Properties

Label 543.2.a.d.1.8
Level $543$
Weight $2$
Character 543.1
Self dual yes
Analytic conductor $4.336$
Analytic rank $0$
Dimension $8$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [543,2,Mod(1,543)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(543, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("543.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 543 = 3 \cdot 181 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 543.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(4.33587682976\)
Analytic rank: \(0\)
Dimension: \(8\)
Coefficient field: \(\mathbb{Q}[x]/(x^{8} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - 3x^{7} - 6x^{6} + 21x^{5} + 5x^{4} - 35x^{3} + 10x^{2} + 4x - 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.8
Root \(2.48495\) of defining polynomial
Character \(\chi\) \(=\) 543.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.48495 q^{2} -1.00000 q^{3} +4.17495 q^{4} +0.370811 q^{5} -2.48495 q^{6} -1.96328 q^{7} +5.40464 q^{8} +1.00000 q^{9} +0.921444 q^{10} +4.04845 q^{11} -4.17495 q^{12} +4.06041 q^{13} -4.87863 q^{14} -0.370811 q^{15} +5.08033 q^{16} +3.62919 q^{17} +2.48495 q^{18} +5.64676 q^{19} +1.54812 q^{20} +1.96328 q^{21} +10.0602 q^{22} -8.92443 q^{23} -5.40464 q^{24} -4.86250 q^{25} +10.0899 q^{26} -1.00000 q^{27} -8.19659 q^{28} -6.74722 q^{29} -0.921444 q^{30} -8.80518 q^{31} +1.81507 q^{32} -4.04845 q^{33} +9.01834 q^{34} -0.728004 q^{35} +4.17495 q^{36} -0.921480 q^{37} +14.0319 q^{38} -4.06041 q^{39} +2.00410 q^{40} -0.316916 q^{41} +4.87863 q^{42} -2.22243 q^{43} +16.9021 q^{44} +0.370811 q^{45} -22.1767 q^{46} -4.93727 q^{47} -5.08033 q^{48} -3.14555 q^{49} -12.0830 q^{50} -3.62919 q^{51} +16.9520 q^{52} +14.1879 q^{53} -2.48495 q^{54} +1.50121 q^{55} -10.6108 q^{56} -5.64676 q^{57} -16.7665 q^{58} -0.537828 q^{59} -1.54812 q^{60} -2.35027 q^{61} -21.8804 q^{62} -1.96328 q^{63} -5.65033 q^{64} +1.50564 q^{65} -10.0602 q^{66} +10.6251 q^{67} +15.1517 q^{68} +8.92443 q^{69} -1.80905 q^{70} +1.33418 q^{71} +5.40464 q^{72} +8.35531 q^{73} -2.28983 q^{74} +4.86250 q^{75} +23.5749 q^{76} -7.94822 q^{77} -10.0899 q^{78} -15.5212 q^{79} +1.88384 q^{80} +1.00000 q^{81} -0.787518 q^{82} +9.55110 q^{83} +8.19659 q^{84} +1.34574 q^{85} -5.52261 q^{86} +6.74722 q^{87} +21.8804 q^{88} +3.36562 q^{89} +0.921444 q^{90} -7.97171 q^{91} -37.2591 q^{92} +8.80518 q^{93} -12.2688 q^{94} +2.09388 q^{95} -1.81507 q^{96} +12.3388 q^{97} -7.81652 q^{98} +4.04845 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 3 q^{2} - 8 q^{3} + 5 q^{4} + 5 q^{5} - 3 q^{6} - 3 q^{7} + 6 q^{8} + 8 q^{9} + 2 q^{10} + 4 q^{11} - 5 q^{12} + 13 q^{13} + 5 q^{14} - 5 q^{15} + 3 q^{16} + 27 q^{17} + 3 q^{18} - 10 q^{19} + 21 q^{20}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 2.48495 1.75712 0.878561 0.477630i \(-0.158504\pi\)
0.878561 + 0.477630i \(0.158504\pi\)
\(3\) −1.00000 −0.577350
\(4\) 4.17495 2.08748
\(5\) 0.370811 0.165832 0.0829158 0.996557i \(-0.473577\pi\)
0.0829158 + 0.996557i \(0.473577\pi\)
\(6\) −2.48495 −1.01447
\(7\) −1.96328 −0.742048 −0.371024 0.928623i \(-0.620993\pi\)
−0.371024 + 0.928623i \(0.620993\pi\)
\(8\) 5.40464 1.91083
\(9\) 1.00000 0.333333
\(10\) 0.921444 0.291386
\(11\) 4.04845 1.22065 0.610326 0.792150i \(-0.291038\pi\)
0.610326 + 0.792150i \(0.291038\pi\)
\(12\) −4.17495 −1.20521
\(13\) 4.06041 1.12616 0.563078 0.826404i \(-0.309617\pi\)
0.563078 + 0.826404i \(0.309617\pi\)
\(14\) −4.87863 −1.30387
\(15\) −0.370811 −0.0957429
\(16\) 5.08033 1.27008
\(17\) 3.62919 0.880208 0.440104 0.897947i \(-0.354942\pi\)
0.440104 + 0.897947i \(0.354942\pi\)
\(18\) 2.48495 0.585707
\(19\) 5.64676 1.29545 0.647727 0.761872i \(-0.275720\pi\)
0.647727 + 0.761872i \(0.275720\pi\)
\(20\) 1.54812 0.346170
\(21\) 1.96328 0.428422
\(22\) 10.0602 2.14484
\(23\) −8.92443 −1.86087 −0.930436 0.366454i \(-0.880572\pi\)
−0.930436 + 0.366454i \(0.880572\pi\)
\(24\) −5.40464 −1.10322
\(25\) −4.86250 −0.972500
\(26\) 10.0899 1.97879
\(27\) −1.00000 −0.192450
\(28\) −8.19659 −1.54901
\(29\) −6.74722 −1.25293 −0.626464 0.779451i \(-0.715498\pi\)
−0.626464 + 0.779451i \(0.715498\pi\)
\(30\) −0.921444 −0.168232
\(31\) −8.80518 −1.58146 −0.790729 0.612166i \(-0.790298\pi\)
−0.790729 + 0.612166i \(0.790298\pi\)
\(32\) 1.81507 0.320861
\(33\) −4.04845 −0.704744
\(34\) 9.01834 1.54663
\(35\) −0.728004 −0.123055
\(36\) 4.17495 0.695826
\(37\) −0.921480 −0.151490 −0.0757452 0.997127i \(-0.524134\pi\)
−0.0757452 + 0.997127i \(0.524134\pi\)
\(38\) 14.0319 2.27627
\(39\) −4.06041 −0.650186
\(40\) 2.00410 0.316876
\(41\) −0.316916 −0.0494939 −0.0247470 0.999694i \(-0.507878\pi\)
−0.0247470 + 0.999694i \(0.507878\pi\)
\(42\) 4.87863 0.752789
\(43\) −2.22243 −0.338917 −0.169458 0.985537i \(-0.554202\pi\)
−0.169458 + 0.985537i \(0.554202\pi\)
\(44\) 16.9021 2.54808
\(45\) 0.370811 0.0552772
\(46\) −22.1767 −3.26978
\(47\) −4.93727 −0.720174 −0.360087 0.932919i \(-0.617253\pi\)
−0.360087 + 0.932919i \(0.617253\pi\)
\(48\) −5.08033 −0.733283
\(49\) −3.14555 −0.449364
\(50\) −12.0830 −1.70880
\(51\) −3.62919 −0.508188
\(52\) 16.9520 2.35082
\(53\) 14.1879 1.94885 0.974426 0.224711i \(-0.0721437\pi\)
0.974426 + 0.224711i \(0.0721437\pi\)
\(54\) −2.48495 −0.338158
\(55\) 1.50121 0.202423
\(56\) −10.6108 −1.41793
\(57\) −5.64676 −0.747931
\(58\) −16.7665 −2.20155
\(59\) −0.537828 −0.0700192 −0.0350096 0.999387i \(-0.511146\pi\)
−0.0350096 + 0.999387i \(0.511146\pi\)
\(60\) −1.54812 −0.199861
\(61\) −2.35027 −0.300921 −0.150461 0.988616i \(-0.548076\pi\)
−0.150461 + 0.988616i \(0.548076\pi\)
\(62\) −21.8804 −2.77881
\(63\) −1.96328 −0.247349
\(64\) −5.65033 −0.706291
\(65\) 1.50564 0.186752
\(66\) −10.0602 −1.23832
\(67\) 10.6251 1.29806 0.649032 0.760761i \(-0.275174\pi\)
0.649032 + 0.760761i \(0.275174\pi\)
\(68\) 15.1517 1.83741
\(69\) 8.92443 1.07438
\(70\) −1.80905 −0.216223
\(71\) 1.33418 0.158338 0.0791691 0.996861i \(-0.474773\pi\)
0.0791691 + 0.996861i \(0.474773\pi\)
\(72\) 5.40464 0.636943
\(73\) 8.35531 0.977915 0.488958 0.872308i \(-0.337377\pi\)
0.488958 + 0.872308i \(0.337377\pi\)
\(74\) −2.28983 −0.266187
\(75\) 4.86250 0.561473
\(76\) 23.5749 2.70423
\(77\) −7.94822 −0.905783
\(78\) −10.0899 −1.14246
\(79\) −15.5212 −1.74627 −0.873137 0.487475i \(-0.837918\pi\)
−0.873137 + 0.487475i \(0.837918\pi\)
\(80\) 1.88384 0.210620
\(81\) 1.00000 0.111111
\(82\) −0.787518 −0.0869669
\(83\) 9.55110 1.04837 0.524185 0.851604i \(-0.324370\pi\)
0.524185 + 0.851604i \(0.324370\pi\)
\(84\) 8.19659 0.894321
\(85\) 1.34574 0.145966
\(86\) −5.52261 −0.595518
\(87\) 6.74722 0.723378
\(88\) 21.8804 2.33246
\(89\) 3.36562 0.356755 0.178378 0.983962i \(-0.442915\pi\)
0.178378 + 0.983962i \(0.442915\pi\)
\(90\) 0.921444 0.0971288
\(91\) −7.97171 −0.835662
\(92\) −37.2591 −3.88453
\(93\) 8.80518 0.913055
\(94\) −12.2688 −1.26543
\(95\) 2.09388 0.214827
\(96\) −1.81507 −0.185249
\(97\) 12.3388 1.25281 0.626407 0.779496i \(-0.284525\pi\)
0.626407 + 0.779496i \(0.284525\pi\)
\(98\) −7.81652 −0.789587
\(99\) 4.04845 0.406884
\(100\) −20.3007 −2.03007
\(101\) 1.21813 0.121208 0.0606042 0.998162i \(-0.480697\pi\)
0.0606042 + 0.998162i \(0.480697\pi\)
\(102\) −9.01834 −0.892948
\(103\) −1.05825 −0.104272 −0.0521361 0.998640i \(-0.516603\pi\)
−0.0521361 + 0.998640i \(0.516603\pi\)
\(104\) 21.9451 2.15189
\(105\) 0.728004 0.0710459
\(106\) 35.2560 3.42437
\(107\) −3.95524 −0.382368 −0.191184 0.981554i \(-0.561233\pi\)
−0.191184 + 0.981554i \(0.561233\pi\)
\(108\) −4.17495 −0.401735
\(109\) −1.34588 −0.128912 −0.0644562 0.997921i \(-0.520531\pi\)
−0.0644562 + 0.997921i \(0.520531\pi\)
\(110\) 3.73042 0.355681
\(111\) 0.921480 0.0874630
\(112\) −9.97409 −0.942463
\(113\) −2.24544 −0.211233 −0.105617 0.994407i \(-0.533682\pi\)
−0.105617 + 0.994407i \(0.533682\pi\)
\(114\) −14.0319 −1.31421
\(115\) −3.30927 −0.308591
\(116\) −28.1693 −2.61546
\(117\) 4.06041 0.375385
\(118\) −1.33647 −0.123032
\(119\) −7.12510 −0.653157
\(120\) −2.00410 −0.182948
\(121\) 5.38992 0.489993
\(122\) −5.84030 −0.528756
\(123\) 0.316916 0.0285753
\(124\) −36.7612 −3.30126
\(125\) −3.65712 −0.327103
\(126\) −4.87863 −0.434623
\(127\) −17.6937 −1.57006 −0.785032 0.619455i \(-0.787354\pi\)
−0.785032 + 0.619455i \(0.787354\pi\)
\(128\) −17.6709 −1.56190
\(129\) 2.22243 0.195674
\(130\) 3.74144 0.328146
\(131\) 13.4044 1.17115 0.585575 0.810618i \(-0.300869\pi\)
0.585575 + 0.810618i \(0.300869\pi\)
\(132\) −16.9021 −1.47114
\(133\) −11.0861 −0.961290
\(134\) 26.4028 2.28086
\(135\) −0.370811 −0.0319143
\(136\) 19.6145 1.68193
\(137\) 5.68019 0.485292 0.242646 0.970115i \(-0.421985\pi\)
0.242646 + 0.970115i \(0.421985\pi\)
\(138\) 22.1767 1.88781
\(139\) −17.0855 −1.44917 −0.724585 0.689185i \(-0.757969\pi\)
−0.724585 + 0.689185i \(0.757969\pi\)
\(140\) −3.03938 −0.256875
\(141\) 4.93727 0.415793
\(142\) 3.31537 0.278220
\(143\) 16.4384 1.37465
\(144\) 5.08033 0.423361
\(145\) −2.50194 −0.207775
\(146\) 20.7625 1.71832
\(147\) 3.14555 0.259440
\(148\) −3.84714 −0.316233
\(149\) −12.9363 −1.05978 −0.529890 0.848067i \(-0.677767\pi\)
−0.529890 + 0.848067i \(0.677767\pi\)
\(150\) 12.0830 0.986577
\(151\) −10.7174 −0.872173 −0.436087 0.899905i \(-0.643636\pi\)
−0.436087 + 0.899905i \(0.643636\pi\)
\(152\) 30.5187 2.47539
\(153\) 3.62919 0.293403
\(154\) −19.7509 −1.59157
\(155\) −3.26506 −0.262256
\(156\) −16.9520 −1.35725
\(157\) −3.06175 −0.244354 −0.122177 0.992508i \(-0.538988\pi\)
−0.122177 + 0.992508i \(0.538988\pi\)
\(158\) −38.5694 −3.06842
\(159\) −14.1879 −1.12517
\(160\) 0.673046 0.0532089
\(161\) 17.5211 1.38086
\(162\) 2.48495 0.195236
\(163\) 5.50865 0.431471 0.215735 0.976452i \(-0.430785\pi\)
0.215735 + 0.976452i \(0.430785\pi\)
\(164\) −1.32311 −0.103317
\(165\) −1.50121 −0.116869
\(166\) 23.7340 1.84211
\(167\) 20.2718 1.56868 0.784341 0.620330i \(-0.213001\pi\)
0.784341 + 0.620330i \(0.213001\pi\)
\(168\) 10.6108 0.818641
\(169\) 3.48696 0.268227
\(170\) 3.34410 0.256480
\(171\) 5.64676 0.431818
\(172\) −9.27853 −0.707481
\(173\) 19.9597 1.51751 0.758753 0.651378i \(-0.225809\pi\)
0.758753 + 0.651378i \(0.225809\pi\)
\(174\) 16.7665 1.27106
\(175\) 9.54643 0.721642
\(176\) 20.5675 1.55033
\(177\) 0.537828 0.0404256
\(178\) 8.36339 0.626862
\(179\) −2.45329 −0.183367 −0.0916837 0.995788i \(-0.529225\pi\)
−0.0916837 + 0.995788i \(0.529225\pi\)
\(180\) 1.54812 0.115390
\(181\) 1.00000 0.0743294
\(182\) −19.8093 −1.46836
\(183\) 2.35027 0.173737
\(184\) −48.2334 −3.55581
\(185\) −0.341695 −0.0251219
\(186\) 21.8804 1.60435
\(187\) 14.6926 1.07443
\(188\) −20.6129 −1.50335
\(189\) 1.96328 0.142807
\(190\) 5.20317 0.377478
\(191\) 26.6172 1.92595 0.962975 0.269590i \(-0.0868880\pi\)
0.962975 + 0.269590i \(0.0868880\pi\)
\(192\) 5.65033 0.407777
\(193\) 9.38507 0.675552 0.337776 0.941226i \(-0.390325\pi\)
0.337776 + 0.941226i \(0.390325\pi\)
\(194\) 30.6612 2.20135
\(195\) −1.50564 −0.107821
\(196\) −13.1325 −0.938037
\(197\) −2.17420 −0.154905 −0.0774527 0.996996i \(-0.524679\pi\)
−0.0774527 + 0.996996i \(0.524679\pi\)
\(198\) 10.0602 0.714945
\(199\) −19.5191 −1.38367 −0.691835 0.722055i \(-0.743198\pi\)
−0.691835 + 0.722055i \(0.743198\pi\)
\(200\) −26.2801 −1.85828
\(201\) −10.6251 −0.749438
\(202\) 3.02699 0.212978
\(203\) 13.2467 0.929733
\(204\) −15.1517 −1.06083
\(205\) −0.117516 −0.00820766
\(206\) −2.62969 −0.183219
\(207\) −8.92443 −0.620291
\(208\) 20.6282 1.43031
\(209\) 22.8606 1.58130
\(210\) 1.80905 0.124836
\(211\) −8.94618 −0.615881 −0.307940 0.951406i \(-0.599640\pi\)
−0.307940 + 0.951406i \(0.599640\pi\)
\(212\) 59.2336 4.06818
\(213\) −1.33418 −0.0914166
\(214\) −9.82857 −0.671867
\(215\) −0.824100 −0.0562031
\(216\) −5.40464 −0.367739
\(217\) 17.2870 1.17352
\(218\) −3.34445 −0.226515
\(219\) −8.35531 −0.564600
\(220\) 6.26747 0.422553
\(221\) 14.7360 0.991251
\(222\) 2.28983 0.153683
\(223\) −17.4305 −1.16723 −0.583615 0.812030i \(-0.698362\pi\)
−0.583615 + 0.812030i \(0.698362\pi\)
\(224\) −3.56347 −0.238095
\(225\) −4.86250 −0.324167
\(226\) −5.57980 −0.371163
\(227\) 5.26176 0.349235 0.174618 0.984636i \(-0.444131\pi\)
0.174618 + 0.984636i \(0.444131\pi\)
\(228\) −23.5749 −1.56129
\(229\) 24.2475 1.60232 0.801159 0.598451i \(-0.204217\pi\)
0.801159 + 0.598451i \(0.204217\pi\)
\(230\) −8.22337 −0.542233
\(231\) 7.94822 0.522954
\(232\) −36.4663 −2.39413
\(233\) 12.1328 0.794845 0.397422 0.917636i \(-0.369905\pi\)
0.397422 + 0.917636i \(0.369905\pi\)
\(234\) 10.0899 0.659598
\(235\) −1.83079 −0.119428
\(236\) −2.24541 −0.146164
\(237\) 15.5212 1.00821
\(238\) −17.7055 −1.14768
\(239\) 15.1685 0.981172 0.490586 0.871393i \(-0.336783\pi\)
0.490586 + 0.871393i \(0.336783\pi\)
\(240\) −1.88384 −0.121601
\(241\) −18.2872 −1.17798 −0.588990 0.808141i \(-0.700474\pi\)
−0.588990 + 0.808141i \(0.700474\pi\)
\(242\) 13.3937 0.860977
\(243\) −1.00000 −0.0641500
\(244\) −9.81228 −0.628167
\(245\) −1.16640 −0.0745188
\(246\) 0.787518 0.0502103
\(247\) 22.9282 1.45888
\(248\) −47.5889 −3.02190
\(249\) −9.55110 −0.605277
\(250\) −9.08774 −0.574759
\(251\) −1.81307 −0.114440 −0.0572199 0.998362i \(-0.518224\pi\)
−0.0572199 + 0.998362i \(0.518224\pi\)
\(252\) −8.19659 −0.516336
\(253\) −36.1301 −2.27148
\(254\) −43.9679 −2.75879
\(255\) −1.34574 −0.0842736
\(256\) −32.6105 −2.03816
\(257\) −6.67435 −0.416335 −0.208167 0.978093i \(-0.566750\pi\)
−0.208167 + 0.978093i \(0.566750\pi\)
\(258\) 5.52261 0.343823
\(259\) 1.80912 0.112413
\(260\) 6.28600 0.389841
\(261\) −6.74722 −0.417642
\(262\) 33.3093 2.05785
\(263\) −21.0546 −1.29828 −0.649140 0.760669i \(-0.724871\pi\)
−0.649140 + 0.760669i \(0.724871\pi\)
\(264\) −21.8804 −1.34665
\(265\) 5.26101 0.323181
\(266\) −27.5484 −1.68910
\(267\) −3.36562 −0.205973
\(268\) 44.3594 2.70968
\(269\) 5.45589 0.332652 0.166326 0.986071i \(-0.446810\pi\)
0.166326 + 0.986071i \(0.446810\pi\)
\(270\) −0.921444 −0.0560773
\(271\) −4.00206 −0.243108 −0.121554 0.992585i \(-0.538788\pi\)
−0.121554 + 0.992585i \(0.538788\pi\)
\(272\) 18.4375 1.11794
\(273\) 7.97171 0.482470
\(274\) 14.1150 0.852716
\(275\) −19.6856 −1.18708
\(276\) 37.2591 2.24273
\(277\) 22.5668 1.35591 0.677954 0.735105i \(-0.262867\pi\)
0.677954 + 0.735105i \(0.262867\pi\)
\(278\) −42.4565 −2.54637
\(279\) −8.80518 −0.527153
\(280\) −3.93460 −0.235137
\(281\) −9.87322 −0.588987 −0.294494 0.955653i \(-0.595151\pi\)
−0.294494 + 0.955653i \(0.595151\pi\)
\(282\) 12.2688 0.730599
\(283\) −29.5858 −1.75869 −0.879347 0.476181i \(-0.842021\pi\)
−0.879347 + 0.476181i \(0.842021\pi\)
\(284\) 5.57015 0.330527
\(285\) −2.09388 −0.124031
\(286\) 40.8484 2.41542
\(287\) 0.622193 0.0367269
\(288\) 1.81507 0.106954
\(289\) −3.82899 −0.225234
\(290\) −6.21719 −0.365086
\(291\) −12.3388 −0.723312
\(292\) 34.8830 2.04138
\(293\) −16.2215 −0.947668 −0.473834 0.880614i \(-0.657130\pi\)
−0.473834 + 0.880614i \(0.657130\pi\)
\(294\) 7.81652 0.455868
\(295\) −0.199432 −0.0116114
\(296\) −4.98027 −0.289472
\(297\) −4.04845 −0.234915
\(298\) −32.1459 −1.86216
\(299\) −36.2369 −2.09563
\(300\) 20.3007 1.17206
\(301\) 4.36324 0.251493
\(302\) −26.6323 −1.53251
\(303\) −1.21813 −0.0699798
\(304\) 28.6874 1.64534
\(305\) −0.871506 −0.0499023
\(306\) 9.01834 0.515544
\(307\) 13.1246 0.749063 0.374531 0.927214i \(-0.377804\pi\)
0.374531 + 0.927214i \(0.377804\pi\)
\(308\) −33.1834 −1.89080
\(309\) 1.05825 0.0602016
\(310\) −8.11349 −0.460815
\(311\) 18.3176 1.03869 0.519347 0.854563i \(-0.326175\pi\)
0.519347 + 0.854563i \(0.326175\pi\)
\(312\) −21.9451 −1.24240
\(313\) 25.8600 1.46170 0.730848 0.682540i \(-0.239125\pi\)
0.730848 + 0.682540i \(0.239125\pi\)
\(314\) −7.60829 −0.429360
\(315\) −0.728004 −0.0410184
\(316\) −64.8004 −3.64531
\(317\) 18.3141 1.02862 0.514312 0.857603i \(-0.328047\pi\)
0.514312 + 0.857603i \(0.328047\pi\)
\(318\) −35.2560 −1.97706
\(319\) −27.3158 −1.52939
\(320\) −2.09520 −0.117125
\(321\) 3.95524 0.220760
\(322\) 43.5390 2.42634
\(323\) 20.4931 1.14027
\(324\) 4.17495 0.231942
\(325\) −19.7438 −1.09519
\(326\) 13.6887 0.758147
\(327\) 1.34588 0.0744276
\(328\) −1.71282 −0.0945745
\(329\) 9.69321 0.534404
\(330\) −3.73042 −0.205353
\(331\) 14.6270 0.803971 0.401985 0.915646i \(-0.368320\pi\)
0.401985 + 0.915646i \(0.368320\pi\)
\(332\) 39.8754 2.18845
\(333\) −0.921480 −0.0504968
\(334\) 50.3744 2.75637
\(335\) 3.93991 0.215260
\(336\) 9.97409 0.544131
\(337\) −5.19389 −0.282929 −0.141465 0.989943i \(-0.545181\pi\)
−0.141465 + 0.989943i \(0.545181\pi\)
\(338\) 8.66489 0.471308
\(339\) 2.24544 0.121956
\(340\) 5.61841 0.304701
\(341\) −35.6473 −1.93041
\(342\) 14.0319 0.758757
\(343\) 19.9185 1.07550
\(344\) −12.0114 −0.647612
\(345\) 3.30927 0.178165
\(346\) 49.5987 2.66644
\(347\) 18.0979 0.971545 0.485773 0.874085i \(-0.338538\pi\)
0.485773 + 0.874085i \(0.338538\pi\)
\(348\) 28.1693 1.51003
\(349\) 21.5687 1.15455 0.577274 0.816551i \(-0.304117\pi\)
0.577274 + 0.816551i \(0.304117\pi\)
\(350\) 23.7224 1.26801
\(351\) −4.06041 −0.216729
\(352\) 7.34820 0.391660
\(353\) −12.6910 −0.675472 −0.337736 0.941241i \(-0.609661\pi\)
−0.337736 + 0.941241i \(0.609661\pi\)
\(354\) 1.33647 0.0710327
\(355\) 0.494729 0.0262575
\(356\) 14.0513 0.744718
\(357\) 7.12510 0.377100
\(358\) −6.09629 −0.322199
\(359\) −2.09266 −0.110446 −0.0552231 0.998474i \(-0.517587\pi\)
−0.0552231 + 0.998474i \(0.517587\pi\)
\(360\) 2.00410 0.105625
\(361\) 12.8858 0.678203
\(362\) 2.48495 0.130606
\(363\) −5.38992 −0.282897
\(364\) −33.2815 −1.74443
\(365\) 3.09824 0.162169
\(366\) 5.84030 0.305277
\(367\) 27.7795 1.45008 0.725039 0.688708i \(-0.241822\pi\)
0.725039 + 0.688708i \(0.241822\pi\)
\(368\) −45.3391 −2.36346
\(369\) −0.316916 −0.0164980
\(370\) −0.849093 −0.0441422
\(371\) −27.8547 −1.44614
\(372\) 36.7612 1.90598
\(373\) −19.1864 −0.993433 −0.496716 0.867913i \(-0.665461\pi\)
−0.496716 + 0.867913i \(0.665461\pi\)
\(374\) 36.5103 1.88790
\(375\) 3.65712 0.188853
\(376\) −26.6842 −1.37613
\(377\) −27.3965 −1.41099
\(378\) 4.87863 0.250930
\(379\) −1.30800 −0.0671872 −0.0335936 0.999436i \(-0.510695\pi\)
−0.0335936 + 0.999436i \(0.510695\pi\)
\(380\) 8.74184 0.448447
\(381\) 17.6937 0.906477
\(382\) 66.1422 3.38413
\(383\) 32.9356 1.68293 0.841466 0.540310i \(-0.181693\pi\)
0.841466 + 0.540310i \(0.181693\pi\)
\(384\) 17.6709 0.901764
\(385\) −2.94728 −0.150208
\(386\) 23.3214 1.18703
\(387\) −2.22243 −0.112972
\(388\) 51.5138 2.61522
\(389\) −14.6600 −0.743291 −0.371645 0.928375i \(-0.621206\pi\)
−0.371645 + 0.928375i \(0.621206\pi\)
\(390\) −3.74144 −0.189455
\(391\) −32.3884 −1.63795
\(392\) −17.0006 −0.858658
\(393\) −13.4044 −0.676164
\(394\) −5.40277 −0.272188
\(395\) −5.75544 −0.289587
\(396\) 16.9021 0.849361
\(397\) 7.01622 0.352134 0.176067 0.984378i \(-0.443662\pi\)
0.176067 + 0.984378i \(0.443662\pi\)
\(398\) −48.5038 −2.43128
\(399\) 11.0861 0.555001
\(400\) −24.7031 −1.23516
\(401\) 21.5827 1.07779 0.538895 0.842373i \(-0.318842\pi\)
0.538895 + 0.842373i \(0.318842\pi\)
\(402\) −26.4028 −1.31685
\(403\) −35.7527 −1.78097
\(404\) 5.08564 0.253020
\(405\) 0.370811 0.0184257
\(406\) 32.9172 1.63365
\(407\) −3.73056 −0.184917
\(408\) −19.6145 −0.971061
\(409\) −5.30477 −0.262304 −0.131152 0.991362i \(-0.541868\pi\)
−0.131152 + 0.991362i \(0.541868\pi\)
\(410\) −0.292020 −0.0144219
\(411\) −5.68019 −0.280183
\(412\) −4.41814 −0.217666
\(413\) 1.05590 0.0519577
\(414\) −22.1767 −1.08993
\(415\) 3.54165 0.173853
\(416\) 7.36992 0.361340
\(417\) 17.0855 0.836679
\(418\) 56.8073 2.77854
\(419\) −30.8119 −1.50526 −0.752630 0.658443i \(-0.771215\pi\)
−0.752630 + 0.658443i \(0.771215\pi\)
\(420\) 3.03938 0.148307
\(421\) 22.1309 1.07860 0.539298 0.842115i \(-0.318690\pi\)
0.539298 + 0.842115i \(0.318690\pi\)
\(422\) −22.2308 −1.08218
\(423\) −4.93727 −0.240058
\(424\) 76.6803 3.72392
\(425\) −17.6469 −0.856002
\(426\) −3.31537 −0.160630
\(427\) 4.61423 0.223298
\(428\) −16.5130 −0.798184
\(429\) −16.4384 −0.793652
\(430\) −2.04784 −0.0987558
\(431\) 21.0033 1.01169 0.505846 0.862624i \(-0.331180\pi\)
0.505846 + 0.862624i \(0.331180\pi\)
\(432\) −5.08033 −0.244428
\(433\) −8.63171 −0.414814 −0.207407 0.978255i \(-0.566502\pi\)
−0.207407 + 0.978255i \(0.566502\pi\)
\(434\) 42.9573 2.06201
\(435\) 2.50194 0.119959
\(436\) −5.61900 −0.269102
\(437\) −50.3941 −2.41068
\(438\) −20.7625 −0.992070
\(439\) −36.9023 −1.76125 −0.880624 0.473815i \(-0.842877\pi\)
−0.880624 + 0.473815i \(0.842877\pi\)
\(440\) 8.11349 0.386795
\(441\) −3.14555 −0.149788
\(442\) 36.6182 1.74175
\(443\) −38.0863 −1.80953 −0.904767 0.425906i \(-0.859955\pi\)
−0.904767 + 0.425906i \(0.859955\pi\)
\(444\) 3.84714 0.182577
\(445\) 1.24801 0.0591613
\(446\) −43.3138 −2.05097
\(447\) 12.9363 0.611864
\(448\) 11.0931 0.524102
\(449\) 10.5002 0.495534 0.247767 0.968820i \(-0.420303\pi\)
0.247767 + 0.968820i \(0.420303\pi\)
\(450\) −12.0830 −0.569600
\(451\) −1.28302 −0.0604149
\(452\) −9.37461 −0.440945
\(453\) 10.7174 0.503549
\(454\) 13.0752 0.613649
\(455\) −2.95600 −0.138579
\(456\) −30.5187 −1.42917
\(457\) −14.4330 −0.675147 −0.337574 0.941299i \(-0.609606\pi\)
−0.337574 + 0.941299i \(0.609606\pi\)
\(458\) 60.2537 2.81547
\(459\) −3.62919 −0.169396
\(460\) −13.8161 −0.644178
\(461\) 24.9671 1.16284 0.581418 0.813605i \(-0.302498\pi\)
0.581418 + 0.813605i \(0.302498\pi\)
\(462\) 19.7509 0.918894
\(463\) 32.3333 1.50266 0.751329 0.659928i \(-0.229413\pi\)
0.751329 + 0.659928i \(0.229413\pi\)
\(464\) −34.2781 −1.59132
\(465\) 3.26506 0.151413
\(466\) 30.1493 1.39664
\(467\) 32.8660 1.52086 0.760428 0.649422i \(-0.224989\pi\)
0.760428 + 0.649422i \(0.224989\pi\)
\(468\) 16.9520 0.783608
\(469\) −20.8600 −0.963227
\(470\) −4.54942 −0.209849
\(471\) 3.06175 0.141078
\(472\) −2.90677 −0.133795
\(473\) −8.99738 −0.413700
\(474\) 38.5694 1.77155
\(475\) −27.4573 −1.25983
\(476\) −29.7470 −1.36345
\(477\) 14.1879 0.649617
\(478\) 37.6930 1.72404
\(479\) 10.2308 0.467455 0.233728 0.972302i \(-0.424908\pi\)
0.233728 + 0.972302i \(0.424908\pi\)
\(480\) −0.673046 −0.0307202
\(481\) −3.74159 −0.170602
\(482\) −45.4426 −2.06985
\(483\) −17.5211 −0.797239
\(484\) 22.5027 1.02285
\(485\) 4.57535 0.207756
\(486\) −2.48495 −0.112719
\(487\) 7.93179 0.359424 0.179712 0.983719i \(-0.442483\pi\)
0.179712 + 0.983719i \(0.442483\pi\)
\(488\) −12.7024 −0.575010
\(489\) −5.50865 −0.249110
\(490\) −2.89845 −0.130939
\(491\) 39.3721 1.77684 0.888420 0.459032i \(-0.151804\pi\)
0.888420 + 0.459032i \(0.151804\pi\)
\(492\) 1.32311 0.0596504
\(493\) −24.4869 −1.10284
\(494\) 56.9752 2.56344
\(495\) 1.50121 0.0674743
\(496\) −44.7333 −2.00858
\(497\) −2.61937 −0.117495
\(498\) −23.7340 −1.06354
\(499\) 1.78195 0.0797712 0.0398856 0.999204i \(-0.487301\pi\)
0.0398856 + 0.999204i \(0.487301\pi\)
\(500\) −15.2683 −0.682820
\(501\) −20.2718 −0.905679
\(502\) −4.50537 −0.201085
\(503\) −37.1023 −1.65431 −0.827156 0.561973i \(-0.810042\pi\)
−0.827156 + 0.561973i \(0.810042\pi\)
\(504\) −10.6108 −0.472643
\(505\) 0.451696 0.0201002
\(506\) −89.7813 −3.99126
\(507\) −3.48696 −0.154861
\(508\) −73.8705 −3.27747
\(509\) −18.0275 −0.799054 −0.399527 0.916722i \(-0.630826\pi\)
−0.399527 + 0.916722i \(0.630826\pi\)
\(510\) −3.34410 −0.148079
\(511\) −16.4038 −0.725660
\(512\) −45.6936 −2.01939
\(513\) −5.64676 −0.249310
\(514\) −16.5854 −0.731551
\(515\) −0.392410 −0.0172916
\(516\) 9.27853 0.408465
\(517\) −19.9883 −0.879083
\(518\) 4.49556 0.197524
\(519\) −19.9597 −0.876133
\(520\) 8.13747 0.356852
\(521\) 20.9237 0.916683 0.458342 0.888776i \(-0.348444\pi\)
0.458342 + 0.888776i \(0.348444\pi\)
\(522\) −16.7665 −0.733849
\(523\) 43.3377 1.89502 0.947512 0.319720i \(-0.103589\pi\)
0.947512 + 0.319720i \(0.103589\pi\)
\(524\) 55.9629 2.44475
\(525\) −9.54643 −0.416640
\(526\) −52.3195 −2.28124
\(527\) −31.9557 −1.39201
\(528\) −20.5675 −0.895084
\(529\) 56.6455 2.46285
\(530\) 13.0733 0.567869
\(531\) −0.537828 −0.0233397
\(532\) −46.2841 −2.00667
\(533\) −1.28681 −0.0557379
\(534\) −8.36339 −0.361919
\(535\) −1.46665 −0.0634087
\(536\) 57.4250 2.48038
\(537\) 2.45329 0.105867
\(538\) 13.5576 0.584509
\(539\) −12.7346 −0.548517
\(540\) −1.54812 −0.0666204
\(541\) 29.2960 1.25953 0.629767 0.776784i \(-0.283150\pi\)
0.629767 + 0.776784i \(0.283150\pi\)
\(542\) −9.94490 −0.427170
\(543\) −1.00000 −0.0429141
\(544\) 6.58722 0.282425
\(545\) −0.499068 −0.0213777
\(546\) 19.8093 0.847758
\(547\) −38.8865 −1.66267 −0.831334 0.555773i \(-0.812422\pi\)
−0.831334 + 0.555773i \(0.812422\pi\)
\(548\) 23.7145 1.01304
\(549\) −2.35027 −0.100307
\(550\) −48.9176 −2.08585
\(551\) −38.0999 −1.62311
\(552\) 48.2334 2.05295
\(553\) 30.4724 1.29582
\(554\) 56.0773 2.38249
\(555\) 0.341695 0.0145041
\(556\) −71.3310 −3.02511
\(557\) 41.8529 1.77336 0.886682 0.462379i \(-0.153004\pi\)
0.886682 + 0.462379i \(0.153004\pi\)
\(558\) −21.8804 −0.926271
\(559\) −9.02397 −0.381673
\(560\) −3.69850 −0.156290
\(561\) −14.6926 −0.620321
\(562\) −24.5344 −1.03492
\(563\) −2.68310 −0.113079 −0.0565396 0.998400i \(-0.518007\pi\)
−0.0565396 + 0.998400i \(0.518007\pi\)
\(564\) 20.6129 0.867958
\(565\) −0.832633 −0.0350291
\(566\) −73.5191 −3.09024
\(567\) −1.96328 −0.0824498
\(568\) 7.21078 0.302557
\(569\) −9.17154 −0.384491 −0.192246 0.981347i \(-0.561577\pi\)
−0.192246 + 0.981347i \(0.561577\pi\)
\(570\) −5.20317 −0.217937
\(571\) −26.6381 −1.11477 −0.557385 0.830254i \(-0.688195\pi\)
−0.557385 + 0.830254i \(0.688195\pi\)
\(572\) 68.6294 2.86954
\(573\) −26.6172 −1.11195
\(574\) 1.54612 0.0645336
\(575\) 43.3950 1.80970
\(576\) −5.65033 −0.235430
\(577\) −10.2555 −0.426941 −0.213470 0.976950i \(-0.568477\pi\)
−0.213470 + 0.976950i \(0.568477\pi\)
\(578\) −9.51482 −0.395764
\(579\) −9.38507 −0.390030
\(580\) −10.4455 −0.433725
\(581\) −18.7515 −0.777941
\(582\) −30.6612 −1.27095
\(583\) 57.4388 2.37887
\(584\) 45.1575 1.86863
\(585\) 1.50564 0.0622507
\(586\) −40.3095 −1.66517
\(587\) −12.5974 −0.519949 −0.259974 0.965616i \(-0.583714\pi\)
−0.259974 + 0.965616i \(0.583714\pi\)
\(588\) 13.1325 0.541576
\(589\) −49.7207 −2.04871
\(590\) −0.495578 −0.0204026
\(591\) 2.17420 0.0894347
\(592\) −4.68143 −0.192405
\(593\) 19.2129 0.788979 0.394490 0.918900i \(-0.370921\pi\)
0.394490 + 0.918900i \(0.370921\pi\)
\(594\) −10.0602 −0.412774
\(595\) −2.64206 −0.108314
\(596\) −54.0083 −2.21226
\(597\) 19.5191 0.798863
\(598\) −90.0467 −3.68228
\(599\) −20.6159 −0.842345 −0.421172 0.906981i \(-0.638381\pi\)
−0.421172 + 0.906981i \(0.638381\pi\)
\(600\) 26.2801 1.07288
\(601\) 14.6688 0.598354 0.299177 0.954198i \(-0.403288\pi\)
0.299177 + 0.954198i \(0.403288\pi\)
\(602\) 10.8424 0.441903
\(603\) 10.6251 0.432688
\(604\) −44.7448 −1.82064
\(605\) 1.99864 0.0812563
\(606\) −3.02699 −0.122963
\(607\) 18.7059 0.759250 0.379625 0.925140i \(-0.376053\pi\)
0.379625 + 0.925140i \(0.376053\pi\)
\(608\) 10.2492 0.415661
\(609\) −13.2467 −0.536781
\(610\) −2.16564 −0.0876844
\(611\) −20.0473 −0.811029
\(612\) 15.1517 0.612471
\(613\) −2.57586 −0.104038 −0.0520191 0.998646i \(-0.516566\pi\)
−0.0520191 + 0.998646i \(0.516566\pi\)
\(614\) 32.6140 1.31619
\(615\) 0.117516 0.00473869
\(616\) −42.9573 −1.73080
\(617\) −19.1221 −0.769828 −0.384914 0.922952i \(-0.625769\pi\)
−0.384914 + 0.922952i \(0.625769\pi\)
\(618\) 2.62969 0.105782
\(619\) −11.0897 −0.445733 −0.222867 0.974849i \(-0.571541\pi\)
−0.222867 + 0.974849i \(0.571541\pi\)
\(620\) −13.6315 −0.547453
\(621\) 8.92443 0.358125
\(622\) 45.5182 1.82511
\(623\) −6.60765 −0.264730
\(624\) −20.6282 −0.825791
\(625\) 22.9564 0.918256
\(626\) 64.2608 2.56838
\(627\) −22.8606 −0.912964
\(628\) −12.7827 −0.510084
\(629\) −3.34423 −0.133343
\(630\) −1.80905 −0.0720743
\(631\) 28.4699 1.13337 0.566685 0.823935i \(-0.308226\pi\)
0.566685 + 0.823935i \(0.308226\pi\)
\(632\) −83.8866 −3.33683
\(633\) 8.94618 0.355579
\(634\) 45.5096 1.80742
\(635\) −6.56102 −0.260366
\(636\) −59.2336 −2.34877
\(637\) −12.7722 −0.506054
\(638\) −67.8782 −2.68732
\(639\) 1.33418 0.0527794
\(640\) −6.55255 −0.259012
\(641\) −15.8650 −0.626632 −0.313316 0.949649i \(-0.601440\pi\)
−0.313316 + 0.949649i \(0.601440\pi\)
\(642\) 9.82857 0.387903
\(643\) 5.72748 0.225870 0.112935 0.993602i \(-0.463975\pi\)
0.112935 + 0.993602i \(0.463975\pi\)
\(644\) 73.1499 2.88251
\(645\) 0.824100 0.0324489
\(646\) 50.9243 2.00359
\(647\) 5.88463 0.231349 0.115674 0.993287i \(-0.463097\pi\)
0.115674 + 0.993287i \(0.463097\pi\)
\(648\) 5.40464 0.212314
\(649\) −2.17737 −0.0854691
\(650\) −49.0622 −1.92438
\(651\) −17.2870 −0.677531
\(652\) 22.9984 0.900686
\(653\) −41.1149 −1.60895 −0.804476 0.593985i \(-0.797554\pi\)
−0.804476 + 0.593985i \(0.797554\pi\)
\(654\) 3.34445 0.130778
\(655\) 4.97050 0.194214
\(656\) −1.61004 −0.0628614
\(657\) 8.35531 0.325972
\(658\) 24.0871 0.939013
\(659\) −12.1465 −0.473162 −0.236581 0.971612i \(-0.576027\pi\)
−0.236581 + 0.971612i \(0.576027\pi\)
\(660\) −6.26747 −0.243961
\(661\) −15.9501 −0.620389 −0.310194 0.950673i \(-0.600394\pi\)
−0.310194 + 0.950673i \(0.600394\pi\)
\(662\) 36.3472 1.41267
\(663\) −14.7360 −0.572299
\(664\) 51.6203 2.00326
\(665\) −4.11086 −0.159412
\(666\) −2.28983 −0.0887290
\(667\) 60.2151 2.33154
\(668\) 84.6340 3.27459
\(669\) 17.4305 0.673901
\(670\) 9.79045 0.378238
\(671\) −9.51495 −0.367321
\(672\) 3.56347 0.137464
\(673\) −28.3034 −1.09102 −0.545508 0.838106i \(-0.683663\pi\)
−0.545508 + 0.838106i \(0.683663\pi\)
\(674\) −12.9065 −0.497141
\(675\) 4.86250 0.187158
\(676\) 14.5579 0.559918
\(677\) 5.99704 0.230485 0.115242 0.993337i \(-0.463236\pi\)
0.115242 + 0.993337i \(0.463236\pi\)
\(678\) 5.57980 0.214291
\(679\) −24.2244 −0.929648
\(680\) 7.27326 0.278917
\(681\) −5.26176 −0.201631
\(682\) −88.5816 −3.39197
\(683\) 33.7218 1.29033 0.645165 0.764043i \(-0.276789\pi\)
0.645165 + 0.764043i \(0.276789\pi\)
\(684\) 23.5749 0.901411
\(685\) 2.10628 0.0804767
\(686\) 49.4964 1.88978
\(687\) −24.2475 −0.925099
\(688\) −11.2907 −0.430453
\(689\) 57.6085 2.19471
\(690\) 8.22337 0.313058
\(691\) 8.64738 0.328962 0.164481 0.986380i \(-0.447405\pi\)
0.164481 + 0.986380i \(0.447405\pi\)
\(692\) 83.3308 3.16776
\(693\) −7.94822 −0.301928
\(694\) 44.9722 1.70712
\(695\) −6.33548 −0.240318
\(696\) 36.4663 1.38225
\(697\) −1.15015 −0.0435649
\(698\) 53.5971 2.02868
\(699\) −12.1328 −0.458904
\(700\) 39.8559 1.50641
\(701\) 12.2904 0.464202 0.232101 0.972692i \(-0.425440\pi\)
0.232101 + 0.972692i \(0.425440\pi\)
\(702\) −10.0899 −0.380819
\(703\) −5.20337 −0.196249
\(704\) −22.8750 −0.862136
\(705\) 1.83079 0.0689516
\(706\) −31.5364 −1.18689
\(707\) −2.39153 −0.0899426
\(708\) 2.24541 0.0843875
\(709\) 2.80892 0.105491 0.0527457 0.998608i \(-0.483203\pi\)
0.0527457 + 0.998608i \(0.483203\pi\)
\(710\) 1.22937 0.0461376
\(711\) −15.5212 −0.582091
\(712\) 18.1900 0.681698
\(713\) 78.5813 2.94289
\(714\) 17.7055 0.662611
\(715\) 6.09552 0.227960
\(716\) −10.2424 −0.382775
\(717\) −15.1685 −0.566480
\(718\) −5.20013 −0.194067
\(719\) −17.4798 −0.651888 −0.325944 0.945389i \(-0.605682\pi\)
−0.325944 + 0.945389i \(0.605682\pi\)
\(720\) 1.88384 0.0702066
\(721\) 2.07763 0.0773751
\(722\) 32.0206 1.19168
\(723\) 18.2872 0.680106
\(724\) 4.17495 0.155161
\(725\) 32.8084 1.21847
\(726\) −13.3937 −0.497085
\(727\) −26.2700 −0.974299 −0.487149 0.873319i \(-0.661963\pi\)
−0.487149 + 0.873319i \(0.661963\pi\)
\(728\) −43.0842 −1.59681
\(729\) 1.00000 0.0370370
\(730\) 7.69895 0.284951
\(731\) −8.06561 −0.298317
\(732\) 9.81228 0.362672
\(733\) −29.3942 −1.08570 −0.542849 0.839830i \(-0.682655\pi\)
−0.542849 + 0.839830i \(0.682655\pi\)
\(734\) 69.0305 2.54796
\(735\) 1.16640 0.0430234
\(736\) −16.1984 −0.597082
\(737\) 43.0152 1.58449
\(738\) −0.787518 −0.0289890
\(739\) −2.53688 −0.0933208 −0.0466604 0.998911i \(-0.514858\pi\)
−0.0466604 + 0.998911i \(0.514858\pi\)
\(740\) −1.42656 −0.0524414
\(741\) −22.9282 −0.842287
\(742\) −69.2173 −2.54105
\(743\) −37.6157 −1.37998 −0.689992 0.723817i \(-0.742386\pi\)
−0.689992 + 0.723817i \(0.742386\pi\)
\(744\) 47.5889 1.74469
\(745\) −4.79690 −0.175745
\(746\) −47.6771 −1.74558
\(747\) 9.55110 0.349457
\(748\) 61.3408 2.24284
\(749\) 7.76524 0.283736
\(750\) 9.08774 0.331838
\(751\) 19.3798 0.707180 0.353590 0.935401i \(-0.384961\pi\)
0.353590 + 0.935401i \(0.384961\pi\)
\(752\) −25.0830 −0.914681
\(753\) 1.81307 0.0660718
\(754\) −68.0788 −2.47928
\(755\) −3.97414 −0.144634
\(756\) 8.19659 0.298107
\(757\) −0.893853 −0.0324877 −0.0162438 0.999868i \(-0.505171\pi\)
−0.0162438 + 0.999868i \(0.505171\pi\)
\(758\) −3.25030 −0.118056
\(759\) 36.1301 1.31144
\(760\) 11.3167 0.410498
\(761\) −20.9488 −0.759392 −0.379696 0.925111i \(-0.623971\pi\)
−0.379696 + 0.925111i \(0.623971\pi\)
\(762\) 43.9679 1.59279
\(763\) 2.64234 0.0956592
\(764\) 111.125 4.02038
\(765\) 1.34574 0.0486554
\(766\) 81.8432 2.95712
\(767\) −2.18380 −0.0788526
\(768\) 32.6105 1.17673
\(769\) −52.9737 −1.91028 −0.955141 0.296153i \(-0.904296\pi\)
−0.955141 + 0.296153i \(0.904296\pi\)
\(770\) −7.32384 −0.263933
\(771\) 6.67435 0.240371
\(772\) 39.1823 1.41020
\(773\) −4.57701 −0.164624 −0.0823118 0.996607i \(-0.526230\pi\)
−0.0823118 + 0.996607i \(0.526230\pi\)
\(774\) −5.52261 −0.198506
\(775\) 42.8152 1.53797
\(776\) 66.6867 2.39391
\(777\) −1.80912 −0.0649018
\(778\) −36.4293 −1.30605
\(779\) −1.78955 −0.0641171
\(780\) −6.28600 −0.225075
\(781\) 5.40136 0.193276
\(782\) −80.4835 −2.87809
\(783\) 6.74722 0.241126
\(784\) −15.9804 −0.570730
\(785\) −1.13533 −0.0405217
\(786\) −33.3093 −1.18810
\(787\) 10.6325 0.379008 0.189504 0.981880i \(-0.439312\pi\)
0.189504 + 0.981880i \(0.439312\pi\)
\(788\) −9.07719 −0.323361
\(789\) 21.0546 0.749563
\(790\) −14.3019 −0.508840
\(791\) 4.40842 0.156745
\(792\) 21.8804 0.777486
\(793\) −9.54307 −0.338885
\(794\) 17.4349 0.618743
\(795\) −5.26101 −0.186589
\(796\) −81.4912 −2.88838
\(797\) −56.1843 −1.99015 −0.995076 0.0991189i \(-0.968398\pi\)
−0.995076 + 0.0991189i \(0.968398\pi\)
\(798\) 27.5484 0.975205
\(799\) −17.9183 −0.633903
\(800\) −8.82575 −0.312038
\(801\) 3.36562 0.118918
\(802\) 53.6319 1.89381
\(803\) 33.8260 1.19369
\(804\) −44.3594 −1.56443
\(805\) 6.49702 0.228990
\(806\) −88.8435 −3.12938
\(807\) −5.45589 −0.192057
\(808\) 6.58356 0.231609
\(809\) 11.6538 0.409726 0.204863 0.978791i \(-0.434325\pi\)
0.204863 + 0.978791i \(0.434325\pi\)
\(810\) 0.921444 0.0323763
\(811\) −16.4662 −0.578206 −0.289103 0.957298i \(-0.593357\pi\)
−0.289103 + 0.957298i \(0.593357\pi\)
\(812\) 55.3042 1.94080
\(813\) 4.00206 0.140358
\(814\) −9.27025 −0.324922
\(815\) 2.04267 0.0715515
\(816\) −18.4375 −0.645441
\(817\) −12.5495 −0.439051
\(818\) −13.1821 −0.460900
\(819\) −7.97171 −0.278554
\(820\) −0.490623 −0.0171333
\(821\) 43.9803 1.53492 0.767462 0.641094i \(-0.221519\pi\)
0.767462 + 0.641094i \(0.221519\pi\)
\(822\) −14.1150 −0.492316
\(823\) 15.3338 0.534504 0.267252 0.963627i \(-0.413884\pi\)
0.267252 + 0.963627i \(0.413884\pi\)
\(824\) −5.71945 −0.199246
\(825\) 19.6856 0.685364
\(826\) 2.62386 0.0912959
\(827\) −16.9750 −0.590280 −0.295140 0.955454i \(-0.595366\pi\)
−0.295140 + 0.955454i \(0.595366\pi\)
\(828\) −37.2591 −1.29484
\(829\) 27.5204 0.955823 0.477911 0.878408i \(-0.341394\pi\)
0.477911 + 0.878408i \(0.341394\pi\)
\(830\) 8.80081 0.305481
\(831\) −22.5668 −0.782833
\(832\) −22.9427 −0.795394
\(833\) −11.4158 −0.395534
\(834\) 42.4565 1.47015
\(835\) 7.51702 0.260137
\(836\) 95.4419 3.30093
\(837\) 8.80518 0.304352
\(838\) −76.5659 −2.64493
\(839\) 15.2470 0.526384 0.263192 0.964744i \(-0.415225\pi\)
0.263192 + 0.964744i \(0.415225\pi\)
\(840\) 3.93460 0.135757
\(841\) 16.5250 0.569827
\(842\) 54.9942 1.89522
\(843\) 9.87322 0.340052
\(844\) −37.3499 −1.28564
\(845\) 1.29300 0.0444806
\(846\) −12.2688 −0.421811
\(847\) −10.5819 −0.363598
\(848\) 72.0790 2.47520
\(849\) 29.5858 1.01538
\(850\) −43.8517 −1.50410
\(851\) 8.22369 0.281904
\(852\) −5.57015 −0.190830
\(853\) −23.7441 −0.812982 −0.406491 0.913655i \(-0.633248\pi\)
−0.406491 + 0.913655i \(0.633248\pi\)
\(854\) 11.4661 0.392362
\(855\) 2.09388 0.0716091
\(856\) −21.3767 −0.730640
\(857\) 4.28871 0.146500 0.0732498 0.997314i \(-0.476663\pi\)
0.0732498 + 0.997314i \(0.476663\pi\)
\(858\) −40.8484 −1.39454
\(859\) 1.15611 0.0394458 0.0197229 0.999805i \(-0.493722\pi\)
0.0197229 + 0.999805i \(0.493722\pi\)
\(860\) −3.44058 −0.117323
\(861\) −0.622193 −0.0212043
\(862\) 52.1920 1.77767
\(863\) −49.4010 −1.68163 −0.840815 0.541323i \(-0.817924\pi\)
−0.840815 + 0.541323i \(0.817924\pi\)
\(864\) −1.81507 −0.0617498
\(865\) 7.40126 0.251651
\(866\) −21.4493 −0.728878
\(867\) 3.82899 0.130039
\(868\) 72.1725 2.44969
\(869\) −62.8368 −2.13159
\(870\) 6.21719 0.210782
\(871\) 43.1424 1.46182
\(872\) −7.27402 −0.246329
\(873\) 12.3388 0.417604
\(874\) −125.227 −4.23585
\(875\) 7.17994 0.242726
\(876\) −34.8830 −1.17859
\(877\) 43.4495 1.46719 0.733593 0.679589i \(-0.237842\pi\)
0.733593 + 0.679589i \(0.237842\pi\)
\(878\) −91.7001 −3.09473
\(879\) 16.2215 0.547137
\(880\) 7.62663 0.257094
\(881\) −51.9644 −1.75073 −0.875363 0.483466i \(-0.839378\pi\)
−0.875363 + 0.483466i \(0.839378\pi\)
\(882\) −7.81652 −0.263196
\(883\) −35.2566 −1.18648 −0.593239 0.805026i \(-0.702151\pi\)
−0.593239 + 0.805026i \(0.702151\pi\)
\(884\) 61.5222 2.06921
\(885\) 0.199432 0.00670384
\(886\) −94.6424 −3.17957
\(887\) −24.7631 −0.831464 −0.415732 0.909487i \(-0.636475\pi\)
−0.415732 + 0.909487i \(0.636475\pi\)
\(888\) 4.98027 0.167127
\(889\) 34.7377 1.16506
\(890\) 3.10123 0.103954
\(891\) 4.04845 0.135628
\(892\) −72.7714 −2.43657
\(893\) −27.8795 −0.932953
\(894\) 32.1459 1.07512
\(895\) −0.909706 −0.0304081
\(896\) 34.6928 1.15901
\(897\) 36.2369 1.20991
\(898\) 26.0924 0.870714
\(899\) 59.4105 1.98145
\(900\) −20.3007 −0.676690
\(901\) 51.4904 1.71539
\(902\) −3.18823 −0.106156
\(903\) −4.36324 −0.145199
\(904\) −12.1358 −0.403631
\(905\) 0.370811 0.0123262
\(906\) 26.6323 0.884798
\(907\) −55.6804 −1.84884 −0.924419 0.381377i \(-0.875450\pi\)
−0.924419 + 0.381377i \(0.875450\pi\)
\(908\) 21.9676 0.729021
\(909\) 1.21813 0.0404028
\(910\) −7.34549 −0.243501
\(911\) 39.9314 1.32299 0.661493 0.749951i \(-0.269923\pi\)
0.661493 + 0.749951i \(0.269923\pi\)
\(912\) −28.6874 −0.949935
\(913\) 38.6671 1.27970
\(914\) −35.8652 −1.18632
\(915\) 0.871506 0.0288111
\(916\) 101.232 3.34480
\(917\) −26.3166 −0.869050
\(918\) −9.01834 −0.297649
\(919\) 27.4981 0.907080 0.453540 0.891236i \(-0.350161\pi\)
0.453540 + 0.891236i \(0.350161\pi\)
\(920\) −17.8854 −0.589666
\(921\) −13.1246 −0.432472
\(922\) 62.0420 2.04324
\(923\) 5.41733 0.178314
\(924\) 33.1834 1.09166
\(925\) 4.48070 0.147324
\(926\) 80.3466 2.64035
\(927\) −1.05825 −0.0347574
\(928\) −12.2466 −0.402016
\(929\) −45.6591 −1.49803 −0.749013 0.662556i \(-0.769472\pi\)
−0.749013 + 0.662556i \(0.769472\pi\)
\(930\) 8.11349 0.266052
\(931\) −17.7621 −0.582131
\(932\) 50.6538 1.65922
\(933\) −18.3176 −0.599690
\(934\) 81.6702 2.67233
\(935\) 5.44817 0.178174
\(936\) 21.9451 0.717297
\(937\) −10.2634 −0.335291 −0.167646 0.985847i \(-0.553616\pi\)
−0.167646 + 0.985847i \(0.553616\pi\)
\(938\) −51.8361 −1.69251
\(939\) −25.8600 −0.843910
\(940\) −7.64347 −0.249302
\(941\) 29.9236 0.975482 0.487741 0.872988i \(-0.337821\pi\)
0.487741 + 0.872988i \(0.337821\pi\)
\(942\) 7.60829 0.247891
\(943\) 2.82829 0.0921019
\(944\) −2.73234 −0.0889302
\(945\) 0.728004 0.0236820
\(946\) −22.3580 −0.726921
\(947\) 16.8152 0.546421 0.273211 0.961954i \(-0.411914\pi\)
0.273211 + 0.961954i \(0.411914\pi\)
\(948\) 64.8004 2.10462
\(949\) 33.9260 1.10129
\(950\) −68.2300 −2.21367
\(951\) −18.3141 −0.593876
\(952\) −38.5086 −1.24807
\(953\) −12.5451 −0.406374 −0.203187 0.979140i \(-0.565130\pi\)
−0.203187 + 0.979140i \(0.565130\pi\)
\(954\) 35.2560 1.14146
\(955\) 9.86993 0.319383
\(956\) 63.3280 2.04817
\(957\) 27.3158 0.882993
\(958\) 25.4229 0.821376
\(959\) −11.1518 −0.360110
\(960\) 2.09520 0.0676223
\(961\) 46.5313 1.50101
\(962\) −9.29765 −0.299768
\(963\) −3.95524 −0.127456
\(964\) −76.3480 −2.45900
\(965\) 3.48009 0.112028
\(966\) −43.5390 −1.40085
\(967\) −8.59093 −0.276266 −0.138133 0.990414i \(-0.544110\pi\)
−0.138133 + 0.990414i \(0.544110\pi\)
\(968\) 29.1306 0.936292
\(969\) −20.4931 −0.658335
\(970\) 11.3695 0.365053
\(971\) 23.9170 0.767535 0.383767 0.923430i \(-0.374626\pi\)
0.383767 + 0.923430i \(0.374626\pi\)
\(972\) −4.17495 −0.133912
\(973\) 33.5435 1.07535
\(974\) 19.7101 0.631551
\(975\) 19.7438 0.632306
\(976\) −11.9402 −0.382195
\(977\) −21.5036 −0.687963 −0.343981 0.938977i \(-0.611776\pi\)
−0.343981 + 0.938977i \(0.611776\pi\)
\(978\) −13.6887 −0.437716
\(979\) 13.6255 0.435474
\(980\) −4.86968 −0.155556
\(981\) −1.34588 −0.0429708
\(982\) 97.8376 3.12212
\(983\) 23.9678 0.764456 0.382228 0.924068i \(-0.375157\pi\)
0.382228 + 0.924068i \(0.375157\pi\)
\(984\) 1.71282 0.0546026
\(985\) −0.806217 −0.0256882
\(986\) −60.8487 −1.93782
\(987\) −9.69321 −0.308538
\(988\) 95.7240 3.04539
\(989\) 19.8339 0.630681
\(990\) 3.73042 0.118560
\(991\) 9.12524 0.289873 0.144936 0.989441i \(-0.453702\pi\)
0.144936 + 0.989441i \(0.453702\pi\)
\(992\) −15.9820 −0.507429
\(993\) −14.6270 −0.464173
\(994\) −6.50898 −0.206452
\(995\) −7.23788 −0.229456
\(996\) −39.8754 −1.26350
\(997\) −23.5653 −0.746321 −0.373161 0.927767i \(-0.621726\pi\)
−0.373161 + 0.927767i \(0.621726\pi\)
\(998\) 4.42806 0.140168
\(999\) 0.921480 0.0291543
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 543.2.a.d.1.8 8
3.2 odd 2 1629.2.a.e.1.1 8
4.3 odd 2 8688.2.a.bf.1.4 8
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
543.2.a.d.1.8 8 1.1 even 1 trivial
1629.2.a.e.1.1 8 3.2 odd 2
8688.2.a.bf.1.4 8 4.3 odd 2