Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [546,4,Mod(79,546)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(546, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([0, 2, 0]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("546.79");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | |||
Weight: | |||
Character orbit: | 546.i (of order , degree , minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | |
Analytic rank: | |
Dimension: | |
Relative dimension: | over |
Coefficient field: | |
comment: defining polynomial
gp: f.mod \\ as an extension of the character field
|
|
Defining polynomial: |
|
Coefficient ring: | |
Coefficient ring index: | |
Twist minimal: | yes |
Sato-Tate group: |
-expansion
comment: q-expansion
sage: f.q_expansion() # note that sage often uses an isomorphic number field
gp: mfcoefs(f, 20)
Coefficients of the -expansion are expressed in terms of a basis for the coefficient ring described below. We also show the integral -expansion of the trace form.
Basis of coefficient ring in terms of a root of
:
Character values
We give the values of on generators for .
Embeddings
For each embedding of the coefficient field, the values are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | ||||||||||||||||||||||||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
79.1 |
|
−1.00000 | + | 1.73205i | 1.50000 | + | 2.59808i | −2.00000 | − | 3.46410i | −0.436492 | + | 0.756026i | −6.00000 | −10.8095 | − | 15.0385i | 8.00000 | −4.50000 | + | 7.79423i | −0.872983 | − | 1.51205i | ||||||||||||||||
79.2 | −1.00000 | + | 1.73205i | 1.50000 | + | 2.59808i | −2.00000 | − | 3.46410i | 3.43649 | − | 5.95218i | −6.00000 | 0.809475 | + | 18.5026i | 8.00000 | −4.50000 | + | 7.79423i | 6.87298 | + | 11.9044i | |||||||||||||||||
235.1 | −1.00000 | − | 1.73205i | 1.50000 | − | 2.59808i | −2.00000 | + | 3.46410i | −0.436492 | − | 0.756026i | −6.00000 | −10.8095 | + | 15.0385i | 8.00000 | −4.50000 | − | 7.79423i | −0.872983 | + | 1.51205i | |||||||||||||||||
235.2 | −1.00000 | − | 1.73205i | 1.50000 | − | 2.59808i | −2.00000 | + | 3.46410i | 3.43649 | + | 5.95218i | −6.00000 | 0.809475 | − | 18.5026i | 8.00000 | −4.50000 | − | 7.79423i | 6.87298 | − | 11.9044i | |||||||||||||||||
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 546.4.i.a | ✓ | 4 |
7.c | even | 3 | 1 | inner | 546.4.i.a | ✓ | 4 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
546.4.i.a | ✓ | 4 | 1.a | even | 1 | 1 | trivial |
546.4.i.a | ✓ | 4 | 7.c | even | 3 | 1 | inner |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator
acting on .