Properties

Label 543.2.a.d
Level $543$
Weight $2$
Character orbit 543.a
Self dual yes
Analytic conductor $4.336$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [543,2,Mod(1,543)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(543, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("543.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 543 = 3 \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 543.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.33587682976\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\ldots,\beta_{7}\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + \beta_1 q^{2} - q^{3} + (\beta_{2} + \beta_1) q^{4} + ( - \beta_{7} + \beta_{4} + \beta_{2} + 1) q^{5} - \beta_1 q^{6} + ( - \beta_{6} - \beta_{5} + \beta_{4}) q^{7} + (\beta_{3} + \beta_{2} + \beta_1) q^{8}+ \cdots + (\beta_{7} - \beta_{6} + \beta_1) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 8 q^{3} + 5 q^{4} + 5 q^{5} - 3 q^{6} - 3 q^{7} + 6 q^{8} + 8 q^{9} + 2 q^{10} + 4 q^{11} - 5 q^{12} + 13 q^{13} + 5 q^{14} - 5 q^{15} + 3 q^{16} + 27 q^{17} + 3 q^{18} - 10 q^{19} + 21 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( \nu \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( \nu^{2} - \nu - 2 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( \nu^{3} - \nu^{2} - 4\nu + 2 \) Copy content Toggle raw display
\(\beta_{4}\)\(=\) \( \nu^{7} - 3\nu^{6} - 6\nu^{5} + 21\nu^{4} + 5\nu^{3} - 35\nu^{2} + 10\nu + 3 \) Copy content Toggle raw display
\(\beta_{5}\)\(=\) \( -\nu^{7} + 3\nu^{6} + 7\nu^{5} - 21\nu^{4} - 13\nu^{3} + 34\nu^{2} + 4\nu - 3 \) Copy content Toggle raw display
\(\beta_{6}\)\(=\) \( \nu^{7} - 3\nu^{6} - 7\nu^{5} + 22\nu^{4} + 12\nu^{3} - 39\nu^{2} - \nu + 5 \) Copy content Toggle raw display
\(\beta_{7}\)\(=\) \( 2\nu^{7} - 5\nu^{6} - 14\nu^{5} + 35\nu^{4} + 23\nu^{3} - 58\nu^{2} + 6 \) Copy content Toggle raw display
\(\nu\)\(=\) \( \beta_1 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( \beta_{2} + \beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( \beta_{3} + \beta_{2} + 5\beta_1 \) Copy content Toggle raw display
\(\nu^{4}\)\(=\) \( \beta_{6} + \beta_{5} + \beta_{3} + 6\beta_{2} + 7\beta _1 + 8 \) Copy content Toggle raw display
\(\nu^{5}\)\(=\) \( \beta_{5} + \beta_{4} + 8\beta_{3} + 9\beta_{2} + 27\beta _1 + 2 \) Copy content Toggle raw display
\(\nu^{6}\)\(=\) \( \beta_{7} + 7\beta_{6} + 9\beta_{5} + 10\beta_{3} + 35\beta_{2} + 46\beta _1 + 36 \) Copy content Toggle raw display
\(\nu^{7}\)\(=\) \( 3\beta_{7} + 12\beta_{5} + 7\beta_{4} + 52\beta_{3} + 63\beta_{2} + 153\beta _1 + 19 \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
−2.09416
−1.57409
−0.330181
0.216541
0.495668
1.49117
2.31010
2.48495
−2.09416 −1.00000 2.38551 1.57030 2.09416 −3.68416 −0.807326 1.00000 −3.28847
1.2 −1.57409 −1.00000 0.477759 2.61079 1.57409 3.43627 2.39614 1.00000 −4.10962
1.3 −0.330181 −1.00000 −1.89098 −3.90200 0.330181 −4.54089 1.28473 1.00000 1.28837
1.4 0.216541 −1.00000 −1.95311 −1.13532 −0.216541 1.21084 −0.856012 1.00000 −0.245843
1.5 0.495668 −1.00000 −1.75431 3.58208 −0.495668 −1.17967 −1.86089 1.00000 1.77552
1.6 1.49117 −1.00000 0.223595 −1.54064 −1.49117 2.68646 −2.64893 1.00000 −2.29736
1.7 2.31010 −1.00000 3.33658 3.44398 −2.31010 1.03443 3.08764 1.00000 7.95596
1.8 2.48495 −1.00000 4.17495 0.370811 −2.48495 −1.96328 5.40464 1.00000 0.921444
\(n\): e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 1.8
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(3\) \( +1 \)
\(181\) \( -1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 543.2.a.d 8
3.b odd 2 1 1629.2.a.e 8
4.b odd 2 1 8688.2.a.bf 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
543.2.a.d 8 1.a even 1 1 trivial
1629.2.a.e 8 3.b odd 2 1
8688.2.a.bf 8 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{8} - 3T_{2}^{7} - 6T_{2}^{6} + 21T_{2}^{5} + 5T_{2}^{4} - 35T_{2}^{3} + 10T_{2}^{2} + 4T_{2} - 1 \) acting on \(S_{2}^{\mathrm{new}}(\Gamma_0(543))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{8} - 3 T^{7} + \cdots - 1 \) Copy content Toggle raw display
$3$ \( (T + 1)^{8} \) Copy content Toggle raw display
$5$ \( T^{8} - 5 T^{7} + \cdots - 128 \) Copy content Toggle raw display
$7$ \( T^{8} + 3 T^{7} + \cdots + 448 \) Copy content Toggle raw display
$11$ \( T^{8} - 4 T^{7} + \cdots + 64 \) Copy content Toggle raw display
$13$ \( T^{8} - 13 T^{7} + \cdots - 6298 \) Copy content Toggle raw display
$17$ \( T^{8} - 27 T^{7} + \cdots + 640 \) Copy content Toggle raw display
$19$ \( T^{8} + 10 T^{7} + \cdots - 188416 \) Copy content Toggle raw display
$23$ \( T^{8} - 3 T^{7} + \cdots + 3872 \) Copy content Toggle raw display
$29$ \( T^{8} - 16 T^{7} + \cdots - 16928 \) Copy content Toggle raw display
$31$ \( T^{8} + T^{7} + \cdots - 11200 \) Copy content Toggle raw display
$37$ \( T^{8} - 3 T^{7} + \cdots + 218 \) Copy content Toggle raw display
$41$ \( T^{8} - 20 T^{7} + \cdots - 1030 \) Copy content Toggle raw display
$43$ \( T^{8} + 4 T^{7} + \cdots - 8348 \) Copy content Toggle raw display
$47$ \( T^{8} - 12 T^{7} + \cdots - 78848 \) Copy content Toggle raw display
$53$ \( T^{8} - 23 T^{7} + \cdots - 98 \) Copy content Toggle raw display
$59$ \( T^{8} - 7 T^{7} + \cdots + 591104 \) Copy content Toggle raw display
$61$ \( T^{8} - T^{7} + \cdots + 1262368 \) Copy content Toggle raw display
$67$ \( T^{8} + 25 T^{7} + \cdots + 189700 \) Copy content Toggle raw display
$71$ \( T^{8} - 11 T^{7} + \cdots - 111136 \) Copy content Toggle raw display
$73$ \( T^{8} - 23 T^{7} + \cdots - 1191058 \) Copy content Toggle raw display
$79$ \( T^{8} + 26 T^{7} + \cdots - 126104 \) Copy content Toggle raw display
$83$ \( T^{8} - 16 T^{7} + \cdots - 208076 \) Copy content Toggle raw display
$89$ \( T^{8} - 14 T^{7} + \cdots - 15046 \) Copy content Toggle raw display
$97$ \( T^{8} - 28 T^{7} + \cdots + 420704 \) Copy content Toggle raw display
show more
show less