Properties

Label 5440.2.a.bb.1.1
Level $5440$
Weight $2$
Character 5440.1
Self dual yes
Analytic conductor $43.439$
Analytic rank $1$
Dimension $2$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [5440,2,Mod(1,5440)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(5440, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("5440.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 5440 = 2^{6} \cdot 5 \cdot 17 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 5440.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(43.4386186996\)
Analytic rank: \(1\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{12})^+\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - 3 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 85)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.73205\) of defining polynomial
Character \(\chi\) \(=\) 5440.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-2.73205 q^{3} -1.00000 q^{5} -2.73205 q^{7} +4.46410 q^{9} -4.73205 q^{11} +4.00000 q^{13} +2.73205 q^{15} -1.00000 q^{17} +1.46410 q^{19} +7.46410 q^{21} -8.19615 q^{23} +1.00000 q^{25} -4.00000 q^{27} +3.46410 q^{29} +3.26795 q^{31} +12.9282 q^{33} +2.73205 q^{35} +0.535898 q^{37} -10.9282 q^{39} -3.46410 q^{41} +0.535898 q^{43} -4.46410 q^{45} +12.9282 q^{47} +0.464102 q^{49} +2.73205 q^{51} -6.00000 q^{53} +4.73205 q^{55} -4.00000 q^{57} -2.53590 q^{59} +4.92820 q^{61} -12.1962 q^{63} -4.00000 q^{65} +10.0000 q^{67} +22.3923 q^{69} +11.6603 q^{71} +6.39230 q^{73} -2.73205 q^{75} +12.9282 q^{77} +14.5885 q^{79} -2.46410 q^{81} -8.53590 q^{83} +1.00000 q^{85} -9.46410 q^{87} +4.39230 q^{89} -10.9282 q^{91} -8.92820 q^{93} -1.46410 q^{95} -4.92820 q^{97} -21.1244 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} - 2 q^{5} - 2 q^{7} + 2 q^{9} - 6 q^{11} + 8 q^{13} + 2 q^{15} - 2 q^{17} - 4 q^{19} + 8 q^{21} - 6 q^{23} + 2 q^{25} - 8 q^{27} + 10 q^{31} + 12 q^{33} + 2 q^{35} + 8 q^{37} - 8 q^{39} + 8 q^{43}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −2.73205 −1.57735 −0.788675 0.614810i \(-0.789233\pi\)
−0.788675 + 0.614810i \(0.789233\pi\)
\(4\) 0 0
\(5\) −1.00000 −0.447214
\(6\) 0 0
\(7\) −2.73205 −1.03262 −0.516309 0.856402i \(-0.672694\pi\)
−0.516309 + 0.856402i \(0.672694\pi\)
\(8\) 0 0
\(9\) 4.46410 1.48803
\(10\) 0 0
\(11\) −4.73205 −1.42677 −0.713384 0.700774i \(-0.752838\pi\)
−0.713384 + 0.700774i \(0.752838\pi\)
\(12\) 0 0
\(13\) 4.00000 1.10940 0.554700 0.832050i \(-0.312833\pi\)
0.554700 + 0.832050i \(0.312833\pi\)
\(14\) 0 0
\(15\) 2.73205 0.705412
\(16\) 0 0
\(17\) −1.00000 −0.242536
\(18\) 0 0
\(19\) 1.46410 0.335888 0.167944 0.985797i \(-0.446287\pi\)
0.167944 + 0.985797i \(0.446287\pi\)
\(20\) 0 0
\(21\) 7.46410 1.62880
\(22\) 0 0
\(23\) −8.19615 −1.70902 −0.854508 0.519438i \(-0.826141\pi\)
−0.854508 + 0.519438i \(0.826141\pi\)
\(24\) 0 0
\(25\) 1.00000 0.200000
\(26\) 0 0
\(27\) −4.00000 −0.769800
\(28\) 0 0
\(29\) 3.46410 0.643268 0.321634 0.946864i \(-0.395768\pi\)
0.321634 + 0.946864i \(0.395768\pi\)
\(30\) 0 0
\(31\) 3.26795 0.586941 0.293471 0.955968i \(-0.405190\pi\)
0.293471 + 0.955968i \(0.405190\pi\)
\(32\) 0 0
\(33\) 12.9282 2.25051
\(34\) 0 0
\(35\) 2.73205 0.461801
\(36\) 0 0
\(37\) 0.535898 0.0881012 0.0440506 0.999029i \(-0.485974\pi\)
0.0440506 + 0.999029i \(0.485974\pi\)
\(38\) 0 0
\(39\) −10.9282 −1.74991
\(40\) 0 0
\(41\) −3.46410 −0.541002 −0.270501 0.962720i \(-0.587189\pi\)
−0.270501 + 0.962720i \(0.587189\pi\)
\(42\) 0 0
\(43\) 0.535898 0.0817237 0.0408619 0.999165i \(-0.486990\pi\)
0.0408619 + 0.999165i \(0.486990\pi\)
\(44\) 0 0
\(45\) −4.46410 −0.665469
\(46\) 0 0
\(47\) 12.9282 1.88577 0.942886 0.333115i \(-0.108100\pi\)
0.942886 + 0.333115i \(0.108100\pi\)
\(48\) 0 0
\(49\) 0.464102 0.0663002
\(50\) 0 0
\(51\) 2.73205 0.382564
\(52\) 0 0
\(53\) −6.00000 −0.824163 −0.412082 0.911147i \(-0.635198\pi\)
−0.412082 + 0.911147i \(0.635198\pi\)
\(54\) 0 0
\(55\) 4.73205 0.638070
\(56\) 0 0
\(57\) −4.00000 −0.529813
\(58\) 0 0
\(59\) −2.53590 −0.330146 −0.165073 0.986281i \(-0.552786\pi\)
−0.165073 + 0.986281i \(0.552786\pi\)
\(60\) 0 0
\(61\) 4.92820 0.630992 0.315496 0.948927i \(-0.397829\pi\)
0.315496 + 0.948927i \(0.397829\pi\)
\(62\) 0 0
\(63\) −12.1962 −1.53657
\(64\) 0 0
\(65\) −4.00000 −0.496139
\(66\) 0 0
\(67\) 10.0000 1.22169 0.610847 0.791748i \(-0.290829\pi\)
0.610847 + 0.791748i \(0.290829\pi\)
\(68\) 0 0
\(69\) 22.3923 2.69572
\(70\) 0 0
\(71\) 11.6603 1.38382 0.691909 0.721985i \(-0.256770\pi\)
0.691909 + 0.721985i \(0.256770\pi\)
\(72\) 0 0
\(73\) 6.39230 0.748163 0.374081 0.927396i \(-0.377958\pi\)
0.374081 + 0.927396i \(0.377958\pi\)
\(74\) 0 0
\(75\) −2.73205 −0.315470
\(76\) 0 0
\(77\) 12.9282 1.47331
\(78\) 0 0
\(79\) 14.5885 1.64133 0.820665 0.571410i \(-0.193603\pi\)
0.820665 + 0.571410i \(0.193603\pi\)
\(80\) 0 0
\(81\) −2.46410 −0.273789
\(82\) 0 0
\(83\) −8.53590 −0.936937 −0.468468 0.883480i \(-0.655194\pi\)
−0.468468 + 0.883480i \(0.655194\pi\)
\(84\) 0 0
\(85\) 1.00000 0.108465
\(86\) 0 0
\(87\) −9.46410 −1.01466
\(88\) 0 0
\(89\) 4.39230 0.465583 0.232792 0.972527i \(-0.425214\pi\)
0.232792 + 0.972527i \(0.425214\pi\)
\(90\) 0 0
\(91\) −10.9282 −1.14559
\(92\) 0 0
\(93\) −8.92820 −0.925812
\(94\) 0 0
\(95\) −1.46410 −0.150214
\(96\) 0 0
\(97\) −4.92820 −0.500383 −0.250192 0.968196i \(-0.580494\pi\)
−0.250192 + 0.968196i \(0.580494\pi\)
\(98\) 0 0
\(99\) −21.1244 −2.12308
\(100\) 0 0
\(101\) 9.46410 0.941713 0.470857 0.882210i \(-0.343945\pi\)
0.470857 + 0.882210i \(0.343945\pi\)
\(102\) 0 0
\(103\) 8.92820 0.879722 0.439861 0.898066i \(-0.355028\pi\)
0.439861 + 0.898066i \(0.355028\pi\)
\(104\) 0 0
\(105\) −7.46410 −0.728422
\(106\) 0 0
\(107\) −17.6603 −1.70728 −0.853641 0.520862i \(-0.825610\pi\)
−0.853641 + 0.520862i \(0.825610\pi\)
\(108\) 0 0
\(109\) 10.0000 0.957826 0.478913 0.877862i \(-0.341031\pi\)
0.478913 + 0.877862i \(0.341031\pi\)
\(110\) 0 0
\(111\) −1.46410 −0.138966
\(112\) 0 0
\(113\) −17.3205 −1.62938 −0.814688 0.579899i \(-0.803092\pi\)
−0.814688 + 0.579899i \(0.803092\pi\)
\(114\) 0 0
\(115\) 8.19615 0.764295
\(116\) 0 0
\(117\) 17.8564 1.65083
\(118\) 0 0
\(119\) 2.73205 0.250447
\(120\) 0 0
\(121\) 11.3923 1.03566
\(122\) 0 0
\(123\) 9.46410 0.853349
\(124\) 0 0
\(125\) −1.00000 −0.0894427
\(126\) 0 0
\(127\) −14.3923 −1.27711 −0.638555 0.769576i \(-0.720468\pi\)
−0.638555 + 0.769576i \(0.720468\pi\)
\(128\) 0 0
\(129\) −1.46410 −0.128907
\(130\) 0 0
\(131\) 2.19615 0.191879 0.0959394 0.995387i \(-0.469415\pi\)
0.0959394 + 0.995387i \(0.469415\pi\)
\(132\) 0 0
\(133\) −4.00000 −0.346844
\(134\) 0 0
\(135\) 4.00000 0.344265
\(136\) 0 0
\(137\) 0 0 1.00000i \(-0.5\pi\)
1.00000i \(0.5\pi\)
\(138\) 0 0
\(139\) 3.66025 0.310459 0.155229 0.987878i \(-0.450388\pi\)
0.155229 + 0.987878i \(0.450388\pi\)
\(140\) 0 0
\(141\) −35.3205 −2.97452
\(142\) 0 0
\(143\) −18.9282 −1.58286
\(144\) 0 0
\(145\) −3.46410 −0.287678
\(146\) 0 0
\(147\) −1.26795 −0.104579
\(148\) 0 0
\(149\) 6.00000 0.491539 0.245770 0.969328i \(-0.420959\pi\)
0.245770 + 0.969328i \(0.420959\pi\)
\(150\) 0 0
\(151\) −1.46410 −0.119147 −0.0595734 0.998224i \(-0.518974\pi\)
−0.0595734 + 0.998224i \(0.518974\pi\)
\(152\) 0 0
\(153\) −4.46410 −0.360901
\(154\) 0 0
\(155\) −3.26795 −0.262488
\(156\) 0 0
\(157\) −8.92820 −0.712548 −0.356274 0.934381i \(-0.615953\pi\)
−0.356274 + 0.934381i \(0.615953\pi\)
\(158\) 0 0
\(159\) 16.3923 1.29999
\(160\) 0 0
\(161\) 22.3923 1.76476
\(162\) 0 0
\(163\) 0.196152 0.0153638 0.00768192 0.999970i \(-0.497555\pi\)
0.00768192 + 0.999970i \(0.497555\pi\)
\(164\) 0 0
\(165\) −12.9282 −1.00646
\(166\) 0 0
\(167\) 12.5885 0.974124 0.487062 0.873367i \(-0.338069\pi\)
0.487062 + 0.873367i \(0.338069\pi\)
\(168\) 0 0
\(169\) 3.00000 0.230769
\(170\) 0 0
\(171\) 6.53590 0.499813
\(172\) 0 0
\(173\) −3.46410 −0.263371 −0.131685 0.991292i \(-0.542039\pi\)
−0.131685 + 0.991292i \(0.542039\pi\)
\(174\) 0 0
\(175\) −2.73205 −0.206524
\(176\) 0 0
\(177\) 6.92820 0.520756
\(178\) 0 0
\(179\) 11.3205 0.846135 0.423067 0.906098i \(-0.360953\pi\)
0.423067 + 0.906098i \(0.360953\pi\)
\(180\) 0 0
\(181\) 2.39230 0.177819 0.0889093 0.996040i \(-0.471662\pi\)
0.0889093 + 0.996040i \(0.471662\pi\)
\(182\) 0 0
\(183\) −13.4641 −0.995295
\(184\) 0 0
\(185\) −0.535898 −0.0394000
\(186\) 0 0
\(187\) 4.73205 0.346042
\(188\) 0 0
\(189\) 10.9282 0.794910
\(190\) 0 0
\(191\) 1.85641 0.134325 0.0671624 0.997742i \(-0.478605\pi\)
0.0671624 + 0.997742i \(0.478605\pi\)
\(192\) 0 0
\(193\) 16.5359 1.19028 0.595140 0.803622i \(-0.297097\pi\)
0.595140 + 0.803622i \(0.297097\pi\)
\(194\) 0 0
\(195\) 10.9282 0.782585
\(196\) 0 0
\(197\) −17.3205 −1.23404 −0.617018 0.786949i \(-0.711659\pi\)
−0.617018 + 0.786949i \(0.711659\pi\)
\(198\) 0 0
\(199\) 10.1962 0.722786 0.361393 0.932414i \(-0.382301\pi\)
0.361393 + 0.932414i \(0.382301\pi\)
\(200\) 0 0
\(201\) −27.3205 −1.92704
\(202\) 0 0
\(203\) −9.46410 −0.664250
\(204\) 0 0
\(205\) 3.46410 0.241943
\(206\) 0 0
\(207\) −36.5885 −2.54307
\(208\) 0 0
\(209\) −6.92820 −0.479234
\(210\) 0 0
\(211\) −10.1962 −0.701932 −0.350966 0.936388i \(-0.614147\pi\)
−0.350966 + 0.936388i \(0.614147\pi\)
\(212\) 0 0
\(213\) −31.8564 −2.18277
\(214\) 0 0
\(215\) −0.535898 −0.0365480
\(216\) 0 0
\(217\) −8.92820 −0.606086
\(218\) 0 0
\(219\) −17.4641 −1.18011
\(220\) 0 0
\(221\) −4.00000 −0.269069
\(222\) 0 0
\(223\) −26.3923 −1.76736 −0.883680 0.468092i \(-0.844942\pi\)
−0.883680 + 0.468092i \(0.844942\pi\)
\(224\) 0 0
\(225\) 4.46410 0.297607
\(226\) 0 0
\(227\) −22.7321 −1.50878 −0.754390 0.656427i \(-0.772067\pi\)
−0.754390 + 0.656427i \(0.772067\pi\)
\(228\) 0 0
\(229\) 8.39230 0.554579 0.277290 0.960786i \(-0.410564\pi\)
0.277290 + 0.960786i \(0.410564\pi\)
\(230\) 0 0
\(231\) −35.3205 −2.32392
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −12.9282 −0.843343
\(236\) 0 0
\(237\) −39.8564 −2.58895
\(238\) 0 0
\(239\) −20.7846 −1.34444 −0.672222 0.740349i \(-0.734660\pi\)
−0.672222 + 0.740349i \(0.734660\pi\)
\(240\) 0 0
\(241\) −5.60770 −0.361223 −0.180612 0.983554i \(-0.557808\pi\)
−0.180612 + 0.983554i \(0.557808\pi\)
\(242\) 0 0
\(243\) 18.7321 1.20166
\(244\) 0 0
\(245\) −0.464102 −0.0296504
\(246\) 0 0
\(247\) 5.85641 0.372634
\(248\) 0 0
\(249\) 23.3205 1.47788
\(250\) 0 0
\(251\) −6.92820 −0.437304 −0.218652 0.975803i \(-0.570166\pi\)
−0.218652 + 0.975803i \(0.570166\pi\)
\(252\) 0 0
\(253\) 38.7846 2.43837
\(254\) 0 0
\(255\) −2.73205 −0.171088
\(256\) 0 0
\(257\) −6.92820 −0.432169 −0.216085 0.976375i \(-0.569329\pi\)
−0.216085 + 0.976375i \(0.569329\pi\)
\(258\) 0 0
\(259\) −1.46410 −0.0909748
\(260\) 0 0
\(261\) 15.4641 0.957204
\(262\) 0 0
\(263\) −1.60770 −0.0991347 −0.0495674 0.998771i \(-0.515784\pi\)
−0.0495674 + 0.998771i \(0.515784\pi\)
\(264\) 0 0
\(265\) 6.00000 0.368577
\(266\) 0 0
\(267\) −12.0000 −0.734388
\(268\) 0 0
\(269\) −0.928203 −0.0565935 −0.0282968 0.999600i \(-0.509008\pi\)
−0.0282968 + 0.999600i \(0.509008\pi\)
\(270\) 0 0
\(271\) 2.92820 0.177876 0.0889378 0.996037i \(-0.471653\pi\)
0.0889378 + 0.996037i \(0.471653\pi\)
\(272\) 0 0
\(273\) 29.8564 1.80699
\(274\) 0 0
\(275\) −4.73205 −0.285353
\(276\) 0 0
\(277\) −20.9282 −1.25745 −0.628727 0.777626i \(-0.716424\pi\)
−0.628727 + 0.777626i \(0.716424\pi\)
\(278\) 0 0
\(279\) 14.5885 0.873388
\(280\) 0 0
\(281\) −12.9282 −0.771232 −0.385616 0.922659i \(-0.626011\pi\)
−0.385616 + 0.922659i \(0.626011\pi\)
\(282\) 0 0
\(283\) 5.26795 0.313147 0.156574 0.987666i \(-0.449955\pi\)
0.156574 + 0.987666i \(0.449955\pi\)
\(284\) 0 0
\(285\) 4.00000 0.236940
\(286\) 0 0
\(287\) 9.46410 0.558648
\(288\) 0 0
\(289\) 1.00000 0.0588235
\(290\) 0 0
\(291\) 13.4641 0.789280
\(292\) 0 0
\(293\) 0.928203 0.0542262 0.0271131 0.999632i \(-0.491369\pi\)
0.0271131 + 0.999632i \(0.491369\pi\)
\(294\) 0 0
\(295\) 2.53590 0.147646
\(296\) 0 0
\(297\) 18.9282 1.09833
\(298\) 0 0
\(299\) −32.7846 −1.89598
\(300\) 0 0
\(301\) −1.46410 −0.0843894
\(302\) 0 0
\(303\) −25.8564 −1.48541
\(304\) 0 0
\(305\) −4.92820 −0.282188
\(306\) 0 0
\(307\) 10.0000 0.570730 0.285365 0.958419i \(-0.407885\pi\)
0.285365 + 0.958419i \(0.407885\pi\)
\(308\) 0 0
\(309\) −24.3923 −1.38763
\(310\) 0 0
\(311\) −16.0526 −0.910257 −0.455129 0.890426i \(-0.650407\pi\)
−0.455129 + 0.890426i \(0.650407\pi\)
\(312\) 0 0
\(313\) −26.3923 −1.49178 −0.745891 0.666068i \(-0.767976\pi\)
−0.745891 + 0.666068i \(0.767976\pi\)
\(314\) 0 0
\(315\) 12.1962 0.687175
\(316\) 0 0
\(317\) 24.9282 1.40011 0.700054 0.714090i \(-0.253159\pi\)
0.700054 + 0.714090i \(0.253159\pi\)
\(318\) 0 0
\(319\) −16.3923 −0.917793
\(320\) 0 0
\(321\) 48.2487 2.69298
\(322\) 0 0
\(323\) −1.46410 −0.0814648
\(324\) 0 0
\(325\) 4.00000 0.221880
\(326\) 0 0
\(327\) −27.3205 −1.51083
\(328\) 0 0
\(329\) −35.3205 −1.94728
\(330\) 0 0
\(331\) 6.53590 0.359245 0.179623 0.983736i \(-0.442512\pi\)
0.179623 + 0.983736i \(0.442512\pi\)
\(332\) 0 0
\(333\) 2.39230 0.131097
\(334\) 0 0
\(335\) −10.0000 −0.546358
\(336\) 0 0
\(337\) −6.78461 −0.369581 −0.184791 0.982778i \(-0.559161\pi\)
−0.184791 + 0.982778i \(0.559161\pi\)
\(338\) 0 0
\(339\) 47.3205 2.57010
\(340\) 0 0
\(341\) −15.4641 −0.837428
\(342\) 0 0
\(343\) 17.8564 0.964155
\(344\) 0 0
\(345\) −22.3923 −1.20556
\(346\) 0 0
\(347\) −3.80385 −0.204201 −0.102101 0.994774i \(-0.532556\pi\)
−0.102101 + 0.994774i \(0.532556\pi\)
\(348\) 0 0
\(349\) −10.7846 −0.577287 −0.288643 0.957437i \(-0.593204\pi\)
−0.288643 + 0.957437i \(0.593204\pi\)
\(350\) 0 0
\(351\) −16.0000 −0.854017
\(352\) 0 0
\(353\) 26.7846 1.42560 0.712800 0.701367i \(-0.247427\pi\)
0.712800 + 0.701367i \(0.247427\pi\)
\(354\) 0 0
\(355\) −11.6603 −0.618862
\(356\) 0 0
\(357\) −7.46410 −0.395042
\(358\) 0 0
\(359\) −21.4641 −1.13283 −0.566416 0.824119i \(-0.691670\pi\)
−0.566416 + 0.824119i \(0.691670\pi\)
\(360\) 0 0
\(361\) −16.8564 −0.887179
\(362\) 0 0
\(363\) −31.1244 −1.63361
\(364\) 0 0
\(365\) −6.39230 −0.334589
\(366\) 0 0
\(367\) −7.80385 −0.407358 −0.203679 0.979038i \(-0.565290\pi\)
−0.203679 + 0.979038i \(0.565290\pi\)
\(368\) 0 0
\(369\) −15.4641 −0.805029
\(370\) 0 0
\(371\) 16.3923 0.851046
\(372\) 0 0
\(373\) −20.0000 −1.03556 −0.517780 0.855514i \(-0.673242\pi\)
−0.517780 + 0.855514i \(0.673242\pi\)
\(374\) 0 0
\(375\) 2.73205 0.141082
\(376\) 0 0
\(377\) 13.8564 0.713641
\(378\) 0 0
\(379\) −17.8038 −0.914522 −0.457261 0.889332i \(-0.651170\pi\)
−0.457261 + 0.889332i \(0.651170\pi\)
\(380\) 0 0
\(381\) 39.3205 2.01445
\(382\) 0 0
\(383\) 15.4641 0.790179 0.395089 0.918643i \(-0.370714\pi\)
0.395089 + 0.918643i \(0.370714\pi\)
\(384\) 0 0
\(385\) −12.9282 −0.658882
\(386\) 0 0
\(387\) 2.39230 0.121608
\(388\) 0 0
\(389\) 4.39230 0.222699 0.111349 0.993781i \(-0.464483\pi\)
0.111349 + 0.993781i \(0.464483\pi\)
\(390\) 0 0
\(391\) 8.19615 0.414497
\(392\) 0 0
\(393\) −6.00000 −0.302660
\(394\) 0 0
\(395\) −14.5885 −0.734025
\(396\) 0 0
\(397\) −14.0000 −0.702640 −0.351320 0.936255i \(-0.614267\pi\)
−0.351320 + 0.936255i \(0.614267\pi\)
\(398\) 0 0
\(399\) 10.9282 0.547094
\(400\) 0 0
\(401\) 12.9282 0.645604 0.322802 0.946467i \(-0.395375\pi\)
0.322802 + 0.946467i \(0.395375\pi\)
\(402\) 0 0
\(403\) 13.0718 0.651153
\(404\) 0 0
\(405\) 2.46410 0.122442
\(406\) 0 0
\(407\) −2.53590 −0.125700
\(408\) 0 0
\(409\) 26.0000 1.28562 0.642809 0.766027i \(-0.277769\pi\)
0.642809 + 0.766027i \(0.277769\pi\)
\(410\) 0 0
\(411\) 0 0
\(412\) 0 0
\(413\) 6.92820 0.340915
\(414\) 0 0
\(415\) 8.53590 0.419011
\(416\) 0 0
\(417\) −10.0000 −0.489702
\(418\) 0 0
\(419\) −38.1962 −1.86600 −0.933002 0.359871i \(-0.882821\pi\)
−0.933002 + 0.359871i \(0.882821\pi\)
\(420\) 0 0
\(421\) −5.46410 −0.266304 −0.133152 0.991096i \(-0.542510\pi\)
−0.133152 + 0.991096i \(0.542510\pi\)
\(422\) 0 0
\(423\) 57.7128 2.80609
\(424\) 0 0
\(425\) −1.00000 −0.0485071
\(426\) 0 0
\(427\) −13.4641 −0.651574
\(428\) 0 0
\(429\) 51.7128 2.49672
\(430\) 0 0
\(431\) 9.80385 0.472235 0.236117 0.971725i \(-0.424125\pi\)
0.236117 + 0.971725i \(0.424125\pi\)
\(432\) 0 0
\(433\) −17.8564 −0.858124 −0.429062 0.903275i \(-0.641156\pi\)
−0.429062 + 0.903275i \(0.641156\pi\)
\(434\) 0 0
\(435\) 9.46410 0.453769
\(436\) 0 0
\(437\) −12.0000 −0.574038
\(438\) 0 0
\(439\) −20.0526 −0.957056 −0.478528 0.878072i \(-0.658830\pi\)
−0.478528 + 0.878072i \(0.658830\pi\)
\(440\) 0 0
\(441\) 2.07180 0.0986570
\(442\) 0 0
\(443\) 12.9282 0.614237 0.307119 0.951671i \(-0.400635\pi\)
0.307119 + 0.951671i \(0.400635\pi\)
\(444\) 0 0
\(445\) −4.39230 −0.208215
\(446\) 0 0
\(447\) −16.3923 −0.775329
\(448\) 0 0
\(449\) −34.3923 −1.62307 −0.811537 0.584302i \(-0.801369\pi\)
−0.811537 + 0.584302i \(0.801369\pi\)
\(450\) 0 0
\(451\) 16.3923 0.771883
\(452\) 0 0
\(453\) 4.00000 0.187936
\(454\) 0 0
\(455\) 10.9282 0.512322
\(456\) 0 0
\(457\) −36.7846 −1.72071 −0.860356 0.509694i \(-0.829759\pi\)
−0.860356 + 0.509694i \(0.829759\pi\)
\(458\) 0 0
\(459\) 4.00000 0.186704
\(460\) 0 0
\(461\) 24.9282 1.16102 0.580511 0.814252i \(-0.302853\pi\)
0.580511 + 0.814252i \(0.302853\pi\)
\(462\) 0 0
\(463\) −23.8564 −1.10870 −0.554351 0.832283i \(-0.687033\pi\)
−0.554351 + 0.832283i \(0.687033\pi\)
\(464\) 0 0
\(465\) 8.92820 0.414036
\(466\) 0 0
\(467\) −1.60770 −0.0743953 −0.0371976 0.999308i \(-0.511843\pi\)
−0.0371976 + 0.999308i \(0.511843\pi\)
\(468\) 0 0
\(469\) −27.3205 −1.26154
\(470\) 0 0
\(471\) 24.3923 1.12394
\(472\) 0 0
\(473\) −2.53590 −0.116601
\(474\) 0 0
\(475\) 1.46410 0.0671776
\(476\) 0 0
\(477\) −26.7846 −1.22638
\(478\) 0 0
\(479\) −11.6603 −0.532771 −0.266385 0.963867i \(-0.585829\pi\)
−0.266385 + 0.963867i \(0.585829\pi\)
\(480\) 0 0
\(481\) 2.14359 0.0977395
\(482\) 0 0
\(483\) −61.1769 −2.78365
\(484\) 0 0
\(485\) 4.92820 0.223778
\(486\) 0 0
\(487\) 24.9808 1.13199 0.565993 0.824410i \(-0.308493\pi\)
0.565993 + 0.824410i \(0.308493\pi\)
\(488\) 0 0
\(489\) −0.535898 −0.0242342
\(490\) 0 0
\(491\) 19.6077 0.884883 0.442441 0.896797i \(-0.354112\pi\)
0.442441 + 0.896797i \(0.354112\pi\)
\(492\) 0 0
\(493\) −3.46410 −0.156015
\(494\) 0 0
\(495\) 21.1244 0.949469
\(496\) 0 0
\(497\) −31.8564 −1.42896
\(498\) 0 0
\(499\) 15.6603 0.701049 0.350525 0.936554i \(-0.386003\pi\)
0.350525 + 0.936554i \(0.386003\pi\)
\(500\) 0 0
\(501\) −34.3923 −1.53653
\(502\) 0 0
\(503\) 15.1244 0.674362 0.337181 0.941440i \(-0.390527\pi\)
0.337181 + 0.941440i \(0.390527\pi\)
\(504\) 0 0
\(505\) −9.46410 −0.421147
\(506\) 0 0
\(507\) −8.19615 −0.364004
\(508\) 0 0
\(509\) −19.8564 −0.880120 −0.440060 0.897968i \(-0.645043\pi\)
−0.440060 + 0.897968i \(0.645043\pi\)
\(510\) 0 0
\(511\) −17.4641 −0.772566
\(512\) 0 0
\(513\) −5.85641 −0.258567
\(514\) 0 0
\(515\) −8.92820 −0.393424
\(516\) 0 0
\(517\) −61.1769 −2.69056
\(518\) 0 0
\(519\) 9.46410 0.415428
\(520\) 0 0
\(521\) 4.14359 0.181534 0.0907671 0.995872i \(-0.471068\pi\)
0.0907671 + 0.995872i \(0.471068\pi\)
\(522\) 0 0
\(523\) 22.0000 0.961993 0.480996 0.876723i \(-0.340275\pi\)
0.480996 + 0.876723i \(0.340275\pi\)
\(524\) 0 0
\(525\) 7.46410 0.325760
\(526\) 0 0
\(527\) −3.26795 −0.142354
\(528\) 0 0
\(529\) 44.1769 1.92074
\(530\) 0 0
\(531\) −11.3205 −0.491268
\(532\) 0 0
\(533\) −13.8564 −0.600188
\(534\) 0 0
\(535\) 17.6603 0.763519
\(536\) 0 0
\(537\) −30.9282 −1.33465
\(538\) 0 0
\(539\) −2.19615 −0.0945950
\(540\) 0 0
\(541\) −39.1769 −1.68435 −0.842174 0.539207i \(-0.818724\pi\)
−0.842174 + 0.539207i \(0.818724\pi\)
\(542\) 0 0
\(543\) −6.53590 −0.280482
\(544\) 0 0
\(545\) −10.0000 −0.428353
\(546\) 0 0
\(547\) 39.9090 1.70638 0.853192 0.521597i \(-0.174663\pi\)
0.853192 + 0.521597i \(0.174663\pi\)
\(548\) 0 0
\(549\) 22.0000 0.938937
\(550\) 0 0
\(551\) 5.07180 0.216066
\(552\) 0 0
\(553\) −39.8564 −1.69487
\(554\) 0 0
\(555\) 1.46410 0.0621477
\(556\) 0 0
\(557\) 6.92820 0.293557 0.146779 0.989169i \(-0.453109\pi\)
0.146779 + 0.989169i \(0.453109\pi\)
\(558\) 0 0
\(559\) 2.14359 0.0906643
\(560\) 0 0
\(561\) −12.9282 −0.545829
\(562\) 0 0
\(563\) −27.4641 −1.15747 −0.578737 0.815514i \(-0.696454\pi\)
−0.578737 + 0.815514i \(0.696454\pi\)
\(564\) 0 0
\(565\) 17.3205 0.728679
\(566\) 0 0
\(567\) 6.73205 0.282720
\(568\) 0 0
\(569\) 40.6410 1.70376 0.851880 0.523737i \(-0.175463\pi\)
0.851880 + 0.523737i \(0.175463\pi\)
\(570\) 0 0
\(571\) 36.4449 1.52517 0.762585 0.646888i \(-0.223930\pi\)
0.762585 + 0.646888i \(0.223930\pi\)
\(572\) 0 0
\(573\) −5.07180 −0.211877
\(574\) 0 0
\(575\) −8.19615 −0.341803
\(576\) 0 0
\(577\) −38.6410 −1.60865 −0.804323 0.594192i \(-0.797472\pi\)
−0.804323 + 0.594192i \(0.797472\pi\)
\(578\) 0 0
\(579\) −45.1769 −1.87749
\(580\) 0 0
\(581\) 23.3205 0.967498
\(582\) 0 0
\(583\) 28.3923 1.17589
\(584\) 0 0
\(585\) −17.8564 −0.738272
\(586\) 0 0
\(587\) −46.3923 −1.91482 −0.957408 0.288740i \(-0.906764\pi\)
−0.957408 + 0.288740i \(0.906764\pi\)
\(588\) 0 0
\(589\) 4.78461 0.197146
\(590\) 0 0
\(591\) 47.3205 1.94651
\(592\) 0 0
\(593\) 19.8564 0.815405 0.407702 0.913115i \(-0.366330\pi\)
0.407702 + 0.913115i \(0.366330\pi\)
\(594\) 0 0
\(595\) −2.73205 −0.112003
\(596\) 0 0
\(597\) −27.8564 −1.14009
\(598\) 0 0
\(599\) 12.0000 0.490307 0.245153 0.969484i \(-0.421162\pi\)
0.245153 + 0.969484i \(0.421162\pi\)
\(600\) 0 0
\(601\) 8.24871 0.336472 0.168236 0.985747i \(-0.446193\pi\)
0.168236 + 0.985747i \(0.446193\pi\)
\(602\) 0 0
\(603\) 44.6410 1.81792
\(604\) 0 0
\(605\) −11.3923 −0.463163
\(606\) 0 0
\(607\) −21.6603 −0.879163 −0.439581 0.898203i \(-0.644873\pi\)
−0.439581 + 0.898203i \(0.644873\pi\)
\(608\) 0 0
\(609\) 25.8564 1.04775
\(610\) 0 0
\(611\) 51.7128 2.09208
\(612\) 0 0
\(613\) −15.8564 −0.640434 −0.320217 0.947344i \(-0.603756\pi\)
−0.320217 + 0.947344i \(0.603756\pi\)
\(614\) 0 0
\(615\) −9.46410 −0.381629
\(616\) 0 0
\(617\) −27.4641 −1.10566 −0.552832 0.833293i \(-0.686453\pi\)
−0.552832 + 0.833293i \(0.686453\pi\)
\(618\) 0 0
\(619\) −38.5885 −1.55100 −0.775501 0.631347i \(-0.782502\pi\)
−0.775501 + 0.631347i \(0.782502\pi\)
\(620\) 0 0
\(621\) 32.7846 1.31560
\(622\) 0 0
\(623\) −12.0000 −0.480770
\(624\) 0 0
\(625\) 1.00000 0.0400000
\(626\) 0 0
\(627\) 18.9282 0.755920
\(628\) 0 0
\(629\) −0.535898 −0.0213677
\(630\) 0 0
\(631\) −32.3923 −1.28952 −0.644759 0.764386i \(-0.723042\pi\)
−0.644759 + 0.764386i \(0.723042\pi\)
\(632\) 0 0
\(633\) 27.8564 1.10719
\(634\) 0 0
\(635\) 14.3923 0.571141
\(636\) 0 0
\(637\) 1.85641 0.0735535
\(638\) 0 0
\(639\) 52.0526 2.05917
\(640\) 0 0
\(641\) 31.1769 1.23141 0.615707 0.787975i \(-0.288870\pi\)
0.615707 + 0.787975i \(0.288870\pi\)
\(642\) 0 0
\(643\) 24.1962 0.954203 0.477102 0.878848i \(-0.341687\pi\)
0.477102 + 0.878848i \(0.341687\pi\)
\(644\) 0 0
\(645\) 1.46410 0.0576489
\(646\) 0 0
\(647\) −38.7846 −1.52478 −0.762390 0.647118i \(-0.775974\pi\)
−0.762390 + 0.647118i \(0.775974\pi\)
\(648\) 0 0
\(649\) 12.0000 0.471041
\(650\) 0 0
\(651\) 24.3923 0.956010
\(652\) 0 0
\(653\) 25.6077 1.00211 0.501053 0.865416i \(-0.332946\pi\)
0.501053 + 0.865416i \(0.332946\pi\)
\(654\) 0 0
\(655\) −2.19615 −0.0858108
\(656\) 0 0
\(657\) 28.5359 1.11329
\(658\) 0 0
\(659\) 32.7846 1.27711 0.638554 0.769577i \(-0.279533\pi\)
0.638554 + 0.769577i \(0.279533\pi\)
\(660\) 0 0
\(661\) 8.14359 0.316749 0.158375 0.987379i \(-0.449375\pi\)
0.158375 + 0.987379i \(0.449375\pi\)
\(662\) 0 0
\(663\) 10.9282 0.424416
\(664\) 0 0
\(665\) 4.00000 0.155113
\(666\) 0 0
\(667\) −28.3923 −1.09935
\(668\) 0 0
\(669\) 72.1051 2.78774
\(670\) 0 0
\(671\) −23.3205 −0.900278
\(672\) 0 0
\(673\) 23.4641 0.904475 0.452237 0.891898i \(-0.350626\pi\)
0.452237 + 0.891898i \(0.350626\pi\)
\(674\) 0 0
\(675\) −4.00000 −0.153960
\(676\) 0 0
\(677\) −2.78461 −0.107021 −0.0535106 0.998567i \(-0.517041\pi\)
−0.0535106 + 0.998567i \(0.517041\pi\)
\(678\) 0 0
\(679\) 13.4641 0.516705
\(680\) 0 0
\(681\) 62.1051 2.37987
\(682\) 0 0
\(683\) 30.8372 1.17995 0.589976 0.807421i \(-0.299137\pi\)
0.589976 + 0.807421i \(0.299137\pi\)
\(684\) 0 0
\(685\) 0 0
\(686\) 0 0
\(687\) −22.9282 −0.874766
\(688\) 0 0
\(689\) −24.0000 −0.914327
\(690\) 0 0
\(691\) 38.9808 1.48290 0.741449 0.671009i \(-0.234139\pi\)
0.741449 + 0.671009i \(0.234139\pi\)
\(692\) 0 0
\(693\) 57.7128 2.19233
\(694\) 0 0
\(695\) −3.66025 −0.138841
\(696\) 0 0
\(697\) 3.46410 0.131212
\(698\) 0 0
\(699\) −16.3923 −0.620014
\(700\) 0 0
\(701\) −11.3205 −0.427570 −0.213785 0.976881i \(-0.568579\pi\)
−0.213785 + 0.976881i \(0.568579\pi\)
\(702\) 0 0
\(703\) 0.784610 0.0295921
\(704\) 0 0
\(705\) 35.3205 1.33025
\(706\) 0 0
\(707\) −25.8564 −0.972430
\(708\) 0 0
\(709\) −4.53590 −0.170349 −0.0851746 0.996366i \(-0.527145\pi\)
−0.0851746 + 0.996366i \(0.527145\pi\)
\(710\) 0 0
\(711\) 65.1244 2.44235
\(712\) 0 0
\(713\) −26.7846 −1.00309
\(714\) 0 0
\(715\) 18.9282 0.707875
\(716\) 0 0
\(717\) 56.7846 2.12066
\(718\) 0 0
\(719\) −5.41154 −0.201816 −0.100908 0.994896i \(-0.532175\pi\)
−0.100908 + 0.994896i \(0.532175\pi\)
\(720\) 0 0
\(721\) −24.3923 −0.908417
\(722\) 0 0
\(723\) 15.3205 0.569776
\(724\) 0 0
\(725\) 3.46410 0.128654
\(726\) 0 0
\(727\) 0.143594 0.00532559 0.00266279 0.999996i \(-0.499152\pi\)
0.00266279 + 0.999996i \(0.499152\pi\)
\(728\) 0 0
\(729\) −43.7846 −1.62165
\(730\) 0 0
\(731\) −0.535898 −0.0198209
\(732\) 0 0
\(733\) −2.00000 −0.0738717 −0.0369358 0.999318i \(-0.511760\pi\)
−0.0369358 + 0.999318i \(0.511760\pi\)
\(734\) 0 0
\(735\) 1.26795 0.0467690
\(736\) 0 0
\(737\) −47.3205 −1.74307
\(738\) 0 0
\(739\) 11.6077 0.426996 0.213498 0.976944i \(-0.431514\pi\)
0.213498 + 0.976944i \(0.431514\pi\)
\(740\) 0 0
\(741\) −16.0000 −0.587775
\(742\) 0 0
\(743\) −22.7321 −0.833958 −0.416979 0.908916i \(-0.636911\pi\)
−0.416979 + 0.908916i \(0.636911\pi\)
\(744\) 0 0
\(745\) −6.00000 −0.219823
\(746\) 0 0
\(747\) −38.1051 −1.39419
\(748\) 0 0
\(749\) 48.2487 1.76297
\(750\) 0 0
\(751\) 43.6603 1.59319 0.796593 0.604516i \(-0.206634\pi\)
0.796593 + 0.604516i \(0.206634\pi\)
\(752\) 0 0
\(753\) 18.9282 0.689782
\(754\) 0 0
\(755\) 1.46410 0.0532841
\(756\) 0 0
\(757\) −30.6410 −1.11367 −0.556833 0.830624i \(-0.687984\pi\)
−0.556833 + 0.830624i \(0.687984\pi\)
\(758\) 0 0
\(759\) −105.962 −3.84616
\(760\) 0 0
\(761\) −28.3923 −1.02922 −0.514610 0.857424i \(-0.672063\pi\)
−0.514610 + 0.857424i \(0.672063\pi\)
\(762\) 0 0
\(763\) −27.3205 −0.989069
\(764\) 0 0
\(765\) 4.46410 0.161400
\(766\) 0 0
\(767\) −10.1436 −0.366264
\(768\) 0 0
\(769\) 36.3923 1.31234 0.656170 0.754613i \(-0.272175\pi\)
0.656170 + 0.754613i \(0.272175\pi\)
\(770\) 0 0
\(771\) 18.9282 0.681683
\(772\) 0 0
\(773\) 46.6410 1.67756 0.838780 0.544470i \(-0.183269\pi\)
0.838780 + 0.544470i \(0.183269\pi\)
\(774\) 0 0
\(775\) 3.26795 0.117388
\(776\) 0 0
\(777\) 4.00000 0.143499
\(778\) 0 0
\(779\) −5.07180 −0.181716
\(780\) 0 0
\(781\) −55.1769 −1.97439
\(782\) 0 0
\(783\) −13.8564 −0.495188
\(784\) 0 0
\(785\) 8.92820 0.318661
\(786\) 0 0
\(787\) −43.9090 −1.56519 −0.782593 0.622534i \(-0.786103\pi\)
−0.782593 + 0.622534i \(0.786103\pi\)
\(788\) 0 0
\(789\) 4.39230 0.156370
\(790\) 0 0
\(791\) 47.3205 1.68252
\(792\) 0 0
\(793\) 19.7128 0.700023
\(794\) 0 0
\(795\) −16.3923 −0.581375
\(796\) 0 0
\(797\) 24.9282 0.883002 0.441501 0.897261i \(-0.354446\pi\)
0.441501 + 0.897261i \(0.354446\pi\)
\(798\) 0 0
\(799\) −12.9282 −0.457367
\(800\) 0 0
\(801\) 19.6077 0.692804
\(802\) 0 0
\(803\) −30.2487 −1.06745
\(804\) 0 0
\(805\) −22.3923 −0.789225
\(806\) 0 0
\(807\) 2.53590 0.0892679
\(808\) 0 0
\(809\) −55.8564 −1.96381 −0.981903 0.189383i \(-0.939351\pi\)
−0.981903 + 0.189383i \(0.939351\pi\)
\(810\) 0 0
\(811\) −44.8372 −1.57445 −0.787223 0.616668i \(-0.788482\pi\)
−0.787223 + 0.616668i \(0.788482\pi\)
\(812\) 0 0
\(813\) −8.00000 −0.280572
\(814\) 0 0
\(815\) −0.196152 −0.00687092
\(816\) 0 0
\(817\) 0.784610 0.0274500
\(818\) 0 0
\(819\) −48.7846 −1.70467
\(820\) 0 0
\(821\) 24.9282 0.870000 0.435000 0.900430i \(-0.356748\pi\)
0.435000 + 0.900430i \(0.356748\pi\)
\(822\) 0 0
\(823\) −8.98076 −0.313050 −0.156525 0.987674i \(-0.550029\pi\)
−0.156525 + 0.987674i \(0.550029\pi\)
\(824\) 0 0
\(825\) 12.9282 0.450102
\(826\) 0 0
\(827\) 15.8038 0.549554 0.274777 0.961508i \(-0.411396\pi\)
0.274777 + 0.961508i \(0.411396\pi\)
\(828\) 0 0
\(829\) −17.7128 −0.615191 −0.307596 0.951517i \(-0.599524\pi\)
−0.307596 + 0.951517i \(0.599524\pi\)
\(830\) 0 0
\(831\) 57.1769 1.98345
\(832\) 0 0
\(833\) −0.464102 −0.0160802
\(834\) 0 0
\(835\) −12.5885 −0.435642
\(836\) 0 0
\(837\) −13.0718 −0.451827
\(838\) 0 0
\(839\) 19.2679 0.665203 0.332602 0.943067i \(-0.392074\pi\)
0.332602 + 0.943067i \(0.392074\pi\)
\(840\) 0 0
\(841\) −17.0000 −0.586207
\(842\) 0 0
\(843\) 35.3205 1.21650
\(844\) 0 0
\(845\) −3.00000 −0.103203
\(846\) 0 0
\(847\) −31.1244 −1.06945
\(848\) 0 0
\(849\) −14.3923 −0.493943
\(850\) 0 0
\(851\) −4.39230 −0.150566
\(852\) 0 0
\(853\) 23.1769 0.793562 0.396781 0.917913i \(-0.370127\pi\)
0.396781 + 0.917913i \(0.370127\pi\)
\(854\) 0 0
\(855\) −6.53590 −0.223523
\(856\) 0 0
\(857\) 31.1769 1.06498 0.532492 0.846435i \(-0.321256\pi\)
0.532492 + 0.846435i \(0.321256\pi\)
\(858\) 0 0
\(859\) 25.4641 0.868824 0.434412 0.900714i \(-0.356956\pi\)
0.434412 + 0.900714i \(0.356956\pi\)
\(860\) 0 0
\(861\) −25.8564 −0.881184
\(862\) 0 0
\(863\) 23.0718 0.785373 0.392687 0.919672i \(-0.371546\pi\)
0.392687 + 0.919672i \(0.371546\pi\)
\(864\) 0 0
\(865\) 3.46410 0.117783
\(866\) 0 0
\(867\) −2.73205 −0.0927853
\(868\) 0 0
\(869\) −69.0333 −2.34180
\(870\) 0 0
\(871\) 40.0000 1.35535
\(872\) 0 0
\(873\) −22.0000 −0.744587
\(874\) 0 0
\(875\) 2.73205 0.0923602
\(876\) 0 0
\(877\) 1.21539 0.0410408 0.0205204 0.999789i \(-0.493468\pi\)
0.0205204 + 0.999789i \(0.493468\pi\)
\(878\) 0 0
\(879\) −2.53590 −0.0855337
\(880\) 0 0
\(881\) −41.3205 −1.39212 −0.696062 0.717982i \(-0.745066\pi\)
−0.696062 + 0.717982i \(0.745066\pi\)
\(882\) 0 0
\(883\) 10.0000 0.336527 0.168263 0.985742i \(-0.446184\pi\)
0.168263 + 0.985742i \(0.446184\pi\)
\(884\) 0 0
\(885\) −6.92820 −0.232889
\(886\) 0 0
\(887\) 3.12436 0.104906 0.0524528 0.998623i \(-0.483296\pi\)
0.0524528 + 0.998623i \(0.483296\pi\)
\(888\) 0 0
\(889\) 39.3205 1.31877
\(890\) 0 0
\(891\) 11.6603 0.390633
\(892\) 0 0
\(893\) 18.9282 0.633408
\(894\) 0 0
\(895\) −11.3205 −0.378403
\(896\) 0 0
\(897\) 89.5692 2.99063
\(898\) 0 0
\(899\) 11.3205 0.377560
\(900\) 0 0
\(901\) 6.00000 0.199889
\(902\) 0 0
\(903\) 4.00000 0.133112
\(904\) 0 0
\(905\) −2.39230 −0.0795229
\(906\) 0 0
\(907\) −30.7321 −1.02044 −0.510220 0.860044i \(-0.670436\pi\)
−0.510220 + 0.860044i \(0.670436\pi\)
\(908\) 0 0
\(909\) 42.2487 1.40130
\(910\) 0 0
\(911\) 36.3397 1.20399 0.601995 0.798500i \(-0.294373\pi\)
0.601995 + 0.798500i \(0.294373\pi\)
\(912\) 0 0
\(913\) 40.3923 1.33679
\(914\) 0 0
\(915\) 13.4641 0.445109
\(916\) 0 0
\(917\) −6.00000 −0.198137
\(918\) 0 0
\(919\) −40.0000 −1.31948 −0.659739 0.751495i \(-0.729333\pi\)
−0.659739 + 0.751495i \(0.729333\pi\)
\(920\) 0 0
\(921\) −27.3205 −0.900241
\(922\) 0 0
\(923\) 46.6410 1.53521
\(924\) 0 0
\(925\) 0.535898 0.0176202
\(926\) 0 0
\(927\) 39.8564 1.30906
\(928\) 0 0
\(929\) −3.46410 −0.113653 −0.0568267 0.998384i \(-0.518098\pi\)
−0.0568267 + 0.998384i \(0.518098\pi\)
\(930\) 0 0
\(931\) 0.679492 0.0222694
\(932\) 0 0
\(933\) 43.8564 1.43579
\(934\) 0 0
\(935\) −4.73205 −0.154755
\(936\) 0 0
\(937\) −32.6410 −1.06634 −0.533168 0.846010i \(-0.678999\pi\)
−0.533168 + 0.846010i \(0.678999\pi\)
\(938\) 0 0
\(939\) 72.1051 2.35306
\(940\) 0 0
\(941\) −48.2487 −1.57286 −0.786432 0.617677i \(-0.788074\pi\)
−0.786432 + 0.617677i \(0.788074\pi\)
\(942\) 0 0
\(943\) 28.3923 0.924581
\(944\) 0 0
\(945\) −10.9282 −0.355494
\(946\) 0 0
\(947\) −8.19615 −0.266339 −0.133170 0.991093i \(-0.542515\pi\)
−0.133170 + 0.991093i \(0.542515\pi\)
\(948\) 0 0
\(949\) 25.5692 0.830012
\(950\) 0 0
\(951\) −68.1051 −2.20846
\(952\) 0 0
\(953\) −8.78461 −0.284561 −0.142281 0.989826i \(-0.545444\pi\)
−0.142281 + 0.989826i \(0.545444\pi\)
\(954\) 0 0
\(955\) −1.85641 −0.0600719
\(956\) 0 0
\(957\) 44.7846 1.44768
\(958\) 0 0
\(959\) 0 0
\(960\) 0 0
\(961\) −20.3205 −0.655500
\(962\) 0 0
\(963\) −78.8372 −2.54049
\(964\) 0 0
\(965\) −16.5359 −0.532309
\(966\) 0 0
\(967\) 39.1769 1.25984 0.629922 0.776658i \(-0.283087\pi\)
0.629922 + 0.776658i \(0.283087\pi\)
\(968\) 0 0
\(969\) 4.00000 0.128499
\(970\) 0 0
\(971\) −54.2487 −1.74092 −0.870462 0.492236i \(-0.836180\pi\)
−0.870462 + 0.492236i \(0.836180\pi\)
\(972\) 0 0
\(973\) −10.0000 −0.320585
\(974\) 0 0
\(975\) −10.9282 −0.349983
\(976\) 0 0
\(977\) 30.0000 0.959785 0.479893 0.877327i \(-0.340676\pi\)
0.479893 + 0.877327i \(0.340676\pi\)
\(978\) 0 0
\(979\) −20.7846 −0.664279
\(980\) 0 0
\(981\) 44.6410 1.42528
\(982\) 0 0
\(983\) 58.7321 1.87326 0.936631 0.350318i \(-0.113927\pi\)
0.936631 + 0.350318i \(0.113927\pi\)
\(984\) 0 0
\(985\) 17.3205 0.551877
\(986\) 0 0
\(987\) 96.4974 3.07155
\(988\) 0 0
\(989\) −4.39230 −0.139667
\(990\) 0 0
\(991\) −2.98076 −0.0946870 −0.0473435 0.998879i \(-0.515076\pi\)
−0.0473435 + 0.998879i \(0.515076\pi\)
\(992\) 0 0
\(993\) −17.8564 −0.566656
\(994\) 0 0
\(995\) −10.1962 −0.323240
\(996\) 0 0
\(997\) 2.39230 0.0757651 0.0378825 0.999282i \(-0.487939\pi\)
0.0378825 + 0.999282i \(0.487939\pi\)
\(998\) 0 0
\(999\) −2.14359 −0.0678203
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 5440.2.a.bb.1.1 2
4.3 odd 2 5440.2.a.bl.1.2 2
8.3 odd 2 1360.2.a.k.1.1 2
8.5 even 2 85.2.a.c.1.1 2
24.5 odd 2 765.2.a.g.1.2 2
40.13 odd 4 425.2.b.d.324.4 4
40.19 odd 2 6800.2.a.bg.1.2 2
40.29 even 2 425.2.a.e.1.2 2
40.37 odd 4 425.2.b.d.324.1 4
56.13 odd 2 4165.2.a.t.1.1 2
120.29 odd 2 3825.2.a.v.1.1 2
136.13 even 4 1445.2.d.e.866.4 4
136.21 even 4 1445.2.d.e.866.3 4
136.101 even 2 1445.2.a.g.1.1 2
680.509 even 2 7225.2.a.l.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
85.2.a.c.1.1 2 8.5 even 2
425.2.a.e.1.2 2 40.29 even 2
425.2.b.d.324.1 4 40.37 odd 4
425.2.b.d.324.4 4 40.13 odd 4
765.2.a.g.1.2 2 24.5 odd 2
1360.2.a.k.1.1 2 8.3 odd 2
1445.2.a.g.1.1 2 136.101 even 2
1445.2.d.e.866.3 4 136.21 even 4
1445.2.d.e.866.4 4 136.13 even 4
3825.2.a.v.1.1 2 120.29 odd 2
4165.2.a.t.1.1 2 56.13 odd 2
5440.2.a.bb.1.1 2 1.1 even 1 trivial
5440.2.a.bl.1.2 2 4.3 odd 2
6800.2.a.bg.1.2 2 40.19 odd 2
7225.2.a.l.1.2 2 680.509 even 2