\) −35.6443 −1.72900
\(426\) 0 0
\(427\) 2.53543 0.122698
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −6.33244 −0.305023 −0.152512 0.988302i \(-0.548736\pi\)
−0.152512 + 0.988302i \(0.548736\pi\)
\(432\) 0 0
\(433\) −19.8673 −0.954761 −0.477381 0.878697i \(-0.658414\pi\)
−0.477381 + 0.878697i \(0.658414\pi\)
\(434\) 0 0
\(435\) −25.4570 −1.22057
\(436\) 0 0
\(437\) 11.0711 0.529600
\(438\) 0 0
\(439\) −12.3304 −0.588496 −0.294248 0.955729i \(-0.595069\pi\)
−0.294248 + 0.955729i \(0.595069\pi\)
\(440\) 0 0
\(441\) −8.84166 −0.421031
\(442\) 0 0
\(443\) 1.24249 0.0590323 0.0295161 0.999564i \(-0.490603\pi\)
0.0295161 + 0.999564i \(0.490603\pi\)
\(444\) 0 0
\(445\) −37.5133 −1.77830
\(446\) 0 0
\(447\) −13.5127 −0.639131
\(448\) 0 0
\(449\) 17.0128 0.802884 0.401442 0.915884i \(-0.368509\pi\)
0.401442 + 0.915884i \(0.368509\pi\)
\(450\) 0 0
\(451\) −2.53748 −0.119485
\(452\) 0 0
\(453\) −30.7761 −1.44599
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −18.9023 −0.884210 −0.442105 0.896963i \(-0.645768\pi\)
−0.442105 + 0.896963i \(0.645768\pi\)
\(458\) 0 0
\(459\) −81.3787 −3.79843
\(460\) 0 0
\(461\) 9.90226 0.461194 0.230597 0.973049i \(-0.425932\pi\)
0.230597 + 0.973049i \(0.425932\pi\)
\(462\) 0 0
\(463\) 1.49093 0.0692896 0.0346448 0.999400i \(-0.488970\pi\)
0.0346448 + 0.999400i \(0.488970\pi\)
\(464\) 0 0
\(465\) −42.9561 −1.99204
\(466\) 0 0
\(467\) 19.8898 0.920392 0.460196 0.887817i \(-0.347779\pi\)
0.460196 + 0.887817i \(0.347779\pi\)
\(468\) 0 0
\(469\) −19.4190 −0.896685
\(470\) 0 0
\(471\) −48.4560 −2.23274
\(472\) 0 0
\(473\) 5.20371 0.239267
\(474\) 0 0
\(475\) −44.3251 −2.03377
\(476\) 0 0
\(477\) 89.1574 4.08224
\(478\) 0 0
\(479\) −40.1034 −1.83237 −0.916186 0.400754i \(-0.868748\pi\)
−0.916186 + 0.400754i \(0.868748\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −15.3727 −0.699483
\(484\) 0 0
\(485\) 21.5892 0.980315
\(486\) 0 0
\(487\) 21.7252 0.984464 0.492232 0.870464i \(-0.336181\pi\)
0.492232 + 0.870464i \(0.336181\pi\)
\(488\) 0 0
\(489\) −31.6288 −1.43030
\(490\) 0 0
\(491\) 9.29640 0.419541 0.209770 0.977751i \(-0.432728\pi\)
0.209770 + 0.977751i \(0.432728\pi\)
\(492\) 0 0
\(493\) 10.1159 0.455599
\(494\) 0 0
\(495\) 45.1915 2.03121
\(496\) 0 0
\(497\) −2.62296 −0.117656
\(498\) 0 0
\(499\) 25.2366 1.12975 0.564874 0.825177i \(-0.308925\pi\)
0.564874 + 0.825177i \(0.308925\pi\)
\(500\) 0 0
\(501\) 50.6422 2.26253
\(502\) 0 0
\(503\) 32.2114 1.43624 0.718118 0.695921i \(-0.245004\pi\)
0.718118 + 0.695921i \(0.245004\pi\)
\(504\) 0 0
\(505\) 52.2142 2.32350
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −32.1572 −1.42534 −0.712672 0.701498i \(-0.752515\pi\)
−0.712672 + 0.701498i \(0.752515\pi\)
\(510\) 0 0
\(511\) −21.5448 −0.953085
\(512\) 0 0
\(513\) −101.198 −4.46799
\(514\) 0 0
\(515\) 56.0522 2.46996
\(516\) 0 0
\(517\) 1.61151 0.0708739
\(518\) 0 0
\(519\) −63.2048 −2.77438
\(520\) 0 0
\(521\) −14.3244 −0.627563 −0.313782 0.949495i \(-0.601596\pi\)
−0.313782 + 0.949495i \(0.601596\pi\)
\(522\) 0 0
\(523\) −31.2863 −1.36805 −0.684026 0.729457i \(-0.739773\pi\)
−0.684026 + 0.729457i \(0.739773\pi\)
\(524\) 0 0
\(525\) 61.5476 2.68616
\(526\) 0 0
\(527\) 17.0696 0.743563
\(528\) 0 0
\(529\) −19.4252 −0.844576
\(530\) 0 0
\(531\) 54.8199 2.37898
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) −46.7561 −2.02144
\(536\) 0 0
\(537\) −31.9898 −1.38046
\(538\) 0 0
\(539\) −1.68808 −0.0727106
\(540\) 0 0
\(541\) 26.7368 1.14950 0.574752 0.818327i \(-0.305098\pi\)
0.574752 + 0.818327i \(0.305098\pi\)
\(542\) 0 0
\(543\) 87.2323 3.74350
\(544\) 0 0
\(545\) 15.3616 0.658017
\(546\) 0 0
\(547\) 11.0699 0.473316 0.236658 0.971593i \(-0.423948\pi\)
0.236658 + 0.971593i \(0.423948\pi\)
\(548\) 0 0
\(549\) 8.51599 0.363454
\(550\) 0 0
\(551\) 12.5796 0.535908
\(552\) 0 0
\(553\) 20.9880 0.892501
\(554\) 0 0
\(555\) −113.767 −4.82915
\(556\) 0 0
\(557\) 41.7738 1.77001 0.885006 0.465579i \(-0.154154\pi\)
0.885006 + 0.465579i \(0.154154\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) −24.5513 −1.03656
\(562\) 0 0
\(563\) 26.9475 1.13570 0.567850 0.823132i \(-0.307775\pi\)
0.567850 + 0.823132i \(0.307775\pi\)
\(564\) 0 0
\(565\) 33.8356 1.42347
\(566\) 0 0
\(567\) 80.8870 3.39694
\(568\) 0 0
\(569\) 21.3611 0.895502 0.447751 0.894158i \(-0.352225\pi\)
0.447751 + 0.894158i \(0.352225\pi\)
\(570\) 0 0
\(571\) −4.66374 −0.195171 −0.0975857 0.995227i \(-0.531112\pi\)
−0.0975857 + 0.995227i \(0.531112\pi\)
\(572\) 0 0
\(573\) 28.9984 1.21143
\(574\) 0 0
\(575\) −14.3122 −0.596861
\(576\) 0 0
\(577\) 16.3810 0.681951 0.340976 0.940072i \(-0.389243\pi\)
0.340976 + 0.940072i \(0.389243\pi\)
\(578\) 0 0
\(579\) 49.4281 2.05416
\(580\) 0 0
\(581\) 8.20897 0.340566
\(582\) 0 0
\(583\) 17.0222 0.704988
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) 7.63817 0.315261 0.157630 0.987498i \(-0.449615\pi\)
0.157630 + 0.987498i \(0.449615\pi\)
\(588\) 0 0
\(589\) 21.2267 0.874632
\(590\) 0 0
\(591\) 6.34375 0.260947
\(592\) 0 0
\(593\) 20.6572 0.848289 0.424145 0.905594i \(-0.360575\pi\)
0.424145 + 0.905594i \(0.360575\pi\)
\(594\) 0 0
\(595\) −40.6119 −1.66493
\(596\) 0 0
\(597\) −31.9289 −1.30676
\(598\) 0 0
\(599\) −31.4017 −1.28304 −0.641519 0.767107i \(-0.721696\pi\)
−0.641519 + 0.767107i \(0.721696\pi\)
\(600\) 0 0
\(601\) 34.5110 1.40773 0.703867 0.710332i \(-0.251455\pi\)
0.703867 + 0.710332i \(0.251455\pi\)
\(602\) 0 0
\(603\) −65.2244 −2.65614
\(604\) 0 0
\(605\) −30.3712 −1.23476
\(606\) 0 0
\(607\) −23.4675 −0.952515 −0.476257 0.879306i \(-0.658007\pi\)
−0.476257 + 0.879306i \(0.658007\pi\)
\(608\) 0 0
\(609\) −17.4674 −0.707813
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −1.03159 −0.0416655 −0.0208328 0.999783i \(-0.506632\pi\)
−0.0208328 + 0.999783i \(0.506632\pi\)
\(614\) 0 0
\(615\) −19.2745 −0.777224
\(616\) 0 0
\(617\) 5.85958 0.235898 0.117949 0.993020i \(-0.462368\pi\)
0.117949 + 0.993020i \(0.462368\pi\)
\(618\) 0 0
\(619\) 20.2565 0.814176 0.407088 0.913389i \(-0.366544\pi\)
0.407088 + 0.913389i \(0.366544\pi\)
\(620\) 0 0
\(621\) −32.6760 −1.31124
\(622\) 0 0
\(623\) −25.7398 −1.03124
\(624\) 0 0
\(625\) −5.54720 −0.221888
\(626\) 0 0
\(627\) −30.5305 −1.21927
\(628\) 0 0
\(629\) 45.2080 1.80256
\(630\) 0 0
\(631\) −27.7509 −1.10475 −0.552374 0.833597i \(-0.686278\pi\)
−0.552374 + 0.833597i \(0.686278\pi\)
\(632\) 0 0
\(633\) 28.6243 1.13771
\(634\) 0 0
\(635\) 38.2884 1.51943
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −8.80999 −0.348518
\(640\) 0 0
\(641\) −10.3750 −0.409789 −0.204895 0.978784i \(-0.565685\pi\)
−0.204895 + 0.978784i \(0.565685\pi\)
\(642\) 0 0
\(643\) 44.0936 1.73888 0.869440 0.494038i \(-0.164480\pi\)
0.869440 + 0.494038i \(0.164480\pi\)
\(644\) 0 0
\(645\) 39.5271 1.55638
\(646\) 0 0
\(647\) 39.0961 1.53703 0.768513 0.639834i \(-0.220997\pi\)
0.768513 + 0.639834i \(0.220997\pi\)
\(648\) 0 0
\(649\) 10.4664 0.410841
\(650\) 0 0
\(651\) −29.4744 −1.15519
\(652\) 0 0
\(653\) 14.2435 0.557393 0.278696 0.960379i \(-0.410098\pi\)
0.278696 + 0.960379i \(0.410098\pi\)
\(654\) 0 0
\(655\) −39.1907 −1.53131
\(656\) 0 0
\(657\) −72.3645 −2.82321
\(658\) 0 0
\(659\) −10.1685 −0.396110 −0.198055 0.980191i \(-0.563462\pi\)
−0.198055 + 0.980191i \(0.563462\pi\)
\(660\) 0 0
\(661\) 26.9220 1.04714 0.523572 0.851982i \(-0.324599\pi\)
0.523572 + 0.851982i \(0.324599\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −50.5026 −1.95841
\(666\) 0 0
\(667\) 4.06185 0.157275
\(668\) 0 0
\(669\) 17.6672 0.683054
\(670\) 0 0
\(671\) 1.62590 0.0627671
\(672\) 0 0
\(673\) 26.5902 1.02498 0.512488 0.858694i \(-0.328724\pi\)
0.512488 + 0.858694i \(0.328724\pi\)
\(674\) 0 0
\(675\) 130.825 5.03544
\(676\) 0 0
\(677\) 6.74621 0.259278 0.129639 0.991561i \(-0.458618\pi\)
0.129639 + 0.991561i \(0.458618\pi\)
\(678\) 0 0
\(679\) 14.8134 0.568488
\(680\) 0 0
\(681\) −94.4402 −3.61896
\(682\) 0 0
\(683\) −29.0411 −1.11123 −0.555614 0.831441i \(-0.687517\pi\)
−0.555614 + 0.831441i \(0.687517\pi\)
\(684\) 0 0
\(685\) −45.6055 −1.74250
\(686\) 0 0
\(687\) −14.0778 −0.537102
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) 6.09637 0.231917 0.115958 0.993254i \(-0.463006\pi\)
0.115958 + 0.993254i \(0.463006\pi\)
\(692\) 0 0
\(693\) 31.0082 1.17791
\(694\) 0 0
\(695\) −53.0147 −2.01096
\(696\) 0 0
\(697\) 7.65918 0.290112
\(698\) 0 0
\(699\) −31.7667 −1.20153
\(700\) 0 0
\(701\) −15.3975 −0.581555 −0.290778 0.956791i \(-0.593914\pi\)
−0.290778 + 0.956791i \(0.593914\pi\)
\(702\) 0 0
\(703\) 56.2180 2.12030
\(704\) 0 0
\(705\) 12.2409 0.461019
\(706\) 0 0
\(707\) 35.8268 1.34741
\(708\) 0 0
\(709\) 24.4324 0.917578 0.458789 0.888545i \(-0.348283\pi\)
0.458789 + 0.888545i \(0.348283\pi\)
\(710\) 0 0
\(711\) 70.4944 2.64375
\(712\) 0 0
\(713\) 6.85395 0.256682
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) 69.7868 2.60624
\(718\) 0 0
\(719\) −7.10505 −0.264974 −0.132487 0.991185i \(-0.542296\pi\)
−0.132487 + 0.991185i \(0.542296\pi\)
\(720\) 0 0
\(721\) 38.4603 1.43234
\(722\) 0 0
\(723\) −64.9903 −2.41701
\(724\) 0 0
\(725\) −16.2624 −0.603970
\(726\) 0 0
\(727\) −0.395638 −0.0146734 −0.00733670 0.999973i \(-0.502335\pi\)
−0.00733670 + 0.999973i \(0.502335\pi\)
\(728\) 0 0
\(729\) 98.3945 3.64424
\(730\) 0 0
\(731\) −15.7070 −0.580944
\(732\) 0 0
\(733\) −42.7691 −1.57971 −0.789857 0.613291i \(-0.789845\pi\)
−0.789857 + 0.613291i \(0.789845\pi\)
\(734\) 0 0
\(735\) −12.8225 −0.472966
\(736\) 0 0
\(737\) −12.4528 −0.458706
\(738\) 0 0
\(739\) −46.0715 −1.69477 −0.847383 0.530982i \(-0.821823\pi\)
−0.847383 + 0.530982i \(0.821823\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 11.9311 0.437708 0.218854 0.975758i \(-0.429768\pi\)
0.218854 + 0.975758i \(0.429768\pi\)
\(744\) 0 0
\(745\) −14.3339 −0.525154
\(746\) 0 0
\(747\) 27.5723 1.00882
\(748\) 0 0
\(749\) −32.0817 −1.17224
\(750\) 0 0
\(751\) 15.1934 0.554415 0.277208 0.960810i \(-0.410591\pi\)
0.277208 + 0.960810i \(0.410591\pi\)
\(752\) 0 0
\(753\) 104.547 3.80992
\(754\) 0 0
\(755\) −32.6463 −1.18812
\(756\) 0 0
\(757\) −0.527100 −0.0191578 −0.00957889 0.999954i \(-0.503049\pi\)
−0.00957889 + 0.999954i \(0.503049\pi\)
\(758\) 0 0
\(759\) −9.85808 −0.357826
\(760\) 0 0
\(761\) 13.2511 0.480352 0.240176 0.970729i \(-0.422795\pi\)
0.240176 + 0.970729i \(0.422795\pi\)
\(762\) 0 0
\(763\) 10.5404 0.381587
\(764\) 0 0
\(765\) −136.407 −4.93181
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) −23.8483 −0.859991 −0.429996 0.902831i \(-0.641485\pi\)
−0.429996 + 0.902831i \(0.641485\pi\)
\(770\) 0 0
\(771\) −2.17185 −0.0782172
\(772\) 0 0
\(773\) 49.0214 1.76318 0.881589 0.472019i \(-0.156474\pi\)
0.881589 + 0.472019i \(0.156474\pi\)
\(774\) 0 0
\(775\) −27.4411 −0.985713
\(776\) 0 0
\(777\) −78.0615 −2.80044
\(778\) 0 0
\(779\) 9.52450 0.341251
\(780\) 0 0
\(781\) −1.68203 −0.0601878
\(782\) 0 0
\(783\) −37.1283 −1.32686
\(784\) 0 0
\(785\) −51.4007 −1.83457
\(786\) 0 0
\(787\) 51.7724 1.84549 0.922744 0.385415i \(-0.125942\pi\)
0.922744 + 0.385415i \(0.125942\pi\)
\(788\) 0 0
\(789\) 12.7335 0.453325
\(790\) 0 0
\(791\) 23.2163 0.825477
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 129.300 4.58578
\(796\) 0 0
\(797\) −43.7601 −1.55006 −0.775031 0.631924i \(-0.782266\pi\)
−0.775031 + 0.631924i \(0.782266\pi\)
\(798\) 0 0
\(799\) −4.86421 −0.172083
\(800\) 0 0
\(801\) −86.4547 −3.05473
\(802\) 0 0
\(803\) −13.8161 −0.487558
\(804\) 0 0
\(805\) −16.3069 −0.574743
\(806\) 0 0
\(807\) −60.4563 −2.12816
\(808\) 0 0
\(809\) 3.86431 0.135862 0.0679309 0.997690i \(-0.478360\pi\)
0.0679309 + 0.997690i \(0.478360\pi\)
\(810\) 0 0
\(811\) −23.4043 −0.821836 −0.410918 0.911672i \(-0.634792\pi\)
−0.410918 + 0.911672i \(0.634792\pi\)
\(812\) 0 0
\(813\) −59.1026 −2.07282
\(814\) 0 0
\(815\) −33.5509 −1.17524
\(816\) 0 0
\(817\) −19.5323 −0.683348
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −40.0306 −1.39708 −0.698538 0.715573i \(-0.746166\pi\)
−0.698538 + 0.715573i \(0.746166\pi\)
\(822\) 0 0
\(823\) 32.9333 1.14798 0.573991 0.818862i \(-0.305394\pi\)
0.573991 + 0.818862i \(0.305394\pi\)
\(824\) 0 0
\(825\) 39.4687 1.37412
\(826\) 0 0
\(827\) −30.2742 −1.05274 −0.526368 0.850257i \(-0.676447\pi\)
−0.526368 + 0.850257i \(0.676447\pi\)
\(828\) 0 0
\(829\) 4.32213 0.150114 0.0750570 0.997179i \(-0.476086\pi\)
0.0750570 + 0.997179i \(0.476086\pi\)
\(830\) 0 0
\(831\) −68.3199 −2.36999
\(832\) 0 0
\(833\) 5.09533 0.176543
\(834\) 0 0
\(835\) 53.7197 1.85905
\(836\) 0 0
\(837\) −62.6502 −2.16551
\(838\) 0 0
\(839\) 41.3956 1.42913 0.714567 0.699567i \(-0.246624\pi\)
0.714567 + 0.699567i \(0.246624\pi\)
\(840\) 0 0
\(841\) −24.3847 −0.840852
\(842\) 0 0
\(843\) −13.8064 −0.475518
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −20.8392 −0.716044
\(848\) 0 0
\(849\) 40.0809 1.37557
\(850\) 0 0
\(851\) 18.1524 0.622255
\(852\) 0 0
\(853\) 40.6391 1.39145 0.695727 0.718306i \(-0.255082\pi\)
0.695727 + 0.718306i \(0.255082\pi\)
\(854\) 0 0
\(855\) −169.628 −5.80115
\(856\) 0 0
\(857\) −37.0489 −1.26557 −0.632784 0.774328i \(-0.718088\pi\)
−0.632784 + 0.774328i \(0.718088\pi\)
\(858\) 0 0
\(859\) 52.6967 1.79799 0.898994 0.437961i \(-0.144299\pi\)
0.898994 + 0.437961i \(0.144299\pi\)
\(860\) 0 0
\(861\) −13.2252 −0.450715
\(862\) 0 0
\(863\) −53.1621 −1.80966 −0.904830 0.425773i \(-0.860002\pi\)
−0.904830 + 0.425773i \(0.860002\pi\)
\(864\) 0 0
\(865\) −67.0457 −2.27962
\(866\) 0 0
\(867\) 17.2874 0.587111
\(868\) 0 0
\(869\) 13.4590 0.456566
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) 49.7553 1.68396
\(874\) 0 0
\(875\) 22.1639 0.749276
\(876\) 0 0
\(877\) 37.4162 1.26345 0.631727 0.775191i \(-0.282346\pi\)
0.631727 + 0.775191i \(0.282346\pi\)
\(878\) 0 0
\(879\) 2.42161 0.0816789
\(880\) 0 0
\(881\) −11.2014 −0.377384 −0.188692 0.982036i \(-0.560425\pi\)
−0.188692 + 0.982036i \(0.560425\pi\)
\(882\) 0 0
\(883\) 37.9278 1.27637 0.638186 0.769882i \(-0.279685\pi\)
0.638186 + 0.769882i \(0.279685\pi\)
\(884\) 0 0
\(885\) 79.5020 2.67243
\(886\) 0 0
\(887\) 22.6989 0.762154 0.381077 0.924543i \(-0.375553\pi\)
0.381077 + 0.924543i \(0.375553\pi\)
\(888\) 0 0
\(889\) 26.2716 0.881122
\(890\) 0 0
\(891\) 51.8705 1.73773
\(892\) 0 0
\(893\) −6.04883 −0.202417
\(894\) 0 0
\(895\) −33.9338 −1.13428
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 7.78785 0.259739
\(900\) 0 0
\(901\) −51.3802 −1.71172
\(902\) 0 0
\(903\) 27.1216 0.902549
\(904\) 0 0
\(905\) 92.5333 3.07591
\(906\) 0 0
\(907\) −3.58717 −0.119110 −0.0595550 0.998225i \(-0.518968\pi\)
−0.0595550 + 0.998225i \(0.518968\pi\)
\(908\) 0 0
\(909\) 120.335 3.99126
\(910\) 0 0
\(911\) −21.7449 −0.720442 −0.360221 0.932867i \(-0.617299\pi\)
−0.360221 + 0.932867i \(0.617299\pi\)
\(912\) 0 0
\(913\) 5.26418 0.174219
\(914\) 0 0
\(915\) 12.3502 0.408286
\(916\) 0 0
\(917\) −26.8908 −0.888011
\(918\) 0 0
\(919\) 50.1334 1.65375 0.826875 0.562386i \(-0.190116\pi\)
0.826875 + 0.562386i \(0.190116\pi\)
\(920\) 0 0
\(921\) 9.24849 0.304748
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) −72.6765 −2.38959
\(926\) 0 0
\(927\) 129.180 4.24284
\(928\) 0 0
\(929\) −8.39068 −0.275289 −0.137645 0.990482i \(-0.543953\pi\)
−0.137645 + 0.990482i \(0.543953\pi\)
\(930\) 0 0
\(931\) 6.33625 0.207662
\(932\) 0 0
\(933\) 99.0292 3.24207
\(934\) 0 0
\(935\) −26.0433 −0.851706
\(936\) 0 0
\(937\) −4.09505 −0.133780 −0.0668898 0.997760i \(-0.521308\pi\)
−0.0668898 + 0.997760i \(0.521308\pi\)
\(938\) 0 0
\(939\) 35.9930 1.17459
\(940\) 0 0
\(941\) 61.0652 1.99067 0.995334 0.0964892i \(-0.0307613\pi\)
0.995334 + 0.0964892i \(0.0307613\pi\)
\(942\) 0 0
\(943\) 3.07539 0.100148
\(944\) 0 0
\(945\) 149.057 4.84883
\(946\) 0 0
\(947\) −32.4455 −1.05434 −0.527169 0.849760i \(-0.676747\pi\)
−0.527169 + 0.849760i \(0.676747\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 1.26803 0.0411187
\(952\) 0 0
\(953\) 14.9299 0.483627 0.241814 0.970323i \(-0.422258\pi\)
0.241814 + 0.970323i \(0.422258\pi\)
\(954\) 0 0
\(955\) 30.7606 0.995390
\(956\) 0 0
\(957\) −11.2013 −0.362087
\(958\) 0 0
\(959\) −31.2923 −1.01048
\(960\) 0 0
\(961\) −17.8588 −0.576090
\(962\) 0 0
\(963\) −107.756 −3.47239
\(964\) 0 0
\(965\) 52.4318 1.68784
\(966\) 0 0
\(967\) −50.3131 −1.61796 −0.808980 0.587836i \(-0.799980\pi\)
−0.808980 + 0.587836i \(0.799980\pi\)
\(968\) 0 0
\(969\) 92.1541 2.96041
\(970\) 0 0
\(971\) 10.8825 0.349237 0.174618 0.984636i \(-0.444131\pi\)
0.174618 + 0.984636i \(0.444131\pi\)
\(972\) 0 0
\(973\) −36.3761 −1.16616
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −4.17393 −0.133536 −0.0667680 0.997769i \(-0.521269\pi\)
−0.0667680 + 0.997769i \(0.521269\pi\)
\(978\) 0 0
\(979\) −16.5062 −0.527540
\(980\) 0 0
\(981\) 35.4029 1.13033
\(982\) 0 0
\(983\) −10.7680 −0.343445 −0.171722 0.985145i \(-0.554933\pi\)
−0.171722 + 0.985145i \(0.554933\pi\)
\(984\) 0 0
\(985\) 6.72926 0.214412
\(986\) 0 0
\(987\) 8.39911 0.267347
\(988\) 0 0
\(989\) −6.30683 −0.200545
\(990\) 0 0
\(991\) −23.1226 −0.734515 −0.367257 0.930119i \(-0.619703\pi\)
−0.367257 + 0.930119i \(0.619703\pi\)
\(992\) 0 0
\(993\) 81.2786 2.57930
\(994\) 0 0
\(995\) −33.8692 −1.07373
\(996\) 0 0
\(997\) 41.9826 1.32960 0.664801 0.747020i \(-0.268516\pi\)
0.664801 + 0.747020i \(0.268516\pi\)
\(998\) 0 0
\(999\) −165.926 −5.24967
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bs.1.9 yes 9
4.3 odd 2 5408.2.a.bq.1.1 yes 9
13.12 even 2 5408.2.a.br.1.9 yes 9
52.51 odd 2 5408.2.a.bp.1.1 9
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5408.2.a.bp.1.1 9 52.51 odd 2
5408.2.a.bq.1.1 yes 9 4.3 odd 2
5408.2.a.br.1.9 yes 9 13.12 even 2
5408.2.a.bs.1.9 yes 9 1.1 even 1 trivial