Properties

Label 5408.2.a.bt.1.9
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(0\)
Dimension: \(12\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 25x^{10} + 225x^{8} - 885x^{6} + 1495x^{4} - 897x^{2} + 169 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 2^{3} \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.9
Root \(1.62324\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+1.62324 q^{3} -3.72519 q^{5} -4.80058 q^{7} -0.365087 q^{9} -4.59139 q^{11} -6.04688 q^{15} -2.37985 q^{17} -0.974773 q^{19} -7.79251 q^{21} -6.51389 q^{23} +8.87701 q^{25} -5.46235 q^{27} -6.79705 q^{29} -3.35576 q^{31} -7.45294 q^{33} +17.8831 q^{35} +1.53476 q^{37} +4.85450 q^{41} +3.33270 q^{43} +1.36002 q^{45} -8.18495 q^{47} +16.0456 q^{49} -3.86307 q^{51} -9.39514 q^{53} +17.1038 q^{55} -1.58229 q^{57} -2.67262 q^{59} +12.4695 q^{61} +1.75263 q^{63} +5.60928 q^{67} -10.5736 q^{69} +15.3889 q^{71} -8.45473 q^{73} +14.4095 q^{75} +22.0414 q^{77} +1.33465 q^{79} -7.77145 q^{81} +0.817576 q^{83} +8.86537 q^{85} -11.0333 q^{87} -11.4245 q^{89} -5.44721 q^{93} +3.63121 q^{95} +5.81428 q^{97} +1.67626 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 8 q^{5} + 14 q^{9} + 14 q^{17} - 28 q^{21} + 24 q^{25} + 18 q^{29} + 20 q^{33} - 8 q^{37} + 36 q^{41} - 66 q^{45} + 34 q^{49} + 38 q^{53} + 22 q^{57} + 36 q^{61} - 12 q^{73} + 64 q^{77} + 8 q^{81}+ \cdots - 8 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 1.62324 0.937179 0.468589 0.883416i \(-0.344762\pi\)
0.468589 + 0.883416i \(0.344762\pi\)
\(4\) 0 0
\(5\) −3.72519 −1.66595 −0.832977 0.553308i \(-0.813365\pi\)
−0.832977 + 0.553308i \(0.813365\pi\)
\(6\) 0 0
\(7\) −4.80058 −1.81445 −0.907225 0.420645i \(-0.861804\pi\)
−0.907225 + 0.420645i \(0.861804\pi\)
\(8\) 0 0
\(9\) −0.365087 −0.121696
\(10\) 0 0
\(11\) −4.59139 −1.38436 −0.692179 0.721726i \(-0.743349\pi\)
−0.692179 + 0.721726i \(0.743349\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) −6.04688 −1.56130
\(16\) 0 0
\(17\) −2.37985 −0.577197 −0.288599 0.957450i \(-0.593189\pi\)
−0.288599 + 0.957450i \(0.593189\pi\)
\(18\) 0 0
\(19\) −0.974773 −0.223628 −0.111814 0.993729i \(-0.535666\pi\)
−0.111814 + 0.993729i \(0.535666\pi\)
\(20\) 0 0
\(21\) −7.79251 −1.70046
\(22\) 0 0
\(23\) −6.51389 −1.35824 −0.679120 0.734027i \(-0.737639\pi\)
−0.679120 + 0.734027i \(0.737639\pi\)
\(24\) 0 0
\(25\) 8.87701 1.77540
\(26\) 0 0
\(27\) −5.46235 −1.05123
\(28\) 0 0
\(29\) −6.79705 −1.26218 −0.631091 0.775709i \(-0.717392\pi\)
−0.631091 + 0.775709i \(0.717392\pi\)
\(30\) 0 0
\(31\) −3.35576 −0.602713 −0.301356 0.953512i \(-0.597439\pi\)
−0.301356 + 0.953512i \(0.597439\pi\)
\(32\) 0 0
\(33\) −7.45294 −1.29739
\(34\) 0 0
\(35\) 17.8831 3.02279
\(36\) 0 0
\(37\) 1.53476 0.252313 0.126157 0.992010i \(-0.459736\pi\)
0.126157 + 0.992010i \(0.459736\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 4.85450 0.758146 0.379073 0.925367i \(-0.376243\pi\)
0.379073 + 0.925367i \(0.376243\pi\)
\(42\) 0 0
\(43\) 3.33270 0.508232 0.254116 0.967174i \(-0.418215\pi\)
0.254116 + 0.967174i \(0.418215\pi\)
\(44\) 0 0
\(45\) 1.36002 0.202739
\(46\) 0 0
\(47\) −8.18495 −1.19390 −0.596949 0.802279i \(-0.703620\pi\)
−0.596949 + 0.802279i \(0.703620\pi\)
\(48\) 0 0
\(49\) 16.0456 2.29223
\(50\) 0 0
\(51\) −3.86307 −0.540937
\(52\) 0 0
\(53\) −9.39514 −1.29052 −0.645261 0.763962i \(-0.723251\pi\)
−0.645261 + 0.763962i \(0.723251\pi\)
\(54\) 0 0
\(55\) 17.1038 2.30627
\(56\) 0 0
\(57\) −1.58229 −0.209580
\(58\) 0 0
\(59\) −2.67262 −0.347945 −0.173973 0.984750i \(-0.555660\pi\)
−0.173973 + 0.984750i \(0.555660\pi\)
\(60\) 0 0
\(61\) 12.4695 1.59655 0.798277 0.602290i \(-0.205745\pi\)
0.798277 + 0.602290i \(0.205745\pi\)
\(62\) 0 0
\(63\) 1.75263 0.220811
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 5.60928 0.685283 0.342641 0.939466i \(-0.388678\pi\)
0.342641 + 0.939466i \(0.388678\pi\)
\(68\) 0 0
\(69\) −10.5736 −1.27291
\(70\) 0 0
\(71\) 15.3889 1.82632 0.913161 0.407598i \(-0.133634\pi\)
0.913161 + 0.407598i \(0.133634\pi\)
\(72\) 0 0
\(73\) −8.45473 −0.989551 −0.494776 0.869021i \(-0.664750\pi\)
−0.494776 + 0.869021i \(0.664750\pi\)
\(74\) 0 0
\(75\) 14.4095 1.66387
\(76\) 0 0
\(77\) 22.0414 2.51185
\(78\) 0 0
\(79\) 1.33465 0.150159 0.0750797 0.997178i \(-0.476079\pi\)
0.0750797 + 0.997178i \(0.476079\pi\)
\(80\) 0 0
\(81\) −7.77145 −0.863495
\(82\) 0 0
\(83\) 0.817576 0.0897407 0.0448703 0.998993i \(-0.485713\pi\)
0.0448703 + 0.998993i \(0.485713\pi\)
\(84\) 0 0
\(85\) 8.86537 0.961584
\(86\) 0 0
\(87\) −11.0333 −1.18289
\(88\) 0 0
\(89\) −11.4245 −1.21099 −0.605496 0.795848i \(-0.707025\pi\)
−0.605496 + 0.795848i \(0.707025\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) −5.44721 −0.564850
\(94\) 0 0
\(95\) 3.63121 0.372554
\(96\) 0 0
\(97\) 5.81428 0.590350 0.295175 0.955443i \(-0.404622\pi\)
0.295175 + 0.955443i \(0.404622\pi\)
\(98\) 0 0
\(99\) 1.67626 0.168470
\(100\) 0 0
\(101\) −12.0588 −1.19989 −0.599947 0.800039i \(-0.704812\pi\)
−0.599947 + 0.800039i \(0.704812\pi\)
\(102\) 0 0
\(103\) 2.27273 0.223939 0.111969 0.993712i \(-0.464284\pi\)
0.111969 + 0.993712i \(0.464284\pi\)
\(104\) 0 0
\(105\) 29.0285 2.83290
\(106\) 0 0
\(107\) −0.381695 −0.0368998 −0.0184499 0.999830i \(-0.505873\pi\)
−0.0184499 + 0.999830i \(0.505873\pi\)
\(108\) 0 0
\(109\) −8.24886 −0.790098 −0.395049 0.918660i \(-0.629272\pi\)
−0.395049 + 0.918660i \(0.629272\pi\)
\(110\) 0 0
\(111\) 2.49129 0.236463
\(112\) 0 0
\(113\) −3.50293 −0.329528 −0.164764 0.986333i \(-0.552686\pi\)
−0.164764 + 0.986333i \(0.552686\pi\)
\(114\) 0 0
\(115\) 24.2655 2.26277
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) 11.4247 1.04730
\(120\) 0 0
\(121\) 10.0809 0.916445
\(122\) 0 0
\(123\) 7.88003 0.710518
\(124\) 0 0
\(125\) −14.4426 −1.29178
\(126\) 0 0
\(127\) −12.4579 −1.10546 −0.552729 0.833361i \(-0.686413\pi\)
−0.552729 + 0.833361i \(0.686413\pi\)
\(128\) 0 0
\(129\) 5.40978 0.476304
\(130\) 0 0
\(131\) −15.6343 −1.36597 −0.682987 0.730430i \(-0.739320\pi\)
−0.682987 + 0.730430i \(0.739320\pi\)
\(132\) 0 0
\(133\) 4.67948 0.405762
\(134\) 0 0
\(135\) 20.3483 1.75130
\(136\) 0 0
\(137\) 5.70457 0.487374 0.243687 0.969854i \(-0.421643\pi\)
0.243687 + 0.969854i \(0.421643\pi\)
\(138\) 0 0
\(139\) −15.5844 −1.32185 −0.660927 0.750450i \(-0.729837\pi\)
−0.660927 + 0.750450i \(0.729837\pi\)
\(140\) 0 0
\(141\) −13.2862 −1.11890
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 25.3203 2.10274
\(146\) 0 0
\(147\) 26.0459 2.14823
\(148\) 0 0
\(149\) −9.58776 −0.785460 −0.392730 0.919654i \(-0.628469\pi\)
−0.392730 + 0.919654i \(0.628469\pi\)
\(150\) 0 0
\(151\) −24.3979 −1.98547 −0.992735 0.120324i \(-0.961607\pi\)
−0.992735 + 0.120324i \(0.961607\pi\)
\(152\) 0 0
\(153\) 0.868850 0.0702424
\(154\) 0 0
\(155\) 12.5008 1.00409
\(156\) 0 0
\(157\) 7.31518 0.583815 0.291907 0.956447i \(-0.405710\pi\)
0.291907 + 0.956447i \(0.405710\pi\)
\(158\) 0 0
\(159\) −15.2506 −1.20945
\(160\) 0 0
\(161\) 31.2705 2.46446
\(162\) 0 0
\(163\) 1.31921 0.103329 0.0516644 0.998665i \(-0.483547\pi\)
0.0516644 + 0.998665i \(0.483547\pi\)
\(164\) 0 0
\(165\) 27.7636 2.16139
\(166\) 0 0
\(167\) 2.38492 0.184550 0.0922752 0.995734i \(-0.470586\pi\)
0.0922752 + 0.995734i \(0.470586\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 0.355877 0.0272146
\(172\) 0 0
\(173\) 10.6798 0.811971 0.405985 0.913880i \(-0.366928\pi\)
0.405985 + 0.913880i \(0.366928\pi\)
\(174\) 0 0
\(175\) −42.6148 −3.22138
\(176\) 0 0
\(177\) −4.33830 −0.326087
\(178\) 0 0
\(179\) −1.33258 −0.0996016 −0.0498008 0.998759i \(-0.515859\pi\)
−0.0498008 + 0.998759i \(0.515859\pi\)
\(180\) 0 0
\(181\) −11.4536 −0.851342 −0.425671 0.904878i \(-0.639962\pi\)
−0.425671 + 0.904878i \(0.639962\pi\)
\(182\) 0 0
\(183\) 20.2410 1.49626
\(184\) 0 0
\(185\) −5.71728 −0.420343
\(186\) 0 0
\(187\) 10.9268 0.799047
\(188\) 0 0
\(189\) 26.2225 1.90740
\(190\) 0 0
\(191\) 1.29421 0.0936456 0.0468228 0.998903i \(-0.485090\pi\)
0.0468228 + 0.998903i \(0.485090\pi\)
\(192\) 0 0
\(193\) −6.83758 −0.492180 −0.246090 0.969247i \(-0.579146\pi\)
−0.246090 + 0.969247i \(0.579146\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 6.59785 0.470077 0.235039 0.971986i \(-0.424478\pi\)
0.235039 + 0.971986i \(0.424478\pi\)
\(198\) 0 0
\(199\) 1.54389 0.109444 0.0547218 0.998502i \(-0.482573\pi\)
0.0547218 + 0.998502i \(0.482573\pi\)
\(200\) 0 0
\(201\) 9.10522 0.642233
\(202\) 0 0
\(203\) 32.6298 2.29016
\(204\) 0 0
\(205\) −18.0839 −1.26304
\(206\) 0 0
\(207\) 2.37814 0.165292
\(208\) 0 0
\(209\) 4.47556 0.309581
\(210\) 0 0
\(211\) −18.1929 −1.25245 −0.626227 0.779641i \(-0.715402\pi\)
−0.626227 + 0.779641i \(0.715402\pi\)
\(212\) 0 0
\(213\) 24.9799 1.71159
\(214\) 0 0
\(215\) −12.4149 −0.846691
\(216\) 0 0
\(217\) 16.1096 1.09359
\(218\) 0 0
\(219\) −13.7241 −0.927387
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) 20.4030 1.36628 0.683142 0.730286i \(-0.260613\pi\)
0.683142 + 0.730286i \(0.260613\pi\)
\(224\) 0 0
\(225\) −3.24088 −0.216059
\(226\) 0 0
\(227\) 3.95346 0.262400 0.131200 0.991356i \(-0.458117\pi\)
0.131200 + 0.991356i \(0.458117\pi\)
\(228\) 0 0
\(229\) −2.92203 −0.193093 −0.0965467 0.995328i \(-0.530780\pi\)
−0.0965467 + 0.995328i \(0.530780\pi\)
\(230\) 0 0
\(231\) 35.7785 2.35405
\(232\) 0 0
\(233\) 18.8768 1.23666 0.618331 0.785918i \(-0.287809\pi\)
0.618331 + 0.785918i \(0.287809\pi\)
\(234\) 0 0
\(235\) 30.4905 1.98898
\(236\) 0 0
\(237\) 2.16645 0.140726
\(238\) 0 0
\(239\) −15.0220 −0.971694 −0.485847 0.874044i \(-0.661489\pi\)
−0.485847 + 0.874044i \(0.661489\pi\)
\(240\) 0 0
\(241\) 24.7974 1.59734 0.798670 0.601769i \(-0.205537\pi\)
0.798670 + 0.601769i \(0.205537\pi\)
\(242\) 0 0
\(243\) 3.77210 0.241981
\(244\) 0 0
\(245\) −59.7729 −3.81875
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 1.32712 0.0841031
\(250\) 0 0
\(251\) −17.5753 −1.10934 −0.554672 0.832069i \(-0.687156\pi\)
−0.554672 + 0.832069i \(0.687156\pi\)
\(252\) 0 0
\(253\) 29.9078 1.88029
\(254\) 0 0
\(255\) 14.3906 0.901177
\(256\) 0 0
\(257\) −6.35738 −0.396562 −0.198281 0.980145i \(-0.563536\pi\)
−0.198281 + 0.980145i \(0.563536\pi\)
\(258\) 0 0
\(259\) −7.36776 −0.457810
\(260\) 0 0
\(261\) 2.48151 0.153602
\(262\) 0 0
\(263\) 0.724180 0.0446548 0.0223274 0.999751i \(-0.492892\pi\)
0.0223274 + 0.999751i \(0.492892\pi\)
\(264\) 0 0
\(265\) 34.9987 2.14995
\(266\) 0 0
\(267\) −18.5447 −1.13492
\(268\) 0 0
\(269\) 17.2850 1.05388 0.526941 0.849902i \(-0.323339\pi\)
0.526941 + 0.849902i \(0.323339\pi\)
\(270\) 0 0
\(271\) 4.94545 0.300415 0.150207 0.988655i \(-0.452006\pi\)
0.150207 + 0.988655i \(0.452006\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −40.7578 −2.45779
\(276\) 0 0
\(277\) −4.79606 −0.288167 −0.144084 0.989566i \(-0.546023\pi\)
−0.144084 + 0.989566i \(0.546023\pi\)
\(278\) 0 0
\(279\) 1.22514 0.0733475
\(280\) 0 0
\(281\) 20.8701 1.24501 0.622503 0.782618i \(-0.286116\pi\)
0.622503 + 0.782618i \(0.286116\pi\)
\(282\) 0 0
\(283\) −27.0757 −1.60948 −0.804742 0.593624i \(-0.797697\pi\)
−0.804742 + 0.593624i \(0.797697\pi\)
\(284\) 0 0
\(285\) 5.89433 0.349150
\(286\) 0 0
\(287\) −23.3044 −1.37562
\(288\) 0 0
\(289\) −11.3363 −0.666843
\(290\) 0 0
\(291\) 9.43798 0.553264
\(292\) 0 0
\(293\) 7.14153 0.417213 0.208606 0.978000i \(-0.433107\pi\)
0.208606 + 0.978000i \(0.433107\pi\)
\(294\) 0 0
\(295\) 9.95600 0.579661
\(296\) 0 0
\(297\) 25.0798 1.45528
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −15.9989 −0.922162
\(302\) 0 0
\(303\) −19.5743 −1.12452
\(304\) 0 0
\(305\) −46.4512 −2.65979
\(306\) 0 0
\(307\) −32.0190 −1.82742 −0.913711 0.406364i \(-0.866797\pi\)
−0.913711 + 0.406364i \(0.866797\pi\)
\(308\) 0 0
\(309\) 3.68919 0.209871
\(310\) 0 0
\(311\) −33.9738 −1.92648 −0.963238 0.268648i \(-0.913423\pi\)
−0.963238 + 0.268648i \(0.913423\pi\)
\(312\) 0 0
\(313\) 32.2692 1.82396 0.911981 0.410232i \(-0.134552\pi\)
0.911981 + 0.410232i \(0.134552\pi\)
\(314\) 0 0
\(315\) −6.52887 −0.367860
\(316\) 0 0
\(317\) −26.7644 −1.50324 −0.751618 0.659599i \(-0.770726\pi\)
−0.751618 + 0.659599i \(0.770726\pi\)
\(318\) 0 0
\(319\) 31.2079 1.74731
\(320\) 0 0
\(321\) −0.619583 −0.0345817
\(322\) 0 0
\(323\) 2.31981 0.129078
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −13.3899 −0.740463
\(328\) 0 0
\(329\) 39.2925 2.16627
\(330\) 0 0
\(331\) 11.0851 0.609290 0.304645 0.952466i \(-0.401462\pi\)
0.304645 + 0.952466i \(0.401462\pi\)
\(332\) 0 0
\(333\) −0.560322 −0.0307054
\(334\) 0 0
\(335\) −20.8956 −1.14165
\(336\) 0 0
\(337\) 15.3422 0.835741 0.417870 0.908507i \(-0.362777\pi\)
0.417870 + 0.908507i \(0.362777\pi\)
\(338\) 0 0
\(339\) −5.68611 −0.308827
\(340\) 0 0
\(341\) 15.4076 0.834370
\(342\) 0 0
\(343\) −43.4242 −2.34469
\(344\) 0 0
\(345\) 39.3887 2.12062
\(346\) 0 0
\(347\) −5.60958 −0.301138 −0.150569 0.988600i \(-0.548111\pi\)
−0.150569 + 0.988600i \(0.548111\pi\)
\(348\) 0 0
\(349\) 2.00631 0.107395 0.0536976 0.998557i \(-0.482899\pi\)
0.0536976 + 0.998557i \(0.482899\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) 18.1352 0.965239 0.482619 0.875830i \(-0.339685\pi\)
0.482619 + 0.875830i \(0.339685\pi\)
\(354\) 0 0
\(355\) −57.3264 −3.04257
\(356\) 0 0
\(357\) 18.5450 0.981504
\(358\) 0 0
\(359\) 25.6223 1.35229 0.676147 0.736766i \(-0.263648\pi\)
0.676147 + 0.736766i \(0.263648\pi\)
\(360\) 0 0
\(361\) −18.0498 −0.949990
\(362\) 0 0
\(363\) 16.3637 0.858873
\(364\) 0 0
\(365\) 31.4954 1.64855
\(366\) 0 0
\(367\) 14.0361 0.732676 0.366338 0.930482i \(-0.380611\pi\)
0.366338 + 0.930482i \(0.380611\pi\)
\(368\) 0 0
\(369\) −1.77231 −0.0922630
\(370\) 0 0
\(371\) 45.1022 2.34159
\(372\) 0 0
\(373\) 20.7551 1.07466 0.537330 0.843372i \(-0.319433\pi\)
0.537330 + 0.843372i \(0.319433\pi\)
\(374\) 0 0
\(375\) −23.4438 −1.21063
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 1.27500 0.0654921 0.0327461 0.999464i \(-0.489575\pi\)
0.0327461 + 0.999464i \(0.489575\pi\)
\(380\) 0 0
\(381\) −20.2221 −1.03601
\(382\) 0 0
\(383\) 6.41030 0.327551 0.163776 0.986498i \(-0.447633\pi\)
0.163776 + 0.986498i \(0.447633\pi\)
\(384\) 0 0
\(385\) −82.1082 −4.18462
\(386\) 0 0
\(387\) −1.21672 −0.0618496
\(388\) 0 0
\(389\) 17.3591 0.880144 0.440072 0.897963i \(-0.354953\pi\)
0.440072 + 0.897963i \(0.354953\pi\)
\(390\) 0 0
\(391\) 15.5021 0.783973
\(392\) 0 0
\(393\) −25.3782 −1.28016
\(394\) 0 0
\(395\) −4.97180 −0.250159
\(396\) 0 0
\(397\) −37.3380 −1.87394 −0.936970 0.349409i \(-0.886383\pi\)
−0.936970 + 0.349409i \(0.886383\pi\)
\(398\) 0 0
\(399\) 7.59592 0.380272
\(400\) 0 0
\(401\) −2.50016 −0.124852 −0.0624261 0.998050i \(-0.519884\pi\)
−0.0624261 + 0.998050i \(0.519884\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 28.9501 1.43854
\(406\) 0 0
\(407\) −7.04670 −0.349292
\(408\) 0 0
\(409\) 10.6213 0.525189 0.262594 0.964906i \(-0.415422\pi\)
0.262594 + 0.964906i \(0.415422\pi\)
\(410\) 0 0
\(411\) 9.25990 0.456757
\(412\) 0 0
\(413\) 12.8301 0.631329
\(414\) 0 0
\(415\) −3.04562 −0.149504
\(416\) 0 0
\(417\) −25.2973 −1.23881
\(418\) 0 0
\(419\) 8.12068 0.396721 0.198361 0.980129i \(-0.436438\pi\)
0.198361 + 0.980129i \(0.436438\pi\)
\(420\) 0 0
\(421\) 16.1985 0.789465 0.394733 0.918796i \(-0.370837\pi\)
0.394733 + 0.918796i \(0.370837\pi\)
\(422\) 0 0
\(423\) 2.98822 0.145292
\(424\) 0 0
\(425\) −21.1259 −1.02476
\(426\) 0 0
\(427\) −59.8608 −2.89687
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) −22.6559 −1.09130 −0.545649 0.838014i \(-0.683717\pi\)
−0.545649 + 0.838014i \(0.683717\pi\)
\(432\) 0 0
\(433\) −21.6077 −1.03840 −0.519201 0.854652i \(-0.673770\pi\)
−0.519201 + 0.854652i \(0.673770\pi\)
\(434\) 0 0
\(435\) 41.1009 1.97064
\(436\) 0 0
\(437\) 6.34957 0.303741
\(438\) 0 0
\(439\) 17.1517 0.818606 0.409303 0.912398i \(-0.365772\pi\)
0.409303 + 0.912398i \(0.365772\pi\)
\(440\) 0 0
\(441\) −5.85804 −0.278954
\(442\) 0 0
\(443\) −24.9778 −1.18673 −0.593365 0.804934i \(-0.702201\pi\)
−0.593365 + 0.804934i \(0.702201\pi\)
\(444\) 0 0
\(445\) 42.5583 2.01746
\(446\) 0 0
\(447\) −15.5632 −0.736116
\(448\) 0 0
\(449\) −32.7598 −1.54603 −0.773014 0.634389i \(-0.781252\pi\)
−0.773014 + 0.634389i \(0.781252\pi\)
\(450\) 0 0
\(451\) −22.2889 −1.04954
\(452\) 0 0
\(453\) −39.6036 −1.86074
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) −3.41577 −0.159783 −0.0798915 0.996804i \(-0.525457\pi\)
−0.0798915 + 0.996804i \(0.525457\pi\)
\(458\) 0 0
\(459\) 12.9996 0.606767
\(460\) 0 0
\(461\) −10.9229 −0.508730 −0.254365 0.967108i \(-0.581866\pi\)
−0.254365 + 0.967108i \(0.581866\pi\)
\(462\) 0 0
\(463\) 16.7908 0.780335 0.390168 0.920744i \(-0.372417\pi\)
0.390168 + 0.920744i \(0.372417\pi\)
\(464\) 0 0
\(465\) 20.2919 0.941014
\(466\) 0 0
\(467\) 21.3115 0.986179 0.493090 0.869979i \(-0.335867\pi\)
0.493090 + 0.869979i \(0.335867\pi\)
\(468\) 0 0
\(469\) −26.9278 −1.24341
\(470\) 0 0
\(471\) 11.8743 0.547139
\(472\) 0 0
\(473\) −15.3017 −0.703575
\(474\) 0 0
\(475\) −8.65307 −0.397030
\(476\) 0 0
\(477\) 3.43004 0.157051
\(478\) 0 0
\(479\) −21.2213 −0.969627 −0.484814 0.874617i \(-0.661113\pi\)
−0.484814 + 0.874617i \(0.661113\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) 50.7596 2.30964
\(484\) 0 0
\(485\) −21.6593 −0.983497
\(486\) 0 0
\(487\) −9.64141 −0.436894 −0.218447 0.975849i \(-0.570099\pi\)
−0.218447 + 0.975849i \(0.570099\pi\)
\(488\) 0 0
\(489\) 2.14140 0.0968375
\(490\) 0 0
\(491\) 26.5711 1.19913 0.599567 0.800324i \(-0.295339\pi\)
0.599567 + 0.800324i \(0.295339\pi\)
\(492\) 0 0
\(493\) 16.1759 0.728528
\(494\) 0 0
\(495\) −6.24437 −0.280663
\(496\) 0 0
\(497\) −73.8756 −3.31377
\(498\) 0 0
\(499\) −33.3474 −1.49283 −0.746417 0.665479i \(-0.768227\pi\)
−0.746417 + 0.665479i \(0.768227\pi\)
\(500\) 0 0
\(501\) 3.87130 0.172957
\(502\) 0 0
\(503\) 15.4191 0.687503 0.343752 0.939061i \(-0.388302\pi\)
0.343752 + 0.939061i \(0.388302\pi\)
\(504\) 0 0
\(505\) 44.9212 1.99897
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) −20.6107 −0.913552 −0.456776 0.889582i \(-0.650996\pi\)
−0.456776 + 0.889582i \(0.650996\pi\)
\(510\) 0 0
\(511\) 40.5876 1.79549
\(512\) 0 0
\(513\) 5.32455 0.235085
\(514\) 0 0
\(515\) −8.46634 −0.373072
\(516\) 0 0
\(517\) 37.5803 1.65278
\(518\) 0 0
\(519\) 17.3359 0.760962
\(520\) 0 0
\(521\) −22.0921 −0.967874 −0.483937 0.875103i \(-0.660794\pi\)
−0.483937 + 0.875103i \(0.660794\pi\)
\(522\) 0 0
\(523\) 12.1869 0.532895 0.266448 0.963849i \(-0.414150\pi\)
0.266448 + 0.963849i \(0.414150\pi\)
\(524\) 0 0
\(525\) −69.1742 −3.01901
\(526\) 0 0
\(527\) 7.98620 0.347884
\(528\) 0 0
\(529\) 19.4308 0.844817
\(530\) 0 0
\(531\) 0.975737 0.0423434
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 1.42188 0.0614734
\(536\) 0 0
\(537\) −2.16310 −0.0933445
\(538\) 0 0
\(539\) −73.6717 −3.17326
\(540\) 0 0
\(541\) 1.72216 0.0740413 0.0370206 0.999315i \(-0.488213\pi\)
0.0370206 + 0.999315i \(0.488213\pi\)
\(542\) 0 0
\(543\) −18.5920 −0.797860
\(544\) 0 0
\(545\) 30.7285 1.31627
\(546\) 0 0
\(547\) −14.5926 −0.623936 −0.311968 0.950093i \(-0.600988\pi\)
−0.311968 + 0.950093i \(0.600988\pi\)
\(548\) 0 0
\(549\) −4.55245 −0.194294
\(550\) 0 0
\(551\) 6.62558 0.282259
\(552\) 0 0
\(553\) −6.40708 −0.272457
\(554\) 0 0
\(555\) −9.28052 −0.393936
\(556\) 0 0
\(557\) −31.5611 −1.33729 −0.668644 0.743583i \(-0.733125\pi\)
−0.668644 + 0.743583i \(0.733125\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 17.7369 0.748850
\(562\) 0 0
\(563\) −14.9827 −0.631446 −0.315723 0.948851i \(-0.602247\pi\)
−0.315723 + 0.948851i \(0.602247\pi\)
\(564\) 0 0
\(565\) 13.0491 0.548979
\(566\) 0 0
\(567\) 37.3075 1.56677
\(568\) 0 0
\(569\) −13.3208 −0.558438 −0.279219 0.960227i \(-0.590075\pi\)
−0.279219 + 0.960227i \(0.590075\pi\)
\(570\) 0 0
\(571\) −37.8169 −1.58259 −0.791293 0.611437i \(-0.790592\pi\)
−0.791293 + 0.611437i \(0.790592\pi\)
\(572\) 0 0
\(573\) 2.10081 0.0877627
\(574\) 0 0
\(575\) −57.8239 −2.41142
\(576\) 0 0
\(577\) 6.48477 0.269964 0.134982 0.990848i \(-0.456902\pi\)
0.134982 + 0.990848i \(0.456902\pi\)
\(578\) 0 0
\(579\) −11.0990 −0.461260
\(580\) 0 0
\(581\) −3.92484 −0.162830
\(582\) 0 0
\(583\) 43.1368 1.78654
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −10.5234 −0.434346 −0.217173 0.976133i \(-0.569684\pi\)
−0.217173 + 0.976133i \(0.569684\pi\)
\(588\) 0 0
\(589\) 3.27111 0.134784
\(590\) 0 0
\(591\) 10.7099 0.440546
\(592\) 0 0
\(593\) 27.5404 1.13095 0.565475 0.824766i \(-0.308693\pi\)
0.565475 + 0.824766i \(0.308693\pi\)
\(594\) 0 0
\(595\) −42.5590 −1.74475
\(596\) 0 0
\(597\) 2.50611 0.102568
\(598\) 0 0
\(599\) 0.983892 0.0402007 0.0201004 0.999798i \(-0.493601\pi\)
0.0201004 + 0.999798i \(0.493601\pi\)
\(600\) 0 0
\(601\) −14.5903 −0.595151 −0.297575 0.954698i \(-0.596178\pi\)
−0.297575 + 0.954698i \(0.596178\pi\)
\(602\) 0 0
\(603\) −2.04787 −0.0833959
\(604\) 0 0
\(605\) −37.5532 −1.52675
\(606\) 0 0
\(607\) −40.3088 −1.63609 −0.818043 0.575158i \(-0.804941\pi\)
−0.818043 + 0.575158i \(0.804941\pi\)
\(608\) 0 0
\(609\) 52.9661 2.14629
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) −20.1566 −0.814118 −0.407059 0.913402i \(-0.633446\pi\)
−0.407059 + 0.913402i \(0.633446\pi\)
\(614\) 0 0
\(615\) −29.3546 −1.18369
\(616\) 0 0
\(617\) −11.7236 −0.471973 −0.235987 0.971756i \(-0.575832\pi\)
−0.235987 + 0.971756i \(0.575832\pi\)
\(618\) 0 0
\(619\) −14.2432 −0.572481 −0.286240 0.958158i \(-0.592406\pi\)
−0.286240 + 0.958158i \(0.592406\pi\)
\(620\) 0 0
\(621\) 35.5812 1.42782
\(622\) 0 0
\(623\) 54.8442 2.19728
\(624\) 0 0
\(625\) 9.41624 0.376650
\(626\) 0 0
\(627\) 7.26492 0.290133
\(628\) 0 0
\(629\) −3.65250 −0.145635
\(630\) 0 0
\(631\) 25.1165 0.999871 0.499936 0.866062i \(-0.333357\pi\)
0.499936 + 0.866062i \(0.333357\pi\)
\(632\) 0 0
\(633\) −29.5315 −1.17377
\(634\) 0 0
\(635\) 46.4079 1.84164
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) −5.61827 −0.222255
\(640\) 0 0
\(641\) −9.80091 −0.387113 −0.193556 0.981089i \(-0.562002\pi\)
−0.193556 + 0.981089i \(0.562002\pi\)
\(642\) 0 0
\(643\) −34.4216 −1.35746 −0.678728 0.734390i \(-0.737468\pi\)
−0.678728 + 0.734390i \(0.737468\pi\)
\(644\) 0 0
\(645\) −20.1524 −0.793501
\(646\) 0 0
\(647\) −1.80166 −0.0708307 −0.0354153 0.999373i \(-0.511275\pi\)
−0.0354153 + 0.999373i \(0.511275\pi\)
\(648\) 0 0
\(649\) 12.2710 0.481680
\(650\) 0 0
\(651\) 26.1498 1.02489
\(652\) 0 0
\(653\) −8.15092 −0.318970 −0.159485 0.987200i \(-0.550983\pi\)
−0.159485 + 0.987200i \(0.550983\pi\)
\(654\) 0 0
\(655\) 58.2407 2.27565
\(656\) 0 0
\(657\) 3.08671 0.120424
\(658\) 0 0
\(659\) 6.81340 0.265413 0.132706 0.991155i \(-0.457633\pi\)
0.132706 + 0.991155i \(0.457633\pi\)
\(660\) 0 0
\(661\) 19.7714 0.769018 0.384509 0.923121i \(-0.374371\pi\)
0.384509 + 0.923121i \(0.374371\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) −17.4319 −0.675981
\(666\) 0 0
\(667\) 44.2753 1.71435
\(668\) 0 0
\(669\) 33.1189 1.28045
\(670\) 0 0
\(671\) −57.2523 −2.21020
\(672\) 0 0
\(673\) 30.9581 1.19335 0.596674 0.802484i \(-0.296489\pi\)
0.596674 + 0.802484i \(0.296489\pi\)
\(674\) 0 0
\(675\) −48.4893 −1.86635
\(676\) 0 0
\(677\) 2.37832 0.0914062 0.0457031 0.998955i \(-0.485447\pi\)
0.0457031 + 0.998955i \(0.485447\pi\)
\(678\) 0 0
\(679\) −27.9119 −1.07116
\(680\) 0 0
\(681\) 6.41742 0.245916
\(682\) 0 0
\(683\) −17.2262 −0.659143 −0.329571 0.944131i \(-0.606904\pi\)
−0.329571 + 0.944131i \(0.606904\pi\)
\(684\) 0 0
\(685\) −21.2506 −0.811943
\(686\) 0 0
\(687\) −4.74316 −0.180963
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −29.9969 −1.14113 −0.570567 0.821251i \(-0.693277\pi\)
−0.570567 + 0.821251i \(0.693277\pi\)
\(692\) 0 0
\(693\) −8.04701 −0.305681
\(694\) 0 0
\(695\) 58.0549 2.20215
\(696\) 0 0
\(697\) −11.5530 −0.437600
\(698\) 0 0
\(699\) 30.6417 1.15897
\(700\) 0 0
\(701\) 20.0628 0.757762 0.378881 0.925445i \(-0.376309\pi\)
0.378881 + 0.925445i \(0.376309\pi\)
\(702\) 0 0
\(703\) −1.49605 −0.0564244
\(704\) 0 0
\(705\) 49.4934 1.86403
\(706\) 0 0
\(707\) 57.8892 2.17715
\(708\) 0 0
\(709\) −23.2742 −0.874080 −0.437040 0.899442i \(-0.643973\pi\)
−0.437040 + 0.899442i \(0.643973\pi\)
\(710\) 0 0
\(711\) −0.487262 −0.0182737
\(712\) 0 0
\(713\) 21.8591 0.818629
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −24.3844 −0.910651
\(718\) 0 0
\(719\) 26.4598 0.986786 0.493393 0.869807i \(-0.335757\pi\)
0.493393 + 0.869807i \(0.335757\pi\)
\(720\) 0 0
\(721\) −10.9104 −0.406326
\(722\) 0 0
\(723\) 40.2521 1.49699
\(724\) 0 0
\(725\) −60.3375 −2.24088
\(726\) 0 0
\(727\) 3.99866 0.148302 0.0741510 0.997247i \(-0.476375\pi\)
0.0741510 + 0.997247i \(0.476375\pi\)
\(728\) 0 0
\(729\) 29.4374 1.09027
\(730\) 0 0
\(731\) −7.93131 −0.293350
\(732\) 0 0
\(733\) −31.1240 −1.14959 −0.574796 0.818297i \(-0.694919\pi\)
−0.574796 + 0.818297i \(0.694919\pi\)
\(734\) 0 0
\(735\) −97.0258 −3.57885
\(736\) 0 0
\(737\) −25.7544 −0.948676
\(738\) 0 0
\(739\) 34.7596 1.27865 0.639327 0.768935i \(-0.279213\pi\)
0.639327 + 0.768935i \(0.279213\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 40.9049 1.50066 0.750328 0.661065i \(-0.229895\pi\)
0.750328 + 0.661065i \(0.229895\pi\)
\(744\) 0 0
\(745\) 35.7162 1.30854
\(746\) 0 0
\(747\) −0.298486 −0.0109210
\(748\) 0 0
\(749\) 1.83236 0.0669529
\(750\) 0 0
\(751\) 27.9558 1.02012 0.510061 0.860138i \(-0.329623\pi\)
0.510061 + 0.860138i \(0.329623\pi\)
\(752\) 0 0
\(753\) −28.5290 −1.03965
\(754\) 0 0
\(755\) 90.8865 3.30770
\(756\) 0 0
\(757\) 47.0163 1.70884 0.854419 0.519585i \(-0.173913\pi\)
0.854419 + 0.519585i \(0.173913\pi\)
\(758\) 0 0
\(759\) 48.5477 1.76217
\(760\) 0 0
\(761\) 7.31631 0.265216 0.132608 0.991169i \(-0.457665\pi\)
0.132608 + 0.991169i \(0.457665\pi\)
\(762\) 0 0
\(763\) 39.5993 1.43359
\(764\) 0 0
\(765\) −3.23663 −0.117021
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 18.6877 0.673896 0.336948 0.941523i \(-0.390605\pi\)
0.336948 + 0.941523i \(0.390605\pi\)
\(770\) 0 0
\(771\) −10.3196 −0.371650
\(772\) 0 0
\(773\) −39.3417 −1.41502 −0.707511 0.706702i \(-0.750182\pi\)
−0.707511 + 0.706702i \(0.750182\pi\)
\(774\) 0 0
\(775\) −29.7891 −1.07006
\(776\) 0 0
\(777\) −11.9597 −0.429050
\(778\) 0 0
\(779\) −4.73203 −0.169543
\(780\) 0 0
\(781\) −70.6564 −2.52828
\(782\) 0 0
\(783\) 37.1279 1.32684
\(784\) 0 0
\(785\) −27.2504 −0.972608
\(786\) 0 0
\(787\) −0.837653 −0.0298591 −0.0149296 0.999889i \(-0.504752\pi\)
−0.0149296 + 0.999889i \(0.504752\pi\)
\(788\) 0 0
\(789\) 1.17552 0.0418496
\(790\) 0 0
\(791\) 16.8161 0.597913
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 56.8113 2.01489
\(796\) 0 0
\(797\) 1.54506 0.0547287 0.0273643 0.999626i \(-0.491289\pi\)
0.0273643 + 0.999626i \(0.491289\pi\)
\(798\) 0 0
\(799\) 19.4789 0.689115
\(800\) 0 0
\(801\) 4.17093 0.147372
\(802\) 0 0
\(803\) 38.8190 1.36989
\(804\) 0 0
\(805\) −116.488 −4.10568
\(806\) 0 0
\(807\) 28.0577 0.987677
\(808\) 0 0
\(809\) 24.9755 0.878090 0.439045 0.898465i \(-0.355317\pi\)
0.439045 + 0.898465i \(0.355317\pi\)
\(810\) 0 0
\(811\) −30.3768 −1.06667 −0.533337 0.845903i \(-0.679062\pi\)
−0.533337 + 0.845903i \(0.679062\pi\)
\(812\) 0 0
\(813\) 8.02766 0.281542
\(814\) 0 0
\(815\) −4.91431 −0.172141
\(816\) 0 0
\(817\) −3.24863 −0.113655
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) 12.7848 0.446192 0.223096 0.974796i \(-0.428384\pi\)
0.223096 + 0.974796i \(0.428384\pi\)
\(822\) 0 0
\(823\) −38.3796 −1.33783 −0.668915 0.743339i \(-0.733241\pi\)
−0.668915 + 0.743339i \(0.733241\pi\)
\(824\) 0 0
\(825\) −66.1598 −2.30339
\(826\) 0 0
\(827\) −55.4794 −1.92921 −0.964604 0.263701i \(-0.915057\pi\)
−0.964604 + 0.263701i \(0.915057\pi\)
\(828\) 0 0
\(829\) −10.3728 −0.360263 −0.180131 0.983643i \(-0.557652\pi\)
−0.180131 + 0.983643i \(0.557652\pi\)
\(830\) 0 0
\(831\) −7.78516 −0.270064
\(832\) 0 0
\(833\) −38.1861 −1.32307
\(834\) 0 0
\(835\) −8.88426 −0.307452
\(836\) 0 0
\(837\) 18.3303 0.633590
\(838\) 0 0
\(839\) 29.1158 1.00519 0.502594 0.864522i \(-0.332379\pi\)
0.502594 + 0.864522i \(0.332379\pi\)
\(840\) 0 0
\(841\) 17.1999 0.593101
\(842\) 0 0
\(843\) 33.8772 1.16679
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) −48.3942 −1.66284
\(848\) 0 0
\(849\) −43.9504 −1.50838
\(850\) 0 0
\(851\) −9.99728 −0.342702
\(852\) 0 0
\(853\) 45.2328 1.54874 0.774371 0.632732i \(-0.218067\pi\)
0.774371 + 0.632732i \(0.218067\pi\)
\(854\) 0 0
\(855\) −1.32571 −0.0453382
\(856\) 0 0
\(857\) −38.0791 −1.30076 −0.650379 0.759610i \(-0.725390\pi\)
−0.650379 + 0.759610i \(0.725390\pi\)
\(858\) 0 0
\(859\) −42.5346 −1.45126 −0.725630 0.688085i \(-0.758452\pi\)
−0.725630 + 0.688085i \(0.758452\pi\)
\(860\) 0 0
\(861\) −37.8287 −1.28920
\(862\) 0 0
\(863\) 33.1111 1.12712 0.563558 0.826077i \(-0.309432\pi\)
0.563558 + 0.826077i \(0.309432\pi\)
\(864\) 0 0
\(865\) −39.7843 −1.35271
\(866\) 0 0
\(867\) −18.4016 −0.624951
\(868\) 0 0
\(869\) −6.12788 −0.207874
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −2.12272 −0.0718430
\(874\) 0 0
\(875\) 69.3328 2.34388
\(876\) 0 0
\(877\) 24.4117 0.824325 0.412162 0.911110i \(-0.364774\pi\)
0.412162 + 0.911110i \(0.364774\pi\)
\(878\) 0 0
\(879\) 11.5924 0.391003
\(880\) 0 0
\(881\) 33.4866 1.12819 0.564097 0.825709i \(-0.309225\pi\)
0.564097 + 0.825709i \(0.309225\pi\)
\(882\) 0 0
\(883\) 6.85897 0.230823 0.115411 0.993318i \(-0.463181\pi\)
0.115411 + 0.993318i \(0.463181\pi\)
\(884\) 0 0
\(885\) 16.1610 0.543246
\(886\) 0 0
\(887\) −39.6035 −1.32975 −0.664877 0.746953i \(-0.731516\pi\)
−0.664877 + 0.746953i \(0.731516\pi\)
\(888\) 0 0
\(889\) 59.8051 2.00580
\(890\) 0 0
\(891\) 35.6818 1.19538
\(892\) 0 0
\(893\) 7.97847 0.266989
\(894\) 0 0
\(895\) 4.96410 0.165932
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 22.8093 0.760733
\(900\) 0 0
\(901\) 22.3590 0.744886
\(902\) 0 0
\(903\) −25.9701 −0.864231
\(904\) 0 0
\(905\) 42.6669 1.41830
\(906\) 0 0
\(907\) −31.0417 −1.03072 −0.515362 0.856973i \(-0.672343\pi\)
−0.515362 + 0.856973i \(0.672343\pi\)
\(908\) 0 0
\(909\) 4.40251 0.146022
\(910\) 0 0
\(911\) −48.3759 −1.60277 −0.801383 0.598152i \(-0.795902\pi\)
−0.801383 + 0.598152i \(0.795902\pi\)
\(912\) 0 0
\(913\) −3.75381 −0.124233
\(914\) 0 0
\(915\) −75.4015 −2.49270
\(916\) 0 0
\(917\) 75.0537 2.47849
\(918\) 0 0
\(919\) 46.9584 1.54901 0.774507 0.632566i \(-0.217998\pi\)
0.774507 + 0.632566i \(0.217998\pi\)
\(920\) 0 0
\(921\) −51.9746 −1.71262
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 13.6241 0.447958
\(926\) 0 0
\(927\) −0.829744 −0.0272524
\(928\) 0 0
\(929\) 49.4181 1.62136 0.810678 0.585492i \(-0.199099\pi\)
0.810678 + 0.585492i \(0.199099\pi\)
\(930\) 0 0
\(931\) −15.6408 −0.512607
\(932\) 0 0
\(933\) −55.1477 −1.80545
\(934\) 0 0
\(935\) −40.7044 −1.33118
\(936\) 0 0
\(937\) 35.6815 1.16566 0.582832 0.812593i \(-0.301945\pi\)
0.582832 + 0.812593i \(0.301945\pi\)
\(938\) 0 0
\(939\) 52.3807 1.70938
\(940\) 0 0
\(941\) 18.5877 0.605940 0.302970 0.953000i \(-0.402022\pi\)
0.302970 + 0.953000i \(0.402022\pi\)
\(942\) 0 0
\(943\) −31.6217 −1.02974
\(944\) 0 0
\(945\) −97.6836 −3.17765
\(946\) 0 0
\(947\) 12.7621 0.414713 0.207357 0.978265i \(-0.433514\pi\)
0.207357 + 0.978265i \(0.433514\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) −43.4450 −1.40880
\(952\) 0 0
\(953\) 28.9937 0.939199 0.469599 0.882880i \(-0.344398\pi\)
0.469599 + 0.882880i \(0.344398\pi\)
\(954\) 0 0
\(955\) −4.82117 −0.156009
\(956\) 0 0
\(957\) 50.6580 1.63754
\(958\) 0 0
\(959\) −27.3853 −0.884317
\(960\) 0 0
\(961\) −19.7389 −0.636737
\(962\) 0 0
\(963\) 0.139352 0.00449054
\(964\) 0 0
\(965\) 25.4712 0.819948
\(966\) 0 0
\(967\) 14.7152 0.473209 0.236604 0.971606i \(-0.423965\pi\)
0.236604 + 0.971606i \(0.423965\pi\)
\(968\) 0 0
\(969\) 3.76561 0.120969
\(970\) 0 0
\(971\) 6.85405 0.219957 0.109979 0.993934i \(-0.464922\pi\)
0.109979 + 0.993934i \(0.464922\pi\)
\(972\) 0 0
\(973\) 74.8144 2.39844
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −61.7070 −1.97418 −0.987091 0.160160i \(-0.948799\pi\)
−0.987091 + 0.160160i \(0.948799\pi\)
\(978\) 0 0
\(979\) 52.4543 1.67645
\(980\) 0 0
\(981\) 3.01155 0.0961514
\(982\) 0 0
\(983\) 11.4681 0.365777 0.182888 0.983134i \(-0.441455\pi\)
0.182888 + 0.983134i \(0.441455\pi\)
\(984\) 0 0
\(985\) −24.5782 −0.783127
\(986\) 0 0
\(987\) 63.7813 2.03018
\(988\) 0 0
\(989\) −21.7089 −0.690301
\(990\) 0 0
\(991\) 45.3646 1.44105 0.720527 0.693427i \(-0.243900\pi\)
0.720527 + 0.693427i \(0.243900\pi\)
\(992\) 0 0
\(993\) 17.9937 0.571013
\(994\) 0 0
\(995\) −5.75129 −0.182328
\(996\) 0 0
\(997\) 14.4474 0.457554 0.228777 0.973479i \(-0.426527\pi\)
0.228777 + 0.973479i \(0.426527\pi\)
\(998\) 0 0
\(999\) −8.38341 −0.265239
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.bt.1.9 yes 12
4.3 odd 2 inner 5408.2.a.bt.1.4 12
13.12 even 2 5408.2.a.bu.1.9 yes 12
52.51 odd 2 5408.2.a.bu.1.4 yes 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
5408.2.a.bt.1.4 12 4.3 odd 2 inner
5408.2.a.bt.1.9 yes 12 1.1 even 1 trivial
5408.2.a.bu.1.4 yes 12 52.51 odd 2
5408.2.a.bu.1.9 yes 12 13.12 even 2