Properties

Label 544.2.bb.e.321.2
Level $544$
Weight $2$
Character 544.321
Analytic conductor $4.344$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [544,2,Mod(161,544)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(544, base_ring=CyclotomicField(8))
 
chi = DirichletCharacter(H, H._module([0, 0, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("544.161");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 544 = 2^{5} \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 544.bb (of order \(8\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.34386186996\)
Analytic rank: \(0\)
Dimension: \(20\)
Relative dimension: \(5\) over \(\Q(\zeta_{8})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} + 36 x^{18} + 460 x^{16} + 2762 x^{14} + 8608 x^{12} + 14244 x^{10} + 12257 x^{8} + 5436 x^{6} + \cdots + 4 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{11} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{8}]$

Embedding invariants

Embedding label 321.2
Root \(-2.85946i\) of defining polynomial
Character \(\chi\) \(=\) 544.321
Dual form 544.2.bb.e.161.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.856942 - 2.06884i) q^{3} +(3.04112 - 1.25967i) q^{5} +(-2.54908 - 1.05586i) q^{7} +(-1.42443 + 1.42443i) q^{9} +(0.405492 - 0.978945i) q^{11} -1.68352i q^{13} +(-5.21213 - 5.21213i) q^{15} +(-0.295654 - 4.11249i) q^{17} +(3.89152 + 3.89152i) q^{19} +6.17845i q^{21} +(-0.188717 + 0.455603i) q^{23} +(4.12610 - 4.12610i) q^{25} +(-2.03895 - 0.844559i) q^{27} +(-9.06866 + 3.75636i) q^{29} +(0.827163 + 1.99695i) q^{31} -2.37276 q^{33} -9.08209 q^{35} +(1.31624 + 3.17768i) q^{37} +(-3.48294 + 1.44268i) q^{39} +(-6.54925 - 2.71279i) q^{41} +(7.14546 - 7.14546i) q^{43} +(-2.53755 + 6.12618i) q^{45} -9.02539i q^{47} +(0.433201 + 0.433201i) q^{49} +(-8.25473 + 4.13583i) q^{51} +(9.88305 + 9.88305i) q^{53} -3.48788i q^{55} +(4.71612 - 11.3857i) q^{57} +(7.92018 - 7.92018i) q^{59} +(-6.19471 - 2.56593i) q^{61} +(5.13499 - 2.12698i) q^{63} +(-2.12069 - 5.11979i) q^{65} -4.89023 q^{67} +1.10429 q^{69} +(2.22270 + 5.36608i) q^{71} +(-0.0120368 + 0.00498579i) q^{73} +(-12.0721 - 5.00042i) q^{75} +(-2.06726 + 2.06726i) q^{77} +(-4.15294 + 10.0261i) q^{79} +10.9853i q^{81} +(10.4006 + 10.4006i) q^{83} +(-6.07952 - 12.1342i) q^{85} +(15.5426 + 15.5426i) q^{87} -10.8032i q^{89} +(-1.77757 + 4.29142i) q^{91} +(3.42254 - 3.42254i) q^{93} +(16.7366 + 6.93253i) q^{95} +(7.83754 - 3.24642i) q^{97} +(0.816844 + 1.97204i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 4 q^{9} - 12 q^{11} + 24 q^{15} - 8 q^{17} + 16 q^{23} - 16 q^{25} + 12 q^{27} - 8 q^{29} - 24 q^{31} - 32 q^{35} - 32 q^{37} - 16 q^{41} + 44 q^{43} - 8 q^{49} + 16 q^{53} + 16 q^{57} - 12 q^{59}+ \cdots - 32 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/544\mathbb{Z}\right)^\times\).

\(n\) \(69\) \(511\) \(513\)
\(\chi(n)\) \(1\) \(1\) \(e\left(\frac{3}{8}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −0.856942 2.06884i −0.494756 1.19445i −0.952274 0.305245i \(-0.901262\pi\)
0.457518 0.889200i \(-0.348738\pi\)
\(4\) 0 0
\(5\) 3.04112 1.25967i 1.36003 0.563343i 0.420964 0.907078i \(-0.361692\pi\)
0.939067 + 0.343734i \(0.111692\pi\)
\(6\) 0 0
\(7\) −2.54908 1.05586i −0.963461 0.399078i −0.155187 0.987885i \(-0.549598\pi\)
−0.808274 + 0.588807i \(0.799598\pi\)
\(8\) 0 0
\(9\) −1.42443 + 1.42443i −0.474810 + 0.474810i
\(10\) 0 0
\(11\) 0.405492 0.978945i 0.122261 0.295163i −0.850886 0.525351i \(-0.823934\pi\)
0.973146 + 0.230188i \(0.0739341\pi\)
\(12\) 0 0
\(13\) 1.68352i 0.466925i −0.972366 0.233462i \(-0.924994\pi\)
0.972366 0.233462i \(-0.0750056\pi\)
\(14\) 0 0
\(15\) −5.21213 5.21213i −1.34577 1.34577i
\(16\) 0 0
\(17\) −0.295654 4.11249i −0.0717066 0.997426i
\(18\) 0 0
\(19\) 3.89152 + 3.89152i 0.892775 + 0.892775i 0.994784 0.102009i \(-0.0325269\pi\)
−0.102009 + 0.994784i \(0.532527\pi\)
\(20\) 0 0
\(21\) 6.17845i 1.34825i
\(22\) 0 0
\(23\) −0.188717 + 0.455603i −0.0393502 + 0.0949997i −0.942333 0.334677i \(-0.891373\pi\)
0.902983 + 0.429677i \(0.141373\pi\)
\(24\) 0 0
\(25\) 4.12610 4.12610i 0.825221 0.825221i
\(26\) 0 0
\(27\) −2.03895 0.844559i −0.392395 0.162535i
\(28\) 0 0
\(29\) −9.06866 + 3.75636i −1.68401 + 0.697539i −0.999505 0.0314699i \(-0.989981\pi\)
−0.684504 + 0.729009i \(0.739981\pi\)
\(30\) 0 0
\(31\) 0.827163 + 1.99695i 0.148563 + 0.358662i 0.980589 0.196074i \(-0.0628192\pi\)
−0.832026 + 0.554736i \(0.812819\pi\)
\(32\) 0 0
\(33\) −2.37276 −0.413045
\(34\) 0 0
\(35\) −9.08209 −1.53515
\(36\) 0 0
\(37\) 1.31624 + 3.17768i 0.216388 + 0.522407i 0.994380 0.105867i \(-0.0337618\pi\)
−0.777992 + 0.628274i \(0.783762\pi\)
\(38\) 0 0
\(39\) −3.48294 + 1.44268i −0.557716 + 0.231014i
\(40\) 0 0
\(41\) −6.54925 2.71279i −1.02282 0.423666i −0.192704 0.981257i \(-0.561726\pi\)
−0.830116 + 0.557591i \(0.811726\pi\)
\(42\) 0 0
\(43\) 7.14546 7.14546i 1.08967 1.08967i 0.0941105 0.995562i \(-0.469999\pi\)
0.995562 0.0941105i \(-0.0300007\pi\)
\(44\) 0 0
\(45\) −2.53755 + 6.12618i −0.378275 + 0.913238i
\(46\) 0 0
\(47\) 9.02539i 1.31649i −0.752805 0.658244i \(-0.771300\pi\)
0.752805 0.658244i \(-0.228700\pi\)
\(48\) 0 0
\(49\) 0.433201 + 0.433201i 0.0618859 + 0.0618859i
\(50\) 0 0
\(51\) −8.25473 + 4.13583i −1.15589 + 0.579132i
\(52\) 0 0
\(53\) 9.88305 + 9.88305i 1.35754 + 1.35754i 0.876938 + 0.480603i \(0.159582\pi\)
0.480603 + 0.876938i \(0.340418\pi\)
\(54\) 0 0
\(55\) 3.48788i 0.470305i
\(56\) 0 0
\(57\) 4.71612 11.3857i 0.624666 1.50808i
\(58\) 0 0
\(59\) 7.92018 7.92018i 1.03112 1.03112i 0.0316200 0.999500i \(-0.489933\pi\)
0.999500 0.0316200i \(-0.0100667\pi\)
\(60\) 0 0
\(61\) −6.19471 2.56593i −0.793152 0.328534i −0.0509419 0.998702i \(-0.516222\pi\)
−0.742210 + 0.670167i \(0.766222\pi\)
\(62\) 0 0
\(63\) 5.13499 2.12698i 0.646948 0.267974i
\(64\) 0 0
\(65\) −2.12069 5.11979i −0.263039 0.635032i
\(66\) 0 0
\(67\) −4.89023 −0.597437 −0.298719 0.954341i \(-0.596559\pi\)
−0.298719 + 0.954341i \(0.596559\pi\)
\(68\) 0 0
\(69\) 1.10429 0.132941
\(70\) 0 0
\(71\) 2.22270 + 5.36608i 0.263786 + 0.636837i 0.999167 0.0408180i \(-0.0129964\pi\)
−0.735380 + 0.677655i \(0.762996\pi\)
\(72\) 0 0
\(73\) −0.0120368 + 0.00498579i −0.00140880 + 0.000583543i −0.383388 0.923587i \(-0.625243\pi\)
0.381979 + 0.924171i \(0.375243\pi\)
\(74\) 0 0
\(75\) −12.0721 5.00042i −1.39396 0.577399i
\(76\) 0 0
\(77\) −2.06726 + 2.06726i −0.235586 + 0.235586i
\(78\) 0 0
\(79\) −4.15294 + 10.0261i −0.467242 + 1.12802i 0.498120 + 0.867108i \(0.334024\pi\)
−0.965362 + 0.260914i \(0.915976\pi\)
\(80\) 0 0
\(81\) 10.9853i 1.22059i
\(82\) 0 0
\(83\) 10.4006 + 10.4006i 1.14161 + 1.14161i 0.988155 + 0.153459i \(0.0490412\pi\)
0.153459 + 0.988155i \(0.450959\pi\)
\(84\) 0 0
\(85\) −6.07952 12.1342i −0.659416 1.31613i
\(86\) 0 0
\(87\) 15.5426 + 15.5426i 1.66635 + 1.66635i
\(88\) 0 0
\(89\) 10.8032i 1.14514i −0.819857 0.572568i \(-0.805947\pi\)
0.819857 0.572568i \(-0.194053\pi\)
\(90\) 0 0
\(91\) −1.77757 + 4.29142i −0.186340 + 0.449864i
\(92\) 0 0
\(93\) 3.42254 3.42254i 0.354900 0.354900i
\(94\) 0 0
\(95\) 16.7366 + 6.93253i 1.71714 + 0.711263i
\(96\) 0 0
\(97\) 7.83754 3.24642i 0.795782 0.329624i 0.0525161 0.998620i \(-0.483276\pi\)
0.743266 + 0.668997i \(0.233276\pi\)
\(98\) 0 0
\(99\) 0.816844 + 1.97204i 0.0820959 + 0.198197i
\(100\) 0 0
\(101\) 15.9634 1.58841 0.794207 0.607647i \(-0.207887\pi\)
0.794207 + 0.607647i \(0.207887\pi\)
\(102\) 0 0
\(103\) 1.74089 0.171535 0.0857676 0.996315i \(-0.472666\pi\)
0.0857676 + 0.996315i \(0.472666\pi\)
\(104\) 0 0
\(105\) 7.78282 + 18.7894i 0.759526 + 1.83366i
\(106\) 0 0
\(107\) 0.679143 0.281310i 0.0656552 0.0271953i −0.349614 0.936894i \(-0.613687\pi\)
0.415269 + 0.909698i \(0.363687\pi\)
\(108\) 0 0
\(109\) 11.6545 + 4.82743i 1.11629 + 0.462384i 0.863101 0.505031i \(-0.168519\pi\)
0.253193 + 0.967416i \(0.418519\pi\)
\(110\) 0 0
\(111\) 5.44617 5.44617i 0.516927 0.516927i
\(112\) 0 0
\(113\) 3.52351 8.50651i 0.331464 0.800226i −0.667012 0.745047i \(-0.732427\pi\)
0.998476 0.0551787i \(-0.0175729\pi\)
\(114\) 0 0
\(115\) 1.62326i 0.151370i
\(116\) 0 0
\(117\) 2.39806 + 2.39806i 0.221701 + 0.221701i
\(118\) 0 0
\(119\) −3.58858 + 10.7952i −0.328965 + 0.989597i
\(120\) 0 0
\(121\) 6.98427 + 6.98427i 0.634933 + 0.634933i
\(122\) 0 0
\(123\) 15.8740i 1.43131i
\(124\) 0 0
\(125\) 1.05207 2.53992i 0.0940999 0.227177i
\(126\) 0 0
\(127\) −1.46741 + 1.46741i −0.130211 + 0.130211i −0.769209 0.638998i \(-0.779349\pi\)
0.638998 + 0.769209i \(0.279349\pi\)
\(128\) 0 0
\(129\) −20.9061 8.65957i −1.84068 0.762433i
\(130\) 0 0
\(131\) 20.4019 8.45075i 1.78252 0.738346i 0.790475 0.612495i \(-0.209834\pi\)
0.992049 0.125851i \(-0.0401661\pi\)
\(132\) 0 0
\(133\) −5.81087 14.0287i −0.503866 1.21644i
\(134\) 0 0
\(135\) −7.26455 −0.625233
\(136\) 0 0
\(137\) 2.94219 0.251368 0.125684 0.992070i \(-0.459887\pi\)
0.125684 + 0.992070i \(0.459887\pi\)
\(138\) 0 0
\(139\) 3.15912 + 7.62679i 0.267953 + 0.646896i 0.999387 0.0350165i \(-0.0111484\pi\)
−0.731434 + 0.681913i \(0.761148\pi\)
\(140\) 0 0
\(141\) −18.6721 + 7.73423i −1.57247 + 0.651340i
\(142\) 0 0
\(143\) −1.64807 0.682655i −0.137819 0.0570865i
\(144\) 0 0
\(145\) −22.8471 + 22.8471i −1.89735 + 1.89735i
\(146\) 0 0
\(147\) 0.524996 1.26745i 0.0433009 0.104538i
\(148\) 0 0
\(149\) 1.87441i 0.153558i −0.997048 0.0767788i \(-0.975536\pi\)
0.997048 0.0767788i \(-0.0244635\pi\)
\(150\) 0 0
\(151\) −13.5689 13.5689i −1.10422 1.10422i −0.993895 0.110329i \(-0.964810\pi\)
−0.110329 0.993895i \(-0.535190\pi\)
\(152\) 0 0
\(153\) 6.27910 + 5.43682i 0.507635 + 0.439541i
\(154\) 0 0
\(155\) 5.03100 + 5.03100i 0.404100 + 0.404100i
\(156\) 0 0
\(157\) 15.8204i 1.26261i −0.775537 0.631303i \(-0.782521\pi\)
0.775537 0.631303i \(-0.217479\pi\)
\(158\) 0 0
\(159\) 11.9773 28.9157i 0.949858 2.29316i
\(160\) 0 0
\(161\) 0.962107 0.962107i 0.0758247 0.0758247i
\(162\) 0 0
\(163\) 8.45516 + 3.50224i 0.662259 + 0.274317i 0.688389 0.725342i \(-0.258318\pi\)
−0.0261297 + 0.999659i \(0.508318\pi\)
\(164\) 0 0
\(165\) −7.21586 + 2.98891i −0.561754 + 0.232686i
\(166\) 0 0
\(167\) −2.75273 6.64567i −0.213013 0.514258i 0.780871 0.624693i \(-0.214776\pi\)
−0.993883 + 0.110435i \(0.964776\pi\)
\(168\) 0 0
\(169\) 10.1658 0.781981
\(170\) 0 0
\(171\) −11.0864 −0.847798
\(172\) 0 0
\(173\) −1.01910 2.46032i −0.0774806 0.187055i 0.880393 0.474245i \(-0.157279\pi\)
−0.957874 + 0.287190i \(0.907279\pi\)
\(174\) 0 0
\(175\) −14.8744 + 6.16116i −1.12440 + 0.465740i
\(176\) 0 0
\(177\) −23.1727 9.59846i −1.74177 0.721464i
\(178\) 0 0
\(179\) 10.3427 10.3427i 0.773052 0.773052i −0.205587 0.978639i \(-0.565910\pi\)
0.978639 + 0.205587i \(0.0659103\pi\)
\(180\) 0 0
\(181\) −4.46735 + 10.7851i −0.332056 + 0.801653i 0.666373 + 0.745618i \(0.267846\pi\)
−0.998429 + 0.0560350i \(0.982154\pi\)
\(182\) 0 0
\(183\) 15.0147i 1.10992i
\(184\) 0 0
\(185\) 8.00567 + 8.00567i 0.588589 + 0.588589i
\(186\) 0 0
\(187\) −4.14579 1.37815i −0.303170 0.100781i
\(188\) 0 0
\(189\) 4.30569 + 4.30569i 0.313193 + 0.313193i
\(190\) 0 0
\(191\) 18.0751i 1.30787i 0.756552 + 0.653933i \(0.226882\pi\)
−0.756552 + 0.653933i \(0.773118\pi\)
\(192\) 0 0
\(193\) 0.540968 1.30601i 0.0389397 0.0940088i −0.903213 0.429192i \(-0.858798\pi\)
0.942153 + 0.335183i \(0.108798\pi\)
\(194\) 0 0
\(195\) −8.77472 + 8.77472i −0.628371 + 0.628371i
\(196\) 0 0
\(197\) −1.08112 0.447816i −0.0770268 0.0319055i 0.343837 0.939029i \(-0.388273\pi\)
−0.420864 + 0.907124i \(0.638273\pi\)
\(198\) 0 0
\(199\) −16.8615 + 6.98424i −1.19528 + 0.495100i −0.889470 0.456994i \(-0.848926\pi\)
−0.305807 + 0.952094i \(0.598926\pi\)
\(200\) 0 0
\(201\) 4.19065 + 10.1171i 0.295585 + 0.713606i
\(202\) 0 0
\(203\) 27.0829 1.90085
\(204\) 0 0
\(205\) −23.3343 −1.62974
\(206\) 0 0
\(207\) −0.380160 0.917788i −0.0264230 0.0637907i
\(208\) 0 0
\(209\) 5.38756 2.23160i 0.372665 0.154363i
\(210\) 0 0
\(211\) −22.0103 9.11698i −1.51525 0.627639i −0.538620 0.842549i \(-0.681054\pi\)
−0.976634 + 0.214910i \(0.931054\pi\)
\(212\) 0 0
\(213\) 9.19684 9.19684i 0.630157 0.630157i
\(214\) 0 0
\(215\) 12.7293 30.7311i 0.868128 2.09585i
\(216\) 0 0
\(217\) 5.96374i 0.404845i
\(218\) 0 0
\(219\) 0.0206296 + 0.0206296i 0.00139402 + 0.00139402i
\(220\) 0 0
\(221\) −6.92347 + 0.497739i −0.465723 + 0.0334816i
\(222\) 0 0
\(223\) −0.285633 0.285633i −0.0191274 0.0191274i 0.697478 0.716606i \(-0.254305\pi\)
−0.716606 + 0.697478i \(0.754305\pi\)
\(224\) 0 0
\(225\) 11.7547i 0.783647i
\(226\) 0 0
\(227\) −4.65203 + 11.2310i −0.308766 + 0.745427i 0.690980 + 0.722874i \(0.257179\pi\)
−0.999746 + 0.0225527i \(0.992821\pi\)
\(228\) 0 0
\(229\) 9.14708 9.14708i 0.604456 0.604456i −0.337036 0.941492i \(-0.609424\pi\)
0.941492 + 0.337036i \(0.109424\pi\)
\(230\) 0 0
\(231\) 6.04836 + 2.50531i 0.397953 + 0.164837i
\(232\) 0 0
\(233\) −10.8316 + 4.48660i −0.709602 + 0.293927i −0.708140 0.706072i \(-0.750465\pi\)
−0.00146198 + 0.999999i \(0.500465\pi\)
\(234\) 0 0
\(235\) −11.3690 27.4473i −0.741634 1.79046i
\(236\) 0 0
\(237\) 24.3012 1.57853
\(238\) 0 0
\(239\) 3.82714 0.247557 0.123779 0.992310i \(-0.460499\pi\)
0.123779 + 0.992310i \(0.460499\pi\)
\(240\) 0 0
\(241\) 5.74869 + 13.8786i 0.370306 + 0.893997i 0.993698 + 0.112088i \(0.0357539\pi\)
−0.623392 + 0.781909i \(0.714246\pi\)
\(242\) 0 0
\(243\) 16.6101 6.88012i 1.06554 0.441360i
\(244\) 0 0
\(245\) 1.86311 + 0.771725i 0.119030 + 0.0493037i
\(246\) 0 0
\(247\) 6.55145 6.55145i 0.416859 0.416859i
\(248\) 0 0
\(249\) 12.6045 30.4299i 0.798776 1.92842i
\(250\) 0 0
\(251\) 17.9018i 1.12995i 0.825108 + 0.564975i \(0.191114\pi\)
−0.825108 + 0.564975i \(0.808886\pi\)
\(252\) 0 0
\(253\) 0.369487 + 0.369487i 0.0232294 + 0.0232294i
\(254\) 0 0
\(255\) −19.8938 + 22.9758i −1.24580 + 1.43880i
\(256\) 0 0
\(257\) −2.49552 2.49552i −0.155666 0.155666i 0.624977 0.780643i \(-0.285108\pi\)
−0.780643 + 0.624977i \(0.785108\pi\)
\(258\) 0 0
\(259\) 9.48991i 0.589674i
\(260\) 0 0
\(261\) 7.56701 18.2684i 0.468386 1.13078i
\(262\) 0 0
\(263\) −2.26587 + 2.26587i −0.139720 + 0.139720i −0.773507 0.633788i \(-0.781499\pi\)
0.633788 + 0.773507i \(0.281499\pi\)
\(264\) 0 0
\(265\) 42.5050 + 17.6061i 2.61106 + 1.08154i
\(266\) 0 0
\(267\) −22.3501 + 9.25770i −1.36780 + 0.566562i
\(268\) 0 0
\(269\) 4.17362 + 10.0760i 0.254470 + 0.614346i 0.998555 0.0537396i \(-0.0171141\pi\)
−0.744085 + 0.668085i \(0.767114\pi\)
\(270\) 0 0
\(271\) −31.2682 −1.89941 −0.949703 0.313153i \(-0.898615\pi\)
−0.949703 + 0.313153i \(0.898615\pi\)
\(272\) 0 0
\(273\) 10.4015 0.629530
\(274\) 0 0
\(275\) −2.36613 5.71233i −0.142683 0.344467i
\(276\) 0 0
\(277\) 11.7163 4.85303i 0.703962 0.291590i −0.00184167 0.999998i \(-0.500586\pi\)
0.705803 + 0.708408i \(0.250586\pi\)
\(278\) 0 0
\(279\) −4.02275 1.66628i −0.240836 0.0997574i
\(280\) 0 0
\(281\) −11.2781 + 11.2781i −0.672794 + 0.672794i −0.958359 0.285565i \(-0.907819\pi\)
0.285565 + 0.958359i \(0.407819\pi\)
\(282\) 0 0
\(283\) 2.70550 6.53165i 0.160825 0.388266i −0.822840 0.568273i \(-0.807612\pi\)
0.983665 + 0.180007i \(0.0576119\pi\)
\(284\) 0 0
\(285\) 40.5661i 2.40293i
\(286\) 0 0
\(287\) 13.8302 + 13.8302i 0.816371 + 0.816371i
\(288\) 0 0
\(289\) −16.8252 + 2.43175i −0.989716 + 0.143044i
\(290\) 0 0
\(291\) −13.4326 13.4326i −0.787435 0.787435i
\(292\) 0 0
\(293\) 6.41620i 0.374838i 0.982280 + 0.187419i \(0.0600123\pi\)
−0.982280 + 0.187419i \(0.939988\pi\)
\(294\) 0 0
\(295\) 14.1094 34.0631i 0.821480 1.98323i
\(296\) 0 0
\(297\) −1.65355 + 1.65355i −0.0959489 + 0.0959489i
\(298\) 0 0
\(299\) 0.767016 + 0.317709i 0.0443577 + 0.0183736i
\(300\) 0 0
\(301\) −25.7589 + 10.6697i −1.48472 + 0.614992i
\(302\) 0 0
\(303\) −13.6797 33.0256i −0.785876 1.89727i
\(304\) 0 0
\(305\) −22.0711 −1.26379
\(306\) 0 0
\(307\) −30.6680 −1.75031 −0.875157 0.483839i \(-0.839242\pi\)
−0.875157 + 0.483839i \(0.839242\pi\)
\(308\) 0 0
\(309\) −1.49184 3.60163i −0.0848680 0.204890i
\(310\) 0 0
\(311\) 14.0406 5.81579i 0.796167 0.329783i 0.0527468 0.998608i \(-0.483202\pi\)
0.743420 + 0.668825i \(0.233202\pi\)
\(312\) 0 0
\(313\) 2.39329 + 0.991333i 0.135277 + 0.0560335i 0.449295 0.893384i \(-0.351675\pi\)
−0.314018 + 0.949417i \(0.601675\pi\)
\(314\) 0 0
\(315\) 12.9368 12.9368i 0.728907 0.728907i
\(316\) 0 0
\(317\) 5.40627 13.0519i 0.303646 0.733067i −0.696237 0.717812i \(-0.745144\pi\)
0.999884 0.0152556i \(-0.00485621\pi\)
\(318\) 0 0
\(319\) 10.4009i 0.582339i
\(320\) 0 0
\(321\) −1.16397 1.16397i −0.0649666 0.0649666i
\(322\) 0 0
\(323\) 14.8533 17.1544i 0.826459 0.954495i
\(324\) 0 0
\(325\) −6.94638 6.94638i −0.385316 0.385316i
\(326\) 0 0
\(327\) 28.2480i 1.56212i
\(328\) 0 0
\(329\) −9.52956 + 23.0064i −0.525382 + 1.26838i
\(330\) 0 0
\(331\) −14.4317 + 14.4317i −0.793239 + 0.793239i −0.982019 0.188781i \(-0.939546\pi\)
0.188781 + 0.982019i \(0.439546\pi\)
\(332\) 0 0
\(333\) −6.40127 2.65149i −0.350787 0.145301i
\(334\) 0 0
\(335\) −14.8718 + 6.16010i −0.812533 + 0.336562i
\(336\) 0 0
\(337\) −1.67449 4.04257i −0.0912152 0.220213i 0.871687 0.490063i \(-0.163026\pi\)
−0.962903 + 0.269849i \(0.913026\pi\)
\(338\) 0 0
\(339\) −20.6181 −1.11982
\(340\) 0 0
\(341\) 2.29031 0.124027
\(342\) 0 0
\(343\) 6.74417 + 16.2819i 0.364151 + 0.879139i
\(344\) 0 0
\(345\) 3.35827 1.39104i 0.180803 0.0748912i
\(346\) 0 0
\(347\) −11.3597 4.70533i −0.609820 0.252596i 0.0563318 0.998412i \(-0.482060\pi\)
−0.666151 + 0.745817i \(0.732060\pi\)
\(348\) 0 0
\(349\) 3.23178 3.23178i 0.172993 0.172993i −0.615300 0.788293i \(-0.710965\pi\)
0.788293 + 0.615300i \(0.210965\pi\)
\(350\) 0 0
\(351\) −1.42183 + 3.43261i −0.0758918 + 0.183219i
\(352\) 0 0
\(353\) 16.3984i 0.872797i 0.899754 + 0.436398i \(0.143746\pi\)
−0.899754 + 0.436398i \(0.856254\pi\)
\(354\) 0 0
\(355\) 13.5190 + 13.5190i 0.717515 + 0.717515i
\(356\) 0 0
\(357\) 25.4088 1.82668i 1.34478 0.0966782i
\(358\) 0 0
\(359\) 2.33907 + 2.33907i 0.123452 + 0.123452i 0.766133 0.642682i \(-0.222178\pi\)
−0.642682 + 0.766133i \(0.722178\pi\)
\(360\) 0 0
\(361\) 11.2878i 0.594094i
\(362\) 0 0
\(363\) 8.46422 20.4344i 0.444256 1.07253i
\(364\) 0 0
\(365\) −0.0303248 + 0.0303248i −0.00158727 + 0.00158727i
\(366\) 0 0
\(367\) 17.4631 + 7.23347i 0.911568 + 0.377584i 0.788657 0.614834i \(-0.210777\pi\)
0.122911 + 0.992418i \(0.460777\pi\)
\(368\) 0 0
\(369\) 13.1931 5.46477i 0.686807 0.284485i
\(370\) 0 0
\(371\) −14.7575 35.6278i −0.766172 1.84970i
\(372\) 0 0
\(373\) −7.12337 −0.368834 −0.184417 0.982848i \(-0.559040\pi\)
−0.184417 + 0.982848i \(0.559040\pi\)
\(374\) 0 0
\(375\) −6.15625 −0.317907
\(376\) 0 0
\(377\) 6.32392 + 15.2673i 0.325698 + 0.786305i
\(378\) 0 0
\(379\) −16.6843 + 6.91086i −0.857015 + 0.354987i −0.767539 0.641002i \(-0.778519\pi\)
−0.0894754 + 0.995989i \(0.528519\pi\)
\(380\) 0 0
\(381\) 4.29331 + 1.77835i 0.219953 + 0.0911074i
\(382\) 0 0
\(383\) 16.4285 16.4285i 0.839458 0.839458i −0.149329 0.988788i \(-0.547711\pi\)
0.988788 + 0.149329i \(0.0477115\pi\)
\(384\) 0 0
\(385\) −3.68272 + 8.89087i −0.187689 + 0.453121i
\(386\) 0 0
\(387\) 20.3564i 1.03478i
\(388\) 0 0
\(389\) −8.09228 8.09228i −0.410295 0.410295i 0.471546 0.881841i \(-0.343696\pi\)
−0.881841 + 0.471546i \(0.843696\pi\)
\(390\) 0 0
\(391\) 1.92946 + 0.641395i 0.0975768 + 0.0324368i
\(392\) 0 0
\(393\) −34.9665 34.9665i −1.76383 1.76383i
\(394\) 0 0
\(395\) 35.7219i 1.79736i
\(396\) 0 0
\(397\) −6.60415 + 15.9438i −0.331453 + 0.800197i 0.667025 + 0.745035i \(0.267567\pi\)
−0.998477 + 0.0551618i \(0.982433\pi\)
\(398\) 0 0
\(399\) −24.0435 + 24.0435i −1.20368 + 1.20368i
\(400\) 0 0
\(401\) −3.79088 1.57023i −0.189307 0.0784137i 0.286016 0.958225i \(-0.407669\pi\)
−0.475323 + 0.879811i \(0.657669\pi\)
\(402\) 0 0
\(403\) 3.36190 1.39255i 0.167468 0.0693676i
\(404\) 0 0
\(405\) 13.8379 + 33.4077i 0.687613 + 1.66004i
\(406\) 0 0
\(407\) 3.64450 0.180651
\(408\) 0 0
\(409\) −7.26084 −0.359025 −0.179513 0.983756i \(-0.557452\pi\)
−0.179513 + 0.983756i \(0.557452\pi\)
\(410\) 0 0
\(411\) −2.52128 6.08692i −0.124366 0.300246i
\(412\) 0 0
\(413\) −28.5518 + 11.8265i −1.40494 + 0.581946i
\(414\) 0 0
\(415\) 44.7308 + 18.5281i 2.19575 + 0.909509i
\(416\) 0 0
\(417\) 13.0714 13.0714i 0.640111 0.640111i
\(418\) 0 0
\(419\) 4.41187 10.6512i 0.215534 0.520345i −0.778723 0.627368i \(-0.784132\pi\)
0.994256 + 0.107024i \(0.0341320\pi\)
\(420\) 0 0
\(421\) 19.0719i 0.929509i 0.885439 + 0.464755i \(0.153857\pi\)
−0.885439 + 0.464755i \(0.846143\pi\)
\(422\) 0 0
\(423\) 12.8560 + 12.8560i 0.625082 + 0.625082i
\(424\) 0 0
\(425\) −18.1885 15.7487i −0.882270 0.763923i
\(426\) 0 0
\(427\) 13.0815 + 13.0815i 0.633060 + 0.633060i
\(428\) 0 0
\(429\) 3.99460i 0.192861i
\(430\) 0 0
\(431\) −0.379306 + 0.915725i −0.0182705 + 0.0441089i −0.932752 0.360520i \(-0.882599\pi\)
0.914481 + 0.404629i \(0.132599\pi\)
\(432\) 0 0
\(433\) 1.21635 1.21635i 0.0584542 0.0584542i −0.677275 0.735730i \(-0.736839\pi\)
0.735730 + 0.677275i \(0.236839\pi\)
\(434\) 0 0
\(435\) 66.8457 + 27.6884i 3.20500 + 1.32756i
\(436\) 0 0
\(437\) −2.50738 + 1.03859i −0.119944 + 0.0496825i
\(438\) 0 0
\(439\) 4.34180 + 10.4820i 0.207223 + 0.500280i 0.992984 0.118250i \(-0.0377284\pi\)
−0.785761 + 0.618530i \(0.787728\pi\)
\(440\) 0 0
\(441\) −1.23413 −0.0587681
\(442\) 0 0
\(443\) −19.3737 −0.920473 −0.460236 0.887796i \(-0.652235\pi\)
−0.460236 + 0.887796i \(0.652235\pi\)
\(444\) 0 0
\(445\) −13.6085 32.8538i −0.645104 1.55742i
\(446\) 0 0
\(447\) −3.87785 + 1.60626i −0.183416 + 0.0759735i
\(448\) 0 0
\(449\) 31.8505 + 13.1929i 1.50312 + 0.622612i 0.974124 0.226013i \(-0.0725693\pi\)
0.528994 + 0.848625i \(0.322569\pi\)
\(450\) 0 0
\(451\) −5.31134 + 5.31134i −0.250101 + 0.250101i
\(452\) 0 0
\(453\) −16.4442 + 39.6997i −0.772615 + 1.86526i
\(454\) 0 0
\(455\) 15.2899i 0.716801i
\(456\) 0 0
\(457\) −19.7453 19.7453i −0.923647 0.923647i 0.0736385 0.997285i \(-0.476539\pi\)
−0.997285 + 0.0736385i \(0.976539\pi\)
\(458\) 0 0
\(459\) −2.87042 + 8.63485i −0.133980 + 0.403040i
\(460\) 0 0
\(461\) 2.22594 + 2.22594i 0.103672 + 0.103672i 0.757040 0.653368i \(-0.226645\pi\)
−0.653368 + 0.757040i \(0.726645\pi\)
\(462\) 0 0
\(463\) 8.05071i 0.374148i −0.982346 0.187074i \(-0.940100\pi\)
0.982346 0.187074i \(-0.0599005\pi\)
\(464\) 0 0
\(465\) 6.09707 14.7196i 0.282745 0.682606i
\(466\) 0 0
\(467\) −9.60145 + 9.60145i −0.444302 + 0.444302i −0.893455 0.449153i \(-0.851726\pi\)
0.449153 + 0.893455i \(0.351726\pi\)
\(468\) 0 0
\(469\) 12.4656 + 5.16341i 0.575607 + 0.238424i
\(470\) 0 0
\(471\) −32.7299 + 13.5572i −1.50811 + 0.624681i
\(472\) 0 0
\(473\) −4.09758 9.89244i −0.188407 0.454855i
\(474\) 0 0
\(475\) 32.1136 1.47347
\(476\) 0 0
\(477\) −28.1554 −1.28915
\(478\) 0 0
\(479\) −9.75660 23.5545i −0.445791 1.07623i −0.973884 0.227047i \(-0.927093\pi\)
0.528093 0.849186i \(-0.322907\pi\)
\(480\) 0 0
\(481\) 5.34969 2.21591i 0.243925 0.101037i
\(482\) 0 0
\(483\) −2.81492 1.16598i −0.128083 0.0530538i
\(484\) 0 0
\(485\) 19.7455 19.7455i 0.896596 0.896596i
\(486\) 0 0
\(487\) −4.67614 + 11.2892i −0.211896 + 0.511562i −0.993715 0.111944i \(-0.964292\pi\)
0.781819 + 0.623506i \(0.214292\pi\)
\(488\) 0 0
\(489\) 20.4936i 0.926752i
\(490\) 0 0
\(491\) 20.5776 + 20.5776i 0.928653 + 0.928653i 0.997619 0.0689658i \(-0.0219700\pi\)
−0.0689658 + 0.997619i \(0.521970\pi\)
\(492\) 0 0
\(493\) 18.1292 + 36.1842i 0.816498 + 1.62966i
\(494\) 0 0
\(495\) 4.96824 + 4.96824i 0.223306 + 0.223306i
\(496\) 0 0
\(497\) 16.0254i 0.718839i
\(498\) 0 0
\(499\) 14.8029 35.7374i 0.662669 1.59983i −0.130935 0.991391i \(-0.541798\pi\)
0.793604 0.608434i \(-0.208202\pi\)
\(500\) 0 0
\(501\) −11.3899 + 11.3899i −0.508864 + 0.508864i
\(502\) 0 0
\(503\) 18.4457 + 7.64044i 0.822451 + 0.340670i 0.753910 0.656978i \(-0.228165\pi\)
0.0685414 + 0.997648i \(0.478165\pi\)
\(504\) 0 0
\(505\) 48.5465 20.1086i 2.16029 0.894822i
\(506\) 0 0
\(507\) −8.71146 21.0313i −0.386890 0.934034i
\(508\) 0 0
\(509\) 6.53333 0.289585 0.144792 0.989462i \(-0.453749\pi\)
0.144792 + 0.989462i \(0.453749\pi\)
\(510\) 0 0
\(511\) 0.0359469 0.00159020
\(512\) 0 0
\(513\) −4.64798 11.2212i −0.205213 0.495428i
\(514\) 0 0
\(515\) 5.29426 2.19296i 0.233293 0.0966332i
\(516\) 0 0
\(517\) −8.83536 3.65972i −0.388578 0.160954i
\(518\) 0 0
\(519\) −4.21670 + 4.21670i −0.185093 + 0.185093i
\(520\) 0 0
\(521\) 8.41129 20.3067i 0.368505 0.889651i −0.625490 0.780232i \(-0.715101\pi\)
0.993996 0.109419i \(-0.0348990\pi\)
\(522\) 0 0
\(523\) 20.3613i 0.890336i 0.895447 + 0.445168i \(0.146856\pi\)
−0.895447 + 0.445168i \(0.853144\pi\)
\(524\) 0 0
\(525\) 25.4929 + 25.4929i 1.11260 + 1.11260i
\(526\) 0 0
\(527\) 7.96788 3.99211i 0.347086 0.173899i
\(528\) 0 0
\(529\) 16.0915 + 16.0915i 0.699630 + 0.699630i
\(530\) 0 0
\(531\) 22.5635i 0.979173i
\(532\) 0 0
\(533\) −4.56703 + 11.0258i −0.197820 + 0.477580i
\(534\) 0 0
\(535\) 1.71100 1.71100i 0.0739729 0.0739729i
\(536\) 0 0
\(537\) −30.2606 12.5343i −1.30584 0.540897i
\(538\) 0 0
\(539\) 0.599740 0.248420i 0.0258326 0.0107002i
\(540\) 0 0
\(541\) −7.06544 17.0575i −0.303767 0.733358i −0.999881 0.0154270i \(-0.995089\pi\)
0.696114 0.717931i \(-0.254911\pi\)
\(542\) 0 0
\(543\) 26.1410 1.12182
\(544\) 0 0
\(545\) 41.5236 1.77868
\(546\) 0 0
\(547\) −4.44540 10.7322i −0.190072 0.458874i 0.799901 0.600132i \(-0.204885\pi\)
−0.989973 + 0.141258i \(0.954885\pi\)
\(548\) 0 0
\(549\) 12.4789 5.16895i 0.532588 0.220605i
\(550\) 0 0
\(551\) −49.9088 20.6729i −2.12619 0.880695i
\(552\) 0 0
\(553\) 21.1723 21.1723i 0.900338 0.900338i
\(554\) 0 0
\(555\) 9.70206 23.4228i 0.411830 0.994245i
\(556\) 0 0
\(557\) 42.1765i 1.78708i 0.448986 + 0.893539i \(0.351785\pi\)
−0.448986 + 0.893539i \(0.648215\pi\)
\(558\) 0 0
\(559\) −12.0295 12.0295i −0.508795 0.508795i
\(560\) 0 0
\(561\) 0.701517 + 9.75797i 0.0296181 + 0.411982i
\(562\) 0 0
\(563\) 23.4910 + 23.4910i 0.990026 + 0.990026i 0.999951 0.00992515i \(-0.00315933\pi\)
−0.00992515 + 0.999951i \(0.503159\pi\)
\(564\) 0 0
\(565\) 30.3078i 1.27506i
\(566\) 0 0
\(567\) 11.5990 28.0025i 0.487113 1.17599i
\(568\) 0 0
\(569\) −30.8907 + 30.8907i −1.29501 + 1.29501i −0.363356 + 0.931650i \(0.618369\pi\)
−0.931650 + 0.363356i \(0.881631\pi\)
\(570\) 0 0
\(571\) −5.75444 2.38357i −0.240816 0.0997491i 0.259012 0.965874i \(-0.416603\pi\)
−0.499827 + 0.866125i \(0.666603\pi\)
\(572\) 0 0
\(573\) 37.3944 15.4893i 1.56218 0.647074i
\(574\) 0 0
\(575\) 1.10120 + 2.65853i 0.0459231 + 0.110868i
\(576\) 0 0
\(577\) −19.1580 −0.797559 −0.398779 0.917047i \(-0.630566\pi\)
−0.398779 + 0.917047i \(0.630566\pi\)
\(578\) 0 0
\(579\) −3.16551 −0.131554
\(580\) 0 0
\(581\) −15.5303 37.4935i −0.644306 1.55549i
\(582\) 0 0
\(583\) 13.6825 5.66746i 0.566670 0.234722i
\(584\) 0 0
\(585\) 10.3136 + 4.27202i 0.426413 + 0.176626i
\(586\) 0 0
\(587\) 7.98915 7.98915i 0.329748 0.329748i −0.522743 0.852490i \(-0.675091\pi\)
0.852490 + 0.522743i \(0.175091\pi\)
\(588\) 0 0
\(589\) −4.55224 + 10.9901i −0.187572 + 0.452838i
\(590\) 0 0
\(591\) 2.62042i 0.107790i
\(592\) 0 0
\(593\) −6.37675 6.37675i −0.261862 0.261862i 0.563948 0.825810i \(-0.309282\pi\)
−0.825810 + 0.563948i \(0.809282\pi\)
\(594\) 0 0
\(595\) 2.68516 + 37.3500i 0.110081 + 1.53120i
\(596\) 0 0
\(597\) 28.8986 + 28.8986i 1.18274 + 1.18274i
\(598\) 0 0
\(599\) 3.04853i 0.124560i −0.998059 0.0622799i \(-0.980163\pi\)
0.998059 0.0622799i \(-0.0198371\pi\)
\(600\) 0 0
\(601\) −12.3244 + 29.7538i −0.502723 + 1.21368i 0.445272 + 0.895396i \(0.353107\pi\)
−0.947995 + 0.318286i \(0.896893\pi\)
\(602\) 0 0
\(603\) 6.96580 6.96580i 0.283669 0.283669i
\(604\) 0 0
\(605\) 30.0379 + 12.4421i 1.22121 + 0.505843i
\(606\) 0 0
\(607\) −9.49541 + 3.93313i −0.385407 + 0.159641i −0.566970 0.823739i \(-0.691884\pi\)
0.181563 + 0.983379i \(0.441884\pi\)
\(608\) 0 0
\(609\) −23.2085 56.0303i −0.940455 2.27046i
\(610\) 0 0
\(611\) −15.1944 −0.614701
\(612\) 0 0
\(613\) 11.9951 0.484479 0.242239 0.970216i \(-0.422118\pi\)
0.242239 + 0.970216i \(0.422118\pi\)
\(614\) 0 0
\(615\) 19.9961 + 48.2749i 0.806321 + 1.94663i
\(616\) 0 0
\(617\) −0.334925 + 0.138730i −0.0134836 + 0.00558508i −0.389415 0.921062i \(-0.627323\pi\)
0.375931 + 0.926647i \(0.377323\pi\)
\(618\) 0 0
\(619\) 38.5560 + 15.9704i 1.54970 + 0.641905i 0.983261 0.182201i \(-0.0583223\pi\)
0.566435 + 0.824107i \(0.308322\pi\)
\(620\) 0 0
\(621\) 0.769567 0.769567i 0.0308816 0.0308816i
\(622\) 0 0
\(623\) −11.4067 + 27.5382i −0.456999 + 1.10329i
\(624\) 0 0
\(625\) 20.1265i 0.805060i
\(626\) 0 0
\(627\) −9.23365 9.23365i −0.368756 0.368756i
\(628\) 0 0
\(629\) 12.6790 6.35251i 0.505546 0.253291i
\(630\) 0 0
\(631\) −9.09510 9.09510i −0.362070 0.362070i 0.502504 0.864575i \(-0.332412\pi\)
−0.864575 + 0.502504i \(0.832412\pi\)
\(632\) 0 0
\(633\) 53.3486i 2.12042i
\(634\) 0 0
\(635\) −2.61411 + 6.31101i −0.103738 + 0.250445i
\(636\) 0 0
\(637\) 0.729303 0.729303i 0.0288960 0.0288960i
\(638\) 0 0
\(639\) −10.8097 4.47753i −0.427625 0.177128i
\(640\) 0 0
\(641\) 23.2938 9.64861i 0.920050 0.381097i 0.128155 0.991754i \(-0.459095\pi\)
0.791895 + 0.610657i \(0.209095\pi\)
\(642\) 0 0
\(643\) 14.0034 + 33.8071i 0.552239 + 1.33322i 0.915793 + 0.401650i \(0.131563\pi\)
−0.363554 + 0.931573i \(0.618437\pi\)
\(644\) 0 0
\(645\) −74.4861 −2.93289
\(646\) 0 0
\(647\) −29.8075 −1.17185 −0.585926 0.810364i \(-0.699269\pi\)
−0.585926 + 0.810364i \(0.699269\pi\)
\(648\) 0 0
\(649\) −4.54185 10.9650i −0.178283 0.430414i
\(650\) 0 0
\(651\) −12.3380 + 5.11058i −0.483566 + 0.200299i
\(652\) 0 0
\(653\) −16.2966 6.75027i −0.637735 0.264159i 0.0403004 0.999188i \(-0.487169\pi\)
−0.678036 + 0.735029i \(0.737169\pi\)
\(654\) 0 0
\(655\) 51.3995 51.3995i 2.00835 2.00835i
\(656\) 0 0
\(657\) 0.0100436 0.0242475i 0.000391839 0.000945983i
\(658\) 0 0
\(659\) 39.1712i 1.52589i 0.646462 + 0.762946i \(0.276248\pi\)
−0.646462 + 0.762946i \(0.723752\pi\)
\(660\) 0 0
\(661\) −11.1803 11.1803i −0.434864 0.434864i 0.455415 0.890279i \(-0.349491\pi\)
−0.890279 + 0.455415i \(0.849491\pi\)
\(662\) 0 0
\(663\) 6.96275 + 13.8970i 0.270411 + 0.539715i
\(664\) 0 0
\(665\) −35.3431 35.3431i −1.37055 1.37055i
\(666\) 0 0
\(667\) 4.84060i 0.187429i
\(668\) 0 0
\(669\) −0.346158 + 0.835699i −0.0133832 + 0.0323100i
\(670\) 0 0
\(671\) −5.02382 + 5.02382i −0.193942 + 0.193942i
\(672\) 0 0
\(673\) −23.2518 9.63121i −0.896291 0.371256i −0.113498 0.993538i \(-0.536206\pi\)
−0.782793 + 0.622282i \(0.786206\pi\)
\(674\) 0 0
\(675\) −11.8976 + 4.92816i −0.457940 + 0.189685i
\(676\) 0 0
\(677\) 15.8286 + 38.2137i 0.608344 + 1.46867i 0.864800 + 0.502116i \(0.167445\pi\)
−0.256456 + 0.966556i \(0.582555\pi\)
\(678\) 0 0
\(679\) −23.4063 −0.898250
\(680\) 0 0
\(681\) 27.2216 1.04314
\(682\) 0 0
\(683\) −8.16716 19.7173i −0.312508 0.754460i −0.999611 0.0279002i \(-0.991118\pi\)
0.687103 0.726560i \(-0.258882\pi\)
\(684\) 0 0
\(685\) 8.94755 3.70620i 0.341868 0.141606i
\(686\) 0 0
\(687\) −26.7624 11.0853i −1.02105 0.422932i
\(688\) 0 0
\(689\) 16.6383 16.6383i 0.633870 0.633870i
\(690\) 0 0
\(691\) 10.4108 25.1338i 0.396044 0.956135i −0.592551 0.805533i \(-0.701879\pi\)
0.988595 0.150602i \(-0.0481210\pi\)
\(692\) 0 0
\(693\) 5.88934i 0.223718i
\(694\) 0 0
\(695\) 19.2145 + 19.2145i 0.728849 + 0.728849i
\(696\) 0 0
\(697\) −9.22000 + 27.7358i −0.349232 + 1.05057i
\(698\) 0 0
\(699\) 18.5641 + 18.5641i 0.702159 + 0.702159i
\(700\) 0 0
\(701\) 36.8975i 1.39360i −0.717265 0.696800i \(-0.754606\pi\)
0.717265 0.696800i \(-0.245394\pi\)
\(702\) 0 0
\(703\) −7.24382 + 17.4881i −0.273206 + 0.659578i
\(704\) 0 0
\(705\) −47.0414 + 47.0414i −1.77168 + 1.77168i
\(706\) 0 0
\(707\) −40.6918 16.8551i −1.53037 0.633902i
\(708\) 0 0
\(709\) −32.8820 + 13.6202i −1.23491 + 0.511516i −0.902120 0.431485i \(-0.857990\pi\)
−0.332789 + 0.943001i \(0.607990\pi\)
\(710\) 0 0
\(711\) −8.36588 20.1970i −0.313745 0.757448i
\(712\) 0 0
\(713\) −1.06591 −0.0399188
\(714\) 0 0
\(715\) −5.87191 −0.219597
\(716\) 0 0
\(717\) −3.27964 7.91775i −0.122480 0.295694i
\(718\) 0 0
\(719\) 23.7670 9.84462i 0.886360 0.367143i 0.107400 0.994216i \(-0.465747\pi\)
0.778960 + 0.627073i \(0.215747\pi\)
\(720\) 0 0
\(721\) −4.43767 1.83814i −0.165267 0.0684560i
\(722\) 0 0
\(723\) 23.7863 23.7863i 0.884620 0.884620i
\(724\) 0 0
\(725\) −21.9191 + 52.9174i −0.814055 + 1.96530i
\(726\) 0 0
\(727\) 15.3016i 0.567505i 0.958897 + 0.283753i \(0.0915795\pi\)
−0.958897 + 0.283753i \(0.908421\pi\)
\(728\) 0 0
\(729\) −5.16431 5.16431i −0.191271 0.191271i
\(730\) 0 0
\(731\) −31.4982 27.2731i −1.16500 1.00873i
\(732\) 0 0
\(733\) −26.8539 26.8539i −0.991871 0.991871i 0.00809624 0.999967i \(-0.497423\pi\)
−0.999967 + 0.00809624i \(0.997423\pi\)
\(734\) 0 0
\(735\) 4.51580i 0.166568i
\(736\) 0 0
\(737\) −1.98295 + 4.78727i −0.0730430 + 0.176341i
\(738\) 0 0
\(739\) 24.8605 24.8605i 0.914508 0.914508i −0.0821146 0.996623i \(-0.526167\pi\)
0.996623 + 0.0821146i \(0.0261673\pi\)
\(740\) 0 0
\(741\) −19.1681 7.93969i −0.704158 0.291672i
\(742\) 0 0
\(743\) 39.6688 16.4313i 1.45531 0.602808i 0.491852 0.870679i \(-0.336320\pi\)
0.963455 + 0.267871i \(0.0863202\pi\)
\(744\) 0 0
\(745\) −2.36114 5.70030i −0.0865056 0.208843i
\(746\) 0 0
\(747\) −29.6299 −1.08410
\(748\) 0 0
\(749\) −2.02821 −0.0741093
\(750\) 0 0
\(751\) 7.59323 + 18.3317i 0.277081 + 0.668933i 0.999752 0.0222592i \(-0.00708591\pi\)
−0.722671 + 0.691192i \(0.757086\pi\)
\(752\) 0 0
\(753\) 37.0359 15.3408i 1.34966 0.559049i
\(754\) 0 0
\(755\) −58.3572 24.1723i −2.12384 0.879721i
\(756\) 0 0
\(757\) −18.8153 + 18.8153i −0.683855 + 0.683855i −0.960867 0.277012i \(-0.910656\pi\)
0.277012 + 0.960867i \(0.410656\pi\)
\(758\) 0 0
\(759\) 0.447780 1.08104i 0.0162534 0.0392392i
\(760\) 0 0
\(761\) 24.9243i 0.903505i −0.892143 0.451753i \(-0.850799\pi\)
0.892143 0.451753i \(-0.149201\pi\)
\(762\) 0 0
\(763\) −24.6110 24.6110i −0.890978 0.890978i
\(764\) 0 0
\(765\) 25.9441 + 8.62442i 0.938012 + 0.311817i
\(766\) 0 0
\(767\) −13.3338 13.3338i −0.481455 0.481455i
\(768\) 0 0
\(769\) 32.9062i 1.18663i 0.804971 + 0.593314i \(0.202181\pi\)
−0.804971 + 0.593314i \(0.797819\pi\)
\(770\) 0 0
\(771\) −3.02432 + 7.30135i −0.108918 + 0.262952i
\(772\) 0 0
\(773\) 18.8632 18.8632i 0.678463 0.678463i −0.281189 0.959652i \(-0.590729\pi\)
0.959652 + 0.281189i \(0.0907289\pi\)
\(774\) 0 0
\(775\) 11.6526 + 4.82665i 0.418573 + 0.173378i
\(776\) 0 0
\(777\) −19.6331 + 8.13230i −0.704334 + 0.291745i
\(778\) 0 0
\(779\) −14.9296 36.0433i −0.534910 1.29139i
\(780\) 0 0
\(781\) 6.15439 0.220221
\(782\) 0 0
\(783\) 21.6630 0.774172
\(784\) 0 0
\(785\) −19.9285 48.1117i −0.711280 1.71718i
\(786\) 0 0
\(787\) −42.2183 + 17.4874i −1.50492 + 0.623359i −0.974502 0.224378i \(-0.927965\pi\)
−0.530418 + 0.847736i \(0.677965\pi\)
\(788\) 0 0
\(789\) 6.62945 + 2.74601i 0.236015 + 0.0977604i
\(790\) 0 0
\(791\) −17.9634 + 17.9634i −0.638705 + 0.638705i
\(792\) 0 0
\(793\) −4.31980 + 10.4289i −0.153401 + 0.370342i
\(794\) 0 0
\(795\) 103.023i 3.65386i
\(796\) 0 0
\(797\) 9.59546 + 9.59546i 0.339889 + 0.339889i 0.856325 0.516437i \(-0.172742\pi\)
−0.516437 + 0.856325i \(0.672742\pi\)
\(798\) 0 0
\(799\) −37.1168 + 2.66839i −1.31310 + 0.0944008i
\(800\) 0 0
\(801\) 15.3884 + 15.3884i 0.543722 + 0.543722i
\(802\) 0 0
\(803\) 0.0138050i 0.000487169i
\(804\) 0 0
\(805\) 1.71394 4.13782i 0.0604086 0.145839i
\(806\) 0 0
\(807\) 17.2691 17.2691i 0.607902 0.607902i
\(808\) 0 0
\(809\) 33.0522 + 13.6907i 1.16205 + 0.481339i 0.878558 0.477635i \(-0.158506\pi\)
0.283496 + 0.958973i \(0.408506\pi\)
\(810\) 0 0
\(811\) −3.08402 + 1.27744i −0.108295 + 0.0448572i −0.436173 0.899863i \(-0.643666\pi\)
0.327878 + 0.944720i \(0.393666\pi\)
\(812\) 0 0
\(813\) 26.7950 + 64.6888i 0.939741 + 2.26874i
\(814\) 0 0
\(815\) 30.1248 1.05523
\(816\) 0 0
\(817\) 55.6133 1.94566
\(818\) 0 0
\(819\) −3.58082 8.64486i −0.125124 0.302076i
\(820\) 0 0
\(821\) 12.4758 5.16763i 0.435407 0.180351i −0.154204 0.988039i \(-0.549281\pi\)
0.589611 + 0.807688i \(0.299281\pi\)
\(822\) 0 0
\(823\) −22.3841 9.27180i −0.780261 0.323195i −0.0432400 0.999065i \(-0.513768\pi\)
−0.737021 + 0.675870i \(0.763768\pi\)
\(824\) 0 0
\(825\) −9.79027 + 9.79027i −0.340853 + 0.340853i
\(826\) 0 0
\(827\) −18.5777 + 44.8506i −0.646011 + 1.55961i 0.172431 + 0.985022i \(0.444838\pi\)
−0.818443 + 0.574588i \(0.805162\pi\)
\(828\) 0 0
\(829\) 12.5026i 0.434235i 0.976145 + 0.217117i \(0.0696655\pi\)
−0.976145 + 0.217117i \(0.930335\pi\)
\(830\) 0 0
\(831\) −20.0803 20.0803i −0.696578 0.696578i
\(832\) 0 0
\(833\) 1.65346 1.90961i 0.0572889 0.0661642i
\(834\) 0 0
\(835\) −16.7428 16.7428i −0.579407 0.579407i
\(836\) 0 0
\(837\) 4.77026i 0.164884i
\(838\) 0 0
\(839\) −10.5986 + 25.5872i −0.365903 + 0.883367i 0.628510 + 0.777802i \(0.283665\pi\)
−0.994412 + 0.105566i \(0.966335\pi\)
\(840\) 0 0
\(841\) 47.6243 47.6243i 1.64222 1.64222i
\(842\) 0 0
\(843\) 32.9972 + 13.6679i 1.13648 + 0.470747i
\(844\) 0 0
\(845\) 30.9153 12.8055i 1.06352 0.440524i
\(846\) 0 0
\(847\) −10.4290 25.1779i −0.358345 0.865121i
\(848\) 0 0
\(849\) −15.8314 −0.543332
\(850\) 0 0
\(851\) −1.69615 −0.0581434
\(852\) 0 0
\(853\) −14.6995 35.4876i −0.503300 1.21507i −0.947676 0.319233i \(-0.896575\pi\)
0.444376 0.895840i \(-0.353425\pi\)
\(854\) 0 0
\(855\) −33.7151 + 13.9652i −1.15303 + 0.477601i
\(856\) 0 0
\(857\) −17.3797 7.19892i −0.593681 0.245911i 0.0655526 0.997849i \(-0.479119\pi\)
−0.659233 + 0.751939i \(0.729119\pi\)
\(858\) 0 0
\(859\) −9.60321 + 9.60321i −0.327657 + 0.327657i −0.851695 0.524038i \(-0.824425\pi\)
0.524038 + 0.851695i \(0.324425\pi\)
\(860\) 0 0
\(861\) 16.7608 40.4642i 0.571207 1.37901i
\(862\) 0 0
\(863\) 47.9451i 1.63207i −0.578002 0.816035i \(-0.696167\pi\)
0.578002 0.816035i \(-0.303833\pi\)
\(864\) 0 0
\(865\) −6.19840 6.19840i −0.210752 0.210752i
\(866\) 0 0
\(867\) 19.4491 + 32.7247i 0.660526 + 1.11139i
\(868\) 0 0
\(869\) 8.13099 + 8.13099i 0.275825 + 0.275825i
\(870\) 0 0
\(871\) 8.23281i 0.278958i
\(872\) 0 0
\(873\) −6.53974 + 15.7883i −0.221337 + 0.534354i
\(874\) 0 0
\(875\) −5.36361 + 5.36361i −0.181323 + 0.181323i
\(876\) 0 0
\(877\) 29.4723 + 12.2078i 0.995207 + 0.412228i 0.820037 0.572310i \(-0.193953\pi\)
0.175170 + 0.984538i \(0.443953\pi\)
\(878\) 0 0
\(879\) 13.2741 5.49831i 0.447724 0.185453i
\(880\) 0 0
\(881\) −6.02818 14.5533i −0.203095 0.490314i 0.789212 0.614121i \(-0.210489\pi\)
−0.992306 + 0.123807i \(0.960489\pi\)
\(882\) 0 0
\(883\) −26.4467 −0.890001 −0.445000 0.895530i \(-0.646796\pi\)
−0.445000 + 0.895530i \(0.646796\pi\)
\(884\) 0 0
\(885\) −82.5620 −2.77529
\(886\) 0 0
\(887\) −14.1126 34.0707i −0.473853 1.14398i −0.962447 0.271471i \(-0.912490\pi\)
0.488593 0.872512i \(-0.337510\pi\)
\(888\) 0 0
\(889\) 5.28991 2.19115i 0.177418 0.0734889i
\(890\) 0 0
\(891\) 10.7540 + 4.45447i 0.360274 + 0.149230i
\(892\) 0 0
\(893\) 35.1224 35.1224i 1.17533 1.17533i
\(894\) 0 0
\(895\) 18.4250 44.4820i 0.615881 1.48687i
\(896\) 0 0
\(897\) 1.85909i 0.0620733i
\(898\) 0 0
\(899\) −15.0025 15.0025i −0.500362 0.500362i
\(900\) 0 0
\(901\) 37.7220 43.5659i 1.25670 1.45139i
\(902\) 0 0
\(903\) 44.1478 + 44.1478i 1.46915 + 1.46915i
\(904\) 0 0
\(905\) 38.4263i 1.27733i
\(906\) 0 0
\(907\) 12.3557 29.8292i 0.410263 0.990462i −0.574804 0.818291i \(-0.694922\pi\)
0.985067 0.172171i \(-0.0550781\pi\)
\(908\) 0 0
\(909\) −22.7387 + 22.7387i −0.754195 + 0.754195i
\(910\) 0 0
\(911\) 3.07875 + 1.27526i 0.102004 + 0.0422513i 0.433102 0.901345i \(-0.357419\pi\)
−0.331098 + 0.943596i \(0.607419\pi\)
\(912\) 0 0
\(913\) 14.3990 5.96425i 0.476536 0.197388i
\(914\) 0 0
\(915\) 18.9137 + 45.6616i 0.625266 + 1.50953i
\(916\) 0 0
\(917\) −60.9289 −2.01205
\(918\) 0 0
\(919\) −26.5711 −0.876501 −0.438250 0.898853i \(-0.644402\pi\)
−0.438250 + 0.898853i \(0.644402\pi\)
\(920\) 0 0
\(921\) 26.2807 + 63.4471i 0.865978 + 2.09065i
\(922\) 0 0
\(923\) 9.03391 3.74197i 0.297355 0.123168i
\(924\) 0 0
\(925\) 18.5424 + 7.68050i 0.609669 + 0.252533i
\(926\) 0 0
\(927\) −2.47978 + 2.47978i −0.0814467 + 0.0814467i
\(928\) 0 0
\(929\) −13.6323 + 32.9113i −0.447262 + 1.07979i 0.526082 + 0.850434i \(0.323661\pi\)
−0.973344 + 0.229352i \(0.926339\pi\)
\(930\) 0 0
\(931\) 3.37162i 0.110500i
\(932\) 0 0
\(933\) −24.0639 24.0639i −0.787816 0.787816i
\(934\) 0 0
\(935\) −14.3439 + 1.03120i −0.469095 + 0.0337240i
\(936\) 0 0
\(937\) −37.3294 37.3294i −1.21950 1.21950i −0.967807 0.251693i \(-0.919013\pi\)
−0.251693 0.967807i \(-0.580987\pi\)
\(938\) 0 0
\(939\) 5.80085i 0.189304i
\(940\) 0 0
\(941\) 7.21644 17.4220i 0.235249 0.567942i −0.761531 0.648129i \(-0.775552\pi\)
0.996780 + 0.0801870i \(0.0255518\pi\)
\(942\) 0 0
\(943\) 2.47190 2.47190i 0.0804963 0.0804963i
\(944\) 0 0
\(945\) 18.5179 + 7.67036i 0.602387 + 0.249517i
\(946\) 0 0
\(947\) 38.1862 15.8172i 1.24088 0.513991i 0.336894 0.941543i \(-0.390624\pi\)
0.903991 + 0.427551i \(0.140624\pi\)
\(948\) 0 0
\(949\) 0.00839368 + 0.0202641i 0.000272470 + 0.000657802i
\(950\) 0 0
\(951\) −31.6351 −1.02584
\(952\) 0 0
\(953\) 12.3861 0.401227 0.200613 0.979671i \(-0.435707\pi\)
0.200613 + 0.979671i \(0.435707\pi\)
\(954\) 0 0
\(955\) 22.7687 + 54.9685i 0.736778 + 1.77874i
\(956\) 0 0
\(957\) 21.5178 8.91297i 0.695572 0.288115i
\(958\) 0 0
\(959\) −7.49987 3.10655i −0.242183 0.100316i
\(960\) 0 0
\(961\) 18.6167 18.6167i 0.600539 0.600539i
\(962\) 0 0
\(963\) −0.566685 + 1.36810i −0.0182612 + 0.0440864i
\(964\) 0 0
\(965\) 4.65318i 0.149791i
\(966\) 0 0
\(967\) −1.24879 1.24879i −0.0401584 0.0401584i 0.686742 0.726901i \(-0.259040\pi\)
−0.726901 + 0.686742i \(0.759040\pi\)
\(968\) 0 0
\(969\) −48.2180 16.0288i −1.54899 0.514919i
\(970\) 0 0
\(971\) 5.74228 + 5.74228i 0.184278 + 0.184278i 0.793217 0.608939i \(-0.208405\pi\)
−0.608939 + 0.793217i \(0.708405\pi\)
\(972\) 0 0
\(973\) 22.7769i 0.730193i
\(974\) 0 0
\(975\) −8.41831 + 20.3236i −0.269602 + 0.650876i
\(976\) 0 0
\(977\) 18.9242 18.9242i 0.605439 0.605439i −0.336311 0.941751i \(-0.609179\pi\)
0.941751 + 0.336311i \(0.109179\pi\)
\(978\) 0 0
\(979\) −10.5757 4.38061i −0.338002 0.140005i
\(980\) 0 0
\(981\) −23.4773 + 9.72462i −0.749573 + 0.310483i
\(982\) 0 0
\(983\) 5.72176 + 13.8136i 0.182496 + 0.440584i 0.988480 0.151354i \(-0.0483632\pi\)
−0.805984 + 0.591938i \(0.798363\pi\)
\(984\) 0 0
\(985\) −3.85192 −0.122733
\(986\) 0 0
\(987\) 55.7629 1.77495
\(988\) 0 0
\(989\) 1.90702 + 4.60396i 0.0606398 + 0.146397i
\(990\) 0 0
\(991\) −9.33374 + 3.86616i −0.296496 + 0.122813i −0.525973 0.850501i \(-0.676299\pi\)
0.229477 + 0.973314i \(0.426299\pi\)
\(992\) 0 0
\(993\) 42.2240 + 17.4898i 1.33994 + 0.555021i
\(994\) 0 0
\(995\) −42.4798 + 42.4798i −1.34670 + 1.34670i
\(996\) 0 0
\(997\) 18.0136 43.4886i 0.570496 1.37730i −0.330638 0.943758i \(-0.607264\pi\)
0.901134 0.433541i \(-0.142736\pi\)
\(998\) 0 0
\(999\) 7.59075i 0.240161i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 544.2.bb.e.321.2 yes 20
4.3 odd 2 544.2.bb.f.321.4 yes 20
17.5 odd 16 9248.2.a.by.1.17 20
17.8 even 8 inner 544.2.bb.e.161.2 20
17.12 odd 16 9248.2.a.by.1.4 20
68.39 even 16 9248.2.a.bz.1.4 20
68.59 odd 8 544.2.bb.f.161.4 yes 20
68.63 even 16 9248.2.a.bz.1.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.e.161.2 20 17.8 even 8 inner
544.2.bb.e.321.2 yes 20 1.1 even 1 trivial
544.2.bb.f.161.4 yes 20 68.59 odd 8
544.2.bb.f.321.4 yes 20 4.3 odd 2
9248.2.a.by.1.4 20 17.12 odd 16
9248.2.a.by.1.17 20 17.5 odd 16
9248.2.a.bz.1.4 20 68.39 even 16
9248.2.a.bz.1.17 20 68.63 even 16