Properties

Label 546.4.i.a
Level $546$
Weight $4$
Character orbit 546.i
Analytic conductor $32.215$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,4,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.2150428631\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a basis \(1,\beta_1,\beta_2,\beta_3\) for the coefficient ring described below. We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - 2 \beta_1 q^{2} + ( - 3 \beta_1 + 3) q^{3} + (4 \beta_1 - 4) q^{4} + ( - \beta_{2} + 3 \beta_1) q^{5} - 6 q^{6} + ( - 4 \beta_{3} + 5 \beta_{2} + \cdots - 4) q^{7} + 8 q^{8} - 9 \beta_1 q^{9} + ( - 2 \beta_{3} + 2 \beta_{2} + \cdots + 6) q^{10}+ \cdots + ( - 45 \beta_{3} + 162) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 6 q^{5} - 24 q^{6} - 20 q^{7} + 32 q^{8} - 18 q^{9} + 12 q^{10} - 36 q^{11} + 24 q^{12} + 52 q^{13} + 8 q^{14} + 36 q^{15} - 32 q^{16} - 120 q^{17} - 36 q^{18} - 118 q^{19}+ \cdots + 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Basis of coefficient ring in terms of a root \(\nu\) of \( x^{4} - 5x^{2} + 25 \) : Copy content Toggle raw display

\(\beta_{1}\)\(=\) \( ( \nu^{2} ) / 5 \) Copy content Toggle raw display
\(\beta_{2}\)\(=\) \( ( \nu^{3} + 5\nu ) / 5 \) Copy content Toggle raw display
\(\beta_{3}\)\(=\) \( ( -\nu^{3} + 10\nu ) / 5 \) Copy content Toggle raw display
\(\nu\)\(=\) \( ( \beta_{3} + \beta_{2} ) / 3 \) Copy content Toggle raw display
\(\nu^{2}\)\(=\) \( 5\beta_1 \) Copy content Toggle raw display
\(\nu^{3}\)\(=\) \( ( -5\beta_{3} + 10\beta_{2} ) / 3 \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(-\beta_{1}\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
79.1
1.93649 1.11803i
−1.93649 + 1.11803i
1.93649 + 1.11803i
−1.93649 1.11803i
−1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i −0.436492 + 0.756026i −6.00000 −10.8095 15.0385i 8.00000 −4.50000 + 7.79423i −0.872983 1.51205i
79.2 −1.00000 + 1.73205i 1.50000 + 2.59808i −2.00000 3.46410i 3.43649 5.95218i −6.00000 0.809475 + 18.5026i 8.00000 −4.50000 + 7.79423i 6.87298 + 11.9044i
235.1 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i −0.436492 0.756026i −6.00000 −10.8095 + 15.0385i 8.00000 −4.50000 7.79423i −0.872983 + 1.51205i
235.2 −1.00000 1.73205i 1.50000 2.59808i −2.00000 + 3.46410i 3.43649 + 5.95218i −6.00000 0.809475 18.5026i 8.00000 −4.50000 7.79423i 6.87298 11.9044i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
7.c even 3 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 546.4.i.a 4
7.c even 3 1 inner 546.4.i.a 4
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
546.4.i.a 4 1.a even 1 1 trivial
546.4.i.a 4 7.c even 3 1 inner

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{5}^{4} - 6T_{5}^{3} + 42T_{5}^{2} + 36T_{5} + 36 \) acting on \(S_{4}^{\mathrm{new}}(546, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( (T^{2} + 2 T + 4)^{2} \) Copy content Toggle raw display
$3$ \( (T^{2} - 3 T + 9)^{2} \) Copy content Toggle raw display
$5$ \( T^{4} - 6 T^{3} + \cdots + 36 \) Copy content Toggle raw display
$7$ \( T^{4} + 20 T^{3} + \cdots + 117649 \) Copy content Toggle raw display
$11$ \( T^{4} + 36 T^{3} + \cdots + 2601 \) Copy content Toggle raw display
$13$ \( (T - 13)^{4} \) Copy content Toggle raw display
$17$ \( T^{4} + 120 T^{3} + \cdots + 5688225 \) Copy content Toggle raw display
$19$ \( T^{4} + 118 T^{3} + \cdots + 1745041 \) Copy content Toggle raw display
$23$ \( T^{4} - 42 T^{3} + \cdots + 8608356 \) Copy content Toggle raw display
$29$ \( (T^{2} + 54 T - 231)^{2} \) Copy content Toggle raw display
$31$ \( T^{4} + \cdots + 1896079936 \) Copy content Toggle raw display
$37$ \( T^{4} + 154 T^{3} + \cdots + 25060036 \) Copy content Toggle raw display
$41$ \( (T^{2} - 546 T + 56154)^{2} \) Copy content Toggle raw display
$43$ \( (T^{2} + 200 T - 146060)^{2} \) Copy content Toggle raw display
$47$ \( T^{4} + \cdots + 27549692361 \) Copy content Toggle raw display
$53$ \( T^{4} + \cdots + 9768357225 \) Copy content Toggle raw display
$59$ \( T^{4} + \cdots + 8075718225 \) Copy content Toggle raw display
$61$ \( T^{4} + \cdots + 2328159001 \) Copy content Toggle raw display
$67$ \( T^{4} + \cdots + 2848890625 \) Copy content Toggle raw display
$71$ \( (T^{2} + 66 T - 10671)^{2} \) Copy content Toggle raw display
$73$ \( T^{4} + \cdots + 6913922500 \) Copy content Toggle raw display
$79$ \( T^{4} + \cdots + 3485249296 \) Copy content Toggle raw display
$83$ \( (T^{2} + 816 T - 28476)^{2} \) Copy content Toggle raw display
$89$ \( T^{4} + \cdots + 2327864238756 \) Copy content Toggle raw display
$97$ \( (T^{2} - 1486 T + 200914)^{2} \) Copy content Toggle raw display
show more
show less