Properties

Label 5408.2.a.q
Level 54085408
Weight 22
Character orbit 5408.a
Self dual yes
Analytic conductor 43.18343.183
Analytic rank 11
Dimension 22
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 5408=25132 5408 = 2^{5} \cdot 13^{2}
Weight: k k == 2 2
Character orbit: [χ][\chi] == 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 43.183097413143.1830974131
Analytic rank: 11
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2,a3]\Z[a_1, a_2, a_3]
Coefficient ring index: 2 2
Twist minimal: no (minimal twist has level 416)
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=5\beta = \sqrt{5}. We also show the integral qq-expansion of the trace form.

f(q)f(q) == qβq33q5+βq7+2q92βq11+3βq153q172βq195q21+4βq23+4q25+βq27+10q29+10q333βq35+4βq99+O(q100) q - \beta q^{3} - 3 q^{5} + \beta q^{7} + 2 q^{9} - 2 \beta q^{11} + 3 \beta q^{15} - 3 q^{17} - 2 \beta q^{19} - 5 q^{21} + 4 \beta q^{23} + 4 q^{25} + \beta q^{27} + 10 q^{29} + 10 q^{33} - 3 \beta q^{35} + \cdots - 4 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q6q5+4q96q1710q21+8q25+20q29+20q336q3712q454q49+8q53+20q5740q6928q7320q7722q81+18q85+20q89++4q97+O(q100) 2 q - 6 q^{5} + 4 q^{9} - 6 q^{17} - 10 q^{21} + 8 q^{25} + 20 q^{29} + 20 q^{33} - 6 q^{37} - 12 q^{45} - 4 q^{49} + 8 q^{53} + 20 q^{57} - 40 q^{69} - 28 q^{73} - 20 q^{77} - 22 q^{81} + 18 q^{85} + 20 q^{89}+ \cdots + 4 q^{97}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.61803
−0.618034
0 −2.23607 0 −3.00000 0 2.23607 0 2.00000 0
1.2 0 2.23607 0 −3.00000 0 −2.23607 0 2.00000 0
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
22 +1 +1
1313 +1 +1

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
4.b odd 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 5408.2.a.q 2
4.b odd 2 1 inner 5408.2.a.q 2
13.b even 2 1 416.2.a.d 2
39.d odd 2 1 3744.2.a.q 2
52.b odd 2 1 416.2.a.d 2
104.e even 2 1 832.2.a.m 2
104.h odd 2 1 832.2.a.m 2
156.h even 2 1 3744.2.a.q 2
208.o odd 4 2 3328.2.b.x 4
208.p even 4 2 3328.2.b.x 4
312.b odd 2 1 7488.2.a.cw 2
312.h even 2 1 7488.2.a.cw 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
416.2.a.d 2 13.b even 2 1
416.2.a.d 2 52.b odd 2 1
832.2.a.m 2 104.e even 2 1
832.2.a.m 2 104.h odd 2 1
3328.2.b.x 4 208.o odd 4 2
3328.2.b.x 4 208.p even 4 2
3744.2.a.q 2 39.d odd 2 1
3744.2.a.q 2 156.h even 2 1
5408.2.a.q 2 1.a even 1 1 trivial
5408.2.a.q 2 4.b odd 2 1 inner
7488.2.a.cw 2 312.b odd 2 1
7488.2.a.cw 2 312.h even 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(5408))S_{2}^{\mathrm{new}}(\Gamma_0(5408)):

T325 T_{3}^{2} - 5 Copy content Toggle raw display
T5+3 T_{5} + 3 Copy content Toggle raw display
T725 T_{7}^{2} - 5 Copy content Toggle raw display
T37+3 T_{37} + 3 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2 T^{2} Copy content Toggle raw display
33 T25 T^{2} - 5 Copy content Toggle raw display
55 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
77 T25 T^{2} - 5 Copy content Toggle raw display
1111 T220 T^{2} - 20 Copy content Toggle raw display
1313 T2 T^{2} Copy content Toggle raw display
1717 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
1919 T220 T^{2} - 20 Copy content Toggle raw display
2323 T280 T^{2} - 80 Copy content Toggle raw display
2929 (T10)2 (T - 10)^{2} Copy content Toggle raw display
3131 T2 T^{2} Copy content Toggle raw display
3737 (T+3)2 (T + 3)^{2} Copy content Toggle raw display
4141 T2 T^{2} Copy content Toggle raw display
4343 T245 T^{2} - 45 Copy content Toggle raw display
4747 T25 T^{2} - 5 Copy content Toggle raw display
5353 (T4)2 (T - 4)^{2} Copy content Toggle raw display
5959 T220 T^{2} - 20 Copy content Toggle raw display
6161 T2 T^{2} Copy content Toggle raw display
6767 T2180 T^{2} - 180 Copy content Toggle raw display
7171 T245 T^{2} - 45 Copy content Toggle raw display
7373 (T+14)2 (T + 14)^{2} Copy content Toggle raw display
7979 T280 T^{2} - 80 Copy content Toggle raw display
8383 T2320 T^{2} - 320 Copy content Toggle raw display
8989 (T10)2 (T - 10)^{2} Copy content Toggle raw display
9797 (T2)2 (T - 2)^{2} Copy content Toggle raw display
show more
show less