Properties

Label 5408.2.a.w.1.1
Level $5408$
Weight $2$
Character 5408.1
Self dual yes
Analytic conductor $43.183$
Analytic rank $1$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5408,2,Mod(1,5408)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5408, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5408.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5408 = 2^{5} \cdot 13^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5408.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.1830974131\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{11}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 11 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 416)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-3.31662\) of defining polynomial
Character \(\chi\) \(=\) 5408.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-3.31662 q^{3} +3.31662 q^{7} +8.00000 q^{9} +3.31662 q^{11} -3.00000 q^{17} +3.31662 q^{19} -11.0000 q^{21} +3.31662 q^{23} -5.00000 q^{25} -16.5831 q^{27} -5.00000 q^{29} -11.0000 q^{33} -9.00000 q^{37} +3.00000 q^{41} -9.94987 q^{43} -6.63325 q^{47} +4.00000 q^{49} +9.94987 q^{51} -8.00000 q^{53} -11.0000 q^{57} +3.31662 q^{59} -9.00000 q^{61} +26.5330 q^{63} +9.94987 q^{67} -11.0000 q^{69} +9.94987 q^{71} +4.00000 q^{73} +16.5831 q^{75} +11.0000 q^{77} -6.63325 q^{79} +31.0000 q^{81} -13.2665 q^{83} +16.5831 q^{87} +1.00000 q^{89} -7.00000 q^{97} +26.5330 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 16 q^{9} - 6 q^{17} - 22 q^{21} - 10 q^{25} - 10 q^{29} - 22 q^{33} - 18 q^{37} + 6 q^{41} + 8 q^{49} - 16 q^{53} - 22 q^{57} - 18 q^{61} - 22 q^{69} + 8 q^{73} + 22 q^{77} + 62 q^{81} + 2 q^{89}+ \cdots - 14 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −3.31662 −1.91485 −0.957427 0.288675i \(-0.906785\pi\)
−0.957427 + 0.288675i \(0.906785\pi\)
\(4\) 0 0
\(5\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(6\) 0 0
\(7\) 3.31662 1.25357 0.626783 0.779194i \(-0.284371\pi\)
0.626783 + 0.779194i \(0.284371\pi\)
\(8\) 0 0
\(9\) 8.00000 2.66667
\(10\) 0 0
\(11\) 3.31662 1.00000 0.500000 0.866025i \(-0.333333\pi\)
0.500000 + 0.866025i \(0.333333\pi\)
\(12\) 0 0
\(13\) 0 0
\(14\) 0 0
\(15\) 0 0
\(16\) 0 0
\(17\) −3.00000 −0.727607 −0.363803 0.931476i \(-0.618522\pi\)
−0.363803 + 0.931476i \(0.618522\pi\)
\(18\) 0 0
\(19\) 3.31662 0.760886 0.380443 0.924804i \(-0.375772\pi\)
0.380443 + 0.924804i \(0.375772\pi\)
\(20\) 0 0
\(21\) −11.0000 −2.40040
\(22\) 0 0
\(23\) 3.31662 0.691564 0.345782 0.938315i \(-0.387614\pi\)
0.345782 + 0.938315i \(0.387614\pi\)
\(24\) 0 0
\(25\) −5.00000 −1.00000
\(26\) 0 0
\(27\) −16.5831 −3.19142
\(28\) 0 0
\(29\) −5.00000 −0.928477 −0.464238 0.885710i \(-0.653672\pi\)
−0.464238 + 0.885710i \(0.653672\pi\)
\(30\) 0 0
\(31\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(32\) 0 0
\(33\) −11.0000 −1.91485
\(34\) 0 0
\(35\) 0 0
\(36\) 0 0
\(37\) −9.00000 −1.47959 −0.739795 0.672832i \(-0.765078\pi\)
−0.739795 + 0.672832i \(0.765078\pi\)
\(38\) 0 0
\(39\) 0 0
\(40\) 0 0
\(41\) 3.00000 0.468521 0.234261 0.972174i \(-0.424733\pi\)
0.234261 + 0.972174i \(0.424733\pi\)
\(42\) 0 0
\(43\) −9.94987 −1.51734 −0.758671 0.651474i \(-0.774151\pi\)
−0.758671 + 0.651474i \(0.774151\pi\)
\(44\) 0 0
\(45\) 0 0
\(46\) 0 0
\(47\) −6.63325 −0.967559 −0.483779 0.875190i \(-0.660736\pi\)
−0.483779 + 0.875190i \(0.660736\pi\)
\(48\) 0 0
\(49\) 4.00000 0.571429
\(50\) 0 0
\(51\) 9.94987 1.39326
\(52\) 0 0
\(53\) −8.00000 −1.09888 −0.549442 0.835532i \(-0.685160\pi\)
−0.549442 + 0.835532i \(0.685160\pi\)
\(54\) 0 0
\(55\) 0 0
\(56\) 0 0
\(57\) −11.0000 −1.45699
\(58\) 0 0
\(59\) 3.31662 0.431788 0.215894 0.976417i \(-0.430733\pi\)
0.215894 + 0.976417i \(0.430733\pi\)
\(60\) 0 0
\(61\) −9.00000 −1.15233 −0.576166 0.817333i \(-0.695452\pi\)
−0.576166 + 0.817333i \(0.695452\pi\)
\(62\) 0 0
\(63\) 26.5330 3.34284
\(64\) 0 0
\(65\) 0 0
\(66\) 0 0
\(67\) 9.94987 1.21557 0.607785 0.794101i \(-0.292058\pi\)
0.607785 + 0.794101i \(0.292058\pi\)
\(68\) 0 0
\(69\) −11.0000 −1.32424
\(70\) 0 0
\(71\) 9.94987 1.18083 0.590416 0.807099i \(-0.298964\pi\)
0.590416 + 0.807099i \(0.298964\pi\)
\(72\) 0 0
\(73\) 4.00000 0.468165 0.234082 0.972217i \(-0.424791\pi\)
0.234082 + 0.972217i \(0.424791\pi\)
\(74\) 0 0
\(75\) 16.5831 1.91485
\(76\) 0 0
\(77\) 11.0000 1.25357
\(78\) 0 0
\(79\) −6.63325 −0.746299 −0.373149 0.927771i \(-0.621722\pi\)
−0.373149 + 0.927771i \(0.621722\pi\)
\(80\) 0 0
\(81\) 31.0000 3.44444
\(82\) 0 0
\(83\) −13.2665 −1.45619 −0.728094 0.685478i \(-0.759593\pi\)
−0.728094 + 0.685478i \(0.759593\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 16.5831 1.77790
\(88\) 0 0
\(89\) 1.00000 0.106000 0.0529999 0.998595i \(-0.483122\pi\)
0.0529999 + 0.998595i \(0.483122\pi\)
\(90\) 0 0
\(91\) 0 0
\(92\) 0 0
\(93\) 0 0
\(94\) 0 0
\(95\) 0 0
\(96\) 0 0
\(97\) −7.00000 −0.710742 −0.355371 0.934725i \(-0.615646\pi\)
−0.355371 + 0.934725i \(0.615646\pi\)
\(98\) 0 0
\(99\) 26.5330 2.66667
\(100\) 0 0
\(101\) −15.0000 −1.49256 −0.746278 0.665635i \(-0.768161\pi\)
−0.746278 + 0.665635i \(0.768161\pi\)
\(102\) 0 0
\(103\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 0 0
\(107\) −3.31662 −0.320630 −0.160315 0.987066i \(-0.551251\pi\)
−0.160315 + 0.987066i \(0.551251\pi\)
\(108\) 0 0
\(109\) 16.0000 1.53252 0.766261 0.642529i \(-0.222115\pi\)
0.766261 + 0.642529i \(0.222115\pi\)
\(110\) 0 0
\(111\) 29.8496 2.83320
\(112\) 0 0
\(113\) −11.0000 −1.03479 −0.517396 0.855746i \(-0.673099\pi\)
−0.517396 + 0.855746i \(0.673099\pi\)
\(114\) 0 0
\(115\) 0 0
\(116\) 0 0
\(117\) 0 0
\(118\) 0 0
\(119\) −9.94987 −0.912103
\(120\) 0 0
\(121\) 0 0
\(122\) 0 0
\(123\) −9.94987 −0.897150
\(124\) 0 0
\(125\) 0 0
\(126\) 0 0
\(127\) 9.94987 0.882909 0.441454 0.897284i \(-0.354463\pi\)
0.441454 + 0.897284i \(0.354463\pi\)
\(128\) 0 0
\(129\) 33.0000 2.90549
\(130\) 0 0
\(131\) −13.2665 −1.15910 −0.579550 0.814937i \(-0.696772\pi\)
−0.579550 + 0.814937i \(0.696772\pi\)
\(132\) 0 0
\(133\) 11.0000 0.953821
\(134\) 0 0
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 0.768922 0.384461 0.923141i \(-0.374387\pi\)
0.384461 + 0.923141i \(0.374387\pi\)
\(138\) 0 0
\(139\) −3.31662 −0.281312 −0.140656 0.990058i \(-0.544921\pi\)
−0.140656 + 0.990058i \(0.544921\pi\)
\(140\) 0 0
\(141\) 22.0000 1.85273
\(142\) 0 0
\(143\) 0 0
\(144\) 0 0
\(145\) 0 0
\(146\) 0 0
\(147\) −13.2665 −1.09420
\(148\) 0 0
\(149\) 1.00000 0.0819232 0.0409616 0.999161i \(-0.486958\pi\)
0.0409616 + 0.999161i \(0.486958\pi\)
\(150\) 0 0
\(151\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(152\) 0 0
\(153\) −24.0000 −1.94029
\(154\) 0 0
\(155\) 0 0
\(156\) 0 0
\(157\) −8.00000 −0.638470 −0.319235 0.947676i \(-0.603426\pi\)
−0.319235 + 0.947676i \(0.603426\pi\)
\(158\) 0 0
\(159\) 26.5330 2.10420
\(160\) 0 0
\(161\) 11.0000 0.866921
\(162\) 0 0
\(163\) −16.5831 −1.29889 −0.649445 0.760408i \(-0.724999\pi\)
−0.649445 + 0.760408i \(0.724999\pi\)
\(164\) 0 0
\(165\) 0 0
\(166\) 0 0
\(167\) −3.31662 −0.256648 −0.128324 0.991732i \(-0.540960\pi\)
−0.128324 + 0.991732i \(0.540960\pi\)
\(168\) 0 0
\(169\) 0 0
\(170\) 0 0
\(171\) 26.5330 2.02903
\(172\) 0 0
\(173\) 7.00000 0.532200 0.266100 0.963945i \(-0.414265\pi\)
0.266100 + 0.963945i \(0.414265\pi\)
\(174\) 0 0
\(175\) −16.5831 −1.25357
\(176\) 0 0
\(177\) −11.0000 −0.826811
\(178\) 0 0
\(179\) −3.31662 −0.247896 −0.123948 0.992289i \(-0.539556\pi\)
−0.123948 + 0.992289i \(0.539556\pi\)
\(180\) 0 0
\(181\) −8.00000 −0.594635 −0.297318 0.954779i \(-0.596092\pi\)
−0.297318 + 0.954779i \(0.596092\pi\)
\(182\) 0 0
\(183\) 29.8496 2.20655
\(184\) 0 0
\(185\) 0 0
\(186\) 0 0
\(187\) −9.94987 −0.727607
\(188\) 0 0
\(189\) −55.0000 −4.00066
\(190\) 0 0
\(191\) 23.2164 1.67988 0.839939 0.542681i \(-0.182591\pi\)
0.839939 + 0.542681i \(0.182591\pi\)
\(192\) 0 0
\(193\) −13.0000 −0.935760 −0.467880 0.883792i \(-0.654982\pi\)
−0.467880 + 0.883792i \(0.654982\pi\)
\(194\) 0 0
\(195\) 0 0
\(196\) 0 0
\(197\) 13.0000 0.926212 0.463106 0.886303i \(-0.346735\pi\)
0.463106 + 0.886303i \(0.346735\pi\)
\(198\) 0 0
\(199\) −9.94987 −0.705328 −0.352664 0.935750i \(-0.614724\pi\)
−0.352664 + 0.935750i \(0.614724\pi\)
\(200\) 0 0
\(201\) −33.0000 −2.32764
\(202\) 0 0
\(203\) −16.5831 −1.16391
\(204\) 0 0
\(205\) 0 0
\(206\) 0 0
\(207\) 26.5330 1.84417
\(208\) 0 0
\(209\) 11.0000 0.760886
\(210\) 0 0
\(211\) −3.31662 −0.228326 −0.114163 0.993462i \(-0.536419\pi\)
−0.114163 + 0.993462i \(0.536419\pi\)
\(212\) 0 0
\(213\) −33.0000 −2.26112
\(214\) 0 0
\(215\) 0 0
\(216\) 0 0
\(217\) 0 0
\(218\) 0 0
\(219\) −13.2665 −0.896467
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −3.31662 −0.222098 −0.111049 0.993815i \(-0.535421\pi\)
−0.111049 + 0.993815i \(0.535421\pi\)
\(224\) 0 0
\(225\) −40.0000 −2.66667
\(226\) 0 0
\(227\) 3.31662 0.220132 0.110066 0.993924i \(-0.464894\pi\)
0.110066 + 0.993924i \(0.464894\pi\)
\(228\) 0 0
\(229\) −8.00000 −0.528655 −0.264327 0.964433i \(-0.585150\pi\)
−0.264327 + 0.964433i \(0.585150\pi\)
\(230\) 0 0
\(231\) −36.4829 −2.40040
\(232\) 0 0
\(233\) 4.00000 0.262049 0.131024 0.991379i \(-0.458173\pi\)
0.131024 + 0.991379i \(0.458173\pi\)
\(234\) 0 0
\(235\) 0 0
\(236\) 0 0
\(237\) 22.0000 1.42905
\(238\) 0 0
\(239\) 26.5330 1.71628 0.858138 0.513418i \(-0.171621\pi\)
0.858138 + 0.513418i \(0.171621\pi\)
\(240\) 0 0
\(241\) −13.0000 −0.837404 −0.418702 0.908124i \(-0.637515\pi\)
−0.418702 + 0.908124i \(0.637515\pi\)
\(242\) 0 0
\(243\) −53.0660 −3.40419
\(244\) 0 0
\(245\) 0 0
\(246\) 0 0
\(247\) 0 0
\(248\) 0 0
\(249\) 44.0000 2.78839
\(250\) 0 0
\(251\) 16.5831 1.04672 0.523359 0.852112i \(-0.324679\pi\)
0.523359 + 0.852112i \(0.324679\pi\)
\(252\) 0 0
\(253\) 11.0000 0.691564
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 13.0000 0.810918 0.405459 0.914113i \(-0.367112\pi\)
0.405459 + 0.914113i \(0.367112\pi\)
\(258\) 0 0
\(259\) −29.8496 −1.85477
\(260\) 0 0
\(261\) −40.0000 −2.47594
\(262\) 0 0
\(263\) −23.2164 −1.43158 −0.715791 0.698314i \(-0.753934\pi\)
−0.715791 + 0.698314i \(0.753934\pi\)
\(264\) 0 0
\(265\) 0 0
\(266\) 0 0
\(267\) −3.31662 −0.202974
\(268\) 0 0
\(269\) 29.0000 1.76816 0.884081 0.467334i \(-0.154786\pi\)
0.884081 + 0.467334i \(0.154786\pi\)
\(270\) 0 0
\(271\) −29.8496 −1.81324 −0.906618 0.421953i \(-0.861345\pi\)
−0.906618 + 0.421953i \(0.861345\pi\)
\(272\) 0 0
\(273\) 0 0
\(274\) 0 0
\(275\) −16.5831 −1.00000
\(276\) 0 0
\(277\) 5.00000 0.300421 0.150210 0.988654i \(-0.452005\pi\)
0.150210 + 0.988654i \(0.452005\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −20.0000 −1.19310 −0.596550 0.802576i \(-0.703462\pi\)
−0.596550 + 0.802576i \(0.703462\pi\)
\(282\) 0 0
\(283\) 23.2164 1.38007 0.690035 0.723776i \(-0.257595\pi\)
0.690035 + 0.723776i \(0.257595\pi\)
\(284\) 0 0
\(285\) 0 0
\(286\) 0 0
\(287\) 9.94987 0.587323
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 0 0
\(291\) 23.2164 1.36097
\(292\) 0 0
\(293\) −7.00000 −0.408944 −0.204472 0.978872i \(-0.565548\pi\)
−0.204472 + 0.978872i \(0.565548\pi\)
\(294\) 0 0
\(295\) 0 0
\(296\) 0 0
\(297\) −55.0000 −3.19142
\(298\) 0 0
\(299\) 0 0
\(300\) 0 0
\(301\) −33.0000 −1.90209
\(302\) 0 0
\(303\) 49.7494 2.85803
\(304\) 0 0
\(305\) 0 0
\(306\) 0 0
\(307\) 13.2665 0.757159 0.378580 0.925569i \(-0.376413\pi\)
0.378580 + 0.925569i \(0.376413\pi\)
\(308\) 0 0
\(309\) 0 0
\(310\) 0 0
\(311\) −26.5330 −1.50455 −0.752274 0.658850i \(-0.771043\pi\)
−0.752274 + 0.658850i \(0.771043\pi\)
\(312\) 0 0
\(313\) 4.00000 0.226093 0.113047 0.993590i \(-0.463939\pi\)
0.113047 + 0.993590i \(0.463939\pi\)
\(314\) 0 0
\(315\) 0 0
\(316\) 0 0
\(317\) −18.0000 −1.01098 −0.505490 0.862832i \(-0.668688\pi\)
−0.505490 + 0.862832i \(0.668688\pi\)
\(318\) 0 0
\(319\) −16.5831 −0.928477
\(320\) 0 0
\(321\) 11.0000 0.613960
\(322\) 0 0
\(323\) −9.94987 −0.553626
\(324\) 0 0
\(325\) 0 0
\(326\) 0 0
\(327\) −53.0660 −2.93456
\(328\) 0 0
\(329\) −22.0000 −1.21290
\(330\) 0 0
\(331\) 9.94987 0.546895 0.273447 0.961887i \(-0.411836\pi\)
0.273447 + 0.961887i \(0.411836\pi\)
\(332\) 0 0
\(333\) −72.0000 −3.94558
\(334\) 0 0
\(335\) 0 0
\(336\) 0 0
\(337\) −12.0000 −0.653682 −0.326841 0.945079i \(-0.605984\pi\)
−0.326841 + 0.945079i \(0.605984\pi\)
\(338\) 0 0
\(339\) 36.4829 1.98148
\(340\) 0 0
\(341\) 0 0
\(342\) 0 0
\(343\) −9.94987 −0.537243
\(344\) 0 0
\(345\) 0 0
\(346\) 0 0
\(347\) 16.5831 0.890229 0.445114 0.895474i \(-0.353163\pi\)
0.445114 + 0.895474i \(0.353163\pi\)
\(348\) 0 0
\(349\) −1.00000 −0.0535288 −0.0267644 0.999642i \(-0.508520\pi\)
−0.0267644 + 0.999642i \(0.508520\pi\)
\(350\) 0 0
\(351\) 0 0
\(352\) 0 0
\(353\) −31.0000 −1.64996 −0.824982 0.565159i \(-0.808815\pi\)
−0.824982 + 0.565159i \(0.808815\pi\)
\(354\) 0 0
\(355\) 0 0
\(356\) 0 0
\(357\) 33.0000 1.74655
\(358\) 0 0
\(359\) −26.5330 −1.40036 −0.700179 0.713967i \(-0.746897\pi\)
−0.700179 + 0.713967i \(0.746897\pi\)
\(360\) 0 0
\(361\) −8.00000 −0.421053
\(362\) 0 0
\(363\) 0 0
\(364\) 0 0
\(365\) 0 0
\(366\) 0 0
\(367\) −23.2164 −1.21188 −0.605942 0.795509i \(-0.707204\pi\)
−0.605942 + 0.795509i \(0.707204\pi\)
\(368\) 0 0
\(369\) 24.0000 1.24939
\(370\) 0 0
\(371\) −26.5330 −1.37752
\(372\) 0 0
\(373\) 13.0000 0.673114 0.336557 0.941663i \(-0.390737\pi\)
0.336557 + 0.941663i \(0.390737\pi\)
\(374\) 0 0
\(375\) 0 0
\(376\) 0 0
\(377\) 0 0
\(378\) 0 0
\(379\) 29.8496 1.53327 0.766636 0.642082i \(-0.221929\pi\)
0.766636 + 0.642082i \(0.221929\pi\)
\(380\) 0 0
\(381\) −33.0000 −1.69064
\(382\) 0 0
\(383\) 3.31662 0.169472 0.0847358 0.996403i \(-0.472995\pi\)
0.0847358 + 0.996403i \(0.472995\pi\)
\(384\) 0 0
\(385\) 0 0
\(386\) 0 0
\(387\) −79.5990 −4.04624
\(388\) 0 0
\(389\) −10.0000 −0.507020 −0.253510 0.967333i \(-0.581585\pi\)
−0.253510 + 0.967333i \(0.581585\pi\)
\(390\) 0 0
\(391\) −9.94987 −0.503187
\(392\) 0 0
\(393\) 44.0000 2.21951
\(394\) 0 0
\(395\) 0 0
\(396\) 0 0
\(397\) −5.00000 −0.250943 −0.125471 0.992097i \(-0.540044\pi\)
−0.125471 + 0.992097i \(0.540044\pi\)
\(398\) 0 0
\(399\) −36.4829 −1.82643
\(400\) 0 0
\(401\) 11.0000 0.549314 0.274657 0.961542i \(-0.411436\pi\)
0.274657 + 0.961542i \(0.411436\pi\)
\(402\) 0 0
\(403\) 0 0
\(404\) 0 0
\(405\) 0 0
\(406\) 0 0
\(407\) −29.8496 −1.47959
\(408\) 0 0
\(409\) −13.0000 −0.642809 −0.321404 0.946942i \(-0.604155\pi\)
−0.321404 + 0.946942i \(0.604155\pi\)
\(410\) 0 0
\(411\) −29.8496 −1.47237
\(412\) 0 0
\(413\) 11.0000 0.541275
\(414\) 0 0
\(415\) 0 0
\(416\) 0 0
\(417\) 11.0000 0.538672
\(418\) 0 0
\(419\) 16.5831 0.810139 0.405069 0.914286i \(-0.367247\pi\)
0.405069 + 0.914286i \(0.367247\pi\)
\(420\) 0 0
\(421\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(422\) 0 0
\(423\) −53.0660 −2.58016
\(424\) 0 0
\(425\) 15.0000 0.727607
\(426\) 0 0
\(427\) −29.8496 −1.44452
\(428\) 0 0
\(429\) 0 0
\(430\) 0 0
\(431\) 16.5831 0.798781 0.399390 0.916781i \(-0.369222\pi\)
0.399390 + 0.916781i \(0.369222\pi\)
\(432\) 0 0
\(433\) 21.0000 1.00920 0.504598 0.863355i \(-0.331641\pi\)
0.504598 + 0.863355i \(0.331641\pi\)
\(434\) 0 0
\(435\) 0 0
\(436\) 0 0
\(437\) 11.0000 0.526201
\(438\) 0 0
\(439\) −16.5831 −0.791469 −0.395735 0.918365i \(-0.629510\pi\)
−0.395735 + 0.918365i \(0.629510\pi\)
\(440\) 0 0
\(441\) 32.0000 1.52381
\(442\) 0 0
\(443\) 13.2665 0.630310 0.315155 0.949040i \(-0.397943\pi\)
0.315155 + 0.949040i \(0.397943\pi\)
\(444\) 0 0
\(445\) 0 0
\(446\) 0 0
\(447\) −3.31662 −0.156871
\(448\) 0 0
\(449\) 3.00000 0.141579 0.0707894 0.997491i \(-0.477448\pi\)
0.0707894 + 0.997491i \(0.477448\pi\)
\(450\) 0 0
\(451\) 9.94987 0.468521
\(452\) 0 0
\(453\) 0 0
\(454\) 0 0
\(455\) 0 0
\(456\) 0 0
\(457\) 1.00000 0.0467780 0.0233890 0.999726i \(-0.492554\pi\)
0.0233890 + 0.999726i \(0.492554\pi\)
\(458\) 0 0
\(459\) 49.7494 2.32210
\(460\) 0 0
\(461\) 3.00000 0.139724 0.0698620 0.997557i \(-0.477744\pi\)
0.0698620 + 0.997557i \(0.477744\pi\)
\(462\) 0 0
\(463\) −26.5330 −1.23309 −0.616547 0.787318i \(-0.711469\pi\)
−0.616547 + 0.787318i \(0.711469\pi\)
\(464\) 0 0
\(465\) 0 0
\(466\) 0 0
\(467\) −19.8997 −0.920851 −0.460425 0.887698i \(-0.652303\pi\)
−0.460425 + 0.887698i \(0.652303\pi\)
\(468\) 0 0
\(469\) 33.0000 1.52380
\(470\) 0 0
\(471\) 26.5330 1.22258
\(472\) 0 0
\(473\) −33.0000 −1.51734
\(474\) 0 0
\(475\) −16.5831 −0.760886
\(476\) 0 0
\(477\) −64.0000 −2.93036
\(478\) 0 0
\(479\) −9.94987 −0.454621 −0.227311 0.973822i \(-0.572993\pi\)
−0.227311 + 0.973822i \(0.572993\pi\)
\(480\) 0 0
\(481\) 0 0
\(482\) 0 0
\(483\) −36.4829 −1.66003
\(484\) 0 0
\(485\) 0 0
\(486\) 0 0
\(487\) 9.94987 0.450872 0.225436 0.974258i \(-0.427619\pi\)
0.225436 + 0.974258i \(0.427619\pi\)
\(488\) 0 0
\(489\) 55.0000 2.48719
\(490\) 0 0
\(491\) 16.5831 0.748386 0.374193 0.927351i \(-0.377920\pi\)
0.374193 + 0.927351i \(0.377920\pi\)
\(492\) 0 0
\(493\) 15.0000 0.675566
\(494\) 0 0
\(495\) 0 0
\(496\) 0 0
\(497\) 33.0000 1.48025
\(498\) 0 0
\(499\) −13.2665 −0.593890 −0.296945 0.954895i \(-0.595968\pi\)
−0.296945 + 0.954895i \(0.595968\pi\)
\(500\) 0 0
\(501\) 11.0000 0.491444
\(502\) 0 0
\(503\) −3.31662 −0.147881 −0.0739405 0.997263i \(-0.523557\pi\)
−0.0739405 + 0.997263i \(0.523557\pi\)
\(504\) 0 0
\(505\) 0 0
\(506\) 0 0
\(507\) 0 0
\(508\) 0 0
\(509\) 39.0000 1.72864 0.864322 0.502938i \(-0.167748\pi\)
0.864322 + 0.502938i \(0.167748\pi\)
\(510\) 0 0
\(511\) 13.2665 0.586875
\(512\) 0 0
\(513\) −55.0000 −2.42831
\(514\) 0 0
\(515\) 0 0
\(516\) 0 0
\(517\) −22.0000 −0.967559
\(518\) 0 0
\(519\) −23.2164 −1.01909
\(520\) 0 0
\(521\) −12.0000 −0.525730 −0.262865 0.964833i \(-0.584667\pi\)
−0.262865 + 0.964833i \(0.584667\pi\)
\(522\) 0 0
\(523\) 16.5831 0.725129 0.362565 0.931959i \(-0.381901\pi\)
0.362565 + 0.931959i \(0.381901\pi\)
\(524\) 0 0
\(525\) 55.0000 2.40040
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −12.0000 −0.521739
\(530\) 0 0
\(531\) 26.5330 1.15143
\(532\) 0 0
\(533\) 0 0
\(534\) 0 0
\(535\) 0 0
\(536\) 0 0
\(537\) 11.0000 0.474685
\(538\) 0 0
\(539\) 13.2665 0.571429
\(540\) 0 0
\(541\) 18.0000 0.773880 0.386940 0.922105i \(-0.373532\pi\)
0.386940 + 0.922105i \(0.373532\pi\)
\(542\) 0 0
\(543\) 26.5330 1.13864
\(544\) 0 0
\(545\) 0 0
\(546\) 0 0
\(547\) 13.2665 0.567235 0.283617 0.958938i \(-0.408465\pi\)
0.283617 + 0.958938i \(0.408465\pi\)
\(548\) 0 0
\(549\) −72.0000 −3.07289
\(550\) 0 0
\(551\) −16.5831 −0.706465
\(552\) 0 0
\(553\) −22.0000 −0.935535
\(554\) 0 0
\(555\) 0 0
\(556\) 0 0
\(557\) 37.0000 1.56774 0.783870 0.620925i \(-0.213243\pi\)
0.783870 + 0.620925i \(0.213243\pi\)
\(558\) 0 0
\(559\) 0 0
\(560\) 0 0
\(561\) 33.0000 1.39326
\(562\) 0 0
\(563\) −3.31662 −0.139779 −0.0698895 0.997555i \(-0.522265\pi\)
−0.0698895 + 0.997555i \(0.522265\pi\)
\(564\) 0 0
\(565\) 0 0
\(566\) 0 0
\(567\) 102.815 4.31784
\(568\) 0 0
\(569\) 15.0000 0.628833 0.314416 0.949285i \(-0.398191\pi\)
0.314416 + 0.949285i \(0.398191\pi\)
\(570\) 0 0
\(571\) −13.2665 −0.555186 −0.277593 0.960699i \(-0.589537\pi\)
−0.277593 + 0.960699i \(0.589537\pi\)
\(572\) 0 0
\(573\) −77.0000 −3.21672
\(574\) 0 0
\(575\) −16.5831 −0.691564
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) 0 0
\(579\) 43.1161 1.79184
\(580\) 0 0
\(581\) −44.0000 −1.82543
\(582\) 0 0
\(583\) −26.5330 −1.09888
\(584\) 0 0
\(585\) 0 0
\(586\) 0 0
\(587\) −43.1161 −1.77959 −0.889796 0.456358i \(-0.849154\pi\)
−0.889796 + 0.456358i \(0.849154\pi\)
\(588\) 0 0
\(589\) 0 0
\(590\) 0 0
\(591\) −43.1161 −1.77356
\(592\) 0 0
\(593\) 36.0000 1.47834 0.739171 0.673517i \(-0.235217\pi\)
0.739171 + 0.673517i \(0.235217\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) 33.0000 1.35060
\(598\) 0 0
\(599\) 33.1662 1.35514 0.677568 0.735460i \(-0.263034\pi\)
0.677568 + 0.735460i \(0.263034\pi\)
\(600\) 0 0
\(601\) 29.0000 1.18293 0.591467 0.806329i \(-0.298549\pi\)
0.591467 + 0.806329i \(0.298549\pi\)
\(602\) 0 0
\(603\) 79.5990 3.24152
\(604\) 0 0
\(605\) 0 0
\(606\) 0 0
\(607\) −9.94987 −0.403853 −0.201926 0.979401i \(-0.564720\pi\)
−0.201926 + 0.979401i \(0.564720\pi\)
\(608\) 0 0
\(609\) 55.0000 2.22871
\(610\) 0 0
\(611\) 0 0
\(612\) 0 0
\(613\) 7.00000 0.282727 0.141364 0.989958i \(-0.454851\pi\)
0.141364 + 0.989958i \(0.454851\pi\)
\(614\) 0 0
\(615\) 0 0
\(616\) 0 0
\(617\) 17.0000 0.684394 0.342197 0.939628i \(-0.388829\pi\)
0.342197 + 0.939628i \(0.388829\pi\)
\(618\) 0 0
\(619\) −39.7995 −1.59968 −0.799838 0.600215i \(-0.795082\pi\)
−0.799838 + 0.600215i \(0.795082\pi\)
\(620\) 0 0
\(621\) −55.0000 −2.20707
\(622\) 0 0
\(623\) 3.31662 0.132878
\(624\) 0 0
\(625\) 25.0000 1.00000
\(626\) 0 0
\(627\) −36.4829 −1.45699
\(628\) 0 0
\(629\) 27.0000 1.07656
\(630\) 0 0
\(631\) 9.94987 0.396098 0.198049 0.980192i \(-0.436539\pi\)
0.198049 + 0.980192i \(0.436539\pi\)
\(632\) 0 0
\(633\) 11.0000 0.437211
\(634\) 0 0
\(635\) 0 0
\(636\) 0 0
\(637\) 0 0
\(638\) 0 0
\(639\) 79.5990 3.14889
\(640\) 0 0
\(641\) 21.0000 0.829450 0.414725 0.909947i \(-0.363878\pi\)
0.414725 + 0.909947i \(0.363878\pi\)
\(642\) 0 0
\(643\) 36.4829 1.43874 0.719372 0.694625i \(-0.244430\pi\)
0.719372 + 0.694625i \(0.244430\pi\)
\(644\) 0 0
\(645\) 0 0
\(646\) 0 0
\(647\) 9.94987 0.391170 0.195585 0.980687i \(-0.437339\pi\)
0.195585 + 0.980687i \(0.437339\pi\)
\(648\) 0 0
\(649\) 11.0000 0.431788
\(650\) 0 0
\(651\) 0 0
\(652\) 0 0
\(653\) −15.0000 −0.586995 −0.293498 0.955960i \(-0.594819\pi\)
−0.293498 + 0.955960i \(0.594819\pi\)
\(654\) 0 0
\(655\) 0 0
\(656\) 0 0
\(657\) 32.0000 1.24844
\(658\) 0 0
\(659\) 43.1161 1.67957 0.839783 0.542922i \(-0.182682\pi\)
0.839783 + 0.542922i \(0.182682\pi\)
\(660\) 0 0
\(661\) −17.0000 −0.661223 −0.330612 0.943767i \(-0.607255\pi\)
−0.330612 + 0.943767i \(0.607255\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 0 0
\(666\) 0 0
\(667\) −16.5831 −0.642101
\(668\) 0 0
\(669\) 11.0000 0.425285
\(670\) 0 0
\(671\) −29.8496 −1.15233
\(672\) 0 0
\(673\) −49.0000 −1.88881 −0.944406 0.328783i \(-0.893362\pi\)
−0.944406 + 0.328783i \(0.893362\pi\)
\(674\) 0 0
\(675\) 82.9156 3.19142
\(676\) 0 0
\(677\) −24.0000 −0.922395 −0.461197 0.887298i \(-0.652580\pi\)
−0.461197 + 0.887298i \(0.652580\pi\)
\(678\) 0 0
\(679\) −23.2164 −0.890963
\(680\) 0 0
\(681\) −11.0000 −0.421521
\(682\) 0 0
\(683\) 29.8496 1.14216 0.571082 0.820893i \(-0.306524\pi\)
0.571082 + 0.820893i \(0.306524\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) 26.5330 1.01230
\(688\) 0 0
\(689\) 0 0
\(690\) 0 0
\(691\) −23.2164 −0.883192 −0.441596 0.897214i \(-0.645588\pi\)
−0.441596 + 0.897214i \(0.645588\pi\)
\(692\) 0 0
\(693\) 88.0000 3.34284
\(694\) 0 0
\(695\) 0 0
\(696\) 0 0
\(697\) −9.00000 −0.340899
\(698\) 0 0
\(699\) −13.2665 −0.501785
\(700\) 0 0
\(701\) −32.0000 −1.20862 −0.604312 0.796748i \(-0.706552\pi\)
−0.604312 + 0.796748i \(0.706552\pi\)
\(702\) 0 0
\(703\) −29.8496 −1.12580
\(704\) 0 0
\(705\) 0 0
\(706\) 0 0
\(707\) −49.7494 −1.87102
\(708\) 0 0
\(709\) −29.0000 −1.08912 −0.544559 0.838723i \(-0.683303\pi\)
−0.544559 + 0.838723i \(0.683303\pi\)
\(710\) 0 0
\(711\) −53.0660 −1.99013
\(712\) 0 0
\(713\) 0 0
\(714\) 0 0
\(715\) 0 0
\(716\) 0 0
\(717\) −88.0000 −3.28642
\(718\) 0 0
\(719\) −29.8496 −1.11320 −0.556602 0.830780i \(-0.687895\pi\)
−0.556602 + 0.830780i \(0.687895\pi\)
\(720\) 0 0
\(721\) 0 0
\(722\) 0 0
\(723\) 43.1161 1.60351
\(724\) 0 0
\(725\) 25.0000 0.928477
\(726\) 0 0
\(727\) 26.5330 0.984054 0.492027 0.870580i \(-0.336256\pi\)
0.492027 + 0.870580i \(0.336256\pi\)
\(728\) 0 0
\(729\) 83.0000 3.07407
\(730\) 0 0
\(731\) 29.8496 1.10403
\(732\) 0 0
\(733\) −18.0000 −0.664845 −0.332423 0.943131i \(-0.607866\pi\)
−0.332423 + 0.943131i \(0.607866\pi\)
\(734\) 0 0
\(735\) 0 0
\(736\) 0 0
\(737\) 33.0000 1.21557
\(738\) 0 0
\(739\) 9.94987 0.366012 0.183006 0.983112i \(-0.441417\pi\)
0.183006 + 0.983112i \(0.441417\pi\)
\(740\) 0 0
\(741\) 0 0
\(742\) 0 0
\(743\) 43.1161 1.58178 0.790889 0.611960i \(-0.209619\pi\)
0.790889 + 0.611960i \(0.209619\pi\)
\(744\) 0 0
\(745\) 0 0
\(746\) 0 0
\(747\) −106.132 −3.88317
\(748\) 0 0
\(749\) −11.0000 −0.401931
\(750\) 0 0
\(751\) 29.8496 1.08923 0.544614 0.838687i \(-0.316676\pi\)
0.544614 + 0.838687i \(0.316676\pi\)
\(752\) 0 0
\(753\) −55.0000 −2.00431
\(754\) 0 0
\(755\) 0 0
\(756\) 0 0
\(757\) −7.00000 −0.254419 −0.127210 0.991876i \(-0.540602\pi\)
−0.127210 + 0.991876i \(0.540602\pi\)
\(758\) 0 0
\(759\) −36.4829 −1.32424
\(760\) 0 0
\(761\) 27.0000 0.978749 0.489375 0.872074i \(-0.337225\pi\)
0.489375 + 0.872074i \(0.337225\pi\)
\(762\) 0 0
\(763\) 53.0660 1.92112
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) 0 0
\(768\) 0 0
\(769\) 27.0000 0.973645 0.486822 0.873501i \(-0.338156\pi\)
0.486822 + 0.873501i \(0.338156\pi\)
\(770\) 0 0
\(771\) −43.1161 −1.55279
\(772\) 0 0
\(773\) −21.0000 −0.755318 −0.377659 0.925945i \(-0.623271\pi\)
−0.377659 + 0.925945i \(0.623271\pi\)
\(774\) 0 0
\(775\) 0 0
\(776\) 0 0
\(777\) 99.0000 3.55161
\(778\) 0 0
\(779\) 9.94987 0.356491
\(780\) 0 0
\(781\) 33.0000 1.18083
\(782\) 0 0
\(783\) 82.9156 2.96316
\(784\) 0 0
\(785\) 0 0
\(786\) 0 0
\(787\) 9.94987 0.354675 0.177337 0.984150i \(-0.443252\pi\)
0.177337 + 0.984150i \(0.443252\pi\)
\(788\) 0 0
\(789\) 77.0000 2.74127
\(790\) 0 0
\(791\) −36.4829 −1.29718
\(792\) 0 0
\(793\) 0 0
\(794\) 0 0
\(795\) 0 0
\(796\) 0 0
\(797\) −33.0000 −1.16892 −0.584460 0.811423i \(-0.698694\pi\)
−0.584460 + 0.811423i \(0.698694\pi\)
\(798\) 0 0
\(799\) 19.8997 0.704003
\(800\) 0 0
\(801\) 8.00000 0.282666
\(802\) 0 0
\(803\) 13.2665 0.468165
\(804\) 0 0
\(805\) 0 0
\(806\) 0 0
\(807\) −96.1821 −3.38577
\(808\) 0 0
\(809\) −19.0000 −0.668004 −0.334002 0.942572i \(-0.608399\pi\)
−0.334002 + 0.942572i \(0.608399\pi\)
\(810\) 0 0
\(811\) −6.63325 −0.232925 −0.116462 0.993195i \(-0.537155\pi\)
−0.116462 + 0.993195i \(0.537155\pi\)
\(812\) 0 0
\(813\) 99.0000 3.47208
\(814\) 0 0
\(815\) 0 0
\(816\) 0 0
\(817\) −33.0000 −1.15452
\(818\) 0 0
\(819\) 0 0
\(820\) 0 0
\(821\) −27.0000 −0.942306 −0.471153 0.882051i \(-0.656162\pi\)
−0.471153 + 0.882051i \(0.656162\pi\)
\(822\) 0 0
\(823\) −36.4829 −1.27171 −0.635856 0.771807i \(-0.719353\pi\)
−0.635856 + 0.771807i \(0.719353\pi\)
\(824\) 0 0
\(825\) 55.0000 1.91485
\(826\) 0 0
\(827\) −13.2665 −0.461321 −0.230661 0.973034i \(-0.574089\pi\)
−0.230661 + 0.973034i \(0.574089\pi\)
\(828\) 0 0
\(829\) 11.0000 0.382046 0.191023 0.981586i \(-0.438820\pi\)
0.191023 + 0.981586i \(0.438820\pi\)
\(830\) 0 0
\(831\) −16.5831 −0.575262
\(832\) 0 0
\(833\) −12.0000 −0.415775
\(834\) 0 0
\(835\) 0 0
\(836\) 0 0
\(837\) 0 0
\(838\) 0 0
\(839\) 9.94987 0.343508 0.171754 0.985140i \(-0.445057\pi\)
0.171754 + 0.985140i \(0.445057\pi\)
\(840\) 0 0
\(841\) −4.00000 −0.137931
\(842\) 0 0
\(843\) 66.3325 2.28461
\(844\) 0 0
\(845\) 0 0
\(846\) 0 0
\(847\) 0 0
\(848\) 0 0
\(849\) −77.0000 −2.64263
\(850\) 0 0
\(851\) −29.8496 −1.02323
\(852\) 0 0
\(853\) −56.0000 −1.91740 −0.958702 0.284413i \(-0.908201\pi\)
−0.958702 + 0.284413i \(0.908201\pi\)
\(854\) 0 0
\(855\) 0 0
\(856\) 0 0
\(857\) 28.0000 0.956462 0.478231 0.878234i \(-0.341278\pi\)
0.478231 + 0.878234i \(0.341278\pi\)
\(858\) 0 0
\(859\) 13.2665 0.452647 0.226324 0.974052i \(-0.427329\pi\)
0.226324 + 0.974052i \(0.427329\pi\)
\(860\) 0 0
\(861\) −33.0000 −1.12464
\(862\) 0 0
\(863\) 53.0660 1.80639 0.903194 0.429233i \(-0.141216\pi\)
0.903194 + 0.429233i \(0.141216\pi\)
\(864\) 0 0
\(865\) 0 0
\(866\) 0 0
\(867\) 26.5330 0.901108
\(868\) 0 0
\(869\) −22.0000 −0.746299
\(870\) 0 0
\(871\) 0 0
\(872\) 0 0
\(873\) −56.0000 −1.89531
\(874\) 0 0
\(875\) 0 0
\(876\) 0 0
\(877\) −15.0000 −0.506514 −0.253257 0.967399i \(-0.581502\pi\)
−0.253257 + 0.967399i \(0.581502\pi\)
\(878\) 0 0
\(879\) 23.2164 0.783069
\(880\) 0 0
\(881\) 5.00000 0.168454 0.0842271 0.996447i \(-0.473158\pi\)
0.0842271 + 0.996447i \(0.473158\pi\)
\(882\) 0 0
\(883\) −13.2665 −0.446453 −0.223227 0.974767i \(-0.571659\pi\)
−0.223227 + 0.974767i \(0.571659\pi\)
\(884\) 0 0
\(885\) 0 0
\(886\) 0 0
\(887\) −43.1161 −1.44770 −0.723849 0.689959i \(-0.757629\pi\)
−0.723849 + 0.689959i \(0.757629\pi\)
\(888\) 0 0
\(889\) 33.0000 1.10678
\(890\) 0 0
\(891\) 102.815 3.44444
\(892\) 0 0
\(893\) −22.0000 −0.736202
\(894\) 0 0
\(895\) 0 0
\(896\) 0 0
\(897\) 0 0
\(898\) 0 0
\(899\) 0 0
\(900\) 0 0
\(901\) 24.0000 0.799556
\(902\) 0 0
\(903\) 109.449 3.64222
\(904\) 0 0
\(905\) 0 0
\(906\) 0 0
\(907\) 49.7494 1.65190 0.825950 0.563743i \(-0.190639\pi\)
0.825950 + 0.563743i \(0.190639\pi\)
\(908\) 0 0
\(909\) −120.000 −3.98015
\(910\) 0 0
\(911\) −26.5330 −0.879077 −0.439539 0.898224i \(-0.644858\pi\)
−0.439539 + 0.898224i \(0.644858\pi\)
\(912\) 0 0
\(913\) −44.0000 −1.45619
\(914\) 0 0
\(915\) 0 0
\(916\) 0 0
\(917\) −44.0000 −1.45301
\(918\) 0 0
\(919\) −3.31662 −0.109405 −0.0547027 0.998503i \(-0.517421\pi\)
−0.0547027 + 0.998503i \(0.517421\pi\)
\(920\) 0 0
\(921\) −44.0000 −1.44985
\(922\) 0 0
\(923\) 0 0
\(924\) 0 0
\(925\) 45.0000 1.47959
\(926\) 0 0
\(927\) 0 0
\(928\) 0 0
\(929\) −13.0000 −0.426516 −0.213258 0.976996i \(-0.568408\pi\)
−0.213258 + 0.976996i \(0.568408\pi\)
\(930\) 0 0
\(931\) 13.2665 0.434792
\(932\) 0 0
\(933\) 88.0000 2.88099
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 20.0000 0.653372 0.326686 0.945133i \(-0.394068\pi\)
0.326686 + 0.945133i \(0.394068\pi\)
\(938\) 0 0
\(939\) −13.2665 −0.432936
\(940\) 0 0
\(941\) −30.0000 −0.977972 −0.488986 0.872292i \(-0.662633\pi\)
−0.488986 + 0.872292i \(0.662633\pi\)
\(942\) 0 0
\(943\) 9.94987 0.324012
\(944\) 0 0
\(945\) 0 0
\(946\) 0 0
\(947\) 3.31662 0.107776 0.0538879 0.998547i \(-0.482839\pi\)
0.0538879 + 0.998547i \(0.482839\pi\)
\(948\) 0 0
\(949\) 0 0
\(950\) 0 0
\(951\) 59.6992 1.93588
\(952\) 0 0
\(953\) 15.0000 0.485898 0.242949 0.970039i \(-0.421885\pi\)
0.242949 + 0.970039i \(0.421885\pi\)
\(954\) 0 0
\(955\) 0 0
\(956\) 0 0
\(957\) 55.0000 1.77790
\(958\) 0 0
\(959\) 29.8496 0.963895
\(960\) 0 0
\(961\) −31.0000 −1.00000
\(962\) 0 0
\(963\) −26.5330 −0.855014
\(964\) 0 0
\(965\) 0 0
\(966\) 0 0
\(967\) −26.5330 −0.853244 −0.426622 0.904430i \(-0.640296\pi\)
−0.426622 + 0.904430i \(0.640296\pi\)
\(968\) 0 0
\(969\) 33.0000 1.06011
\(970\) 0 0
\(971\) 16.5831 0.532178 0.266089 0.963948i \(-0.414269\pi\)
0.266089 + 0.963948i \(0.414269\pi\)
\(972\) 0 0
\(973\) −11.0000 −0.352644
\(974\) 0 0
\(975\) 0 0
\(976\) 0 0
\(977\) −7.00000 −0.223950 −0.111975 0.993711i \(-0.535718\pi\)
−0.111975 + 0.993711i \(0.535718\pi\)
\(978\) 0 0
\(979\) 3.31662 0.106000
\(980\) 0 0
\(981\) 128.000 4.08673
\(982\) 0 0
\(983\) 53.0660 1.69254 0.846271 0.532752i \(-0.178842\pi\)
0.846271 + 0.532752i \(0.178842\pi\)
\(984\) 0 0
\(985\) 0 0
\(986\) 0 0
\(987\) 72.9657 2.32253
\(988\) 0 0
\(989\) −33.0000 −1.04934
\(990\) 0 0
\(991\) −43.1161 −1.36963 −0.684814 0.728718i \(-0.740117\pi\)
−0.684814 + 0.728718i \(0.740117\pi\)
\(992\) 0 0
\(993\) −33.0000 −1.04722
\(994\) 0 0
\(995\) 0 0
\(996\) 0 0
\(997\) −17.0000 −0.538395 −0.269198 0.963085i \(-0.586759\pi\)
−0.269198 + 0.963085i \(0.586759\pi\)
\(998\) 0 0
\(999\) 149.248 4.72200
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5408.2.a.w.1.1 2
4.3 odd 2 inner 5408.2.a.w.1.2 2
13.4 even 6 416.2.i.d.289.2 yes 4
13.10 even 6 416.2.i.d.321.2 yes 4
13.12 even 2 5408.2.a.x.1.1 2
52.23 odd 6 416.2.i.d.321.1 yes 4
52.43 odd 6 416.2.i.d.289.1 4
52.51 odd 2 5408.2.a.x.1.2 2
104.43 odd 6 832.2.i.n.705.2 4
104.69 even 6 832.2.i.n.705.1 4
104.75 odd 6 832.2.i.n.321.2 4
104.101 even 6 832.2.i.n.321.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
416.2.i.d.289.1 4 52.43 odd 6
416.2.i.d.289.2 yes 4 13.4 even 6
416.2.i.d.321.1 yes 4 52.23 odd 6
416.2.i.d.321.2 yes 4 13.10 even 6
832.2.i.n.321.1 4 104.101 even 6
832.2.i.n.321.2 4 104.75 odd 6
832.2.i.n.705.1 4 104.69 even 6
832.2.i.n.705.2 4 104.43 odd 6
5408.2.a.w.1.1 2 1.1 even 1 trivial
5408.2.a.w.1.2 2 4.3 odd 2 inner
5408.2.a.x.1.1 2 13.12 even 2
5408.2.a.x.1.2 2 52.51 odd 2