Properties

Label 546.4.i.a
Level 546546
Weight 44
Character orbit 546.i
Analytic conductor 32.21532.215
Analytic rank 00
Dimension 44
Inner twists 22

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,4,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: N N == 546=23713 546 = 2 \cdot 3 \cdot 7 \cdot 13
Weight: k k == 4 4
Character orbit: [χ][\chi] == 546.i (of order 33, degree 22, minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 32.215042863132.2150428631
Analytic rank: 00
Dimension: 44
Relative dimension: 22 over Q(ζ3)\Q(\zeta_{3})
Coefficient field: Q(3,5)\Q(\sqrt{-3}, \sqrt{-5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x45x2+25 x^{4} - 5x^{2} + 25 Copy content Toggle raw display
Coefficient ring: Z[a1,,a5]\Z[a_1, \ldots, a_{5}]
Coefficient ring index: 3 3
Twist minimal: yes
Sato-Tate group: SU(2)[C3]\mathrm{SU}(2)[C_{3}]

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of a basis 1,β1,β2,β31,\beta_1,\beta_2,\beta_3 for the coefficient ring described below. We also show the integral qq-expansion of the trace form.

f(q)f(q) == q2β1q2+(3β1+3)q3+(4β14)q4+(β2+3β1)q56q6+(4β3+5β2+4)q7+8q89β1q9+(2β3+2β2++6)q10++(45β3+162)q99+O(q100) q - 2 \beta_1 q^{2} + ( - 3 \beta_1 + 3) q^{3} + (4 \beta_1 - 4) q^{4} + ( - \beta_{2} + 3 \beta_1) q^{5} - 6 q^{6} + ( - 4 \beta_{3} + 5 \beta_{2} + \cdots - 4) q^{7} + 8 q^{8} - 9 \beta_1 q^{9} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 6) q^{10}+ \cdots + ( - 45 \beta_{3} + 162) q^{99}+O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 4q4q2+6q38q4+6q524q620q7+32q818q9+12q1036q11+24q12+52q13+8q14+36q1532q16120q1736q18118q19++648q99+O(q100) 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 6 q^{5} - 24 q^{6} - 20 q^{7} + 32 q^{8} - 18 q^{9} + 12 q^{10} - 36 q^{11} + 24 q^{12} + 52 q^{13} + 8 q^{14} + 36 q^{15} - 32 q^{16} - 120 q^{17} - 36 q^{18} - 118 q^{19}+ \cdots + 648 q^{99}+O(q^{100}) Copy content Toggle raw display

Basis of coefficient ring in terms of a root ν\nu of x45x2+25 x^{4} - 5x^{2} + 25 : Copy content Toggle raw display

β1\beta_{1}== (ν2)/5 ( \nu^{2} ) / 5 Copy content Toggle raw display
β2\beta_{2}== (ν3+5ν)/5 ( \nu^{3} + 5\nu ) / 5 Copy content Toggle raw display
β3\beta_{3}== (ν3+10ν)/5 ( -\nu^{3} + 10\nu ) / 5 Copy content Toggle raw display
ν\nu== (β3+β2)/3 ( \beta_{3} + \beta_{2} ) / 3 Copy content Toggle raw display
ν2\nu^{2}== 5β1 5\beta_1 Copy content Toggle raw display
ν3\nu^{3}== (5β3+10β2)/3 ( -5\beta_{3} + 10\beta_{2} ) / 3 Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/546Z)×\left(\mathbb{Z}/546\mathbb{Z}\right)^\times.

nn 157157 365365 379379
χ(n)\chi(n) β1-\beta_{1} 11 11

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
79.1
1.93649 1.11803i
−1.93649 + 1.11803i
1.93649 + 1.11803i
−1.93649 1.11803i
−1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i −0.436492 + 0.756026i −6.00000 −10.8095 15.0385i 8.00000 −4.50000 + 7.79423i −0.872983 1.51205i
79.2 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 3.43649 5.95218i −6.00000 0.809475 + 18.5026i 8.00000 −4.50000 + 7.79423i 6.87298 + 11.9044i
235.1 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i −0.436492 0.756026i −6.00000 −10.8095 + 15.0385i 8.00000 −4.50000 7.79423i −0.872983 + 1.51205i
235.2 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 3.43649 + 5.95218i −6.00000 0.809475 18.5026i 8.00000 −4.50000 7.79423i 6.87298 11.9044i
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.4.i.a 4
7.c even 3 1 inner 546.4.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.4.i.a 4 1.a even 1 1 trivial
546.4.i.a 4 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T546T53+42T52+36T5+36 T_{5}^{4} - 6T_{5}^{3} + 42T_{5}^{2} + 36T_{5} + 36 acting on S4new(546,[χ])S_{4}^{\mathrm{new}}(546, [\chi]). Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 (T2+2T+4)2 (T^{2} + 2 T + 4)^{2} Copy content Toggle raw display
33 (T23T+9)2 (T^{2} - 3 T + 9)^{2} Copy content Toggle raw display
55 T46T3++36 T^{4} - 6 T^{3} + \cdots + 36 Copy content Toggle raw display
77 T4+20T3++117649 T^{4} + 20 T^{3} + \cdots + 117649 Copy content Toggle raw display
1111 T4+36T3++2601 T^{4} + 36 T^{3} + \cdots + 2601 Copy content Toggle raw display
1313 (T13)4 (T - 13)^{4} Copy content Toggle raw display
1717 T4+120T3++5688225 T^{4} + 120 T^{3} + \cdots + 5688225 Copy content Toggle raw display
1919 T4+118T3++1745041 T^{4} + 118 T^{3} + \cdots + 1745041 Copy content Toggle raw display
2323 T442T3++8608356 T^{4} - 42 T^{3} + \cdots + 8608356 Copy content Toggle raw display
2929 (T2+54T231)2 (T^{2} + 54 T - 231)^{2} Copy content Toggle raw display
3131 T4++1896079936 T^{4} + \cdots + 1896079936 Copy content Toggle raw display
3737 T4+154T3++25060036 T^{4} + 154 T^{3} + \cdots + 25060036 Copy content Toggle raw display
4141 (T2546T+56154)2 (T^{2} - 546 T + 56154)^{2} Copy content Toggle raw display
4343 (T2+200T146060)2 (T^{2} + 200 T - 146060)^{2} Copy content Toggle raw display
4747 T4++27549692361 T^{4} + \cdots + 27549692361 Copy content Toggle raw display
5353 T4++9768357225 T^{4} + \cdots + 9768357225 Copy content Toggle raw display
5959 T4++8075718225 T^{4} + \cdots + 8075718225 Copy content Toggle raw display
6161 T4++2328159001 T^{4} + \cdots + 2328159001 Copy content Toggle raw display
6767 T4++2848890625 T^{4} + \cdots + 2848890625 Copy content Toggle raw display
7171 (T2+66T10671)2 (T^{2} + 66 T - 10671)^{2} Copy content Toggle raw display
7373 T4++6913922500 T^{4} + \cdots + 6913922500 Copy content Toggle raw display
7979 T4++3485249296 T^{4} + \cdots + 3485249296 Copy content Toggle raw display
8383 (T2+816T28476)2 (T^{2} + 816 T - 28476)^{2} Copy content Toggle raw display
8989 T4++2327864238756 T^{4} + \cdots + 2327864238756 Copy content Toggle raw display
9797 (T21486T+200914)2 (T^{2} - 1486 T + 200914)^{2} Copy content Toggle raw display
show more
show less