Properties

Label 546.4.i.a.235.1
Level $546$
Weight $4$
Character 546.235
Analytic conductor $32.215$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [546,4,Mod(79,546)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(546, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([0, 2, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("546.79");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 546 = 2 \cdot 3 \cdot 7 \cdot 13 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 546.i (of order \(3\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(32.2150428631\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{3})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-5})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - 5x^{2} + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 3 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 235.1
Root \(1.93649 + 1.11803i\) of defining polynomial
Character \(\chi\) \(=\) 546.235
Dual form 546.4.i.a.79.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-1.00000 - 1.73205i) q^{2} +(1.50000 - 2.59808i) q^{3} +(-2.00000 + 3.46410i) q^{4} +(-0.436492 - 0.756026i) q^{5} -6.00000 q^{6} +(-10.8095 + 15.0385i) q^{7} +8.00000 q^{8} +(-4.50000 - 7.79423i) q^{9} +(-0.872983 + 1.51205i) q^{10} +(0.682458 - 1.18205i) q^{11} +(6.00000 + 10.3923i) q^{12} +13.0000 q^{13} +(36.8569 + 3.68410i) q^{14} -2.61895 q^{15} +(-8.00000 - 13.8564i) q^{16} +(-12.5716 + 21.7746i) q^{17} +(-9.00000 + 15.5885i) q^{18} +(-6.26210 - 10.8463i) q^{19} +3.49193 q^{20} +(22.8569 + 50.6415i) q^{21} -2.72983 q^{22} +(39.5474 + 68.4981i) q^{23} +(12.0000 - 20.7846i) q^{24} +(62.1190 - 107.593i) q^{25} +(-13.0000 - 22.5167i) q^{26} -27.0000 q^{27} +(-30.4758 - 67.5220i) q^{28} +3.98387 q^{29} +(2.61895 + 4.53615i) q^{30} +(97.5706 - 168.997i) q^{31} +(-16.0000 + 27.7128i) q^{32} +(-2.04738 - 3.54616i) q^{33} +50.2863 q^{34} +(16.0877 + 1.60808i) q^{35} +36.0000 q^{36} +(-90.7853 - 157.245i) q^{37} +(-12.5242 + 21.6926i) q^{38} +(19.5000 - 33.7750i) q^{39} +(-3.49193 - 6.04821i) q^{40} +408.554 q^{41} +(64.8569 - 90.2308i) q^{42} +295.044 q^{43} +(2.72983 + 4.72821i) q^{44} +(-3.92843 + 6.80423i) q^{45} +(79.0948 - 136.996i) q^{46} +(-178.389 - 308.979i) q^{47} -48.0000 q^{48} +(-109.310 - 325.116i) q^{49} -248.476 q^{50} +(37.7147 + 65.3238i) q^{51} +(-26.0000 + 45.0333i) q^{52} +(181.292 - 314.008i) q^{53} +(27.0000 + 46.7654i) q^{54} -1.19155 q^{55} +(-86.4758 + 120.308i) q^{56} -37.5726 q^{57} +(-3.98387 - 6.90026i) q^{58} +(-155.809 + 269.870i) q^{59} +(5.23790 - 9.07231i) q^{60} +(121.380 + 210.236i) q^{61} -390.282 q^{62} +(165.856 + 16.5785i) q^{63} +64.0000 q^{64} +(-5.67439 - 9.82833i) q^{65} +(-4.09475 + 7.09232i) q^{66} +(128.690 - 222.897i) q^{67} +(-50.2863 - 87.0984i) q^{68} +237.284 q^{69} +(-13.3024 - 29.4728i) q^{70} +75.4435 q^{71} +(-36.0000 - 62.3538i) q^{72} +(127.737 - 221.247i) q^{73} +(-181.571 + 314.489i) q^{74} +(-186.357 - 322.780i) q^{75} +50.0968 q^{76} +(10.3992 + 23.0405i) q^{77} -78.0000 q^{78} +(-27.8548 - 48.2459i) q^{79} +(-6.98387 + 12.0964i) q^{80} +(-40.5000 + 70.1481i) q^{81} +(-408.554 - 707.637i) q^{82} +33.5201 q^{83} +(-221.141 - 22.1046i) q^{84} +21.9496 q^{85} +(-295.044 - 511.032i) q^{86} +(5.97580 - 10.3504i) q^{87} +(5.45967 - 9.45642i) q^{88} +(-551.114 - 954.557i) q^{89} +15.7137 q^{90} +(-140.523 + 195.500i) q^{91} -316.379 q^{92} +(-292.712 - 506.991i) q^{93} +(-356.778 + 617.958i) q^{94} +(-5.46671 + 9.46862i) q^{95} +(48.0000 + 83.1384i) q^{96} +1335.57 q^{97} +(-453.806 + 514.447i) q^{98} -12.2843 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 4 q^{2} + 6 q^{3} - 8 q^{4} + 6 q^{5} - 24 q^{6} - 20 q^{7} + 32 q^{8} - 18 q^{9} + 12 q^{10} - 36 q^{11} + 24 q^{12} + 52 q^{13} + 8 q^{14} + 36 q^{15} - 32 q^{16} - 120 q^{17} - 36 q^{18} - 118 q^{19}+ \cdots + 648 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/546\mathbb{Z}\right)^\times\).

\(n\) \(157\) \(365\) \(379\)
\(\chi(n)\) \(e\left(\frac{2}{3}\right)\) \(1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −1.00000 1.73205i −0.353553 0.612372i
\(3\) 1.50000 2.59808i 0.288675 0.500000i
\(4\) −2.00000 + 3.46410i −0.250000 + 0.433013i
\(5\) −0.436492 0.756026i −0.0390410 0.0676210i 0.845845 0.533429i \(-0.179097\pi\)
−0.884886 + 0.465808i \(0.845764\pi\)
\(6\) −6.00000 −0.408248
\(7\) −10.8095 + 15.0385i −0.583657 + 0.812000i
\(8\) 8.00000 0.353553
\(9\) −4.50000 7.79423i −0.166667 0.288675i
\(10\) −0.872983 + 1.51205i −0.0276062 + 0.0478153i
\(11\) 0.682458 1.18205i 0.0187063 0.0324002i −0.856521 0.516113i \(-0.827379\pi\)
0.875227 + 0.483712i \(0.160712\pi\)
\(12\) 6.00000 + 10.3923i 0.144338 + 0.250000i
\(13\) 13.0000 0.277350
\(14\) 36.8569 + 3.68410i 0.703601 + 0.0703298i
\(15\) −2.61895 −0.0450807
\(16\) −8.00000 13.8564i −0.125000 0.216506i
\(17\) −12.5716 + 21.7746i −0.179356 + 0.310654i −0.941660 0.336565i \(-0.890735\pi\)
0.762304 + 0.647219i \(0.224068\pi\)
\(18\) −9.00000 + 15.5885i −0.117851 + 0.204124i
\(19\) −6.26210 10.8463i −0.0756118 0.130963i 0.825740 0.564050i \(-0.190758\pi\)
−0.901352 + 0.433087i \(0.857424\pi\)
\(20\) 3.49193 0.0390410
\(21\) 22.8569 + 50.6415i 0.237513 + 0.526233i
\(22\) −2.72983 −0.0264547
\(23\) 39.5474 + 68.4981i 0.358530 + 0.620993i 0.987716 0.156263i \(-0.0499446\pi\)
−0.629185 + 0.777255i \(0.716611\pi\)
\(24\) 12.0000 20.7846i 0.102062 0.176777i
\(25\) 62.1190 107.593i 0.496952 0.860745i
\(26\) −13.0000 22.5167i −0.0980581 0.169842i
\(27\) −27.0000 −0.192450
\(28\) −30.4758 67.5220i −0.205692 0.455731i
\(29\) 3.98387 0.0255098 0.0127549 0.999919i \(-0.495940\pi\)
0.0127549 + 0.999919i \(0.495940\pi\)
\(30\) 2.61895 + 4.53615i 0.0159384 + 0.0276062i
\(31\) 97.5706 168.997i 0.565296 0.979122i −0.431726 0.902005i \(-0.642095\pi\)
0.997022 0.0771171i \(-0.0245715\pi\)
\(32\) −16.0000 + 27.7128i −0.0883883 + 0.153093i
\(33\) −2.04738 3.54616i −0.0108001 0.0187063i
\(34\) 50.2863 0.253648
\(35\) 16.0877 + 1.60808i 0.0776948 + 0.00776614i
\(36\) 36.0000 0.166667
\(37\) −90.7853 157.245i −0.403379 0.698672i 0.590753 0.806853i \(-0.298831\pi\)
−0.994131 + 0.108180i \(0.965498\pi\)
\(38\) −12.5242 + 21.6926i −0.0534656 + 0.0926052i
\(39\) 19.5000 33.7750i 0.0800641 0.138675i
\(40\) −3.49193 6.04821i −0.0138031 0.0239076i
\(41\) 408.554 1.55623 0.778116 0.628121i \(-0.216176\pi\)
0.778116 + 0.628121i \(0.216176\pi\)
\(42\) 64.8569 90.2308i 0.238277 0.331498i
\(43\) 295.044 1.04637 0.523184 0.852220i \(-0.324744\pi\)
0.523184 + 0.852220i \(0.324744\pi\)
\(44\) 2.72983 + 4.72821i 0.00935313 + 0.0162001i
\(45\) −3.92843 + 6.80423i −0.0130137 + 0.0225403i
\(46\) 79.0948 136.996i 0.253519 0.439108i
\(47\) −178.389 308.979i −0.553632 0.958920i −0.998009 0.0630792i \(-0.979908\pi\)
0.444376 0.895840i \(-0.353425\pi\)
\(48\) −48.0000 −0.144338
\(49\) −109.310 325.116i −0.318690 0.947859i
\(50\) −248.476 −0.702796
\(51\) 37.7147 + 65.3238i 0.103551 + 0.179356i
\(52\) −26.0000 + 45.0333i −0.0693375 + 0.120096i
\(53\) 181.292 314.008i 0.469857 0.813816i −0.529549 0.848279i \(-0.677639\pi\)
0.999406 + 0.0344633i \(0.0109722\pi\)
\(54\) 27.0000 + 46.7654i 0.0680414 + 0.117851i
\(55\) −1.19155 −0.00292125
\(56\) −86.4758 + 120.308i −0.206354 + 0.287086i
\(57\) −37.5726 −0.0873090
\(58\) −3.98387 6.90026i −0.00901909 0.0156215i
\(59\) −155.809 + 269.870i −0.343808 + 0.595493i −0.985136 0.171774i \(-0.945050\pi\)
0.641329 + 0.767266i \(0.278384\pi\)
\(60\) 5.23790 9.07231i 0.0112702 0.0195205i
\(61\) 121.380 + 210.236i 0.254772 + 0.441279i 0.964834 0.262861i \(-0.0846661\pi\)
−0.710061 + 0.704140i \(0.751333\pi\)
\(62\) −390.282 −0.799450
\(63\) 165.856 + 16.5785i 0.331680 + 0.0331538i
\(64\) 64.0000 0.125000
\(65\) −5.67439 9.82833i −0.0108280 0.0187547i
\(66\) −4.09475 + 7.09232i −0.00763680 + 0.0132273i
\(67\) 128.690 222.897i 0.234656 0.406435i −0.724517 0.689257i \(-0.757937\pi\)
0.959173 + 0.282822i \(0.0912704\pi\)
\(68\) −50.2863 87.0984i −0.0896781 0.155327i
\(69\) 237.284 0.413995
\(70\) −13.3024 29.4728i −0.0227135 0.0503239i
\(71\) 75.4435 0.126106 0.0630528 0.998010i \(-0.479916\pi\)
0.0630528 + 0.998010i \(0.479916\pi\)
\(72\) −36.0000 62.3538i −0.0589256 0.102062i
\(73\) 127.737 221.247i 0.204801 0.354726i −0.745268 0.666765i \(-0.767679\pi\)
0.950069 + 0.312039i \(0.101012\pi\)
\(74\) −181.571 + 314.489i −0.285232 + 0.494036i
\(75\) −186.357 322.780i −0.286915 0.496952i
\(76\) 50.0968 0.0756118
\(77\) 10.3992 + 23.0405i 0.0153909 + 0.0341001i
\(78\) −78.0000 −0.113228
\(79\) −27.8548 48.2459i −0.0396697 0.0687100i 0.845509 0.533961i \(-0.179297\pi\)
−0.885179 + 0.465251i \(0.845964\pi\)
\(80\) −6.98387 + 12.0964i −0.00976025 + 0.0169052i
\(81\) −40.5000 + 70.1481i −0.0555556 + 0.0962250i
\(82\) −408.554 707.637i −0.550211 0.952993i
\(83\) 33.5201 0.0443290 0.0221645 0.999754i \(-0.492944\pi\)
0.0221645 + 0.999754i \(0.492944\pi\)
\(84\) −221.141 22.1046i −0.287244 0.0287120i
\(85\) 21.9496 0.0280090
\(86\) −295.044 511.032i −0.369947 0.640767i
\(87\) 5.97580 10.3504i 0.00736406 0.0127549i
\(88\) 5.45967 9.45642i 0.00661366 0.0114552i
\(89\) −551.114 954.557i −0.656381 1.13689i −0.981546 0.191228i \(-0.938753\pi\)
0.325164 0.945658i \(-0.394580\pi\)
\(90\) 15.7137 0.0184041
\(91\) −140.523 + 195.500i −0.161877 + 0.225208i
\(92\) −316.379 −0.358530
\(93\) −292.712 506.991i −0.326374 0.565296i
\(94\) −356.778 + 617.958i −0.391477 + 0.678059i
\(95\) −5.46671 + 9.46862i −0.00590392 + 0.0102259i
\(96\) 48.0000 + 83.1384i 0.0510310 + 0.0883883i
\(97\) 1335.57 1.39800 0.699001 0.715121i \(-0.253628\pi\)
0.699001 + 0.715121i \(0.253628\pi\)
\(98\) −453.806 + 514.447i −0.467769 + 0.530275i
\(99\) −12.2843 −0.0124708
\(100\) 248.476 + 430.373i 0.248476 + 0.430373i
\(101\) 121.968 211.254i 0.120161 0.208125i −0.799670 0.600440i \(-0.794992\pi\)
0.919831 + 0.392315i \(0.128326\pi\)
\(102\) 75.4294 130.648i 0.0732218 0.126824i
\(103\) −594.571 1029.83i −0.568784 0.985163i −0.996687 0.0813382i \(-0.974081\pi\)
0.427902 0.903825i \(-0.359253\pi\)
\(104\) 104.000 0.0980581
\(105\) 28.3095 39.3850i 0.0263116 0.0366055i
\(106\) −725.169 −0.664478
\(107\) −154.379 267.392i −0.139480 0.241587i 0.787820 0.615906i \(-0.211210\pi\)
−0.927300 + 0.374319i \(0.877876\pi\)
\(108\) 54.0000 93.5307i 0.0481125 0.0833333i
\(109\) 468.282 811.089i 0.411498 0.712736i −0.583556 0.812073i \(-0.698339\pi\)
0.995054 + 0.0993374i \(0.0316723\pi\)
\(110\) 1.19155 + 2.06382i 0.00103282 + 0.00178889i
\(111\) −544.712 −0.465781
\(112\) 294.855 + 29.4728i 0.248760 + 0.0248653i
\(113\) −2162.88 −1.80059 −0.900294 0.435283i \(-0.856648\pi\)
−0.900294 + 0.435283i \(0.856648\pi\)
\(114\) 37.5726 + 65.0777i 0.0308684 + 0.0534656i
\(115\) 34.5242 59.7977i 0.0279948 0.0484884i
\(116\) −7.96773 + 13.8005i −0.00637746 + 0.0110461i
\(117\) −58.5000 101.325i −0.0462250 0.0800641i
\(118\) 623.238 0.486218
\(119\) −191.564 424.429i −0.147569 0.326953i
\(120\) −20.9516 −0.0159384
\(121\) 664.569 + 1151.07i 0.499300 + 0.864813i
\(122\) 242.760 420.473i 0.180151 0.312031i
\(123\) 612.832 1061.46i 0.449245 0.778116i
\(124\) 390.282 + 675.989i 0.282648 + 0.489561i
\(125\) −217.581 −0.155688
\(126\) −137.141 303.849i −0.0969643 0.214834i
\(127\) 318.990 0.222880 0.111440 0.993771i \(-0.464454\pi\)
0.111440 + 0.993771i \(0.464454\pi\)
\(128\) −64.0000 110.851i −0.0441942 0.0765466i
\(129\) 442.566 766.548i 0.302060 0.523184i
\(130\) −11.3488 + 19.6567i −0.00765657 + 0.0132616i
\(131\) 334.469 + 579.317i 0.223074 + 0.386375i 0.955740 0.294213i \(-0.0950576\pi\)
−0.732666 + 0.680588i \(0.761724\pi\)
\(132\) 16.3790 0.0108001
\(133\) 230.801 + 23.0702i 0.150474 + 0.0150409i
\(134\) −514.758 −0.331853
\(135\) 11.7853 + 20.4127i 0.00751344 + 0.0130137i
\(136\) −100.573 + 174.197i −0.0634120 + 0.109833i
\(137\) 124.642 215.886i 0.0777292 0.134631i −0.824541 0.565803i \(-0.808566\pi\)
0.902270 + 0.431172i \(0.141900\pi\)
\(138\) −237.284 410.988i −0.146369 0.253519i
\(139\) −289.575 −0.176701 −0.0883504 0.996089i \(-0.528160\pi\)
−0.0883504 + 0.996089i \(0.528160\pi\)
\(140\) −37.7460 + 52.5133i −0.0227865 + 0.0317013i
\(141\) −1070.33 −0.639280
\(142\) −75.4435 130.672i −0.0445851 0.0772236i
\(143\) 8.87196 15.3667i 0.00518819 0.00898620i
\(144\) −72.0000 + 124.708i −0.0416667 + 0.0721688i
\(145\) −1.73892 3.01191i −0.000995930 0.00172500i
\(146\) −510.948 −0.289632
\(147\) −1008.64 203.677i −0.565927 0.114279i
\(148\) 726.282 0.403379
\(149\) −1184.70 2051.97i −0.651373 1.12821i −0.982790 0.184727i \(-0.940860\pi\)
0.331417 0.943485i \(-0.392473\pi\)
\(150\) −372.714 + 645.559i −0.202880 + 0.351398i
\(151\) 524.475 908.417i 0.282657 0.489576i −0.689382 0.724398i \(-0.742118\pi\)
0.972038 + 0.234823i \(0.0754510\pi\)
\(152\) −50.0968 86.7702i −0.0267328 0.0463026i
\(153\) 226.288 0.119571
\(154\) 29.5081 41.0525i 0.0154404 0.0214812i
\(155\) −170.355 −0.0882790
\(156\) 78.0000 + 135.100i 0.0400320 + 0.0693375i
\(157\) 1040.14 1801.58i 0.528741 0.915807i −0.470697 0.882295i \(-0.655998\pi\)
0.999438 0.0335118i \(-0.0106691\pi\)
\(158\) −55.7096 + 96.4919i −0.0280507 + 0.0485853i
\(159\) −543.877 942.023i −0.271272 0.469857i
\(160\) 27.9355 0.0138031
\(161\) −1457.59 145.697i −0.713505 0.0713198i
\(162\) 162.000 0.0785674
\(163\) −401.028 694.601i −0.192705 0.333775i 0.753441 0.657516i \(-0.228393\pi\)
−0.946146 + 0.323741i \(0.895059\pi\)
\(164\) −817.109 + 1415.27i −0.389058 + 0.673868i
\(165\) −1.78732 + 3.09574i −0.000843291 + 0.00146062i
\(166\) −33.5201 58.0585i −0.0156727 0.0271459i
\(167\) 1091.02 0.505545 0.252772 0.967526i \(-0.418658\pi\)
0.252772 + 0.967526i \(0.418658\pi\)
\(168\) 182.855 + 405.132i 0.0839735 + 0.186051i
\(169\) 169.000 0.0769231
\(170\) −21.9496 38.0177i −0.00990267 0.0171519i
\(171\) −56.3589 + 97.6165i −0.0252039 + 0.0436545i
\(172\) −590.089 + 1022.06i −0.261592 + 0.453091i
\(173\) 782.097 + 1354.63i 0.343709 + 0.595322i 0.985118 0.171877i \(-0.0549832\pi\)
−0.641409 + 0.767199i \(0.721650\pi\)
\(174\) −23.9032 −0.0104144
\(175\) 946.562 + 2097.20i 0.408877 + 0.905905i
\(176\) −21.8387 −0.00935313
\(177\) 467.428 + 809.610i 0.198498 + 0.343808i
\(178\) −1102.23 + 1909.11i −0.464132 + 0.803900i
\(179\) −850.843 + 1473.70i −0.355279 + 0.615362i −0.987166 0.159699i \(-0.948948\pi\)
0.631887 + 0.775061i \(0.282281\pi\)
\(180\) −15.7137 27.2169i −0.00650683 0.0112702i
\(181\) 3480.65 1.42936 0.714682 0.699450i \(-0.246572\pi\)
0.714682 + 0.699450i \(0.246572\pi\)
\(182\) 479.139 + 47.8933i 0.195144 + 0.0195060i
\(183\) 728.280 0.294186
\(184\) 316.379 + 547.985i 0.126760 + 0.219554i
\(185\) −79.2540 + 137.272i −0.0314966 + 0.0545537i
\(186\) −585.423 + 1013.98i −0.230781 + 0.399725i
\(187\) 17.1592 + 29.7205i 0.00671017 + 0.0116224i
\(188\) 1427.11 0.553632
\(189\) 291.856 406.038i 0.112325 0.156270i
\(190\) 21.8668 0.00834941
\(191\) 1039.73 + 1800.87i 0.393887 + 0.682233i 0.992958 0.118463i \(-0.0377967\pi\)
−0.599071 + 0.800696i \(0.704463\pi\)
\(192\) 96.0000 166.277i 0.0360844 0.0625000i
\(193\) −777.356 + 1346.42i −0.289924 + 0.502163i −0.973791 0.227443i \(-0.926963\pi\)
0.683867 + 0.729606i \(0.260297\pi\)
\(194\) −1335.57 2313.27i −0.494268 0.856098i
\(195\) −34.0464 −0.0125031
\(196\) 1344.85 + 271.569i 0.490107 + 0.0989682i
\(197\) 221.430 0.0800823 0.0400412 0.999198i \(-0.487251\pi\)
0.0400412 + 0.999198i \(0.487251\pi\)
\(198\) 12.2843 + 21.2769i 0.00440911 + 0.00763680i
\(199\) 483.642 837.693i 0.172284 0.298404i −0.766934 0.641726i \(-0.778219\pi\)
0.939218 + 0.343322i \(0.111552\pi\)
\(200\) 496.952 860.745i 0.175699 0.304319i
\(201\) −386.069 668.690i −0.135478 0.234656i
\(202\) −487.871 −0.169933
\(203\) −43.0635 + 59.9112i −0.0148890 + 0.0207140i
\(204\) −301.718 −0.103551
\(205\) −178.331 308.878i −0.0607568 0.105234i
\(206\) −1189.14 + 2059.65i −0.402191 + 0.696616i
\(207\) 355.926 616.483i 0.119510 0.206998i
\(208\) −104.000 180.133i −0.0346688 0.0600481i
\(209\) −17.0945 −0.00565766
\(210\) −96.5262 9.64848i −0.0317188 0.00317051i
\(211\) 5226.42 1.70522 0.852611 0.522547i \(-0.175018\pi\)
0.852611 + 0.522547i \(0.175018\pi\)
\(212\) 725.169 + 1256.03i 0.234928 + 0.406908i
\(213\) 113.165 196.008i 0.0364036 0.0630528i
\(214\) −308.758 + 534.785i −0.0986274 + 0.170828i
\(215\) −128.784 223.061i −0.0408513 0.0707565i
\(216\) −216.000 −0.0680414
\(217\) 1486.77 + 3294.08i 0.465108 + 1.03049i
\(218\) −1873.13 −0.581946
\(219\) −383.211 663.740i −0.118242 0.204801i
\(220\) 2.38310 4.12765i 0.000730311 0.00126494i
\(221\) −163.430 + 283.070i −0.0497444 + 0.0861599i
\(222\) 544.712 + 943.468i 0.164679 + 0.285232i
\(223\) 6341.86 1.90441 0.952203 0.305465i \(-0.0988120\pi\)
0.952203 + 0.305465i \(0.0988120\pi\)
\(224\) −243.806 540.176i −0.0727232 0.161125i
\(225\) −1118.14 −0.331301
\(226\) 2162.88 + 3746.21i 0.636604 + 1.10263i
\(227\) −1841.18 + 3189.02i −0.538342 + 0.932436i 0.460652 + 0.887581i \(0.347616\pi\)
−0.998994 + 0.0448546i \(0.985718\pi\)
\(228\) 75.1452 130.155i 0.0218272 0.0378059i
\(229\) −1722.96 2984.25i −0.497189 0.861156i 0.502806 0.864399i \(-0.332301\pi\)
−0.999995 + 0.00324297i \(0.998968\pi\)
\(230\) −138.097 −0.0395906
\(231\) 75.4598 + 7.54274i 0.0214930 + 0.00214838i
\(232\) 31.8709 0.00901909
\(233\) 2086.67 + 3614.22i 0.586705 + 1.01620i 0.994661 + 0.103201i \(0.0329084\pi\)
−0.407956 + 0.913002i \(0.633758\pi\)
\(234\) −117.000 + 202.650i −0.0326860 + 0.0566139i
\(235\) −155.731 + 269.734i −0.0432287 + 0.0748744i
\(236\) −623.238 1079.48i −0.171904 0.297746i
\(237\) −167.129 −0.0458067
\(238\) −543.569 + 756.228i −0.148043 + 0.205962i
\(239\) 6266.60 1.69604 0.848018 0.529967i \(-0.177796\pi\)
0.848018 + 0.529967i \(0.177796\pi\)
\(240\) 20.9516 + 36.2892i 0.00563508 + 0.00976025i
\(241\) −2150.05 + 3723.99i −0.574675 + 0.995366i 0.421402 + 0.906874i \(0.361538\pi\)
−0.996077 + 0.0884922i \(0.971795\pi\)
\(242\) 1329.14 2302.13i 0.353059 0.611515i
\(243\) 121.500 + 210.444i 0.0320750 + 0.0555556i
\(244\) −971.040 −0.254772
\(245\) −198.083 + 224.552i −0.0516532 + 0.0585555i
\(246\) −2451.33 −0.635329
\(247\) −81.4073 141.002i −0.0209709 0.0363227i
\(248\) 780.564 1351.98i 0.199862 0.346172i
\(249\) 50.2802 87.0878i 0.0127967 0.0221645i
\(250\) 217.581 + 376.861i 0.0550440 + 0.0953390i
\(251\) 1885.18 0.474070 0.237035 0.971501i \(-0.423824\pi\)
0.237035 + 0.971501i \(0.423824\pi\)
\(252\) −389.141 + 541.385i −0.0972761 + 0.135333i
\(253\) 107.958 0.0268271
\(254\) −318.990 552.506i −0.0788000 0.136486i
\(255\) 32.9243 57.0266i 0.00808550 0.0140045i
\(256\) −128.000 + 221.703i −0.0312500 + 0.0541266i
\(257\) −1378.94 2388.40i −0.334693 0.579705i 0.648733 0.761016i \(-0.275299\pi\)
−0.983426 + 0.181311i \(0.941966\pi\)
\(258\) −1770.27 −0.427178
\(259\) 3346.06 + 334.462i 0.802757 + 0.0802412i
\(260\) 45.3951 0.0108280
\(261\) −17.9274 31.0512i −0.00425164 0.00736406i
\(262\) 668.938 1158.63i 0.157737 0.273209i
\(263\) −1143.14 + 1979.98i −0.268019 + 0.464223i −0.968350 0.249595i \(-0.919702\pi\)
0.700331 + 0.713818i \(0.253036\pi\)
\(264\) −16.3790 28.3693i −0.00381840 0.00661366i
\(265\) −316.530 −0.0733747
\(266\) −190.843 422.830i −0.0439899 0.0974637i
\(267\) −3306.68 −0.757924
\(268\) 514.758 + 891.587i 0.117328 + 0.203218i
\(269\) −2322.86 + 4023.31i −0.526495 + 0.911916i 0.473028 + 0.881047i \(0.343161\pi\)
−0.999523 + 0.0308691i \(0.990173\pi\)
\(270\) 23.5706 40.8254i 0.00531281 0.00920205i
\(271\) 1633.94 + 2830.06i 0.366253 + 0.634369i 0.988976 0.148073i \(-0.0473071\pi\)
−0.622723 + 0.782442i \(0.713974\pi\)
\(272\) 402.290 0.0896781
\(273\) 297.139 + 658.340i 0.0658743 + 0.145951i
\(274\) −498.569 −0.109926
\(275\) −84.7872 146.856i −0.0185922 0.0322027i
\(276\) −474.569 + 821.977i −0.103499 + 0.179265i
\(277\) 467.487 809.711i 0.101403 0.175635i −0.810860 0.585240i \(-0.801000\pi\)
0.912263 + 0.409605i \(0.134334\pi\)
\(278\) 289.575 + 501.558i 0.0624731 + 0.108207i
\(279\) −1756.27 −0.376864
\(280\) 128.702 + 12.8646i 0.0274693 + 0.00274575i
\(281\) −1100.98 −0.233732 −0.116866 0.993148i \(-0.537285\pi\)
−0.116866 + 0.993148i \(0.537285\pi\)
\(282\) 1070.33 + 1853.87i 0.226020 + 0.391477i
\(283\) −963.446 + 1668.74i −0.202371 + 0.350517i −0.949292 0.314396i \(-0.898198\pi\)
0.746921 + 0.664913i \(0.231531\pi\)
\(284\) −150.887 + 261.344i −0.0315264 + 0.0546053i
\(285\) 16.4001 + 28.4059i 0.00340863 + 0.00590392i
\(286\) −35.4878 −0.00733720
\(287\) −4416.26 + 6144.03i −0.908305 + 1.26366i
\(288\) 288.000 0.0589256
\(289\) 2140.41 + 3707.30i 0.435663 + 0.754590i
\(290\) −3.47785 + 6.02381i −0.000704229 + 0.00121976i
\(291\) 2003.35 3469.90i 0.403569 0.699001i
\(292\) 510.948 + 884.987i 0.102400 + 0.177363i
\(293\) −805.860 −0.160679 −0.0803394 0.996768i \(-0.525600\pi\)
−0.0803394 + 0.996768i \(0.525600\pi\)
\(294\) 655.863 + 1950.69i 0.130104 + 0.386962i
\(295\) 272.038 0.0536904
\(296\) −726.282 1257.96i −0.142616 0.247018i
\(297\) −18.4264 + 31.9154i −0.00360002 + 0.00623542i
\(298\) −2369.41 + 4103.93i −0.460590 + 0.797766i
\(299\) 514.116 + 890.475i 0.0994384 + 0.172232i
\(300\) 1490.85 0.286915
\(301\) −3189.27 + 4437.01i −0.610720 + 0.849651i
\(302\) −2097.90 −0.399737
\(303\) −365.903 633.763i −0.0693749 0.120161i
\(304\) −100.194 + 173.540i −0.0189030 + 0.0327409i
\(305\) 105.963 183.533i 0.0198931 0.0344559i
\(306\) −226.288 391.943i −0.0422747 0.0732218i
\(307\) 2026.64 0.376763 0.188382 0.982096i \(-0.439676\pi\)
0.188382 + 0.982096i \(0.439676\pi\)
\(308\) −100.613 10.0570i −0.0186135 0.00186055i
\(309\) −3567.42 −0.656775
\(310\) 170.355 + 295.063i 0.0312113 + 0.0540596i
\(311\) −791.273 + 1370.53i −0.144273 + 0.249889i −0.929102 0.369825i \(-0.879418\pi\)
0.784828 + 0.619713i \(0.212751\pi\)
\(312\) 156.000 270.200i 0.0283069 0.0490290i
\(313\) 1361.59 + 2358.35i 0.245884 + 0.425884i 0.962380 0.271708i \(-0.0875884\pi\)
−0.716496 + 0.697592i \(0.754255\pi\)
\(314\) −4160.57 −0.747753
\(315\) −59.8609 132.628i −0.0107072 0.0237229i
\(316\) 222.838 0.0396697
\(317\) −4506.22 7804.99i −0.798405 1.38288i −0.920655 0.390378i \(-0.872344\pi\)
0.122250 0.992499i \(-0.460989\pi\)
\(318\) −1087.75 + 1884.05i −0.191818 + 0.332239i
\(319\) 2.71882 4.70914i 0.000477194 0.000826524i
\(320\) −27.9355 48.3856i −0.00488013 0.00845262i
\(321\) −926.274 −0.161058
\(322\) 1205.24 + 2670.32i 0.208588 + 0.462146i
\(323\) 314.898 0.0542458
\(324\) −162.000 280.592i −0.0277778 0.0481125i
\(325\) 807.546 1398.71i 0.137830 0.238728i
\(326\) −802.057 + 1389.20i −0.136263 + 0.236015i
\(327\) −1404.85 2433.27i −0.237579 0.411498i
\(328\) 3268.44 0.550211
\(329\) 6574.86 + 657.204i 1.10177 + 0.110130i
\(330\) 7.14930 0.00119259
\(331\) −803.960 1392.50i −0.133503 0.231235i 0.791521 0.611142i \(-0.209289\pi\)
−0.925025 + 0.379907i \(0.875956\pi\)
\(332\) −67.0402 + 116.117i −0.0110823 + 0.0191950i
\(333\) −817.067 + 1415.20i −0.134460 + 0.232891i
\(334\) −1091.02 1889.71i −0.178737 0.309582i
\(335\) −224.688 −0.0366448
\(336\) 518.855 721.846i 0.0842436 0.117202i
\(337\) 3867.33 0.625124 0.312562 0.949897i \(-0.398813\pi\)
0.312562 + 0.949897i \(0.398813\pi\)
\(338\) −169.000 292.717i −0.0271964 0.0471056i
\(339\) −3244.32 + 5619.32i −0.519785 + 0.900294i
\(340\) −43.8991 + 76.0355i −0.00700224 + 0.0121282i
\(341\) −133.176 230.667i −0.0211492 0.0366314i
\(342\) 225.436 0.0356437
\(343\) 6070.83 + 1870.47i 0.955667 + 0.294448i
\(344\) 2360.35 0.369947
\(345\) −103.573 179.393i −0.0161628 0.0279948i
\(346\) 1564.19 2709.26i 0.243039 0.420956i
\(347\) 2626.99 4550.08i 0.406409 0.703922i −0.588075 0.808806i \(-0.700114\pi\)
0.994484 + 0.104885i \(0.0334474\pi\)
\(348\) 23.9032 + 41.4016i 0.00368203 + 0.00637746i
\(349\) −4793.05 −0.735146 −0.367573 0.929995i \(-0.619811\pi\)
−0.367573 + 0.929995i \(0.619811\pi\)
\(350\) 2685.89 3736.69i 0.410191 0.570670i
\(351\) −351.000 −0.0533761
\(352\) 21.8387 + 37.8257i 0.00330683 + 0.00572760i
\(353\) −1479.43 + 2562.44i −0.223065 + 0.386360i −0.955737 0.294222i \(-0.904940\pi\)
0.732672 + 0.680582i \(0.238273\pi\)
\(354\) 934.857 1619.22i 0.140359 0.243109i
\(355\) −32.9305 57.0373i −0.00492329 0.00852739i
\(356\) 4408.91 0.656381
\(357\) −1390.05 138.945i −0.206076 0.0205987i
\(358\) 3403.37 0.502441
\(359\) −2522.64 4369.34i −0.370863 0.642354i 0.618835 0.785521i \(-0.287605\pi\)
−0.989699 + 0.143167i \(0.954271\pi\)
\(360\) −31.4274 + 54.4339i −0.00460103 + 0.00796921i
\(361\) 3351.07 5804.23i 0.488566 0.846221i
\(362\) −3480.65 6028.66i −0.505356 0.875303i
\(363\) 3987.41 0.576542
\(364\) −396.185 877.786i −0.0570488 0.126397i
\(365\) −223.024 −0.0319825
\(366\) −728.280 1261.42i −0.104010 0.180151i
\(367\) −4621.83 + 8005.25i −0.657378 + 1.13861i 0.323914 + 0.946087i \(0.395001\pi\)
−0.981292 + 0.192526i \(0.938332\pi\)
\(368\) 632.758 1095.97i 0.0896326 0.155248i
\(369\) −1838.49 3184.37i −0.259372 0.449245i
\(370\) 317.016 0.0445429
\(371\) 2762.51 + 6120.61i 0.386584 + 0.856513i
\(372\) 2341.69 0.326374
\(373\) −3959.27 6857.66i −0.549607 0.951947i −0.998301 0.0582619i \(-0.981444\pi\)
0.448694 0.893685i \(-0.351889\pi\)
\(374\) 34.3183 59.4410i 0.00474481 0.00821824i
\(375\) −326.371 + 565.291i −0.0449432 + 0.0778440i
\(376\) −1427.11 2471.83i −0.195739 0.339029i
\(377\) 51.7903 0.00707516
\(378\) −995.135 99.4707i −0.135408 0.0135350i
\(379\) −5799.37 −0.785999 −0.393000 0.919539i \(-0.628563\pi\)
−0.393000 + 0.919539i \(0.628563\pi\)
\(380\) −21.8668 37.8745i −0.00295196 0.00511295i
\(381\) 478.485 828.760i 0.0643399 0.111440i
\(382\) 2079.47 3601.74i 0.278520 0.482412i
\(383\) −178.000 308.305i −0.0237477 0.0411322i 0.853907 0.520425i \(-0.174226\pi\)
−0.877655 + 0.479293i \(0.840893\pi\)
\(384\) −384.000 −0.0510310
\(385\) 12.8800 17.9191i 0.00170500 0.00237205i
\(386\) 3109.42 0.410014
\(387\) −1327.70 2299.64i −0.174395 0.302060i
\(388\) −2671.13 + 4626.54i −0.349501 + 0.605353i
\(389\) 4534.60 7854.16i 0.591037 1.02371i −0.403056 0.915175i \(-0.632052\pi\)
0.994093 0.108531i \(-0.0346146\pi\)
\(390\) 34.0464 + 58.9700i 0.00442052 + 0.00765657i
\(391\) −1988.69 −0.257219
\(392\) −874.484 2600.93i −0.112674 0.335119i
\(393\) 2006.81 0.257583
\(394\) −221.430 383.528i −0.0283134 0.0490402i
\(395\) −24.3168 + 42.1179i −0.00309749 + 0.00536502i
\(396\) 24.5685 42.5539i 0.00311771 0.00540003i
\(397\) −2508.60 4345.03i −0.317136 0.549297i 0.662753 0.748838i \(-0.269388\pi\)
−0.979889 + 0.199542i \(0.936055\pi\)
\(398\) −1934.57 −0.243646
\(399\) 406.140 565.034i 0.0509585 0.0708949i
\(400\) −1987.81 −0.248476
\(401\) −2457.14 4255.89i −0.305995 0.529998i 0.671488 0.741016i \(-0.265656\pi\)
−0.977482 + 0.211018i \(0.932322\pi\)
\(402\) −772.137 + 1337.38i −0.0957977 + 0.165927i
\(403\) 1268.42 2196.96i 0.156785 0.271560i
\(404\) 487.871 + 845.017i 0.0600804 + 0.104062i
\(405\) 70.7117 0.00867578
\(406\) 146.833 + 14.6770i 0.0179487 + 0.00179410i
\(407\) −247.829 −0.0301828
\(408\) 301.718 + 522.591i 0.0366109 + 0.0634120i
\(409\) 2025.90 3508.95i 0.244924 0.424222i −0.717186 0.696882i \(-0.754570\pi\)
0.962110 + 0.272660i \(0.0879035\pi\)
\(410\) −356.661 + 617.755i −0.0429616 + 0.0744116i
\(411\) −373.926 647.659i −0.0448770 0.0777292i
\(412\) 4756.56 0.568784
\(413\) −2374.21 5260.29i −0.282875 0.626736i
\(414\) −1423.71 −0.169013
\(415\) −14.6312 25.3421i −0.00173065 0.00299757i
\(416\) −208.000 + 360.267i −0.0245145 + 0.0424604i
\(417\) −434.362 + 752.337i −0.0510091 + 0.0883504i
\(418\) 17.0945 + 29.6085i 0.00200028 + 0.00346459i
\(419\) 7107.75 0.828727 0.414363 0.910112i \(-0.364004\pi\)
0.414363 + 0.910112i \(0.364004\pi\)
\(420\) 79.8146 + 176.837i 0.00927275 + 0.0205447i
\(421\) 7169.00 0.829919 0.414960 0.909840i \(-0.363796\pi\)
0.414960 + 0.909840i \(0.363796\pi\)
\(422\) −5226.42 9052.43i −0.602887 1.04423i
\(423\) −1605.50 + 2780.81i −0.184544 + 0.319640i
\(424\) 1450.34 2512.06i 0.166119 0.287727i
\(425\) 1561.87 + 2705.23i 0.178263 + 0.308760i
\(426\) −452.661 −0.0514824
\(427\) −4473.69 447.176i −0.507018 0.0506800i
\(428\) 1235.03 0.139480
\(429\) −26.6159 46.1000i −0.00299540 0.00518819i
\(430\) −257.569 + 446.122i −0.0288862 + 0.0500324i
\(431\) 1504.02 2605.05i 0.168089 0.291138i −0.769659 0.638455i \(-0.779574\pi\)
0.937748 + 0.347317i \(0.112907\pi\)
\(432\) 216.000 + 374.123i 0.0240563 + 0.0416667i
\(433\) 2841.60 0.315377 0.157689 0.987489i \(-0.449596\pi\)
0.157689 + 0.987489i \(0.449596\pi\)
\(434\) 4218.75 5869.24i 0.466604 0.649154i
\(435\) −10.4335 −0.00115000
\(436\) 1873.13 + 3244.35i 0.205749 + 0.356368i
\(437\) 495.299 857.883i 0.0542183 0.0939088i
\(438\) −766.421 + 1327.48i −0.0836096 + 0.144816i
\(439\) −6770.73 11727.2i −0.736103 1.27497i −0.954238 0.299049i \(-0.903331\pi\)
0.218135 0.975919i \(-0.430003\pi\)
\(440\) −9.53240 −0.00103282
\(441\) −2042.13 + 2315.01i −0.220508 + 0.249974i
\(442\) 653.722 0.0703493
\(443\) 2172.91 + 3763.58i 0.233043 + 0.403642i 0.958702 0.284412i \(-0.0917985\pi\)
−0.725659 + 0.688054i \(0.758465\pi\)
\(444\) 1089.42 1886.94i 0.116445 0.201689i
\(445\) −481.113 + 833.312i −0.0512516 + 0.0887703i
\(446\) −6341.86 10984.4i −0.673309 1.16621i
\(447\) −7108.22 −0.752141
\(448\) −691.806 + 962.461i −0.0729571 + 0.101500i
\(449\) −4142.72 −0.435428 −0.217714 0.976013i \(-0.569860\pi\)
−0.217714 + 0.976013i \(0.569860\pi\)
\(450\) 1118.14 + 1936.68i 0.117133 + 0.202880i
\(451\) 278.821 482.933i 0.0291113 0.0504222i
\(452\) 4325.75 7492.43i 0.450147 0.779677i
\(453\) −1573.42 2725.25i −0.163192 0.282657i
\(454\) 7364.73 0.761331
\(455\) 209.140 + 20.9050i 0.0215487 + 0.00215394i
\(456\) −300.581 −0.0308684
\(457\) −8113.06 14052.2i −0.830444 1.43837i −0.897686 0.440635i \(-0.854753\pi\)
0.0672418 0.997737i \(-0.478580\pi\)
\(458\) −3445.92 + 5968.50i −0.351566 + 0.608930i
\(459\) 339.433 587.914i 0.0345171 0.0597854i
\(460\) 138.097 + 239.191i 0.0139974 + 0.0242442i
\(461\) −777.223 −0.0785225 −0.0392612 0.999229i \(-0.512500\pi\)
−0.0392612 + 0.999229i \(0.512500\pi\)
\(462\) −62.3954 138.243i −0.00628333 0.0139213i
\(463\) −14826.0 −1.48817 −0.744084 0.668086i \(-0.767114\pi\)
−0.744084 + 0.668086i \(0.767114\pi\)
\(464\) −31.8709 55.2021i −0.00318873 0.00552304i
\(465\) −255.532 + 442.595i −0.0254839 + 0.0441395i
\(466\) 4173.34 7228.43i 0.414863 0.718563i
\(467\) 7822.95 + 13549.7i 0.775167 + 1.34263i 0.934701 + 0.355435i \(0.115667\pi\)
−0.159534 + 0.987192i \(0.550999\pi\)
\(468\) 468.000 0.0462250
\(469\) 1960.96 + 4344.69i 0.193067 + 0.427759i
\(470\) 622.923 0.0611347
\(471\) −3120.43 5404.74i −0.305269 0.528741i
\(472\) −1246.48 + 2158.96i −0.121554 + 0.210538i
\(473\) 201.355 348.758i 0.0195736 0.0339025i
\(474\) 167.129 + 289.476i 0.0161951 + 0.0280507i
\(475\) −1555.98 −0.150302
\(476\) 1853.39 + 185.260i 0.178467 + 0.0178390i
\(477\) −3263.26 −0.313238
\(478\) −6266.60 10854.1i −0.599639 1.03861i
\(479\) −5009.31 + 8676.38i −0.477831 + 0.827628i −0.999677 0.0254119i \(-0.991910\pi\)
0.521846 + 0.853040i \(0.325244\pi\)
\(480\) 41.9032 72.5785i 0.00398461 0.00690154i
\(481\) −1180.21 2044.18i −0.111877 0.193777i
\(482\) 8600.19 0.812713
\(483\) −2564.92 + 3568.39i −0.241631 + 0.336164i
\(484\) −5316.55 −0.499300
\(485\) −582.964 1009.72i −0.0545794 0.0945343i
\(486\) 243.000 420.888i 0.0226805 0.0392837i
\(487\) −6467.57 + 11202.2i −0.601794 + 1.04234i 0.390756 + 0.920494i \(0.372214\pi\)
−0.992549 + 0.121843i \(0.961120\pi\)
\(488\) 971.040 + 1681.89i 0.0900757 + 0.156016i
\(489\) −2406.17 −0.222517
\(490\) 587.018 + 118.537i 0.0541199 + 0.0109285i
\(491\) −786.588 −0.0722978 −0.0361489 0.999346i \(-0.511509\pi\)
−0.0361489 + 0.999346i \(0.511509\pi\)
\(492\) 2451.33 + 4245.82i 0.224623 + 0.389058i
\(493\) −50.0835 + 86.7471i −0.00457535 + 0.00792473i
\(494\) −162.815 + 282.003i −0.0148287 + 0.0256841i
\(495\) 5.36197 + 9.28721i 0.000486874 + 0.000843291i
\(496\) −3122.26 −0.282648
\(497\) −815.505 + 1134.55i −0.0736024 + 0.102398i
\(498\) −201.121 −0.0180972
\(499\) −5038.45 8726.86i −0.452008 0.782901i 0.546502 0.837458i \(-0.315959\pi\)
−0.998511 + 0.0545562i \(0.982626\pi\)
\(500\) 435.161 753.721i 0.0389220 0.0674149i
\(501\) 1636.54 2834.56i 0.145938 0.252772i
\(502\) −1885.18 3265.23i −0.167609 0.290307i
\(503\) 1332.89 0.118152 0.0590762 0.998253i \(-0.481185\pi\)
0.0590762 + 0.998253i \(0.481185\pi\)
\(504\) 1326.85 + 132.628i 0.117267 + 0.0117216i
\(505\) −212.952 −0.0187648
\(506\) −107.958 186.988i −0.00948480 0.0164282i
\(507\) 253.500 439.075i 0.0222058 0.0384615i
\(508\) −637.980 + 1105.01i −0.0557200 + 0.0965099i
\(509\) −6520.69 11294.2i −0.567828 0.983507i −0.996780 0.0801802i \(-0.974450\pi\)
0.428952 0.903327i \(-0.358883\pi\)
\(510\) −131.697 −0.0114346
\(511\) 1946.44 + 4312.53i 0.168504 + 0.373337i
\(512\) 512.000 0.0441942
\(513\) 169.077 + 292.849i 0.0145515 + 0.0252039i
\(514\) −2757.88 + 4776.79i −0.236663 + 0.409913i
\(515\) −519.050 + 899.021i −0.0444118 + 0.0769235i
\(516\) 1770.27 + 3066.19i 0.151030 + 0.261592i
\(517\) −486.973 −0.0414256
\(518\) −2766.75 6130.01i −0.234680 0.519956i
\(519\) 4692.58 0.396881
\(520\) −45.3951 78.6267i −0.00382829 0.00663078i
\(521\) −11141.6 + 19297.8i −0.936893 + 1.62275i −0.165669 + 0.986181i \(0.552978\pi\)
−0.771224 + 0.636564i \(0.780355\pi\)
\(522\) −35.8548 + 62.1023i −0.00300636 + 0.00520718i
\(523\) 7512.02 + 13011.2i 0.628065 + 1.08784i 0.987940 + 0.154839i \(0.0494859\pi\)
−0.359875 + 0.933000i \(0.617181\pi\)
\(524\) −2675.75 −0.223074
\(525\) 6868.53 + 686.557i 0.570985 + 0.0570739i
\(526\) 4572.56 0.379036
\(527\) 2453.23 + 4249.12i 0.202779 + 0.351223i
\(528\) −32.7580 + 56.7385i −0.00270002 + 0.00467657i
\(529\) 2955.51 5119.09i 0.242912 0.420736i
\(530\) 316.530 + 548.247i 0.0259419 + 0.0449327i
\(531\) 2804.57 0.229205
\(532\) −541.520 + 753.379i −0.0441313 + 0.0613968i
\(533\) 5311.21 0.431621
\(534\) 3306.68 + 5727.34i 0.267967 + 0.464132i
\(535\) −134.770 + 233.429i −0.0108909 + 0.0188636i
\(536\) 1029.52 1783.17i 0.0829633 0.143697i
\(537\) 2552.53 + 4421.11i 0.205121 + 0.355279i
\(538\) 9291.43 0.744577
\(539\) −458.904 92.6672i −0.0366723 0.00740530i
\(540\) −94.2822 −0.00751344
\(541\) −12531.2 21704.6i −0.995855 1.72487i −0.576698 0.816957i \(-0.695659\pi\)
−0.419157 0.907914i \(-0.637674\pi\)
\(542\) 3267.87 5660.12i 0.258980 0.448566i
\(543\) 5220.98 9043.00i 0.412622 0.714682i
\(544\) −402.290 696.787i −0.0317060 0.0549164i
\(545\) −817.605 −0.0642612
\(546\) 843.139 1173.00i 0.0660861 0.0919409i
\(547\) −3347.07 −0.261628 −0.130814 0.991407i \(-0.541759\pi\)
−0.130814 + 0.991407i \(0.541759\pi\)
\(548\) 498.569 + 863.546i 0.0388646 + 0.0673154i
\(549\) 1092.42 1892.13i 0.0849242 0.147093i
\(550\) −169.574 + 293.711i −0.0131467 + 0.0227707i
\(551\) −24.9474 43.2101i −0.00192885 0.00334086i
\(552\) 1898.27 0.146369
\(553\) 1026.64 + 102.620i 0.0789461 + 0.00789122i
\(554\) −1869.95 −0.143405
\(555\) 237.762 + 411.816i 0.0181846 + 0.0314966i
\(556\) 579.149 1003.12i 0.0441752 0.0765137i
\(557\) 5383.23 9324.03i 0.409506 0.709285i −0.585329 0.810796i \(-0.699034\pi\)
0.994834 + 0.101511i \(0.0323678\pi\)
\(558\) 1756.27 + 3041.95i 0.133242 + 0.230781i
\(559\) 3835.58 0.290210
\(560\) −106.419 235.782i −0.00803043 0.0177922i
\(561\) 102.955 0.00774824
\(562\) 1100.98 + 1906.95i 0.0826368 + 0.143131i
\(563\) −7726.52 + 13382.7i −0.578391 + 1.00180i 0.417274 + 0.908781i \(0.362986\pi\)
−0.995664 + 0.0930210i \(0.970348\pi\)
\(564\) 2140.67 3707.75i 0.159820 0.276816i
\(565\) 944.078 + 1635.19i 0.0702967 + 0.121757i
\(566\) 3853.79 0.286196
\(567\) −617.135 1367.32i −0.0457094 0.101274i
\(568\) 603.548 0.0445851
\(569\) −8331.22 14430.1i −0.613819 1.06317i −0.990590 0.136859i \(-0.956299\pi\)
0.376772 0.926306i \(-0.377034\pi\)
\(570\) 32.8003 56.8117i 0.00241027 0.00417470i
\(571\) −3124.73 + 5412.18i −0.229012 + 0.396660i −0.957515 0.288382i \(-0.906883\pi\)
0.728504 + 0.685042i \(0.240216\pi\)
\(572\) 35.4878 + 61.4667i 0.00259409 + 0.00449310i
\(573\) 6238.40 0.454822
\(574\) 15058.0 + 1505.16i 1.09497 + 0.109449i
\(575\) 9826.57 0.712689
\(576\) −288.000 498.831i −0.0208333 0.0360844i
\(577\) −5493.29 + 9514.65i −0.396341 + 0.686482i −0.993271 0.115811i \(-0.963053\pi\)
0.596931 + 0.802293i \(0.296387\pi\)
\(578\) 4280.82 7414.60i 0.308060 0.533576i
\(579\) 2332.07 + 4039.26i 0.167388 + 0.289924i
\(580\) 13.9114 0.000995930
\(581\) −362.335 + 504.091i −0.0258729 + 0.0359952i
\(582\) −8013.40 −0.570732
\(583\) −247.449 428.594i −0.0175785 0.0304469i
\(584\) 1021.90 1769.97i 0.0724081 0.125414i
\(585\) −51.0695 + 88.4550i −0.00360934 + 0.00625156i
\(586\) 805.860 + 1395.79i 0.0568085 + 0.0983952i
\(587\) −21875.9 −1.53819 −0.769094 0.639135i \(-0.779292\pi\)
−0.769094 + 0.639135i \(0.779292\pi\)
\(588\) 2722.84 3086.68i 0.190966 0.216484i
\(589\) −2443.99 −0.170972
\(590\) −272.038 471.184i −0.0189824 0.0328785i
\(591\) 332.145 575.291i 0.0231178 0.0400412i
\(592\) −1452.56 + 2515.92i −0.100845 + 0.174668i
\(593\) 5097.91 + 8829.83i 0.353029 + 0.611463i 0.986779 0.162075i \(-0.0518185\pi\)
−0.633750 + 0.773538i \(0.718485\pi\)
\(594\) 73.7055 0.00509120
\(595\) −237.263 + 330.087i −0.0163476 + 0.0227433i
\(596\) 9477.62 0.651373
\(597\) −1450.93 2513.08i −0.0994681 0.172284i
\(598\) 1028.23 1780.95i 0.0703136 0.121787i
\(599\) −5909.48 + 10235.5i −0.403096 + 0.698183i −0.994098 0.108487i \(-0.965399\pi\)
0.591002 + 0.806670i \(0.298733\pi\)
\(600\) −1490.85 2582.24i −0.101440 0.175699i
\(601\) 2791.00 0.189429 0.0947147 0.995504i \(-0.469806\pi\)
0.0947147 + 0.995504i \(0.469806\pi\)
\(602\) 10874.4 + 1086.97i 0.736225 + 0.0735909i
\(603\) −2316.41 −0.156437
\(604\) 2097.90 + 3633.67i 0.141328 + 0.244788i
\(605\) 580.157 1004.86i 0.0389864 0.0675264i
\(606\) −731.806 + 1267.53i −0.0490555 + 0.0849665i
\(607\) −3193.88 5531.96i −0.213568 0.369910i 0.739261 0.673419i \(-0.235175\pi\)
−0.952829 + 0.303509i \(0.901842\pi\)
\(608\) 400.774 0.0267328
\(609\) 91.0586 + 201.749i 0.00605892 + 0.0134241i
\(610\) −423.851 −0.0281332
\(611\) −2319.06 4016.73i −0.153550 0.265956i
\(612\) −452.577 + 783.886i −0.0298927 + 0.0517757i
\(613\) 1260.97 2184.06i 0.0830830 0.143904i −0.821490 0.570223i \(-0.806857\pi\)
0.904573 + 0.426319i \(0.140190\pi\)
\(614\) −2026.64 3510.24i −0.133206 0.230719i
\(615\) −1069.98 −0.0701559
\(616\) 83.1939 + 184.324i 0.00544152 + 0.0120562i
\(617\) −9890.40 −0.645336 −0.322668 0.946512i \(-0.604580\pi\)
−0.322668 + 0.946512i \(0.604580\pi\)
\(618\) 3567.42 + 6178.96i 0.232205 + 0.402191i
\(619\) 1190.17 2061.43i 0.0772810 0.133855i −0.824795 0.565432i \(-0.808709\pi\)
0.902076 + 0.431577i \(0.142043\pi\)
\(620\) 340.710 590.127i 0.0220697 0.0382259i
\(621\) −1067.78 1849.45i −0.0689992 0.119510i
\(622\) 3165.09 0.204033
\(623\) 20312.3 + 2030.36i 1.30625 + 0.130569i
\(624\) −624.000 −0.0400320
\(625\) −7669.90 13284.7i −0.490873 0.850218i
\(626\) 2723.18 4716.69i 0.173866 0.301145i
\(627\) −25.6417 + 44.4128i −0.00163323 + 0.00282883i
\(628\) 4160.57 + 7206.32i 0.264371 + 0.457903i
\(629\) 4565.26 0.289394
\(630\) −169.857 + 236.310i −0.0107417 + 0.0149441i
\(631\) 3648.51 0.230182 0.115091 0.993355i \(-0.463284\pi\)
0.115091 + 0.993355i \(0.463284\pi\)
\(632\) −222.838 385.967i −0.0140254 0.0242927i
\(633\) 7839.63 13578.6i 0.492255 0.852611i
\(634\) −9012.43 + 15610.0i −0.564557 + 0.977842i
\(635\) −139.236 241.164i −0.00870146 0.0150714i
\(636\) 4351.02 0.271272
\(637\) −1421.04 4226.50i −0.0883886 0.262889i
\(638\) −10.8753 −0.000674854
\(639\) −339.496 588.024i −0.0210176 0.0364036i
\(640\) −55.8709 + 96.7713i −0.00345077 + 0.00597691i
\(641\) 14446.6 25022.3i 0.890182 1.54184i 0.0505256 0.998723i \(-0.483910\pi\)
0.839657 0.543118i \(-0.182756\pi\)
\(642\) 926.274 + 1604.35i 0.0569426 + 0.0986274i
\(643\) −9462.65 −0.580358 −0.290179 0.956972i \(-0.593715\pi\)
−0.290179 + 0.956972i \(0.593715\pi\)
\(644\) 3419.89 4757.85i 0.209259 0.291127i
\(645\) −772.706 −0.0471710
\(646\) −314.898 545.419i −0.0191788 0.0332186i
\(647\) −16068.4 + 27831.2i −0.976371 + 1.69112i −0.301038 + 0.953612i \(0.597333\pi\)
−0.675334 + 0.737512i \(0.736000\pi\)
\(648\) −324.000 + 561.184i −0.0196419 + 0.0340207i
\(649\) 212.667 + 368.350i 0.0128627 + 0.0222789i
\(650\) −3230.19 −0.194920
\(651\) 10788.4 + 1078.38i 0.649511 + 0.0649232i
\(652\) 3208.23 0.192705
\(653\) 3063.10 + 5305.44i 0.183565 + 0.317945i 0.943092 0.332531i \(-0.107903\pi\)
−0.759527 + 0.650476i \(0.774569\pi\)
\(654\) −2809.69 + 4866.53i −0.167993 + 0.290973i
\(655\) 291.986 505.734i 0.0174181 0.0301689i
\(656\) −3268.44 5661.10i −0.194529 0.336934i
\(657\) −2299.26 −0.136534
\(658\) −5436.55 12045.2i −0.322095 0.713633i
\(659\) 14682.3 0.867893 0.433947 0.900939i \(-0.357121\pi\)
0.433947 + 0.900939i \(0.357121\pi\)
\(660\) −7.14930 12.3829i −0.000421645 0.000730311i
\(661\) 8347.47 14458.2i 0.491194 0.850772i −0.508755 0.860911i \(-0.669894\pi\)
0.999949 + 0.0101391i \(0.00322744\pi\)
\(662\) −1607.92 + 2785.00i −0.0944012 + 0.163508i
\(663\) 490.291 + 849.210i 0.0287200 + 0.0497444i
\(664\) 268.161 0.0156727
\(665\) −83.3012 184.562i −0.00485756 0.0107624i
\(666\) 3268.27 0.190154
\(667\) 157.551 + 272.887i 0.00914605 + 0.0158414i
\(668\) −2182.05 + 3779.42i −0.126386 + 0.218907i
\(669\) 9512.80 16476.6i 0.549755 0.952203i
\(670\) 224.688 + 389.170i 0.0129559 + 0.0224402i
\(671\) 331.347 0.0190634
\(672\) −1769.13 176.837i −0.101556 0.0101512i
\(673\) −8889.23 −0.509145 −0.254572 0.967054i \(-0.581935\pi\)
−0.254572 + 0.967054i \(0.581935\pi\)
\(674\) −3867.33 6698.41i −0.221015 0.382809i
\(675\) −1677.21 + 2905.02i −0.0956384 + 0.165651i
\(676\) −338.000 + 585.433i −0.0192308 + 0.0333087i
\(677\) 12309.9 + 21321.4i 0.698831 + 1.21041i 0.968872 + 0.247562i \(0.0796295\pi\)
−0.270041 + 0.962849i \(0.587037\pi\)
\(678\) 12977.3 0.735087
\(679\) −14436.8 + 20084.9i −0.815954 + 1.13518i
\(680\) 175.596 0.00990267
\(681\) 5523.55 + 9567.07i 0.310812 + 0.538342i
\(682\) −266.351 + 461.334i −0.0149547 + 0.0259023i
\(683\) −13653.8 + 23649.1i −0.764933 + 1.32490i 0.175349 + 0.984506i \(0.443895\pi\)
−0.940282 + 0.340396i \(0.889439\pi\)
\(684\) −225.436 390.466i −0.0126020 0.0218272i
\(685\) −217.621 −0.0121385
\(686\) −2831.08 12385.5i −0.157567 0.689328i
\(687\) −10337.7 −0.574104
\(688\) −2360.35 4088.25i −0.130796 0.226545i
\(689\) 2356.80 4082.10i 0.130315 0.225712i
\(690\) −207.145 + 358.786i −0.0114288 + 0.0197953i
\(691\) 11719.9 + 20299.5i 0.645220 + 1.11755i 0.984251 + 0.176779i \(0.0565677\pi\)
−0.339030 + 0.940775i \(0.610099\pi\)
\(692\) −6256.77 −0.343709
\(693\) 132.786 184.736i 0.00727869 0.0101263i
\(694\) −10507.9 −0.574750
\(695\) 126.397 + 218.926i 0.00689857 + 0.0119487i
\(696\) 47.8064 82.8031i 0.00260359 0.00450955i
\(697\) −5136.17 + 8896.11i −0.279120 + 0.483449i
\(698\) 4793.05 + 8301.80i 0.259913 + 0.450183i
\(699\) 12520.0 0.677468
\(700\) −9158.04 915.410i −0.494487 0.0494275i
\(701\) −6820.69 −0.367495 −0.183748 0.982973i \(-0.558823\pi\)
−0.183748 + 0.982973i \(0.558823\pi\)
\(702\) 351.000 + 607.950i 0.0188713 + 0.0326860i
\(703\) −1137.01 + 1969.36i −0.0610004 + 0.105656i
\(704\) 43.6773 75.6514i 0.00233828 0.00405003i
\(705\) 467.192 + 809.201i 0.0249581 + 0.0432287i
\(706\) 5917.71 0.315462
\(707\) 1858.53 + 4117.75i 0.0988646 + 0.219044i
\(708\) −3739.43 −0.198498
\(709\) 5883.86 + 10191.1i 0.311668 + 0.539826i 0.978724 0.205183i \(-0.0657788\pi\)
−0.667055 + 0.745008i \(0.732446\pi\)
\(710\) −65.8609 + 114.075i −0.00348129 + 0.00602977i
\(711\) −250.693 + 434.213i −0.0132232 + 0.0229033i
\(712\) −4408.91 7636.46i −0.232066 0.401950i
\(713\) 15434.6 0.810704
\(714\) 1149.39 + 2546.58i 0.0602447 + 0.133478i
\(715\) −15.4901 −0.000810208
\(716\) −3403.37 5894.81i −0.177640 0.307681i
\(717\) 9399.90 16281.1i 0.489604 0.848018i
\(718\) −5045.28 + 8738.68i −0.262240 + 0.454213i
\(719\) 13052.7 + 22608.0i 0.677031 + 1.17265i 0.975871 + 0.218349i \(0.0700671\pi\)
−0.298840 + 0.954303i \(0.596600\pi\)
\(720\) 125.710 0.00650683
\(721\) 21914.0 + 2190.46i 1.13193 + 0.113144i
\(722\) −13404.3 −0.690936
\(723\) 6450.14 + 11172.0i 0.331789 + 0.574675i
\(724\) −6961.30 + 12057.3i −0.357341 + 0.618932i
\(725\) 247.474 428.637i 0.0126772 0.0219575i
\(726\) −3987.41 6906.40i −0.203838 0.353059i
\(727\) 3185.30 0.162498 0.0812492 0.996694i \(-0.474109\pi\)
0.0812492 + 0.996694i \(0.474109\pi\)
\(728\) −1124.19 + 1564.00i −0.0572323 + 0.0796232i
\(729\) 729.000 0.0370370
\(730\) 223.024 + 386.289i 0.0113075 + 0.0195852i
\(731\) −3709.17 + 6424.47i −0.187673 + 0.325058i
\(732\) −1456.56 + 2522.84i −0.0735465 + 0.127386i
\(733\) −15213.1 26349.9i −0.766590 1.32777i −0.939402 0.342818i \(-0.888619\pi\)
0.172812 0.984955i \(-0.444715\pi\)
\(734\) 18487.3 0.929673
\(735\) 286.279 + 851.462i 0.0143667 + 0.0427301i
\(736\) −2531.03 −0.126760
\(737\) −175.650 304.236i −0.00877906 0.0152058i
\(738\) −3676.99 + 6368.73i −0.183404 + 0.317664i
\(739\) 3431.25 5943.09i 0.170799 0.295833i −0.767900 0.640569i \(-0.778698\pi\)
0.938699 + 0.344737i \(0.112032\pi\)
\(740\) −317.016 549.088i −0.0157483 0.0272769i
\(741\) −488.444 −0.0242152
\(742\) 7838.70 10905.4i 0.387827 0.539556i
\(743\) −10344.6 −0.510777 −0.255388 0.966839i \(-0.582203\pi\)
−0.255388 + 0.966839i \(0.582203\pi\)
\(744\) −2341.69 4055.93i −0.115391 0.199862i
\(745\) −1034.23 + 1791.33i −0.0508605 + 0.0880930i
\(746\) −7918.55 + 13715.3i −0.388631 + 0.673128i
\(747\) −150.840 261.263i −0.00738817 0.0127967i
\(748\) −137.273 −0.00671017
\(749\) 5689.92 + 568.748i 0.277577 + 0.0277458i
\(750\) 1305.48 0.0635593
\(751\) −14803.6 25640.6i −0.719297 1.24586i −0.961279 0.275578i \(-0.911131\pi\)
0.241982 0.970281i \(-0.422203\pi\)
\(752\) −2854.23 + 4943.66i −0.138408 + 0.239730i
\(753\) 2827.77 4897.84i 0.136852 0.237035i
\(754\) −51.7903 89.7034i −0.00250145 0.00433263i
\(755\) −915.715 −0.0441408
\(756\) 822.847 + 1823.10i 0.0395855 + 0.0877055i
\(757\) −2000.42 −0.0960456 −0.0480228 0.998846i \(-0.515292\pi\)
−0.0480228 + 0.998846i \(0.515292\pi\)
\(758\) 5799.37 + 10044.8i 0.277893 + 0.481324i
\(759\) 161.937 280.482i 0.00774430 0.0134135i
\(760\) −43.7337 + 75.7489i −0.00208735 + 0.00361540i
\(761\) 8928.15 + 15464.0i 0.425290 + 0.736623i 0.996447 0.0842171i \(-0.0268389\pi\)
−0.571158 + 0.820840i \(0.693506\pi\)
\(762\) −1913.94 −0.0909904
\(763\) 7135.64 + 15809.7i 0.338568 + 0.750130i
\(764\) −8317.87 −0.393887
\(765\) −98.7730 171.080i −0.00466816 0.00808550i
\(766\) −355.999 + 616.609i −0.0167921 + 0.0290849i
\(767\) −2025.52 + 3508.31i −0.0953552 + 0.165160i
\(768\) 384.000 + 665.108i 0.0180422 + 0.0312500i
\(769\) 9259.72 0.434218 0.217109 0.976147i \(-0.430337\pi\)
0.217109 + 0.976147i \(0.430337\pi\)
\(770\) −43.9168 4.38979i −0.00205539 0.000205451i
\(771\) −8273.65 −0.386470
\(772\) −3109.42 5385.68i −0.144962 0.251081i
\(773\) −12200.8 + 21132.4i −0.567699 + 0.983283i 0.429094 + 0.903260i \(0.358833\pi\)
−0.996793 + 0.0800234i \(0.974500\pi\)
\(774\) −2655.40 + 4599.29i −0.123316 + 0.213589i
\(775\) −12122.0 20995.9i −0.561850 0.973153i
\(776\) 10684.5 0.494268
\(777\) 5888.05 8191.62i 0.271857 0.378215i
\(778\) −18138.4 −0.835852
\(779\) −2558.41 4431.29i −0.117669 0.203809i
\(780\) 68.0927 117.940i 0.00312578 0.00541401i
\(781\) 51.4871 89.1782i 0.00235897 0.00408585i
\(782\) 1988.69 + 3444.51i 0.0909405 + 0.157514i
\(783\) −107.564 −0.00490937
\(784\) −3630.45 + 4115.58i −0.165381 + 0.187481i
\(785\) −1816.05 −0.0825704
\(786\) −2006.81 3475.90i −0.0910695 0.157737i
\(787\) −10707.4 + 18545.7i −0.484976 + 0.840004i −0.999851 0.0172619i \(-0.994505\pi\)
0.514875 + 0.857265i \(0.327838\pi\)
\(788\) −442.859 + 767.055i −0.0200206 + 0.0346767i
\(789\) 3429.42 + 5939.93i 0.154741 + 0.268019i
\(790\) 97.2671 0.00438052
\(791\) 23379.6 32526.3i 1.05092 1.46208i
\(792\) −98.2740 −0.00440911
\(793\) 1577.94 + 2733.07i 0.0706612 + 0.122389i
\(794\) −5017.21 + 8690.06i −0.224249 + 0.388411i
\(795\) −474.796 + 822.370i −0.0211815 + 0.0366874i
\(796\) 1934.57 + 3350.77i 0.0861419 + 0.149202i
\(797\) −31332.4 −1.39254 −0.696268 0.717781i \(-0.745158\pi\)
−0.696268 + 0.717781i \(0.745158\pi\)
\(798\) −1384.81 138.421i −0.0614307 0.00614042i
\(799\) 8970.53 0.397190
\(800\) 1987.81 + 3442.98i 0.0878495 + 0.152160i
\(801\) −4960.02 + 8591.01i −0.218794 + 0.378962i
\(802\) −4914.28 + 8511.79i −0.216371 + 0.374765i
\(803\) −174.350 301.983i −0.00766212 0.0132712i
\(804\) 3088.55 0.135478
\(805\) 526.076 + 1165.57i 0.0230332 + 0.0510323i
\(806\) −5073.67 −0.221727
\(807\) 6968.58 + 12069.9i 0.303972 + 0.526495i
\(808\) 975.742 1690.03i 0.0424833 0.0735832i
\(809\) −10441.4 + 18085.0i −0.453769 + 0.785950i −0.998616 0.0525845i \(-0.983254\pi\)
0.544848 + 0.838535i \(0.316587\pi\)
\(810\) −70.7117 122.476i −0.00306735 0.00531281i
\(811\) 18964.9 0.821143 0.410572 0.911828i \(-0.365329\pi\)
0.410572 + 0.911828i \(0.365329\pi\)
\(812\) −121.412 268.999i −0.00524718 0.0116256i
\(813\) 9803.62 0.422913
\(814\) 247.829 + 429.252i 0.0106712 + 0.0184831i
\(815\) −350.091 + 606.375i −0.0150468 + 0.0260618i
\(816\) 603.436 1045.18i 0.0258878 0.0448390i
\(817\) −1847.60 3200.13i −0.0791178 0.137036i
\(818\) −8103.58 −0.346375
\(819\) 2156.13 + 215.520i 0.0919916 + 0.00919521i
\(820\) 1426.64 0.0607568
\(821\) −3998.74 6926.01i −0.169984 0.294421i 0.768430 0.639934i \(-0.221038\pi\)
−0.938414 + 0.345513i \(0.887705\pi\)
\(822\) −747.853 + 1295.32i −0.0317328 + 0.0549628i
\(823\) −11648.7 + 20176.1i −0.493374 + 0.854549i −0.999971 0.00763436i \(-0.997570\pi\)
0.506597 + 0.862183i \(0.330903\pi\)
\(824\) −4756.56 8238.61i −0.201096 0.348308i
\(825\) −508.723 −0.0214684
\(826\) −6736.87 + 9372.54i −0.283784 + 0.394809i
\(827\) 28133.7 1.18296 0.591479 0.806321i \(-0.298544\pi\)
0.591479 + 0.806321i \(0.298544\pi\)
\(828\) 1423.71 + 2465.93i 0.0597551 + 0.103499i
\(829\) 19171.8 33206.6i 0.803216 1.39121i −0.114273 0.993449i \(-0.536454\pi\)
0.917489 0.397761i \(-0.130213\pi\)
\(830\) −29.2625 + 50.6841i −0.00122375 + 0.00211960i
\(831\) −1402.46 2429.13i −0.0585449 0.101403i
\(832\) 832.000 0.0346688
\(833\) 8453.47 + 1707.02i 0.351615 + 0.0710022i
\(834\) 1737.45 0.0721378
\(835\) −476.223 824.842i −0.0197370 0.0341854i
\(836\) 34.1890 59.2171i 0.00141441 0.00244984i
\(837\) −2634.40 + 4562.92i −0.108791 + 0.188432i
\(838\) −7107.75 12311.0i −0.292999 0.507489i
\(839\) 18531.3 0.762542 0.381271 0.924463i \(-0.375486\pi\)
0.381271 + 0.924463i \(0.375486\pi\)
\(840\) 226.476 315.080i 0.00930257 0.0129420i
\(841\) −24373.1 −0.999349
\(842\) −7169.00 12417.1i −0.293421 0.508220i
\(843\) −1651.46 + 2860.42i −0.0674727 + 0.116866i
\(844\) −10452.8 + 18104.9i −0.426305 + 0.738382i
\(845\) −73.7671 127.768i −0.00300315 0.00520162i
\(846\) 6422.01 0.260985
\(847\) −24493.9 2448.34i −0.993649 0.0993222i
\(848\) −5801.35 −0.234928
\(849\) 2890.34 + 5006.21i 0.116839 + 0.202371i
\(850\) 3123.73 5410.46i 0.126051 0.218326i
\(851\) 7180.64 12437.2i 0.289247 0.500990i
\(852\) 452.661 + 784.032i 0.0182018 + 0.0315264i
\(853\) −33920.2 −1.36156 −0.680778 0.732490i \(-0.738358\pi\)
−0.680778 + 0.732490i \(0.738358\pi\)
\(854\) 3699.15 + 8195.83i 0.148223 + 0.328402i
\(855\) 98.4008 0.00393595
\(856\) −1235.03 2139.14i −0.0493137 0.0854138i
\(857\) −16772.5 + 29050.8i −0.668539 + 1.15794i 0.309774 + 0.950810i \(0.399747\pi\)
−0.978313 + 0.207133i \(0.933587\pi\)
\(858\) −53.2318 + 92.2001i −0.00211807 + 0.00366860i
\(859\) 9472.35 + 16406.6i 0.376243 + 0.651672i 0.990512 0.137425i \(-0.0438825\pi\)
−0.614269 + 0.789096i \(0.710549\pi\)
\(860\) 1030.28 0.0408513
\(861\) 9338.27 + 20689.8i 0.369625 + 0.818940i
\(862\) −6016.10 −0.237714
\(863\) 14868.1 + 25752.3i 0.586460 + 1.01578i 0.994692 + 0.102901i \(0.0328124\pi\)
−0.408231 + 0.912879i \(0.633854\pi\)
\(864\) 432.000 748.246i 0.0170103 0.0294628i
\(865\) 682.757 1182.57i 0.0268375 0.0464839i
\(866\) −2841.60 4921.79i −0.111503 0.193128i
\(867\) 12842.5 0.503060
\(868\) −14384.6 1437.84i −0.562493 0.0562252i
\(869\) −76.0390 −0.00296829
\(870\) 10.4335 + 18.0714i 0.000406587 + 0.000704229i
\(871\) 1672.96 2897.66i 0.0650818 0.112725i
\(872\) 3746.26 6488.71i 0.145487 0.251990i
\(873\) −6010.05 10409.7i −0.233000 0.403569i
\(874\) −1981.20 −0.0766762
\(875\) 2351.93 3272.08i 0.0908683 0.126419i
\(876\) 3065.69 0.118242
\(877\) −12832.0 22225.6i −0.494076 0.855765i 0.505900 0.862592i \(-0.331160\pi\)
−0.999977 + 0.00682663i \(0.997827\pi\)
\(878\) −13541.5 + 23454.5i −0.520503 + 0.901538i
\(879\) −1208.79 + 2093.69i −0.0463840 + 0.0803394i
\(880\) 9.53240 + 16.5106i 0.000365156 + 0.000632468i
\(881\) −30032.8 −1.14850 −0.574252 0.818679i \(-0.694707\pi\)
−0.574252 + 0.818679i \(0.694707\pi\)
\(882\) 6051.85 + 1222.06i 0.231039 + 0.0466541i
\(883\) 6717.80 0.256027 0.128013 0.991772i \(-0.459140\pi\)
0.128013 + 0.991772i \(0.459140\pi\)
\(884\) −653.722 1132.28i −0.0248722 0.0430800i
\(885\) 408.057 706.776i 0.0154991 0.0268452i
\(886\) 4345.81 7527.17i 0.164786 0.285418i
\(887\) 12705.3 + 22006.2i 0.480949 + 0.833028i 0.999761 0.0218601i \(-0.00695883\pi\)
−0.518812 + 0.854888i \(0.673625\pi\)
\(888\) −4357.69 −0.164679
\(889\) −3448.11 + 4797.11i −0.130085 + 0.180979i
\(890\) 1924.45 0.0724807
\(891\) 55.2791 + 95.7463i 0.00207847 + 0.00360002i
\(892\) −12683.7 + 21968.9i −0.476102 + 0.824632i
\(893\) −2234.18 + 3869.71i −0.0837223 + 0.145011i
\(894\) 7108.22 + 12311.8i 0.265922 + 0.460590i
\(895\) 1485.54 0.0554818
\(896\) 2358.84 + 235.782i 0.0879501 + 0.00879123i
\(897\) 3084.70 0.114822
\(898\) 4142.72 + 7175.41i 0.153947 + 0.266644i
\(899\) 388.708 673.262i 0.0144206 0.0249773i
\(900\) 2236.28 3873.35i 0.0828253 0.143458i
\(901\) 4558.26 + 7895.14i 0.168543 + 0.291926i
\(902\) −1115.29 −0.0411696
\(903\) 6743.78 + 14941.5i 0.248526 + 0.550633i
\(904\) −17303.0 −0.636604
\(905\) −1519.28 2631.46i −0.0558038 0.0966550i
\(906\) −3146.85 + 5450.50i −0.115394 + 0.199868i
\(907\) 14325.1 24811.7i 0.524428 0.908336i −0.475168 0.879895i \(-0.657613\pi\)
0.999595 0.0284404i \(-0.00905408\pi\)
\(908\) −7364.73 12756.1i −0.269171 0.466218i
\(909\) −2195.42 −0.0801072
\(910\) −172.932 383.146i −0.00629959 0.0139573i
\(911\) 10504.4 0.382025 0.191012 0.981588i \(-0.438823\pi\)
0.191012 + 0.981588i \(0.438823\pi\)
\(912\) 300.581 + 520.621i 0.0109136 + 0.0189030i
\(913\) 22.8761 39.6225i 0.000829231 0.00143627i
\(914\) −16226.1 + 28104.5i −0.587213 + 1.01708i
\(915\) −317.888 550.599i −0.0114853 0.0198931i
\(916\) 13783.7 0.497189
\(917\) −12327.5 1232.22i −0.443935 0.0443745i
\(918\) −1357.73 −0.0488146
\(919\) −22015.2 38131.5i −0.790224 1.36871i −0.925828 0.377945i \(-0.876631\pi\)
0.135604 0.990763i \(-0.456703\pi\)
\(920\) 276.194 478.381i 0.00989764 0.0171432i
\(921\) 3039.96 5265.36i 0.108762 0.188382i
\(922\) 777.223 + 1346.19i 0.0277619 + 0.0480850i
\(923\) 980.766 0.0349754
\(924\) −177.048 + 246.315i −0.00630353 + 0.00876966i
\(925\) −22557.9 −0.801839
\(926\) 14826.0 + 25679.4i 0.526147 + 0.911313i
\(927\) −5351.13 + 9268.44i −0.189595 + 0.328388i
\(928\) −63.7419 + 110.404i −0.00225477 + 0.00390538i
\(929\) 3134.27 + 5428.71i 0.110691 + 0.191722i 0.916049 0.401066i \(-0.131360\pi\)
−0.805358 + 0.592789i \(0.798027\pi\)
\(930\) 1022.13 0.0360397
\(931\) −2841.78 + 3221.52i −0.100038 + 0.113406i
\(932\) −16693.3 −0.586705
\(933\) 2373.82 + 4111.58i 0.0832962 + 0.144273i
\(934\) 15645.9 27099.5i 0.548125 0.949381i
\(935\) 14.9797 25.9455i 0.000523943 0.000907497i
\(936\) −468.000 810.600i −0.0163430 0.0283069i
\(937\) 20424.6 0.712106 0.356053 0.934466i \(-0.384122\pi\)
0.356053 + 0.934466i \(0.384122\pi\)
\(938\) 5564.26 7741.17i 0.193688 0.269465i
\(939\) 8169.55 0.283923
\(940\) −622.923 1078.93i −0.0216144 0.0374372i
\(941\) 12682.6 21966.9i 0.439363 0.760999i −0.558278 0.829654i \(-0.688538\pi\)
0.997640 + 0.0686554i \(0.0218709\pi\)
\(942\) −6240.85 + 10809.5i −0.215858 + 0.373877i
\(943\) 16157.3 + 27985.2i 0.557956 + 0.966408i
\(944\) 4985.90 0.171904
\(945\) −434.368 43.4181i −0.0149524 0.00149460i
\(946\) −805.422 −0.0276813
\(947\) −13926.3 24121.0i −0.477870 0.827694i 0.521809 0.853063i \(-0.325258\pi\)
−0.999678 + 0.0253682i \(0.991924\pi\)
\(948\) 334.258 578.951i 0.0114517 0.0198349i
\(949\) 1660.58 2876.21i 0.0568016 0.0983832i
\(950\) 1555.98 + 2695.04i 0.0531396 + 0.0920406i
\(951\) −27037.3 −0.921918
\(952\) −1532.52 3395.43i −0.0521734 0.115595i
\(953\) 23126.7 0.786095 0.393047 0.919518i \(-0.371421\pi\)
0.393047 + 0.919518i \(0.371421\pi\)
\(954\) 3263.26 + 5652.14i 0.110746 + 0.191818i
\(955\) 907.670 1572.13i 0.0307555 0.0532701i
\(956\) −12533.2 + 21708.1i −0.424009 + 0.734405i
\(957\) −8.15647 14.1274i −0.000275508 0.000477194i
\(958\) 20037.2 0.675755
\(959\) 1899.28 + 4208.05i 0.0639532 + 0.141694i
\(960\) −167.613 −0.00563508
\(961\) −4144.52 7178.53i −0.139120 0.240963i
\(962\) −2360.42 + 4088.36i −0.0791090 + 0.137021i
\(963\) −1389.41 + 2406.53i −0.0464934 + 0.0805289i
\(964\) −8600.19 14896.0i −0.287337 0.497683i
\(965\) 1357.24 0.0452757
\(966\) 8745.55 + 874.179i 0.291287 + 0.0291162i
\(967\) −47434.1 −1.57743 −0.788717 0.614756i \(-0.789254\pi\)
−0.788717 + 0.614756i \(0.789254\pi\)
\(968\) 5316.55 + 9208.53i 0.176529 + 0.305758i
\(969\) 472.347 818.129i 0.0156594 0.0271229i
\(970\) −1165.93 + 2019.45i −0.0385935 + 0.0668459i
\(971\) 3395.07 + 5880.43i 0.112207 + 0.194348i 0.916660 0.399668i \(-0.130875\pi\)
−0.804453 + 0.594016i \(0.797541\pi\)
\(972\) −972.000 −0.0320750
\(973\) 3130.15 4354.76i 0.103133 0.143481i
\(974\) 25870.3 0.851065
\(975\) −2422.64 4196.13i −0.0795759 0.137830i
\(976\) 1942.08 3363.78i 0.0636931 0.110320i
\(977\) 18648.8 32300.7i 0.610675 1.05772i −0.380452 0.924801i \(-0.624232\pi\)
0.991127 0.132919i \(-0.0424350\pi\)
\(978\) 2406.17 + 4167.61i 0.0786716 + 0.136263i
\(979\) −1504.45 −0.0491138
\(980\) −381.705 1135.28i −0.0124420 0.0370054i
\(981\) −8429.08 −0.274332
\(982\) 786.588 + 1362.41i 0.0255611 + 0.0442732i
\(983\) 6288.55 10892.1i 0.204042 0.353411i −0.745785 0.666187i \(-0.767925\pi\)
0.949827 + 0.312775i \(0.101259\pi\)
\(984\) 4902.65 8491.64i 0.158832 0.275105i
\(985\) −96.6522 167.407i −0.00312649 0.00541525i
\(986\) 200.334 0.00647052
\(987\) 11569.8 16096.2i 0.373120 0.519095i
\(988\) 651.258 0.0209709
\(989\) 11668.2 + 20210.0i 0.375155 + 0.649787i
\(990\) 10.7239 18.5744i 0.000344272 0.000596297i
\(991\) 1362.15 2359.31i 0.0436631 0.0756267i −0.843368 0.537337i \(-0.819431\pi\)
0.887031 + 0.461710i \(0.152764\pi\)
\(992\) 3122.26 + 5407.91i 0.0999312 + 0.173086i
\(993\) −4823.76 −0.154156
\(994\) 2780.61 + 277.942i 0.0887280 + 0.00886899i
\(995\) −844.423 −0.0269045
\(996\) 201.121 + 348.351i 0.00639834 + 0.0110823i
\(997\) 5988.30 10372.0i 0.190222 0.329474i −0.755102 0.655608i \(-0.772413\pi\)
0.945324 + 0.326134i \(0.105746\pi\)
\(998\) −10076.9 + 17453.7i −0.319618 + 0.553595i
\(999\) 2451.20 + 4245.61i 0.0776302 + 0.134460i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 546.4.i.a.235.1 yes 4
7.2 even 3 inner 546.4.i.a.79.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
546.4.i.a.79.1 4 7.2 even 3 inner
546.4.i.a.235.1 yes 4 1.1 even 1 trivial