Properties

Label 5408.2.a.q
Level $5408$
Weight $2$
Character orbit 5408.a
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{5}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(\beta = \sqrt{5}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - \beta q^{3} - 3 q^{5} + \beta q^{7} + 2 q^{9} - 2 \beta q^{11} + 3 \beta q^{15} - 3 q^{17} - 2 \beta q^{19} - 5 q^{21} + 4 \beta q^{23} + 4 q^{25} + \beta q^{27} + 10 q^{29} + 10 q^{33} - 3 \beta q^{35} + \cdots - 4 \beta q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 6 q^{5} + 4 q^{9} - 6 q^{17} - 10 q^{21} + 8 q^{25} + 20 q^{29} + 20 q^{33} - 6 q^{37} - 12 q^{45} - 4 q^{49} + 8 q^{53} + 20 q^{57} - 40 q^{69} - 28 q^{73} - 20 q^{77} - 22 q^{81} + 18 q^{85} + 20 q^{89}+ \cdots + 4 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
1.61803
−0.618034
0 −2.23607 0 −3.00000 0 2.23607 0 2.00000 0
1.2 0 2.23607 0 −3.00000 0 −2.23607 0 2.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( +1 \)
\(13\) \( +1 \)

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.q 2
4.b odd 2 1 inner 5408.2.a.q 2
13.b even 2 1 416.2.a.d 2
39.d odd 2 1 3744.2.a.q 2
52.b odd 2 1 416.2.a.d 2
104.e even 2 1 832.2.a.m 2
104.h odd 2 1 832.2.a.m 2
156.h even 2 1 3744.2.a.q 2
208.o odd 4 2 3328.2.b.x 4
208.p even 4 2 3328.2.b.x 4
312.b odd 2 1 7488.2.a.cw 2
312.h even 2 1 7488.2.a.cw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.a.d 2 13.b even 2 1
416.2.a.d 2 52.b odd 2 1
832.2.a.m 2 104.e even 2 1
832.2.a.m 2 104.h odd 2 1
3328.2.b.x 4 208.o odd 4 2
3328.2.b.x 4 208.p even 4 2
3744.2.a.q 2 39.d odd 2 1
3744.2.a.q 2 156.h even 2 1
5408.2.a.q 2 1.a even 1 1 trivial
5408.2.a.q 2 4.b odd 2 1 inner
7488.2.a.cw 2 312.b odd 2 1
7488.2.a.cw 2 312.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(5408))\):

\( T_{3}^{2} - 5 \) Copy content Toggle raw display
\( T_{5} + 3 \) Copy content Toggle raw display
\( T_{7}^{2} - 5 \) Copy content Toggle raw display
\( T_{37} + 3 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( T^{2} - 5 \) Copy content Toggle raw display
$5$ \( (T + 3)^{2} \) Copy content Toggle raw display
$7$ \( T^{2} - 5 \) Copy content Toggle raw display
$11$ \( T^{2} - 20 \) Copy content Toggle raw display
$13$ \( T^{2} \) Copy content Toggle raw display
$17$ \( (T + 3)^{2} \) Copy content Toggle raw display
$19$ \( T^{2} - 20 \) Copy content Toggle raw display
$23$ \( T^{2} - 80 \) Copy content Toggle raw display
$29$ \( (T - 10)^{2} \) Copy content Toggle raw display
$31$ \( T^{2} \) Copy content Toggle raw display
$37$ \( (T + 3)^{2} \) Copy content Toggle raw display
$41$ \( T^{2} \) Copy content Toggle raw display
$43$ \( T^{2} - 45 \) Copy content Toggle raw display
$47$ \( T^{2} - 5 \) Copy content Toggle raw display
$53$ \( (T - 4)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} - 20 \) Copy content Toggle raw display
$61$ \( T^{2} \) Copy content Toggle raw display
$67$ \( T^{2} - 180 \) Copy content Toggle raw display
$71$ \( T^{2} - 45 \) Copy content Toggle raw display
$73$ \( (T + 14)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} - 80 \) Copy content Toggle raw display
$83$ \( T^{2} - 320 \) Copy content Toggle raw display
$89$ \( (T - 10)^{2} \) Copy content Toggle raw display
$97$ \( (T - 2)^{2} \) Copy content Toggle raw display
show more
show less