Properties

Label 55.3.d.b.54.1
Level 5555
Weight 33
Character 55.54
Self dual yes
Analytic conductor 1.4991.499
Analytic rank 00
Dimension 22
CM discriminant -55
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [55,3,Mod(54,55)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(55, base_ring=CyclotomicField(2)) chi = DirichletCharacter(H, H._module([1, 1])) N = Newforms(chi, 3, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("55.54"); S:= CuspForms(chi, 3); N := Newforms(S);
 
Level: N N == 55=511 55 = 5 \cdot 11
Weight: k k == 3 3
Character orbit: [χ][\chi] == 55.d (of order 22, degree 11, minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [2,0,0,2] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(4)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 1.498641453981.49864145398
Analytic rank: 00
Dimension: 22
Coefficient field: Q(ζ10)+\Q(\zeta_{10})^+
Copy content comment:defining polynomial
 
Copy content gp:f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 2 2
Twist minimal: yes
Sato-Tate group: U(1)[D2]\mathrm{U}(1)[D_{2}]

Embedding invariants

Embedding label 54.1
Root 1.618031.61803 of defining polynomial
Character χ\chi == 55.54

qq-expansion

Copy content comment:q-expansion
 
Copy content sage:f.q_expansion() # note that sage often uses an isomorphic number field
 
Copy content gp:mfcoefs(f, 20)
 
f(q)f(q) == q2.23607q2+1.00000q4+5.00000q5+4.47214q7+6.70820q8+9.00000q911.1803q1011.0000q11+22.3607q1310.0000q1419.0000q1631.3050q1720.1246q18+5.00000q20+24.5967q22+25.0000q2550.0000q26+4.47214q28+18.0000q31+15.6525q32+70.0000q34+22.3607q35+9.00000q36+33.5410q4084.9706q4311.0000q44+45.0000q4529.0000q4955.9017q50+22.3607q5255.0000q55+30.0000q56102.000q5940.2492q62+40.2492q63+41.0000q64+111.803q6531.3050q6850.0000q7078.0000q71+60.3738q72+4.47214q7349.1935q7795.0000q80+81.0000q81+165.469q83156.525q85+190.000q8673.7902q88+2.00000q89100.623q90+100.000q91+64.8460q9899.0000q99+O(q100)q-2.23607 q^{2} +1.00000 q^{4} +5.00000 q^{5} +4.47214 q^{7} +6.70820 q^{8} +9.00000 q^{9} -11.1803 q^{10} -11.0000 q^{11} +22.3607 q^{13} -10.0000 q^{14} -19.0000 q^{16} -31.3050 q^{17} -20.1246 q^{18} +5.00000 q^{20} +24.5967 q^{22} +25.0000 q^{25} -50.0000 q^{26} +4.47214 q^{28} +18.0000 q^{31} +15.6525 q^{32} +70.0000 q^{34} +22.3607 q^{35} +9.00000 q^{36} +33.5410 q^{40} -84.9706 q^{43} -11.0000 q^{44} +45.0000 q^{45} -29.0000 q^{49} -55.9017 q^{50} +22.3607 q^{52} -55.0000 q^{55} +30.0000 q^{56} -102.000 q^{59} -40.2492 q^{62} +40.2492 q^{63} +41.0000 q^{64} +111.803 q^{65} -31.3050 q^{68} -50.0000 q^{70} -78.0000 q^{71} +60.3738 q^{72} +4.47214 q^{73} -49.1935 q^{77} -95.0000 q^{80} +81.0000 q^{81} +165.469 q^{83} -156.525 q^{85} +190.000 q^{86} -73.7902 q^{88} +2.00000 q^{89} -100.623 q^{90} +100.000 q^{91} +64.8460 q^{98} -99.0000 q^{99} +O(q^{100})
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q+2q4+10q5+18q922q1120q1438q16+10q20+50q25100q26+36q31+140q34+18q3622q44+90q4558q49110q55+60q56+198q99+O(q100) 2 q + 2 q^{4} + 10 q^{5} + 18 q^{9} - 22 q^{11} - 20 q^{14} - 38 q^{16} + 10 q^{20} + 50 q^{25} - 100 q^{26} + 36 q^{31} + 140 q^{34} + 18 q^{36} - 22 q^{44} + 90 q^{45} - 58 q^{49} - 110 q^{55} + 60 q^{56}+ \cdots - 198 q^{99}+O(q^{100}) Copy content Toggle raw display

Character values

We give the values of χ\chi on generators for (Z/55Z)×\left(\mathbb{Z}/55\mathbb{Z}\right)^\times.

nn 1212 4646
χ(n)\chi(n) 1-1 1-1

Coefficient data

For each nn we display the coefficients of the qq-expansion ana_n, the Satake parameters αp\alpha_p, and the Satake angles θp=Arg(αp)\theta_p = \textrm{Arg}(\alpha_p).



Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)
Significant digits:
nn ana_n an/n(k1)/2a_n / n^{(k-1)/2} αn \alpha_n θn \theta_n
pp apa_p ap/p(k1)/2a_p / p^{(k-1)/2} αp \alpha_p θp \theta_p
22 −2.23607 −1.11803 −0.559017 0.829156i 0.688821π-0.688821\pi
−0.559017 + 0.829156i 0.688821π0.688821\pi
33 0 0 1.00000 00
−1.00000 π\pi
44 1.00000 0.250000
55 5.00000 1.00000
66 0 0
77 4.47214 0.638877 0.319438 0.947607i 0.396506π-0.396506\pi
0.319438 + 0.947607i 0.396506π0.396506\pi
88 6.70820 0.838525
99 9.00000 1.00000
1010 −11.1803 −1.11803
1111 −11.0000 −1.00000
1212 0 0
1313 22.3607 1.72005 0.860026 0.510250i 0.170447π-0.170447\pi
0.860026 + 0.510250i 0.170447π0.170447\pi
1414 −10.0000 −0.714286
1515 0 0
1616 −19.0000 −1.18750
1717 −31.3050 −1.84147 −0.920734 0.390191i 0.872409π-0.872409\pi
−0.920734 + 0.390191i 0.872409π0.872409\pi
1818 −20.1246 −1.11803
1919 0 0 1.00000 00
−1.00000 π\pi
2020 5.00000 0.250000
2121 0 0
2222 24.5967 1.11803
2323 0 0 1.00000 00
−1.00000 π\pi
2424 0 0
2525 25.0000 1.00000
2626 −50.0000 −1.92308
2727 0 0
2828 4.47214 0.159719
2929 0 0 1.00000 00
−1.00000 π\pi
3030 0 0
3131 18.0000 0.580645 0.290323 0.956929i 0.406237π-0.406237\pi
0.290323 + 0.956929i 0.406237π0.406237\pi
3232 15.6525 0.489140
3333 0 0
3434 70.0000 2.05882
3535 22.3607 0.638877
3636 9.00000 0.250000
3737 0 0 1.00000 00
−1.00000 π\pi
3838 0 0
3939 0 0
4040 33.5410 0.838525
4141 0 0 1.00000 00
−1.00000 π\pi
4242 0 0
4343 −84.9706 −1.97606 −0.988030 0.154262i 0.950700π-0.950700\pi
−0.988030 + 0.154262i 0.950700π0.950700\pi
4444 −11.0000 −0.250000
4545 45.0000 1.00000
4646 0 0
4747 0 0 1.00000 00
−1.00000 π\pi
4848 0 0
4949 −29.0000 −0.591837
5050 −55.9017 −1.11803
5151 0 0
5252 22.3607 0.430013
5353 0 0 1.00000 00
−1.00000 π\pi
5454 0 0
5555 −55.0000 −1.00000
5656 30.0000 0.535714
5757 0 0
5858 0 0
5959 −102.000 −1.72881 −0.864407 0.502793i 0.832306π-0.832306\pi
−0.864407 + 0.502793i 0.832306π0.832306\pi
6060 0 0
6161 0 0 1.00000 00
−1.00000 π\pi
6262 −40.2492 −0.649181
6363 40.2492 0.638877
6464 41.0000 0.640625
6565 111.803 1.72005
6666 0 0
6767 0 0 1.00000 00
−1.00000 π\pi
6868 −31.3050 −0.460367
6969 0 0
7070 −50.0000 −0.714286
7171 −78.0000 −1.09859 −0.549296 0.835628i 0.685104π-0.685104\pi
−0.549296 + 0.835628i 0.685104π0.685104\pi
7272 60.3738 0.838525
7373 4.47214 0.0612621 0.0306311 0.999531i 0.490248π-0.490248\pi
0.0306311 + 0.999531i 0.490248π0.490248\pi
7474 0 0
7575 0 0
7676 0 0
7777 −49.1935 −0.638877
7878 0 0
7979 0 0 1.00000 00
−1.00000 π\pi
8080 −95.0000 −1.18750
8181 81.0000 1.00000
8282 0 0
8383 165.469 1.99360 0.996801 0.0799187i 0.0254661π-0.0254661\pi
0.996801 + 0.0799187i 0.0254661π0.0254661\pi
8484 0 0
8585 −156.525 −1.84147
8686 190.000 2.20930
8787 0 0
8888 −73.7902 −0.838525
8989 2.00000 0.0224719 0.0112360 0.999937i 0.496423π-0.496423\pi
0.0112360 + 0.999937i 0.496423π0.496423\pi
9090 −100.623 −1.11803
9191 100.000 1.09890
9292 0 0
9393 0 0
9494 0 0
9595 0 0
9696 0 0
9797 0 0 1.00000 00
−1.00000 π\pi
9898 64.8460 0.661694
9999 −99.0000 −1.00000
100100 25.0000 0.250000
101101 0 0 1.00000 00
−1.00000 π\pi
102102 0 0
103103 0 0 1.00000 00
−1.00000 π\pi
104104 150.000 1.44231
105105 0 0
106106 0 0
107107 −156.525 −1.46285 −0.731424 0.681923i 0.761144π-0.761144\pi
−0.731424 + 0.681923i 0.761144π0.761144\pi
108108 0 0
109109 0 0 1.00000 00
−1.00000 π\pi
110110 122.984 1.11803
111111 0 0
112112 −84.9706 −0.758666
113113 0 0 1.00000 00
−1.00000 π\pi
114114 0 0
115115 0 0
116116 0 0
117117 201.246 1.72005
118118 228.079 1.93287
119119 −140.000 −1.17647
120120 0 0
121121 121.000 1.00000
122122 0 0
123123 0 0
124124 18.0000 0.145161
125125 125.000 1.00000
126126 −90.0000 −0.714286
127127 −31.3050 −0.246496 −0.123248 0.992376i 0.539331π-0.539331\pi
−0.123248 + 0.992376i 0.539331π0.539331\pi
128128 −154.289 −1.20538
129129 0 0
130130 −250.000 −1.92308
131131 0 0 1.00000 00
−1.00000 π\pi
132132 0 0
133133 0 0
134134 0 0
135135 0 0
136136 −210.000 −1.54412
137137 0 0 1.00000 00
−1.00000 π\pi
138138 0 0
139139 0 0 1.00000 00
−1.00000 π\pi
140140 22.3607 0.159719
141141 0 0
142142 174.413 1.22826
143143 −245.967 −1.72005
144144 −171.000 −1.18750
145145 0 0
146146 −10.0000 −0.0684932
147147 0 0
148148 0 0
149149 0 0 1.00000 00
−1.00000 π\pi
150150 0 0
151151 0 0 1.00000 00
−1.00000 π\pi
152152 0 0
153153 −281.745 −1.84147
154154 110.000 0.714286
155155 90.0000 0.580645
156156 0 0
157157 0 0 1.00000 00
−1.00000 π\pi
158158 0 0
159159 0 0
160160 78.2624 0.489140
161161 0 0
162162 −181.122 −1.11803
163163 0 0 1.00000 00
−1.00000 π\pi
164164 0 0
165165 0 0
166166 −370.000 −2.22892
167167 219.135 1.31218 0.656092 0.754681i 0.272208π-0.272208\pi
0.656092 + 0.754681i 0.272208π0.272208\pi
168168 0 0
169169 331.000 1.95858
170170 350.000 2.05882
171171 0 0
172172 −84.9706 −0.494015
173173 237.023 1.37008 0.685038 0.728507i 0.259786π-0.259786\pi
0.685038 + 0.728507i 0.259786π0.259786\pi
174174 0 0
175175 111.803 0.638877
176176 209.000 1.18750
177177 0 0
178178 −4.47214 −0.0251244
179179 −38.0000 −0.212291 −0.106145 0.994351i 0.533851π-0.533851\pi
−0.106145 + 0.994351i 0.533851π0.533851\pi
180180 45.0000 0.250000
181181 −342.000 −1.88950 −0.944751 0.327788i 0.893697π-0.893697\pi
−0.944751 + 0.327788i 0.893697π0.893697\pi
182182 −223.607 −1.22861
183183 0 0
184184 0 0
185185 0 0
186186 0 0
187187 344.354 1.84147
188188 0 0
189189 0 0
190190 0 0
191191 338.000 1.76963 0.884817 0.465939i 0.154283π-0.154283\pi
0.884817 + 0.465939i 0.154283π0.154283\pi
192192 0 0
193193 −31.3050 −0.162202 −0.0811009 0.996706i 0.525844π-0.525844\pi
−0.0811009 + 0.996706i 0.525844π0.525844\pi
194194 0 0
195195 0 0
196196 −29.0000 −0.147959
197197 −84.9706 −0.431323 −0.215661 0.976468i 0.569191π-0.569191\pi
−0.215661 + 0.976468i 0.569191π0.569191\pi
198198 221.371 1.11803
199199 178.000 0.894472 0.447236 0.894416i 0.352408π-0.352408\pi
0.447236 + 0.894416i 0.352408π0.352408\pi
200200 167.705 0.838525
201201 0 0
202202 0 0
203203 0 0
204204 0 0
205205 0 0
206206 0 0
207207 0 0
208208 −424.853 −2.04256
209209 0 0
210210 0 0
211211 0 0 1.00000 00
−1.00000 π\pi
212212 0 0
213213 0 0
214214 350.000 1.63551
215215 −424.853 −1.97606
216216 0 0
217217 80.4984 0.370961
218218 0 0
219219 0 0
220220 −55.0000 −0.250000
221221 −700.000 −3.16742
222222 0 0
223223 0 0 1.00000 00
−1.00000 π\pi
224224 70.0000 0.312500
225225 225.000 1.00000
226226 0 0
227227 −192.302 −0.847145 −0.423572 0.905862i 0.639224π-0.639224\pi
−0.423572 + 0.905862i 0.639224π0.639224\pi
228228 0 0
229229 −422.000 −1.84279 −0.921397 0.388622i 0.872951π-0.872951\pi
−0.921397 + 0.388622i 0.872951π0.872951\pi
230230 0 0
231231 0 0
232232 0 0
233233 219.135 0.940492 0.470246 0.882535i 0.344165π-0.344165\pi
0.470246 + 0.882535i 0.344165π0.344165\pi
234234 −450.000 −1.92308
235235 0 0
236236 −102.000 −0.432203
237237 0 0
238238 313.050 1.31533
239239 0 0 1.00000 00
−1.00000 π\pi
240240 0 0
241241 0 0 1.00000 00
−1.00000 π\pi
242242 −270.564 −1.11803
243243 0 0
244244 0 0
245245 −145.000 −0.591837
246246 0 0
247247 0 0
248248 120.748 0.486886
249249 0 0
250250 −279.508 −1.11803
251251 282.000 1.12351 0.561753 0.827305i 0.310127π-0.310127\pi
0.561753 + 0.827305i 0.310127π0.310127\pi
252252 40.2492 0.159719
253253 0 0
254254 70.0000 0.275591
255255 0 0
256256 181.000 0.707031
257257 0 0 1.00000 00
−1.00000 π\pi
258258 0 0
259259 0 0
260260 111.803 0.430013
261261 0 0
262262 0 0
263263 505.351 1.92149 0.960744 0.277436i 0.0894847π-0.0894847\pi
0.960744 + 0.277436i 0.0894847π0.0894847\pi
264264 0 0
265265 0 0
266266 0 0
267267 0 0
268268 0 0
269269 −342.000 −1.27138 −0.635688 0.771946i 0.719283π-0.719283\pi
−0.635688 + 0.771946i 0.719283π0.719283\pi
270270 0 0
271271 0 0 1.00000 00
−1.00000 π\pi
272272 594.794 2.18674
273273 0 0
274274 0 0
275275 −275.000 −1.00000
276276 0 0
277277 −371.187 −1.34003 −0.670013 0.742349i 0.733712π-0.733712\pi
−0.670013 + 0.742349i 0.733712π0.733712\pi
278278 0 0
279279 162.000 0.580645
280280 150.000 0.535714
281281 0 0 1.00000 00
−1.00000 π\pi
282282 0 0
283283 −156.525 −0.553091 −0.276546 0.961001i 0.589190π-0.589190\pi
−0.276546 + 0.961001i 0.589190π0.589190\pi
284284 −78.0000 −0.274648
285285 0 0
286286 550.000 1.92308
287287 0 0
288288 140.872 0.489140
289289 691.000 2.39100
290290 0 0
291291 0 0
292292 4.47214 0.0153155
293293 −585.850 −1.99949 −0.999744 0.0226391i 0.992793π-0.992793\pi
−0.999744 + 0.0226391i 0.992793π0.992793\pi
294294 0 0
295295 −510.000 −1.72881
296296 0 0
297297 0 0
298298 0 0
299299 0 0
300300 0 0
301301 −380.000 −1.26246
302302 0 0
303303 0 0
304304 0 0
305305 0 0
306306 630.000 2.05882
307307 −478.519 −1.55869 −0.779346 0.626594i 0.784449π-0.784449\pi
−0.779346 + 0.626594i 0.784449π0.784449\pi
308308 −49.1935 −0.159719
309309 0 0
310310 −201.246 −0.649181
311311 402.000 1.29260 0.646302 0.763082i 0.276315π-0.276315\pi
0.646302 + 0.763082i 0.276315π0.276315\pi
312312 0 0
313313 0 0 1.00000 00
−1.00000 π\pi
314314 0 0
315315 201.246 0.638877
316316 0 0
317317 0 0 1.00000 00
−1.00000 π\pi
318318 0 0
319319 0 0
320320 205.000 0.640625
321321 0 0
322322 0 0
323323 0 0
324324 81.0000 0.250000
325325 559.017 1.72005
326326 0 0
327327 0 0
328328 0 0
329329 0 0
330330 0 0
331331 618.000 1.86707 0.933535 0.358487i 0.116707π-0.116707\pi
0.933535 + 0.358487i 0.116707π0.116707\pi
332332 165.469 0.498401
333333 0 0
334334 −490.000 −1.46707
335335 0 0
336336 0 0
337337 398.020 1.18107 0.590534 0.807013i 0.298917π-0.298917\pi
0.590534 + 0.807013i 0.298917π0.298917\pi
338338 −740.139 −2.18976
339339 0 0
340340 −156.525 −0.460367
341341 −198.000 −0.580645
342342 0 0
343343 −348.827 −1.01699
344344 −570.000 −1.65698
345345 0 0
346346 −530.000 −1.53179
347347 559.017 1.61100 0.805500 0.592596i 0.201897π-0.201897\pi
0.805500 + 0.592596i 0.201897π0.201897\pi
348348 0 0
349349 0 0 1.00000 00
−1.00000 π\pi
350350 −250.000 −0.714286
351351 0 0
352352 −172.177 −0.489140
353353 0 0 1.00000 00
−1.00000 π\pi
354354 0 0
355355 −390.000 −1.09859
356356 2.00000 0.00561798
357357 0 0
358358 84.9706 0.237348
359359 0 0 1.00000 00
−1.00000 π\pi
360360 301.869 0.838525
361361 361.000 1.00000
362362 764.735 2.11253
363363 0 0
364364 100.000 0.274725
365365 22.3607 0.0612621
366366 0 0
367367 0 0 1.00000 00
−1.00000 π\pi
368368 0 0
369369 0 0
370370 0 0
371371 0 0
372372 0 0
373373 702.125 1.88237 0.941187 0.337887i 0.109712π-0.109712\pi
0.941187 + 0.337887i 0.109712π0.109712\pi
374374 −770.000 −2.05882
375375 0 0
376376 0 0
377377 0 0
378378 0 0
379379 538.000 1.41953 0.709763 0.704441i 0.248802π-0.248802\pi
0.709763 + 0.704441i 0.248802π0.248802\pi
380380 0 0
381381 0 0
382382 −755.791 −1.97851
383383 0 0 1.00000 00
−1.00000 π\pi
384384 0 0
385385 −245.967 −0.638877
386386 70.0000 0.181347
387387 −764.735 −1.97606
388388 0 0
389389 −102.000 −0.262211 −0.131105 0.991368i 0.541853π-0.541853\pi
−0.131105 + 0.991368i 0.541853π0.541853\pi
390390 0 0
391391 0 0
392392 −194.538 −0.496270
393393 0 0
394394 190.000 0.482234
395395 0 0
396396 −99.0000 −0.250000
397397 0 0 1.00000 00
−1.00000 π\pi
398398 −398.020 −1.00005
399399 0 0
400400 −475.000 −1.18750
401401 −782.000 −1.95012 −0.975062 0.221931i 0.928764π-0.928764\pi
−0.975062 + 0.221931i 0.928764π0.928764\pi
402402 0 0
403403 402.492 0.998740
404404 0 0
405405 405.000 1.00000
406406 0 0
407407 0 0
408408 0 0
409409 0 0 1.00000 00
−1.00000 π\pi
410410 0 0
411411 0 0
412412 0 0
413413 −456.158 −1.10450
414414 0 0
415415 827.345 1.99360
416416 350.000 0.841346
417417 0 0
418418 0 0
419419 442.000 1.05489 0.527446 0.849588i 0.323150π-0.323150\pi
0.527446 + 0.849588i 0.323150π0.323150\pi
420420 0 0
421421 138.000 0.327791 0.163895 0.986478i 0.447594π-0.447594\pi
0.163895 + 0.986478i 0.447594π0.447594\pi
422422 0 0
423423 0 0
424424 0 0
425425 −782.624 −1.84147
426426 0 0
427427 0 0
428428 −156.525 −0.365712
429429 0 0
430430 950.000 2.20930
431431 0 0 1.00000 00
−1.00000 π\pi
432432 0 0
433433 0 0 1.00000 00
−1.00000 π\pi
434434 −180.000 −0.414747
435435 0 0
436436 0 0
437437 0 0
438438 0 0
439439 0 0 1.00000 00
−1.00000 π\pi
440440 −368.951 −0.838525
441441 −261.000 −0.591837
442442 1565.25 3.54128
443443 0 0 1.00000 00
−1.00000 π\pi
444444 0 0
445445 10.0000 0.0224719
446446 0 0
447447 0 0
448448 183.358 0.409280
449449 722.000 1.60802 0.804009 0.594617i 0.202696π-0.202696\pi
0.804009 + 0.594617i 0.202696π0.202696\pi
450450 −503.115 −1.11803
451451 0 0
452452 0 0
453453 0 0
454454 430.000 0.947137
455455 500.000 1.09890
456456 0 0
457457 −424.853 −0.929656 −0.464828 0.885401i 0.653884π-0.653884\pi
−0.464828 + 0.885401i 0.653884π0.653884\pi
458458 943.621 2.06031
459459 0 0
460460 0 0
461461 0 0 1.00000 00
−1.00000 π\pi
462462 0 0
463463 0 0 1.00000 00
−1.00000 π\pi
464464 0 0
465465 0 0
466466 −490.000 −1.05150
467467 0 0 1.00000 00
−1.00000 π\pi
468468 201.246 0.430013
469469 0 0
470470 0 0
471471 0 0
472472 −684.237 −1.44965
473473 934.676 1.97606
474474 0 0
475475 0 0
476476 −140.000 −0.294118
477477 0 0
478478 0 0
479479 0 0 1.00000 00
−1.00000 π\pi
480480 0 0
481481 0 0
482482 0 0
483483 0 0
484484 121.000 0.250000
485485 0 0
486486 0 0
487487 0 0 1.00000 00
−1.00000 π\pi
488488 0 0
489489 0 0
490490 324.230 0.661694
491491 0 0 1.00000 00
−1.00000 π\pi
492492 0 0
493493 0 0
494494 0 0
495495 −495.000 −1.00000
496496 −342.000 −0.689516
497497 −348.827 −0.701864
498498 0 0
499499 −982.000 −1.96794 −0.983968 0.178345i 0.942926π-0.942926\pi
−0.983968 + 0.178345i 0.942926π0.942926\pi
500500 125.000 0.250000
501501 0 0
502502 −630.571 −1.25612
503503 −353.299 −0.702383 −0.351192 0.936304i 0.614223π-0.614223\pi
−0.351192 + 0.936304i 0.614223π0.614223\pi
504504 270.000 0.535714
505505 0 0
506506 0 0
507507 0 0
508508 −31.3050 −0.0616239
509509 138.000 0.271120 0.135560 0.990769i 0.456717π-0.456717\pi
0.135560 + 0.990769i 0.456717π0.456717\pi
510510 0 0
511511 20.0000 0.0391389
512512 212.426 0.414895
513513 0 0
514514 0 0
515515 0 0
516516 0 0
517517 0 0
518518 0 0
519519 0 0
520520 750.000 1.44231
521521 −542.000 −1.04031 −0.520154 0.854073i 0.674125π-0.674125\pi
−0.520154 + 0.854073i 0.674125π0.674125\pi
522522 0 0
523523 −1015.17 −1.94106 −0.970530 0.240978i 0.922532π-0.922532\pi
−0.970530 + 0.240978i 0.922532π0.922532\pi
524524 0 0
525525 0 0
526526 −1130.00 −2.14829
527527 −563.489 −1.06924
528528 0 0
529529 529.000 1.00000
530530 0 0
531531 −918.000 −1.72881
532532 0 0
533533 0 0
534534 0 0
535535 −782.624 −1.46285
536536 0 0
537537 0 0
538538 764.735 1.42144
539539 319.000 0.591837
540540 0 0
541541 0 0 1.00000 00
−1.00000 π\pi
542542 0 0
543543 0 0
544544 −490.000 −0.900735
545545 0 0
546546 0 0
547547 1024.12 1.87225 0.936124 0.351671i 0.114387π-0.114387\pi
0.936124 + 0.351671i 0.114387π0.114387\pi
548548 0 0
549549 0 0
550550 614.919 1.11803
551551 0 0
552552 0 0
553553 0 0
554554 830.000 1.49819
555555 0 0
556556 0 0
557557 594.794 1.06785 0.533926 0.845531i 0.320716π-0.320716\pi
0.533926 + 0.845531i 0.320716π0.320716\pi
558558 −362.243 −0.649181
559559 −1900.00 −3.39893
560560 −424.853 −0.758666
561561 0 0
562562 0 0
563563 809.457 1.43776 0.718878 0.695136i 0.244656π-0.244656\pi
0.718878 + 0.695136i 0.244656π0.244656\pi
564564 0 0
565565 0 0
566566 350.000 0.618375
567567 362.243 0.638877
568568 −523.240 −0.921197
569569 0 0 1.00000 00
−1.00000 π\pi
570570 0 0
571571 0 0 1.00000 00
−1.00000 π\pi
572572 −245.967 −0.430013
573573 0 0
574574 0 0
575575 0 0
576576 369.000 0.640625
577577 0 0 1.00000 00
−1.00000 π\pi
578578 −1545.12 −2.67322
579579 0 0
580580 0 0
581581 740.000 1.27367
582582 0 0
583583 0 0
584584 30.0000 0.0513699
585585 1006.23 1.72005
586586 1310.00 2.23549
587587 0 0 1.00000 00
−1.00000 π\pi
588588 0 0
589589 0 0
590590 1140.39 1.93287
591591 0 0
592592 0 0
593593 111.803 0.188539 0.0942693 0.995547i 0.469949π-0.469949\pi
0.0942693 + 0.995547i 0.469949π0.469949\pi
594594 0 0
595595 −700.000 −1.17647
596596 0 0
597597 0 0
598598 0 0
599599 802.000 1.33890 0.669449 0.742858i 0.266530π-0.266530\pi
0.669449 + 0.742858i 0.266530π0.266530\pi
600600 0 0
601601 0 0 1.00000 00
−1.00000 π\pi
602602 849.706 1.41147
603603 0 0
604604 0 0
605605 605.000 1.00000
606606 0 0
607607 612.683 1.00936 0.504681 0.863306i 0.331610π-0.331610\pi
0.504681 + 0.863306i 0.331610π0.331610\pi
608608 0 0
609609 0 0
610610 0 0
611611 0 0
612612 −281.745 −0.460367
613613 −943.621 −1.53935 −0.769674 0.638437i 0.779581π-0.779581\pi
−0.769674 + 0.638437i 0.779581π0.779581\pi
614614 1070.00 1.74267
615615 0 0
616616 −330.000 −0.535714
617617 0 0 1.00000 00
−1.00000 π\pi
618618 0 0
619619 −918.000 −1.48304 −0.741519 0.670932i 0.765894π-0.765894\pi
−0.741519 + 0.670932i 0.765894π0.765894\pi
620620 90.0000 0.145161
621621 0 0
622622 −898.899 −1.44518
623623 8.94427 0.0143568
624624 0 0
625625 625.000 1.00000
626626 0 0
627627 0 0
628628 0 0
629629 0 0
630630 −450.000 −0.714286
631631 1042.00 1.65135 0.825674 0.564148i 0.190795π-0.190795\pi
0.825674 + 0.564148i 0.190795π0.190795\pi
632632 0 0
633633 0 0
634634 0 0
635635 −156.525 −0.246496
636636 0 0
637637 −648.460 −1.01799
638638 0 0
639639 −702.000 −1.09859
640640 −771.443 −1.20538
641641 −302.000 −0.471139 −0.235569 0.971858i 0.575696π-0.575696\pi
−0.235569 + 0.971858i 0.575696π0.575696\pi
642642 0 0
643643 0 0 1.00000 00
−1.00000 π\pi
644644 0 0
645645 0 0
646646 0 0
647647 0 0 1.00000 00
−1.00000 π\pi
648648 543.365 0.838525
649649 1122.00 1.72881
650650 −1250.00 −1.92308
651651 0 0
652652 0 0
653653 0 0 1.00000 00
−1.00000 π\pi
654654 0 0
655655 0 0
656656 0 0
657657 40.2492 0.0612621
658658 0 0
659659 0 0 1.00000 00
−1.00000 π\pi
660660 0 0
661661 442.000 0.668684 0.334342 0.942452i 0.391486π-0.391486\pi
0.334342 + 0.942452i 0.391486π0.391486\pi
662662 −1381.89 −2.08745
663663 0 0
664664 1110.00 1.67169
665665 0 0
666666 0 0
667667 0 0
668668 219.135 0.328046
669669 0 0
670670 0 0
671671 0 0
672672 0 0
673673 −961.509 −1.42869 −0.714346 0.699793i 0.753276π-0.753276\pi
−0.714346 + 0.699793i 0.753276π0.753276\pi
674674 −890.000 −1.32047
675675 0 0
676676 331.000 0.489645
677677 1346.11 1.98835 0.994175 0.107778i 0.0343736π-0.0343736\pi
0.994175 + 0.107778i 0.0343736π0.0343736\pi
678678 0 0
679679 0 0
680680 −1050.00 −1.54412
681681 0 0
682682 442.741 0.649181
683683 0 0 1.00000 00
−1.00000 π\pi
684684 0 0
685685 0 0
686686 780.000 1.13703
687687 0 0
688688 1614.44 2.34657
689689 0 0
690690 0 0
691691 −598.000 −0.865412 −0.432706 0.901535i 0.642441π-0.642441\pi
−0.432706 + 0.901535i 0.642441π0.642441\pi
692692 237.023 0.342519
693693 −442.741 −0.638877
694694 −1250.00 −1.80115
695695 0 0
696696 0 0
697697 0 0
698698 0 0
699699 0 0
700700 111.803 0.159719
701701 0 0 1.00000 00
−1.00000 π\pi
702702 0 0
703703 0 0
704704 −451.000 −0.640625
705705 0 0
706706 0 0
707707 0 0
708708 0 0
709709 −1398.00 −1.97179 −0.985896 0.167361i 0.946475π-0.946475\pi
−0.985896 + 0.167361i 0.946475π0.946475\pi
710710 872.067 1.22826
711711 0 0
712712 13.4164 0.0188433
713713 0 0
714714 0 0
715715 −1229.84 −1.72005
716716 −38.0000 −0.0530726
717717 0 0
718718 0 0
719719 −718.000 −0.998609 −0.499305 0.866427i 0.666411π-0.666411\pi
−0.499305 + 0.866427i 0.666411π0.666411\pi
720720 −855.000 −1.18750
721721 0 0
722722 −807.221 −1.11803
723723 0 0
724724 −342.000 −0.472376
725725 0 0
726726 0 0
727727 0 0 1.00000 00
−1.00000 π\pi
728728 670.820 0.921457
729729 729.000 1.00000
730730 −50.0000 −0.0684932
731731 2660.00 3.63885
732732 0 0
733733 594.794 0.811452 0.405726 0.913995i 0.367019π-0.367019\pi
0.405726 + 0.913995i 0.367019π0.367019\pi
734734 0 0
735735 0 0
736736 0 0
737737 0 0
738738 0 0
739739 0 0 1.00000 00
−1.00000 π\pi
740740 0 0
741741 0 0
742742 0 0
743743 1149.34 1.54689 0.773445 0.633864i 0.218532π-0.218532\pi
0.773445 + 0.633864i 0.218532π0.218532\pi
744744 0 0
745745 0 0
746746 −1570.00 −2.10456
747747 1489.22 1.99360
748748 344.354 0.460367
749749 −700.000 −0.934579
750750 0 0
751751 −478.000 −0.636485 −0.318242 0.948009i 0.603093π-0.603093\pi
−0.318242 + 0.948009i 0.603093π0.603093\pi
752752 0 0
753753 0 0
754754 0 0
755755 0 0
756756 0 0
757757 0 0 1.00000 00
−1.00000 π\pi
758758 −1203.00 −1.58708
759759 0 0
760760 0 0
761761 0 0 1.00000 00
−1.00000 π\pi
762762 0 0
763763 0 0
764764 338.000 0.442408
765765 −1408.72 −1.84147
766766 0 0
767767 −2280.79 −2.97365
768768 0 0
769769 0 0 1.00000 00
−1.00000 π\pi
770770 550.000 0.714286
771771 0 0
772772 −31.3050 −0.0405505
773773 0 0 1.00000 00
−1.00000 π\pi
774774 1710.00 2.20930
775775 450.000 0.580645
776776 0 0
777777 0 0
778778 228.079 0.293161
779779 0 0
780780 0 0
781781 858.000 1.09859
782782 0 0
783783 0 0
784784 551.000 0.702806
785785 0 0
786786 0 0
787787 −621.627 −0.789869 −0.394934 0.918709i 0.629233π-0.629233\pi
−0.394934 + 0.918709i 0.629233π0.629233\pi
788788 −84.9706 −0.107831
789789 0 0
790790 0 0
791791 0 0
792792 −664.112 −0.838525
793793 0 0
794794 0 0
795795 0 0
796796 178.000 0.223618
797797 0 0 1.00000 00
−1.00000 π\pi
798798 0 0
799799 0 0
800800 391.312 0.489140
801801 18.0000 0.0224719
802802 1748.61 2.18031
803803 −49.1935 −0.0612621
804804 0 0
805805 0 0
806806 −900.000 −1.11663
807807 0 0
808808 0 0
809809 0 0 1.00000 00
−1.00000 π\pi
810810 −905.608 −1.11803
811811 0 0 1.00000 00
−1.00000 π\pi
812812 0 0
813813 0 0
814814 0 0
815815 0 0
816816 0 0
817817 0 0
818818 0 0
819819 900.000 1.09890
820820 0 0
821821 0 0 1.00000 00
−1.00000 π\pi
822822 0 0
823823 0 0 1.00000 00
−1.00000 π\pi
824824 0 0
825825 0 0
826826 1020.00 1.23487
827827 −1158.28 −1.40058 −0.700292 0.713856i 0.746947π-0.746947\pi
−0.700292 + 0.713856i 0.746947π0.746947\pi
828828 0 0
829829 −1158.00 −1.39686 −0.698432 0.715677i 0.746118π-0.746118\pi
−0.698432 + 0.715677i 0.746118π0.746118\pi
830830 −1850.00 −2.22892
831831 0 0
832832 916.788 1.10191
833833 907.844 1.08985
834834 0 0
835835 1095.67 1.31218
836836 0 0
837837 0 0
838838 −988.342 −1.17941
839839 1458.00 1.73778 0.868892 0.495003i 0.164833π-0.164833\pi
0.868892 + 0.495003i 0.164833π0.164833\pi
840840 0 0
841841 841.000 1.00000
842842 −308.577 −0.366481
843843 0 0
844844 0 0
845845 1655.00 1.95858
846846 0 0
847847 541.128 0.638877
848848 0 0
849849 0 0
850850 1750.00 2.05882
851851 0 0
852852 0 0
853853 1346.11 1.57809 0.789046 0.614334i 0.210575π-0.210575\pi
0.789046 + 0.614334i 0.210575π0.210575\pi
854854 0 0
855855 0 0
856856 −1050.00 −1.22664
857857 −1068.84 −1.24719 −0.623594 0.781748i 0.714328π-0.714328\pi
−0.623594 + 0.781748i 0.714328π0.714328\pi
858858 0 0
859859 −438.000 −0.509895 −0.254948 0.966955i 0.582058π-0.582058\pi
−0.254948 + 0.966955i 0.582058π0.582058\pi
860860 −424.853 −0.494015
861861 0 0
862862 0 0
863863 0 0 1.00000 00
−1.00000 π\pi
864864 0 0
865865 1185.12 1.37008
866866 0 0
867867 0 0
868868 80.4984 0.0927401
869869 0 0
870870 0 0
871871 0 0
872872 0 0
873873 0 0
874874 0 0
875875 559.017 0.638877
876876 0 0
877877 237.023 0.270266 0.135133 0.990827i 0.456854π-0.456854\pi
0.135133 + 0.990827i 0.456854π0.456854\pi
878878 0 0
879879 0 0
880880 1045.00 1.18750
881881 −1758.00 −1.99546 −0.997730 0.0673435i 0.978548π-0.978548\pi
−0.997730 + 0.0673435i 0.978548π0.978548\pi
882882 583.614 0.661694
883883 0 0 1.00000 00
−1.00000 π\pi
884884 −700.000 −0.791855
885885 0 0
886886 0 0
887887 1578.66 1.77978 0.889890 0.456176i 0.150781π-0.150781\pi
0.889890 + 0.456176i 0.150781π0.150781\pi
888888 0 0
889889 −140.000 −0.157480
890890 −22.3607 −0.0251244
891891 −891.000 −1.00000
892892 0 0
893893 0 0
894894 0 0
895895 −190.000 −0.212291
896896 −690.000 −0.770089
897897 0 0
898898 −1614.44 −1.79782
899899 0 0
900900 225.000 0.250000
901901 0 0
902902 0 0
903903 0 0
904904 0 0
905905 −1710.00 −1.88950
906906 0 0
907907 0 0 1.00000 00
−1.00000 π\pi
908908 −192.302 −0.211786
909909 0 0
910910 −1118.03 −1.22861
911911 −1742.00 −1.91218 −0.956092 0.293066i 0.905324π-0.905324\pi
−0.956092 + 0.293066i 0.905324π0.905324\pi
912912 0 0
913913 −1820.16 −1.99360
914914 950.000 1.03939
915915 0 0
916916 −422.000 −0.460699
917917 0 0
918918 0 0
919919 0 0 1.00000 00
−1.00000 π\pi
920920 0 0
921921 0 0
922922 0 0
923923 −1744.13 −1.88963
924924 0 0
925925 0 0
926926 0 0
927927 0 0
928928 0 0
929929 −1662.00 −1.78902 −0.894510 0.447047i 0.852475π-0.852475\pi
−0.894510 + 0.447047i 0.852475π0.852475\pi
930930 0 0
931931 0 0
932932 219.135 0.235123
933933 0 0
934934 0 0
935935 1721.77 1.84147
936936 1350.00 1.44231
937937 1793.33 1.91390 0.956951 0.290249i 0.0937381π-0.0937381\pi
0.956951 + 0.290249i 0.0937381π0.0937381\pi
938938 0 0
939939 0 0
940940 0 0
941941 0 0 1.00000 00
−1.00000 π\pi
942942 0 0
943943 0 0
944944 1938.00 2.05297
945945 0 0
946946 −2090.00 −2.20930
947947 0 0 1.00000 00
−1.00000 π\pi
948948 0 0
949949 100.000 0.105374
950950 0 0
951951 0 0
952952 −939.149 −0.986501
953953 −782.624 −0.821221 −0.410611 0.911811i 0.634684π-0.634684\pi
−0.410611 + 0.911811i 0.634684π0.634684\pi
954954 0 0
955955 1690.00 1.76963
956956 0 0
957957 0 0
958958 0 0
959959 0 0
960960 0 0
961961 −637.000 −0.662851
962962 0 0
963963 −1408.72 −1.46285
964964 0 0
965965 −156.525 −0.162202
966966 0 0
967967 −1855.94 −1.91927 −0.959636 0.281244i 0.909253π-0.909253\pi
−0.959636 + 0.281244i 0.909253π0.909253\pi
968968 811.693 0.838525
969969 0 0
970970 0 0
971971 −1622.00 −1.67044 −0.835221 0.549914i 0.814661π-0.814661\pi
−0.835221 + 0.549914i 0.814661π0.814661\pi
972972 0 0
973973 0 0
974974 0 0
975975 0 0
976976 0 0
977977 0 0 1.00000 00
−1.00000 π\pi
978978 0 0
979979 −22.0000 −0.0224719
980980 −145.000 −0.147959
981981 0 0
982982 0 0
983983 0 0 1.00000 00
−1.00000 π\pi
984984 0 0
985985 −424.853 −0.431323
986986 0 0
987987 0 0
988988 0 0
989989 0 0
990990 1106.85 1.11803
991991 1938.00 1.95560 0.977800 0.209539i 0.0671965π-0.0671965\pi
0.977800 + 0.209539i 0.0671965π0.0671965\pi
992992 281.745 0.284017
993993 0 0
994994 780.000 0.784708
995995 890.000 0.894472
996996 0 0
997997 −1372.95 −1.37708 −0.688538 0.725200i 0.741747π-0.741747\pi
−0.688538 + 0.725200i 0.741747π0.741747\pi
998998 2195.82 2.20022
999999 0 0
Display apa_p with pp up to: 50 250 1000 (See ana_n instead) (See ana_n instead) (See ana_n instead) Display ana_n with nn up to: 50 250 1000 (See only apa_p) (See only apa_p) (See only apa_p)

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.d.b.54.1 2
3.2 odd 2 495.3.h.b.109.2 2
4.3 odd 2 880.3.i.c.769.1 2
5.2 odd 4 275.3.c.c.76.1 2
5.3 odd 4 275.3.c.c.76.2 2
5.4 even 2 inner 55.3.d.b.54.2 yes 2
11.10 odd 2 inner 55.3.d.b.54.2 yes 2
15.14 odd 2 495.3.h.b.109.1 2
20.19 odd 2 880.3.i.c.769.2 2
33.32 even 2 495.3.h.b.109.1 2
44.43 even 2 880.3.i.c.769.2 2
55.32 even 4 275.3.c.c.76.2 2
55.43 even 4 275.3.c.c.76.1 2
55.54 odd 2 CM 55.3.d.b.54.1 2
165.164 even 2 495.3.h.b.109.2 2
220.219 even 2 880.3.i.c.769.1 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.d.b.54.1 2 1.1 even 1 trivial
55.3.d.b.54.1 2 55.54 odd 2 CM
55.3.d.b.54.2 yes 2 5.4 even 2 inner
55.3.d.b.54.2 yes 2 11.10 odd 2 inner
275.3.c.c.76.1 2 5.2 odd 4
275.3.c.c.76.1 2 55.43 even 4
275.3.c.c.76.2 2 5.3 odd 4
275.3.c.c.76.2 2 55.32 even 4
495.3.h.b.109.1 2 15.14 odd 2
495.3.h.b.109.1 2 33.32 even 2
495.3.h.b.109.2 2 3.2 odd 2
495.3.h.b.109.2 2 165.164 even 2
880.3.i.c.769.1 2 4.3 odd 2
880.3.i.c.769.1 2 220.219 even 2
880.3.i.c.769.2 2 20.19 odd 2
880.3.i.c.769.2 2 44.43 even 2