Properties

Label 9248.2.a.bz.1.17
Level $9248$
Weight $2$
Character 9248.1
Self dual yes
Analytic conductor $73.846$
Analytic rank $0$
Dimension $20$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [9248,2,Mod(1,9248)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(9248, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("9248.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 9248 = 2^{5} \cdot 17^{2} \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 9248.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(73.8456517893\)
Analytic rank: \(0\)
Dimension: \(20\)
Coefficient field: \(\mathbb{Q}[x]/(x^{20} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{20} - 40 x^{18} + 620 x^{16} - 4784 x^{14} + 19585 x^{12} - 41912 x^{10} + 43536 x^{8} - 20328 x^{6} + \cdots + 8 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 2^{10} \)
Twist minimal: no (minimal twist has level 544)
Fricke sign: \(-1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.17
Root \(0.646193\) of defining polynomial
Character \(\chi\) \(=\) 9248.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+2.23930 q^{3} +3.29169 q^{5} +2.75910 q^{7} +2.01445 q^{9} +1.05960 q^{11} +1.68352 q^{13} +7.37106 q^{15} +5.50343 q^{19} +6.17845 q^{21} +0.493141 q^{23} +5.83519 q^{25} -2.20694 q^{27} +9.81585 q^{29} +2.16148 q^{31} +2.37276 q^{33} +9.08209 q^{35} +3.43949 q^{37} +3.76990 q^{39} -7.08885 q^{41} +10.1052 q^{43} +6.63093 q^{45} -9.02539 q^{47} +0.612639 q^{49} -13.9767 q^{53} +3.48788 q^{55} +12.3238 q^{57} -11.2008 q^{59} +6.70511 q^{61} +5.55807 q^{63} +5.54162 q^{65} -4.89023 q^{67} +1.10429 q^{69} -5.80820 q^{71} -0.0130285 q^{73} +13.0667 q^{75} +2.92355 q^{77} -10.8521 q^{79} -10.9853 q^{81} -14.7087 q^{83} +21.9806 q^{87} -10.8032 q^{89} +4.64500 q^{91} +4.84020 q^{93} +18.1156 q^{95} -8.48329 q^{97} +2.13452 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 20 q + 28 q^{9} - 8 q^{13} + 16 q^{15} + 40 q^{19} - 32 q^{21} + 28 q^{25} + 32 q^{35} + 40 q^{43} + 32 q^{47} + 36 q^{49} - 40 q^{53} + 48 q^{55} + 8 q^{59} + 72 q^{67} - 48 q^{69} - 48 q^{77} + 36 q^{81}+ \cdots - 32 q^{93}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.23930 1.29286 0.646429 0.762974i \(-0.276262\pi\)
0.646429 + 0.762974i \(0.276262\pi\)
\(4\) 0 0
\(5\) 3.29169 1.47209 0.736043 0.676935i \(-0.236692\pi\)
0.736043 + 0.676935i \(0.236692\pi\)
\(6\) 0 0
\(7\) 2.75910 1.04284 0.521421 0.853300i \(-0.325402\pi\)
0.521421 + 0.853300i \(0.325402\pi\)
\(8\) 0 0
\(9\) 2.01445 0.671483
\(10\) 0 0
\(11\) 1.05960 0.319482 0.159741 0.987159i \(-0.448934\pi\)
0.159741 + 0.987159i \(0.448934\pi\)
\(12\) 0 0
\(13\) 1.68352 0.466925 0.233462 0.972366i \(-0.424994\pi\)
0.233462 + 0.972366i \(0.424994\pi\)
\(14\) 0 0
\(15\) 7.37106 1.90320
\(16\) 0 0
\(17\) 0 0
\(18\) 0 0
\(19\) 5.50343 1.26257 0.631287 0.775549i \(-0.282527\pi\)
0.631287 + 0.775549i \(0.282527\pi\)
\(20\) 0 0
\(21\) 6.17845 1.34825
\(22\) 0 0
\(23\) 0.493141 0.102827 0.0514135 0.998677i \(-0.483627\pi\)
0.0514135 + 0.998677i \(0.483627\pi\)
\(24\) 0 0
\(25\) 5.83519 1.16704
\(26\) 0 0
\(27\) −2.20694 −0.424726
\(28\) 0 0
\(29\) 9.81585 1.82276 0.911379 0.411568i \(-0.135019\pi\)
0.911379 + 0.411568i \(0.135019\pi\)
\(30\) 0 0
\(31\) 2.16148 0.388213 0.194107 0.980980i \(-0.437819\pi\)
0.194107 + 0.980980i \(0.437819\pi\)
\(32\) 0 0
\(33\) 2.37276 0.413045
\(34\) 0 0
\(35\) 9.08209 1.53515
\(36\) 0 0
\(37\) 3.43949 0.565449 0.282725 0.959201i \(-0.408762\pi\)
0.282725 + 0.959201i \(0.408762\pi\)
\(38\) 0 0
\(39\) 3.76990 0.603668
\(40\) 0 0
\(41\) −7.08885 −1.10709 −0.553546 0.832818i \(-0.686726\pi\)
−0.553546 + 0.832818i \(0.686726\pi\)
\(42\) 0 0
\(43\) 10.1052 1.54103 0.770515 0.637422i \(-0.219999\pi\)
0.770515 + 0.637422i \(0.219999\pi\)
\(44\) 0 0
\(45\) 6.63093 0.988481
\(46\) 0 0
\(47\) −9.02539 −1.31649 −0.658244 0.752805i \(-0.728700\pi\)
−0.658244 + 0.752805i \(0.728700\pi\)
\(48\) 0 0
\(49\) 0.612639 0.0875198
\(50\) 0 0
\(51\) 0 0
\(52\) 0 0
\(53\) −13.9767 −1.91985 −0.959927 0.280251i \(-0.909582\pi\)
−0.959927 + 0.280251i \(0.909582\pi\)
\(54\) 0 0
\(55\) 3.48788 0.470305
\(56\) 0 0
\(57\) 12.3238 1.63233
\(58\) 0 0
\(59\) −11.2008 −1.45822 −0.729112 0.684394i \(-0.760067\pi\)
−0.729112 + 0.684394i \(0.760067\pi\)
\(60\) 0 0
\(61\) 6.70511 0.858501 0.429251 0.903185i \(-0.358778\pi\)
0.429251 + 0.903185i \(0.358778\pi\)
\(62\) 0 0
\(63\) 5.55807 0.700251
\(64\) 0 0
\(65\) 5.54162 0.687353
\(66\) 0 0
\(67\) −4.89023 −0.597437 −0.298719 0.954341i \(-0.596559\pi\)
−0.298719 + 0.954341i \(0.596559\pi\)
\(68\) 0 0
\(69\) 1.10429 0.132941
\(70\) 0 0
\(71\) −5.80820 −0.689307 −0.344654 0.938730i \(-0.612004\pi\)
−0.344654 + 0.938730i \(0.612004\pi\)
\(72\) 0 0
\(73\) −0.0130285 −0.00152487 −0.000762435 1.00000i \(-0.500243\pi\)
−0.000762435 1.00000i \(0.500243\pi\)
\(74\) 0 0
\(75\) 13.0667 1.50882
\(76\) 0 0
\(77\) 2.92355 0.333169
\(78\) 0 0
\(79\) −10.8521 −1.22096 −0.610481 0.792031i \(-0.709024\pi\)
−0.610481 + 0.792031i \(0.709024\pi\)
\(80\) 0 0
\(81\) −10.9853 −1.22059
\(82\) 0 0
\(83\) −14.7087 −1.61449 −0.807243 0.590220i \(-0.799041\pi\)
−0.807243 + 0.590220i \(0.799041\pi\)
\(84\) 0 0
\(85\) 0 0
\(86\) 0 0
\(87\) 21.9806 2.35657
\(88\) 0 0
\(89\) −10.8032 −1.14514 −0.572568 0.819857i \(-0.694053\pi\)
−0.572568 + 0.819857i \(0.694053\pi\)
\(90\) 0 0
\(91\) 4.64500 0.486929
\(92\) 0 0
\(93\) 4.84020 0.501905
\(94\) 0 0
\(95\) 18.1156 1.85862
\(96\) 0 0
\(97\) −8.48329 −0.861348 −0.430674 0.902508i \(-0.641724\pi\)
−0.430674 + 0.902508i \(0.641724\pi\)
\(98\) 0 0
\(99\) 2.13452 0.214527
\(100\) 0 0
\(101\) −15.9634 −1.58841 −0.794207 0.607647i \(-0.792113\pi\)
−0.794207 + 0.607647i \(0.792113\pi\)
\(102\) 0 0
\(103\) −1.74089 −0.171535 −0.0857676 0.996315i \(-0.527334\pi\)
−0.0857676 + 0.996315i \(0.527334\pi\)
\(104\) 0 0
\(105\) 20.3375 1.98474
\(106\) 0 0
\(107\) −0.735099 −0.0710647 −0.0355324 0.999369i \(-0.511313\pi\)
−0.0355324 + 0.999369i \(0.511313\pi\)
\(108\) 0 0
\(109\) 12.6147 1.20827 0.604134 0.796883i \(-0.293519\pi\)
0.604134 + 0.796883i \(0.293519\pi\)
\(110\) 0 0
\(111\) 7.70205 0.731046
\(112\) 0 0
\(113\) −9.20738 −0.866158 −0.433079 0.901356i \(-0.642573\pi\)
−0.433079 + 0.901356i \(0.642573\pi\)
\(114\) 0 0
\(115\) 1.62326 0.151370
\(116\) 0 0
\(117\) 3.39137 0.313532
\(118\) 0 0
\(119\) 0 0
\(120\) 0 0
\(121\) −9.87724 −0.897931
\(122\) 0 0
\(123\) −15.8740 −1.43131
\(124\) 0 0
\(125\) 2.74919 0.245895
\(126\) 0 0
\(127\) 2.07522 0.184146 0.0920732 0.995752i \(-0.470651\pi\)
0.0920732 + 0.995752i \(0.470651\pi\)
\(128\) 0 0
\(129\) 22.6286 1.99233
\(130\) 0 0
\(131\) 22.0829 1.92939 0.964695 0.263370i \(-0.0848339\pi\)
0.964695 + 0.263370i \(0.0848339\pi\)
\(132\) 0 0
\(133\) 15.1845 1.31667
\(134\) 0 0
\(135\) −7.26455 −0.625233
\(136\) 0 0
\(137\) 2.94219 0.251368 0.125684 0.992070i \(-0.459887\pi\)
0.125684 + 0.992070i \(0.459887\pi\)
\(138\) 0 0
\(139\) −8.25518 −0.700195 −0.350098 0.936713i \(-0.613852\pi\)
−0.350098 + 0.936713i \(0.613852\pi\)
\(140\) 0 0
\(141\) −20.2105 −1.70203
\(142\) 0 0
\(143\) 1.78386 0.149174
\(144\) 0 0
\(145\) 32.3107 2.68326
\(146\) 0 0
\(147\) 1.37188 0.113151
\(148\) 0 0
\(149\) 1.87441 0.153558 0.0767788 0.997048i \(-0.475536\pi\)
0.0767788 + 0.997048i \(0.475536\pi\)
\(150\) 0 0
\(151\) 19.1894 1.56161 0.780804 0.624776i \(-0.214810\pi\)
0.780804 + 0.624776i \(0.214810\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) 0 0
\(155\) 7.11491 0.571484
\(156\) 0 0
\(157\) −15.8204 −1.26261 −0.631303 0.775537i \(-0.717479\pi\)
−0.631303 + 0.775537i \(0.717479\pi\)
\(158\) 0 0
\(159\) −31.2981 −2.48210
\(160\) 0 0
\(161\) 1.36062 0.107232
\(162\) 0 0
\(163\) 9.15180 0.716824 0.358412 0.933563i \(-0.383318\pi\)
0.358412 + 0.933563i \(0.383318\pi\)
\(164\) 0 0
\(165\) 7.81039 0.608038
\(166\) 0 0
\(167\) −7.19323 −0.556629 −0.278314 0.960490i \(-0.589776\pi\)
−0.278314 + 0.960490i \(0.589776\pi\)
\(168\) 0 0
\(169\) −10.1658 −0.781981
\(170\) 0 0
\(171\) 11.0864 0.847798
\(172\) 0 0
\(173\) −2.66303 −0.202467 −0.101233 0.994863i \(-0.532279\pi\)
−0.101233 + 0.994863i \(0.532279\pi\)
\(174\) 0 0
\(175\) 16.0999 1.21704
\(176\) 0 0
\(177\) −25.0820 −1.88528
\(178\) 0 0
\(179\) 14.6268 1.09326 0.546630 0.837374i \(-0.315910\pi\)
0.546630 + 0.837374i \(0.315910\pi\)
\(180\) 0 0
\(181\) 11.6738 0.867703 0.433852 0.900984i \(-0.357154\pi\)
0.433852 + 0.900984i \(0.357154\pi\)
\(182\) 0 0
\(183\) 15.0147 1.10992
\(184\) 0 0
\(185\) 11.3217 0.832390
\(186\) 0 0
\(187\) 0 0
\(188\) 0 0
\(189\) −6.08917 −0.442922
\(190\) 0 0
\(191\) −18.0751 −1.30787 −0.653933 0.756552i \(-0.726882\pi\)
−0.653933 + 0.756552i \(0.726882\pi\)
\(192\) 0 0
\(193\) 1.41362 0.101754 0.0508772 0.998705i \(-0.483798\pi\)
0.0508772 + 0.998705i \(0.483798\pi\)
\(194\) 0 0
\(195\) 12.4093 0.888651
\(196\) 0 0
\(197\) 1.17020 0.0833732 0.0416866 0.999131i \(-0.486727\pi\)
0.0416866 + 0.999131i \(0.486727\pi\)
\(198\) 0 0
\(199\) −18.2507 −1.29376 −0.646879 0.762593i \(-0.723926\pi\)
−0.646879 + 0.762593i \(0.723926\pi\)
\(200\) 0 0
\(201\) −10.9507 −0.772402
\(202\) 0 0
\(203\) 27.0829 1.90085
\(204\) 0 0
\(205\) −23.3343 −1.62974
\(206\) 0 0
\(207\) 0.993407 0.0690466
\(208\) 0 0
\(209\) 5.83145 0.403370
\(210\) 0 0
\(211\) 23.8238 1.64010 0.820049 0.572293i \(-0.193946\pi\)
0.820049 + 0.572293i \(0.193946\pi\)
\(212\) 0 0
\(213\) −13.0063 −0.891177
\(214\) 0 0
\(215\) 33.2632 2.26853
\(216\) 0 0
\(217\) 5.96374 0.404845
\(218\) 0 0
\(219\) −0.0291747 −0.00197144
\(220\) 0 0
\(221\) 0 0
\(222\) 0 0
\(223\) −0.403945 −0.0270502 −0.0135251 0.999909i \(-0.504305\pi\)
−0.0135251 + 0.999909i \(0.504305\pi\)
\(224\) 0 0
\(225\) 11.7547 0.783647
\(226\) 0 0
\(227\) 12.1563 0.806844 0.403422 0.915014i \(-0.367821\pi\)
0.403422 + 0.915014i \(0.367821\pi\)
\(228\) 0 0
\(229\) 12.9359 0.854830 0.427415 0.904056i \(-0.359424\pi\)
0.427415 + 0.904056i \(0.359424\pi\)
\(230\) 0 0
\(231\) 6.54670 0.430741
\(232\) 0 0
\(233\) 11.7240 0.768067 0.384034 0.923319i \(-0.374535\pi\)
0.384034 + 0.923319i \(0.374535\pi\)
\(234\) 0 0
\(235\) −29.7087 −1.93798
\(236\) 0 0
\(237\) −24.3012 −1.57853
\(238\) 0 0
\(239\) −3.82714 −0.247557 −0.123779 0.992310i \(-0.539501\pi\)
−0.123779 + 0.992310i \(0.539501\pi\)
\(240\) 0 0
\(241\) 15.0221 0.967656 0.483828 0.875163i \(-0.339246\pi\)
0.483828 + 0.875163i \(0.339246\pi\)
\(242\) 0 0
\(243\) −17.9786 −1.15333
\(244\) 0 0
\(245\) 2.01661 0.128837
\(246\) 0 0
\(247\) 9.26515 0.589527
\(248\) 0 0
\(249\) −32.9371 −2.08730
\(250\) 0 0
\(251\) 17.9018 1.12995 0.564975 0.825108i \(-0.308886\pi\)
0.564975 + 0.825108i \(0.308886\pi\)
\(252\) 0 0
\(253\) 0.522533 0.0328514
\(254\) 0 0
\(255\) 0 0
\(256\) 0 0
\(257\) 3.52920 0.220145 0.110073 0.993924i \(-0.464892\pi\)
0.110073 + 0.993924i \(0.464892\pi\)
\(258\) 0 0
\(259\) 9.48991 0.589674
\(260\) 0 0
\(261\) 19.7735 1.22395
\(262\) 0 0
\(263\) 3.20443 0.197593 0.0987967 0.995108i \(-0.468501\pi\)
0.0987967 + 0.995108i \(0.468501\pi\)
\(264\) 0 0
\(265\) −46.0070 −2.82619
\(266\) 0 0
\(267\) −24.1915 −1.48050
\(268\) 0 0
\(269\) −10.9062 −0.664963 −0.332482 0.943110i \(-0.607886\pi\)
−0.332482 + 0.943110i \(0.607886\pi\)
\(270\) 0 0
\(271\) −31.2682 −1.89941 −0.949703 0.313153i \(-0.898615\pi\)
−0.949703 + 0.313153i \(0.898615\pi\)
\(272\) 0 0
\(273\) 10.4015 0.629530
\(274\) 0 0
\(275\) 6.18298 0.372848
\(276\) 0 0
\(277\) 12.6816 0.761963 0.380981 0.924583i \(-0.375586\pi\)
0.380981 + 0.924583i \(0.375586\pi\)
\(278\) 0 0
\(279\) 4.35419 0.260679
\(280\) 0 0
\(281\) 15.9496 0.951475 0.475737 0.879587i \(-0.342181\pi\)
0.475737 + 0.879587i \(0.342181\pi\)
\(282\) 0 0
\(283\) 7.06980 0.420256 0.210128 0.977674i \(-0.432612\pi\)
0.210128 + 0.977674i \(0.432612\pi\)
\(284\) 0 0
\(285\) 40.5661 2.40293
\(286\) 0 0
\(287\) −19.5589 −1.15452
\(288\) 0 0
\(289\) 0 0
\(290\) 0 0
\(291\) −18.9966 −1.11360
\(292\) 0 0
\(293\) 6.41620 0.374838 0.187419 0.982280i \(-0.439988\pi\)
0.187419 + 0.982280i \(0.439988\pi\)
\(294\) 0 0
\(295\) −36.8696 −2.14663
\(296\) 0 0
\(297\) −2.33848 −0.135692
\(298\) 0 0
\(299\) 0.830213 0.0480124
\(300\) 0 0
\(301\) 27.8813 1.60705
\(302\) 0 0
\(303\) −35.7467 −2.05359
\(304\) 0 0
\(305\) 22.0711 1.26379
\(306\) 0 0
\(307\) 30.6680 1.75031 0.875157 0.483839i \(-0.160758\pi\)
0.875157 + 0.483839i \(0.160758\pi\)
\(308\) 0 0
\(309\) −3.89838 −0.221771
\(310\) 0 0
\(311\) −15.1974 −0.861765 −0.430882 0.902408i \(-0.641798\pi\)
−0.430882 + 0.902408i \(0.641798\pi\)
\(312\) 0 0
\(313\) 2.59048 0.146422 0.0732112 0.997316i \(-0.476675\pi\)
0.0732112 + 0.997316i \(0.476675\pi\)
\(314\) 0 0
\(315\) 18.2954 1.03083
\(316\) 0 0
\(317\) −14.1273 −0.793467 −0.396733 0.917934i \(-0.629856\pi\)
−0.396733 + 0.917934i \(0.629856\pi\)
\(318\) 0 0
\(319\) 10.4009 0.582339
\(320\) 0 0
\(321\) −1.64611 −0.0918766
\(322\) 0 0
\(323\) 0 0
\(324\) 0 0
\(325\) 9.82367 0.544919
\(326\) 0 0
\(327\) 28.2480 1.56212
\(328\) 0 0
\(329\) −24.9020 −1.37289
\(330\) 0 0
\(331\) 20.4095 1.12181 0.560904 0.827881i \(-0.310454\pi\)
0.560904 + 0.827881i \(0.310454\pi\)
\(332\) 0 0
\(333\) 6.92869 0.379690
\(334\) 0 0
\(335\) −16.0971 −0.879479
\(336\) 0 0
\(337\) 4.37565 0.238357 0.119178 0.992873i \(-0.461974\pi\)
0.119178 + 0.992873i \(0.461974\pi\)
\(338\) 0 0
\(339\) −20.6181 −1.11982
\(340\) 0 0
\(341\) 2.29031 0.124027
\(342\) 0 0
\(343\) −17.6234 −0.951573
\(344\) 0 0
\(345\) 3.63497 0.195700
\(346\) 0 0
\(347\) 12.2956 0.660064 0.330032 0.943970i \(-0.392940\pi\)
0.330032 + 0.943970i \(0.392940\pi\)
\(348\) 0 0
\(349\) −4.57043 −0.244649 −0.122325 0.992490i \(-0.539035\pi\)
−0.122325 + 0.992490i \(0.539035\pi\)
\(350\) 0 0
\(351\) −3.71543 −0.198315
\(352\) 0 0
\(353\) −16.3984 −0.872797 −0.436398 0.899754i \(-0.643746\pi\)
−0.436398 + 0.899754i \(0.643746\pi\)
\(354\) 0 0
\(355\) −19.1188 −1.01472
\(356\) 0 0
\(357\) 0 0
\(358\) 0 0
\(359\) 3.30795 0.174587 0.0872934 0.996183i \(-0.472178\pi\)
0.0872934 + 0.996183i \(0.472178\pi\)
\(360\) 0 0
\(361\) 11.2878 0.594094
\(362\) 0 0
\(363\) −22.1181 −1.16090
\(364\) 0 0
\(365\) −0.0428857 −0.00224474
\(366\) 0 0
\(367\) 18.9020 0.986674 0.493337 0.869838i \(-0.335777\pi\)
0.493337 + 0.869838i \(0.335777\pi\)
\(368\) 0 0
\(369\) −14.2801 −0.743394
\(370\) 0 0
\(371\) −38.5633 −2.00210
\(372\) 0 0
\(373\) 7.12337 0.368834 0.184417 0.982848i \(-0.440960\pi\)
0.184417 + 0.982848i \(0.440960\pi\)
\(374\) 0 0
\(375\) 6.15625 0.317907
\(376\) 0 0
\(377\) 16.5252 0.851091
\(378\) 0 0
\(379\) 18.0590 0.927626 0.463813 0.885933i \(-0.346481\pi\)
0.463813 + 0.885933i \(0.346481\pi\)
\(380\) 0 0
\(381\) 4.64704 0.238075
\(382\) 0 0
\(383\) 23.2334 1.18717 0.593587 0.804770i \(-0.297711\pi\)
0.593587 + 0.804770i \(0.297711\pi\)
\(384\) 0 0
\(385\) 9.62341 0.490454
\(386\) 0 0
\(387\) 20.3564 1.03478
\(388\) 0 0
\(389\) −11.4442 −0.580244 −0.290122 0.956990i \(-0.593696\pi\)
−0.290122 + 0.956990i \(0.593696\pi\)
\(390\) 0 0
\(391\) 0 0
\(392\) 0 0
\(393\) 49.4501 2.49443
\(394\) 0 0
\(395\) −35.7219 −1.79736
\(396\) 0 0
\(397\) −17.2575 −0.866127 −0.433064 0.901363i \(-0.642567\pi\)
−0.433064 + 0.901363i \(0.642567\pi\)
\(398\) 0 0
\(399\) 34.0027 1.70226
\(400\) 0 0
\(401\) 4.10322 0.204905 0.102452 0.994738i \(-0.467331\pi\)
0.102452 + 0.994738i \(0.467331\pi\)
\(402\) 0 0
\(403\) 3.63890 0.181266
\(404\) 0 0
\(405\) −36.1603 −1.79682
\(406\) 0 0
\(407\) 3.64450 0.180651
\(408\) 0 0
\(409\) −7.26084 −0.359025 −0.179513 0.983756i \(-0.557452\pi\)
−0.179513 + 0.983756i \(0.557452\pi\)
\(410\) 0 0
\(411\) 6.58843 0.324983
\(412\) 0 0
\(413\) −30.9042 −1.52070
\(414\) 0 0
\(415\) −48.4163 −2.37666
\(416\) 0 0
\(417\) −18.4858 −0.905254
\(418\) 0 0
\(419\) 11.5288 0.563217 0.281609 0.959529i \(-0.409132\pi\)
0.281609 + 0.959529i \(0.409132\pi\)
\(420\) 0 0
\(421\) −19.0719 −0.929509 −0.464755 0.885439i \(-0.653857\pi\)
−0.464755 + 0.885439i \(0.653857\pi\)
\(422\) 0 0
\(423\) −18.1812 −0.883999
\(424\) 0 0
\(425\) 0 0
\(426\) 0 0
\(427\) 18.5001 0.895281
\(428\) 0 0
\(429\) 3.99460 0.192861
\(430\) 0 0
\(431\) 0.991174 0.0477432 0.0238716 0.999715i \(-0.492401\pi\)
0.0238716 + 0.999715i \(0.492401\pi\)
\(432\) 0 0
\(433\) 1.72018 0.0826667 0.0413333 0.999145i \(-0.486839\pi\)
0.0413333 + 0.999145i \(0.486839\pi\)
\(434\) 0 0
\(435\) 72.3532 3.46907
\(436\) 0 0
\(437\) 2.71397 0.129827
\(438\) 0 0
\(439\) 11.3457 0.541500 0.270750 0.962650i \(-0.412728\pi\)
0.270750 + 0.962650i \(0.412728\pi\)
\(440\) 0 0
\(441\) 1.23413 0.0587681
\(442\) 0 0
\(443\) 19.3737 0.920473 0.460236 0.887796i \(-0.347765\pi\)
0.460236 + 0.887796i \(0.347765\pi\)
\(444\) 0 0
\(445\) −35.5607 −1.68574
\(446\) 0 0
\(447\) 4.19736 0.198528
\(448\) 0 0
\(449\) 34.4747 1.62696 0.813482 0.581590i \(-0.197569\pi\)
0.813482 + 0.581590i \(0.197569\pi\)
\(450\) 0 0
\(451\) −7.51136 −0.353696
\(452\) 0 0
\(453\) 42.9707 2.01894
\(454\) 0 0
\(455\) 15.2899 0.716801
\(456\) 0 0
\(457\) −27.9241 −1.30623 −0.653117 0.757257i \(-0.726539\pi\)
−0.653117 + 0.757257i \(0.726539\pi\)
\(458\) 0 0
\(459\) 0 0
\(460\) 0 0
\(461\) −3.14795 −0.146615 −0.0733073 0.997309i \(-0.523355\pi\)
−0.0733073 + 0.997309i \(0.523355\pi\)
\(462\) 0 0
\(463\) 8.05071 0.374148 0.187074 0.982346i \(-0.440100\pi\)
0.187074 + 0.982346i \(0.440100\pi\)
\(464\) 0 0
\(465\) 15.9324 0.738847
\(466\) 0 0
\(467\) 13.5785 0.628338 0.314169 0.949367i \(-0.398274\pi\)
0.314169 + 0.949367i \(0.398274\pi\)
\(468\) 0 0
\(469\) −13.4926 −0.623033
\(470\) 0 0
\(471\) −35.4266 −1.63237
\(472\) 0 0
\(473\) 10.7075 0.492331
\(474\) 0 0
\(475\) 32.1136 1.47347
\(476\) 0 0
\(477\) −28.1554 −1.28915
\(478\) 0 0
\(479\) 25.4952 1.16491 0.582453 0.812864i \(-0.302093\pi\)
0.582453 + 0.812864i \(0.302093\pi\)
\(480\) 0 0
\(481\) 5.79046 0.264022
\(482\) 0 0
\(483\) 3.04684 0.138636
\(484\) 0 0
\(485\) −27.9243 −1.26798
\(486\) 0 0
\(487\) −12.2193 −0.553711 −0.276855 0.960912i \(-0.589292\pi\)
−0.276855 + 0.960912i \(0.589292\pi\)
\(488\) 0 0
\(489\) 20.4936 0.926752
\(490\) 0 0
\(491\) −29.1011 −1.31331 −0.656657 0.754189i \(-0.728030\pi\)
−0.656657 + 0.754189i \(0.728030\pi\)
\(492\) 0 0
\(493\) 0 0
\(494\) 0 0
\(495\) 7.02615 0.315802
\(496\) 0 0
\(497\) −16.0254 −0.718839
\(498\) 0 0
\(499\) −38.6819 −1.73164 −0.865819 0.500357i \(-0.833202\pi\)
−0.865819 + 0.500357i \(0.833202\pi\)
\(500\) 0 0
\(501\) −16.1078 −0.719642
\(502\) 0 0
\(503\) 19.9654 0.890215 0.445107 0.895477i \(-0.353165\pi\)
0.445107 + 0.895477i \(0.353165\pi\)
\(504\) 0 0
\(505\) −52.5464 −2.33828
\(506\) 0 0
\(507\) −22.7641 −1.01099
\(508\) 0 0
\(509\) −6.53333 −0.289585 −0.144792 0.989462i \(-0.546251\pi\)
−0.144792 + 0.989462i \(0.546251\pi\)
\(510\) 0 0
\(511\) −0.0359469 −0.00159020
\(512\) 0 0
\(513\) −12.1457 −0.536248
\(514\) 0 0
\(515\) −5.73047 −0.252515
\(516\) 0 0
\(517\) −9.56332 −0.420594
\(518\) 0 0
\(519\) −5.96332 −0.261761
\(520\) 0 0
\(521\) −21.9798 −0.962951 −0.481476 0.876460i \(-0.659899\pi\)
−0.481476 + 0.876460i \(0.659899\pi\)
\(522\) 0 0
\(523\) 20.3613 0.890336 0.445168 0.895447i \(-0.353144\pi\)
0.445168 + 0.895447i \(0.353144\pi\)
\(524\) 0 0
\(525\) 36.0524 1.57346
\(526\) 0 0
\(527\) 0 0
\(528\) 0 0
\(529\) −22.7568 −0.989427
\(530\) 0 0
\(531\) −22.5635 −0.979173
\(532\) 0 0
\(533\) −11.9342 −0.516929
\(534\) 0 0
\(535\) −2.41972 −0.104613
\(536\) 0 0
\(537\) 32.7538 1.41343
\(538\) 0 0
\(539\) 0.649154 0.0279610
\(540\) 0 0
\(541\) 18.4629 0.793781 0.396891 0.917866i \(-0.370089\pi\)
0.396891 + 0.917866i \(0.370089\pi\)
\(542\) 0 0
\(543\) 26.1410 1.12182
\(544\) 0 0
\(545\) 41.5236 1.77868
\(546\) 0 0
\(547\) 11.6164 0.496681 0.248341 0.968673i \(-0.420115\pi\)
0.248341 + 0.968673i \(0.420115\pi\)
\(548\) 0 0
\(549\) 13.5071 0.576469
\(550\) 0 0
\(551\) 54.0209 2.30137
\(552\) 0 0
\(553\) −29.9422 −1.27327
\(554\) 0 0
\(555\) 25.3527 1.07616
\(556\) 0 0
\(557\) −42.1765 −1.78708 −0.893539 0.448986i \(-0.851785\pi\)
−0.893539 + 0.448986i \(0.851785\pi\)
\(558\) 0 0
\(559\) 17.0123 0.719545
\(560\) 0 0
\(561\) 0 0
\(562\) 0 0
\(563\) 33.2212 1.40011 0.700054 0.714090i \(-0.253159\pi\)
0.700054 + 0.714090i \(0.253159\pi\)
\(564\) 0 0
\(565\) −30.3078 −1.27506
\(566\) 0 0
\(567\) −30.3097 −1.27289
\(568\) 0 0
\(569\) −43.6861 −1.83142 −0.915708 0.401845i \(-0.868369\pi\)
−0.915708 + 0.401845i \(0.868369\pi\)
\(570\) 0 0
\(571\) −6.22856 −0.260657 −0.130328 0.991471i \(-0.541603\pi\)
−0.130328 + 0.991471i \(0.541603\pi\)
\(572\) 0 0
\(573\) −40.4755 −1.69089
\(574\) 0 0
\(575\) 2.87757 0.120003
\(576\) 0 0
\(577\) 19.1580 0.797559 0.398779 0.917047i \(-0.369434\pi\)
0.398779 + 0.917047i \(0.369434\pi\)
\(578\) 0 0
\(579\) 3.16551 0.131554
\(580\) 0 0
\(581\) −40.5827 −1.68365
\(582\) 0 0
\(583\) −14.8098 −0.613359
\(584\) 0 0
\(585\) 11.1633 0.461546
\(586\) 0 0
\(587\) 11.2984 0.466334 0.233167 0.972437i \(-0.425091\pi\)
0.233167 + 0.972437i \(0.425091\pi\)
\(588\) 0 0
\(589\) 11.8956 0.490148
\(590\) 0 0
\(591\) 2.62042 0.107790
\(592\) 0 0
\(593\) −9.01808 −0.370328 −0.185164 0.982708i \(-0.559282\pi\)
−0.185164 + 0.982708i \(0.559282\pi\)
\(594\) 0 0
\(595\) 0 0
\(596\) 0 0
\(597\) −40.8687 −1.67265
\(598\) 0 0
\(599\) 3.04853 0.124560 0.0622799 0.998059i \(-0.480163\pi\)
0.0622799 + 0.998059i \(0.480163\pi\)
\(600\) 0 0
\(601\) −32.2052 −1.31368 −0.656839 0.754030i \(-0.728107\pi\)
−0.656839 + 0.754030i \(0.728107\pi\)
\(602\) 0 0
\(603\) −9.85113 −0.401169
\(604\) 0 0
\(605\) −32.5128 −1.32183
\(606\) 0 0
\(607\) −10.2778 −0.417161 −0.208581 0.978005i \(-0.566884\pi\)
−0.208581 + 0.978005i \(0.566884\pi\)
\(608\) 0 0
\(609\) 60.6467 2.45753
\(610\) 0 0
\(611\) −15.1944 −0.614701
\(612\) 0 0
\(613\) 11.9951 0.484479 0.242239 0.970216i \(-0.422118\pi\)
0.242239 + 0.970216i \(0.422118\pi\)
\(614\) 0 0
\(615\) −52.2524 −2.10702
\(616\) 0 0
\(617\) −0.362520 −0.0145945 −0.00729725 0.999973i \(-0.502323\pi\)
−0.00729725 + 0.999973i \(0.502323\pi\)
\(618\) 0 0
\(619\) −41.7327 −1.67738 −0.838689 0.544610i \(-0.816678\pi\)
−0.838689 + 0.544610i \(0.816678\pi\)
\(620\) 0 0
\(621\) −1.08833 −0.0436732
\(622\) 0 0
\(623\) −29.8071 −1.19420
\(624\) 0 0
\(625\) −20.1265 −0.805060
\(626\) 0 0
\(627\) 13.0584 0.521500
\(628\) 0 0
\(629\) 0 0
\(630\) 0 0
\(631\) −12.8624 −0.512044 −0.256022 0.966671i \(-0.582412\pi\)
−0.256022 + 0.966671i \(0.582412\pi\)
\(632\) 0 0
\(633\) 53.3486 2.12042
\(634\) 0 0
\(635\) 6.83099 0.271079
\(636\) 0 0
\(637\) 1.03139 0.0408652
\(638\) 0 0
\(639\) −11.7003 −0.462858
\(640\) 0 0
\(641\) −25.2130 −0.995855 −0.497928 0.867219i \(-0.665905\pi\)
−0.497928 + 0.867219i \(0.665905\pi\)
\(642\) 0 0
\(643\) 36.5926 1.44307 0.721535 0.692378i \(-0.243437\pi\)
0.721535 + 0.692378i \(0.243437\pi\)
\(644\) 0 0
\(645\) 74.4861 2.93289
\(646\) 0 0
\(647\) 29.8075 1.17185 0.585926 0.810364i \(-0.300731\pi\)
0.585926 + 0.810364i \(0.300731\pi\)
\(648\) 0 0
\(649\) −11.8684 −0.465876
\(650\) 0 0
\(651\) 13.3546 0.523408
\(652\) 0 0
\(653\) −17.6393 −0.690280 −0.345140 0.938551i \(-0.612169\pi\)
−0.345140 + 0.938551i \(0.612169\pi\)
\(654\) 0 0
\(655\) 72.6899 2.84023
\(656\) 0 0
\(657\) −0.0262453 −0.00102392
\(658\) 0 0
\(659\) 39.1712 1.52589 0.762946 0.646462i \(-0.223752\pi\)
0.762946 + 0.646462i \(0.223752\pi\)
\(660\) 0 0
\(661\) −15.8114 −0.614991 −0.307495 0.951550i \(-0.599491\pi\)
−0.307495 + 0.951550i \(0.599491\pi\)
\(662\) 0 0
\(663\) 0 0
\(664\) 0 0
\(665\) 49.9827 1.93825
\(666\) 0 0
\(667\) 4.84060 0.187429
\(668\) 0 0
\(669\) −0.904554 −0.0349721
\(670\) 0 0
\(671\) 7.10475 0.274276
\(672\) 0 0
\(673\) 25.1676 0.970138 0.485069 0.874476i \(-0.338794\pi\)
0.485069 + 0.874476i \(0.338794\pi\)
\(674\) 0 0
\(675\) −12.8779 −0.495671
\(676\) 0 0
\(677\) −41.3622 −1.58968 −0.794840 0.606820i \(-0.792445\pi\)
−0.794840 + 0.606820i \(0.792445\pi\)
\(678\) 0 0
\(679\) −23.4063 −0.898250
\(680\) 0 0
\(681\) 27.2216 1.04314
\(682\) 0 0
\(683\) 21.3418 0.816622 0.408311 0.912843i \(-0.366118\pi\)
0.408311 + 0.912843i \(0.366118\pi\)
\(684\) 0 0
\(685\) 9.68476 0.370036
\(686\) 0 0
\(687\) 28.9674 1.10517
\(688\) 0 0
\(689\) −23.5301 −0.896427
\(690\) 0 0
\(691\) 27.2046 1.03491 0.517456 0.855710i \(-0.326879\pi\)
0.517456 + 0.855710i \(0.326879\pi\)
\(692\) 0 0
\(693\) 5.88934 0.223718
\(694\) 0 0
\(695\) −27.1735 −1.03075
\(696\) 0 0
\(697\) 0 0
\(698\) 0 0
\(699\) 26.2536 0.993003
\(700\) 0 0
\(701\) −36.8975 −1.39360 −0.696800 0.717265i \(-0.745394\pi\)
−0.696800 + 0.717265i \(0.745394\pi\)
\(702\) 0 0
\(703\) 18.9290 0.713922
\(704\) 0 0
\(705\) −66.5267 −2.50554
\(706\) 0 0
\(707\) −44.0445 −1.65646
\(708\) 0 0
\(709\) 35.5912 1.33666 0.668328 0.743867i \(-0.267010\pi\)
0.668328 + 0.743867i \(0.267010\pi\)
\(710\) 0 0
\(711\) −21.8611 −0.819856
\(712\) 0 0
\(713\) 1.06591 0.0399188
\(714\) 0 0
\(715\) 5.87191 0.219597
\(716\) 0 0
\(717\) −8.57011 −0.320057
\(718\) 0 0
\(719\) −25.7252 −0.959390 −0.479695 0.877435i \(-0.659253\pi\)
−0.479695 + 0.877435i \(0.659253\pi\)
\(720\) 0 0
\(721\) −4.80330 −0.178884
\(722\) 0 0
\(723\) 33.6388 1.25104
\(724\) 0 0
\(725\) 57.2774 2.12723
\(726\) 0 0
\(727\) 15.3016 0.567505 0.283753 0.958897i \(-0.408421\pi\)
0.283753 + 0.958897i \(0.408421\pi\)
\(728\) 0 0
\(729\) −7.30344 −0.270498
\(730\) 0 0
\(731\) 0 0
\(732\) 0 0
\(733\) 37.9771 1.40272 0.701359 0.712809i \(-0.252577\pi\)
0.701359 + 0.712809i \(0.252577\pi\)
\(734\) 0 0
\(735\) 4.51580 0.166568
\(736\) 0 0
\(737\) −5.18170 −0.190870
\(738\) 0 0
\(739\) −35.1581 −1.29331 −0.646655 0.762783i \(-0.723833\pi\)
−0.646655 + 0.762783i \(0.723833\pi\)
\(740\) 0 0
\(741\) 20.7474 0.762175
\(742\) 0 0
\(743\) 42.9372 1.57521 0.787606 0.616179i \(-0.211320\pi\)
0.787606 + 0.616179i \(0.211320\pi\)
\(744\) 0 0
\(745\) 6.16997 0.226050
\(746\) 0 0
\(747\) −29.6299 −1.08410
\(748\) 0 0
\(749\) −2.02821 −0.0741093
\(750\) 0 0
\(751\) −19.8421 −0.724048 −0.362024 0.932169i \(-0.617914\pi\)
−0.362024 + 0.932169i \(0.617914\pi\)
\(752\) 0 0
\(753\) 40.0874 1.46087
\(754\) 0 0
\(755\) 63.1654 2.29882
\(756\) 0 0
\(757\) 26.6089 0.967117 0.483558 0.875312i \(-0.339344\pi\)
0.483558 + 0.875312i \(0.339344\pi\)
\(758\) 0 0
\(759\) 1.17011 0.0424722
\(760\) 0 0
\(761\) 24.9243 0.903505 0.451753 0.892143i \(-0.350799\pi\)
0.451753 + 0.892143i \(0.350799\pi\)
\(762\) 0 0
\(763\) 34.8052 1.26003
\(764\) 0 0
\(765\) 0 0
\(766\) 0 0
\(767\) −18.8568 −0.680881
\(768\) 0 0
\(769\) 32.9062 1.18663 0.593314 0.804971i \(-0.297819\pi\)
0.593314 + 0.804971i \(0.297819\pi\)
\(770\) 0 0
\(771\) 7.90292 0.284617
\(772\) 0 0
\(773\) 26.6766 0.959492 0.479746 0.877407i \(-0.340729\pi\)
0.479746 + 0.877407i \(0.340729\pi\)
\(774\) 0 0
\(775\) 12.6127 0.453060
\(776\) 0 0
\(777\) 21.2507 0.762365
\(778\) 0 0
\(779\) −39.0130 −1.39779
\(780\) 0 0
\(781\) −6.15439 −0.220221
\(782\) 0 0
\(783\) −21.6630 −0.774172
\(784\) 0 0
\(785\) −52.0758 −1.85866
\(786\) 0 0
\(787\) 45.6968 1.62891 0.814457 0.580224i \(-0.197035\pi\)
0.814457 + 0.580224i \(0.197035\pi\)
\(788\) 0 0
\(789\) 7.17566 0.255460
\(790\) 0 0
\(791\) −25.4041 −0.903266
\(792\) 0 0
\(793\) 11.2882 0.400856
\(794\) 0 0
\(795\) −103.023 −3.65386
\(796\) 0 0
\(797\) 13.5700 0.480675 0.240338 0.970689i \(-0.422742\pi\)
0.240338 + 0.970689i \(0.422742\pi\)
\(798\) 0 0
\(799\) 0 0
\(800\) 0 0
\(801\) −21.7625 −0.768939
\(802\) 0 0
\(803\) −0.0138050 −0.000487169 0
\(804\) 0 0
\(805\) 4.47875 0.157855
\(806\) 0 0
\(807\) −24.4222 −0.859703
\(808\) 0 0
\(809\) −35.7755 −1.25780 −0.628899 0.777487i \(-0.716494\pi\)
−0.628899 + 0.777487i \(0.716494\pi\)
\(810\) 0 0
\(811\) −3.33812 −0.117217 −0.0586087 0.998281i \(-0.518666\pi\)
−0.0586087 + 0.998281i \(0.518666\pi\)
\(812\) 0 0
\(813\) −70.0187 −2.45566
\(814\) 0 0
\(815\) 30.1248 1.05523
\(816\) 0 0
\(817\) 55.6133 1.94566
\(818\) 0 0
\(819\) 9.35713 0.326965
\(820\) 0 0
\(821\) 13.5037 0.471281 0.235641 0.971840i \(-0.424281\pi\)
0.235641 + 0.971840i \(0.424281\pi\)
\(822\) 0 0
\(823\) 24.2284 0.844548 0.422274 0.906468i \(-0.361232\pi\)
0.422274 + 0.906468i \(0.361232\pi\)
\(824\) 0 0
\(825\) 13.8455 0.482040
\(826\) 0 0
\(827\) −48.5460 −1.68811 −0.844055 0.536257i \(-0.819838\pi\)
−0.844055 + 0.536257i \(0.819838\pi\)
\(828\) 0 0
\(829\) −12.5026 −0.434235 −0.217117 0.976145i \(-0.569665\pi\)
−0.217117 + 0.976145i \(0.569665\pi\)
\(830\) 0 0
\(831\) 28.3978 0.985110
\(832\) 0 0
\(833\) 0 0
\(834\) 0 0
\(835\) −23.6778 −0.819405
\(836\) 0 0
\(837\) −4.77026 −0.164884
\(838\) 0 0
\(839\) 27.6954 0.956150 0.478075 0.878319i \(-0.341335\pi\)
0.478075 + 0.878319i \(0.341335\pi\)
\(840\) 0 0
\(841\) 67.3509 2.32245
\(842\) 0 0
\(843\) 35.7159 1.23012
\(844\) 0 0
\(845\) −33.4625 −1.15114
\(846\) 0 0
\(847\) −27.2523 −0.936401
\(848\) 0 0
\(849\) 15.8314 0.543332
\(850\) 0 0
\(851\) 1.69615 0.0581434
\(852\) 0 0
\(853\) −38.4115 −1.31519 −0.657593 0.753373i \(-0.728425\pi\)
−0.657593 + 0.753373i \(0.728425\pi\)
\(854\) 0 0
\(855\) 36.4929 1.24803
\(856\) 0 0
\(857\) −18.8117 −0.642595 −0.321298 0.946978i \(-0.604119\pi\)
−0.321298 + 0.946978i \(0.604119\pi\)
\(858\) 0 0
\(859\) −13.5810 −0.463378 −0.231689 0.972790i \(-0.574425\pi\)
−0.231689 + 0.972790i \(0.574425\pi\)
\(860\) 0 0
\(861\) −43.7981 −1.49264
\(862\) 0 0
\(863\) −47.9451 −1.63207 −0.816035 0.578002i \(-0.803833\pi\)
−0.816035 + 0.578002i \(0.803833\pi\)
\(864\) 0 0
\(865\) −8.76586 −0.298048
\(866\) 0 0
\(867\) 0 0
\(868\) 0 0
\(869\) −11.4990 −0.390076
\(870\) 0 0
\(871\) −8.23281 −0.278958
\(872\) 0 0
\(873\) −17.0892 −0.578381
\(874\) 0 0
\(875\) 7.58529 0.256430
\(876\) 0 0
\(877\) −31.9005 −1.07720 −0.538602 0.842560i \(-0.681047\pi\)
−0.538602 + 0.842560i \(0.681047\pi\)
\(878\) 0 0
\(879\) 14.3678 0.484613
\(880\) 0 0
\(881\) 15.7524 0.530712 0.265356 0.964151i \(-0.414511\pi\)
0.265356 + 0.964151i \(0.414511\pi\)
\(882\) 0 0
\(883\) −26.4467 −0.890001 −0.445000 0.895530i \(-0.646796\pi\)
−0.445000 + 0.895530i \(0.646796\pi\)
\(884\) 0 0
\(885\) −82.5620 −2.77529
\(886\) 0 0
\(887\) 36.8779 1.23824 0.619119 0.785297i \(-0.287490\pi\)
0.619119 + 0.785297i \(0.287490\pi\)
\(888\) 0 0
\(889\) 5.72575 0.192036
\(890\) 0 0
\(891\) −11.6401 −0.389958
\(892\) 0 0
\(893\) −49.6706 −1.66216
\(894\) 0 0
\(895\) 48.1469 1.60937
\(896\) 0 0
\(897\) 1.85909 0.0620733
\(898\) 0 0
\(899\) 21.2168 0.707619
\(900\) 0 0
\(901\) 0 0
\(902\) 0 0
\(903\) 62.4345 2.07769
\(904\) 0 0
\(905\) 38.4263 1.27733
\(906\) 0 0
\(907\) −32.2869 −1.07207 −0.536034 0.844196i \(-0.680078\pi\)
−0.536034 + 0.844196i \(0.680078\pi\)
\(908\) 0 0
\(909\) −32.1574 −1.06659
\(910\) 0 0
\(911\) 3.33242 0.110408 0.0552039 0.998475i \(-0.482419\pi\)
0.0552039 + 0.998475i \(0.482419\pi\)
\(912\) 0 0
\(913\) −15.5853 −0.515799
\(914\) 0 0
\(915\) 49.4238 1.63390
\(916\) 0 0
\(917\) 60.9289 2.01205
\(918\) 0 0
\(919\) 26.5711 0.876501 0.438250 0.898853i \(-0.355598\pi\)
0.438250 + 0.898853i \(0.355598\pi\)
\(920\) 0 0
\(921\) 68.6747 2.26291
\(922\) 0 0
\(923\) −9.77823 −0.321855
\(924\) 0 0
\(925\) 20.0701 0.659901
\(926\) 0 0
\(927\) −3.50694 −0.115183
\(928\) 0 0
\(929\) 35.6230 1.16875 0.584376 0.811483i \(-0.301339\pi\)
0.584376 + 0.811483i \(0.301339\pi\)
\(930\) 0 0
\(931\) 3.37162 0.110500
\(932\) 0 0
\(933\) −34.0315 −1.11414
\(934\) 0 0
\(935\) 0 0
\(936\) 0 0
\(937\) 52.7918 1.72463 0.862317 0.506370i \(-0.169013\pi\)
0.862317 + 0.506370i \(0.169013\pi\)
\(938\) 0 0
\(939\) 5.80085 0.189304
\(940\) 0 0
\(941\) 18.8575 0.614736 0.307368 0.951591i \(-0.400552\pi\)
0.307368 + 0.951591i \(0.400552\pi\)
\(942\) 0 0
\(943\) −3.49580 −0.113839
\(944\) 0 0
\(945\) −20.0436 −0.652019
\(946\) 0 0
\(947\) 41.3325 1.34312 0.671562 0.740948i \(-0.265624\pi\)
0.671562 + 0.740948i \(0.265624\pi\)
\(948\) 0 0
\(949\) −0.0219337 −0.000712000 0
\(950\) 0 0
\(951\) −31.6351 −1.02584
\(952\) 0 0
\(953\) 12.3861 0.401227 0.200613 0.979671i \(-0.435707\pi\)
0.200613 + 0.979671i \(0.435707\pi\)
\(954\) 0 0
\(955\) −59.4975 −1.92529
\(956\) 0 0
\(957\) 23.2907 0.752881
\(958\) 0 0
\(959\) 8.11780 0.262137
\(960\) 0 0
\(961\) −26.3280 −0.849290
\(962\) 0 0
\(963\) −1.48082 −0.0477188
\(964\) 0 0
\(965\) 4.65318 0.149791
\(966\) 0 0
\(967\) 1.76606 0.0567926 0.0283963 0.999597i \(-0.490960\pi\)
0.0283963 + 0.999597i \(0.490960\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) 0 0
\(971\) 8.12081 0.260609 0.130305 0.991474i \(-0.458405\pi\)
0.130305 + 0.991474i \(0.458405\pi\)
\(972\) 0 0
\(973\) −22.7769 −0.730193
\(974\) 0 0
\(975\) 21.9981 0.704503
\(976\) 0 0
\(977\) 26.7629 0.856221 0.428110 0.903726i \(-0.359179\pi\)
0.428110 + 0.903726i \(0.359179\pi\)
\(978\) 0 0
\(979\) −11.4471 −0.365850
\(980\) 0 0
\(981\) 25.4117 0.811332
\(982\) 0 0
\(983\) 14.9517 0.476885 0.238442 0.971157i \(-0.423363\pi\)
0.238442 + 0.971157i \(0.423363\pi\)
\(984\) 0 0
\(985\) 3.85192 0.122733
\(986\) 0 0
\(987\) −55.7629 −1.77495
\(988\) 0 0
\(989\) 4.98329 0.158459
\(990\) 0 0
\(991\) 10.1028 0.320925 0.160463 0.987042i \(-0.448701\pi\)
0.160463 + 0.987042i \(0.448701\pi\)
\(992\) 0 0
\(993\) 45.7030 1.45034
\(994\) 0 0
\(995\) −60.0756 −1.90452
\(996\) 0 0
\(997\) −47.0718 −1.49078 −0.745389 0.666630i \(-0.767736\pi\)
−0.745389 + 0.666630i \(0.767736\pi\)
\(998\) 0 0
\(999\) −7.59075 −0.240161
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 9248.2.a.bz.1.17 20
4.3 odd 2 9248.2.a.by.1.4 20
17.10 odd 16 544.2.bb.f.321.4 yes 20
17.12 odd 16 544.2.bb.f.161.4 yes 20
17.16 even 2 inner 9248.2.a.bz.1.4 20
68.27 even 16 544.2.bb.e.321.2 yes 20
68.63 even 16 544.2.bb.e.161.2 20
68.67 odd 2 9248.2.a.by.1.17 20
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
544.2.bb.e.161.2 20 68.63 even 16
544.2.bb.e.321.2 yes 20 68.27 even 16
544.2.bb.f.161.4 yes 20 17.12 odd 16
544.2.bb.f.321.4 yes 20 17.10 odd 16
9248.2.a.by.1.4 20 4.3 odd 2
9248.2.a.by.1.17 20 68.67 odd 2
9248.2.a.bz.1.4 20 17.16 even 2 inner
9248.2.a.bz.1.17 20 1.1 even 1 trivial