Properties

Label 546.2.q.d
Level $546$
Weight $2$
Character orbit 546.q
Analytic conductor $4.360$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,2,Mod(251,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.251");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 546.q (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.35983195036\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-3}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{6}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{6} + 1) q^{2} + (\zeta_{6} + 1) q^{3} - \zeta_{6} q^{4} + ( - 4 \zeta_{6} + 2) q^{5} + ( - \zeta_{6} + 2) q^{6} + (\zeta_{6} + 2) q^{7} - q^{8} + 3 \zeta_{6} q^{9} + ( - 2 \zeta_{6} - 2) q^{10} + \cdots - 9 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + q^{2} + 3 q^{3} - q^{4} + 3 q^{6} + 5 q^{7} - 2 q^{8} + 3 q^{9} - 6 q^{10} - 3 q^{11} + 7 q^{13} + 4 q^{14} + 6 q^{15} - q^{16} - 3 q^{17} + 6 q^{18} - 7 q^{19} - 6 q^{20} + 6 q^{21} + 3 q^{22}+ \cdots - 18 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-1\) \(-1\) \(\zeta_{6}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
251.1
0.500000 + 0.866025i
0.500000 0.866025i
0.500000 0.866025i 1.50000 + 0.866025i −0.500000 0.866025i 3.46410i 1.50000 0.866025i 2.50000 + 0.866025i −1.00000 1.50000 + 2.59808i −3.00000 1.73205i
335.1 0.500000 + 0.866025i 1.50000 0.866025i −0.500000 + 0.866025i 3.46410i 1.50000 + 0.866025i 2.50000 0.866025i −1.00000 1.50000 2.59808i −3.00000 + 1.73205i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
273.u even 6 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.2.q.d yes 2
3.b odd 2 1 546.2.q.b yes 2
7.b odd 2 1 546.2.q.c yes 2
13.e even 6 1 546.2.q.a 2
21.c even 2 1 546.2.q.a 2
39.h odd 6 1 546.2.q.c yes 2
91.t odd 6 1 546.2.q.b yes 2
273.u even 6 1 inner 546.2.q.d yes 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.2.q.a 2 13.e even 6 1
546.2.q.a 2 21.c even 2 1
546.2.q.b yes 2 3.b odd 2 1
546.2.q.b yes 2 91.t odd 6 1
546.2.q.c yes 2 7.b odd 2 1
546.2.q.c yes 2 39.h odd 6 1
546.2.q.d yes 2 1.a even 1 1 trivial
546.2.q.d yes 2 273.u even 6 1 inner

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on \(S_{2}^{\mathrm{new}}(546, [\chi])\):

\( T_{5}^{2} + 12 \) Copy content Toggle raw display
\( T_{11}^{2} + 3T_{11} + 9 \) Copy content Toggle raw display
\( T_{17}^{2} + 3T_{17} + 9 \) Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} - T + 1 \) Copy content Toggle raw display
$3$ \( T^{2} - 3T + 3 \) Copy content Toggle raw display
$5$ \( T^{2} + 12 \) Copy content Toggle raw display
$7$ \( T^{2} - 5T + 7 \) Copy content Toggle raw display
$11$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$13$ \( T^{2} - 7T + 13 \) Copy content Toggle raw display
$17$ \( T^{2} + 3T + 9 \) Copy content Toggle raw display
$19$ \( T^{2} + 7T + 49 \) Copy content Toggle raw display
$23$ \( T^{2} - 12T + 48 \) Copy content Toggle raw display
$29$ \( T^{2} + 3T + 3 \) Copy content Toggle raw display
$31$ \( (T + 4)^{2} \) Copy content Toggle raw display
$37$ \( T^{2} + 12T + 48 \) Copy content Toggle raw display
$41$ \( T^{2} + 9T + 27 \) Copy content Toggle raw display
$43$ \( T^{2} - 8T + 64 \) Copy content Toggle raw display
$47$ \( T^{2} + 75 \) Copy content Toggle raw display
$53$ \( T^{2} + 75 \) Copy content Toggle raw display
$59$ \( T^{2} - 18T + 108 \) Copy content Toggle raw display
$61$ \( T^{2} - 9T + 27 \) Copy content Toggle raw display
$67$ \( T^{2} \) Copy content Toggle raw display
$71$ \( T^{2} - 6T + 36 \) Copy content Toggle raw display
$73$ \( (T + 4)^{2} \) Copy content Toggle raw display
$79$ \( (T + 11)^{2} \) Copy content Toggle raw display
$83$ \( T^{2} + 192 \) Copy content Toggle raw display
$89$ \( T^{2} + 15T + 75 \) Copy content Toggle raw display
$97$ \( T^{2} - 2T + 4 \) Copy content Toggle raw display
show more
show less