Properties

Label 55.3.i.a.46.1
Level $55$
Weight $3$
Character 55.46
Analytic conductor $1.499$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.1
Root \(0.809017 + 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 55.46
Dual form 55.3.i.a.6.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.690983 - 0.224514i) q^{2} +(3.23607 - 2.35114i) q^{3} +(-2.80902 - 2.04087i) q^{4} +(-0.690983 - 2.12663i) q^{5} +(-2.76393 + 0.898056i) q^{6} +(-0.163119 + 0.224514i) q^{7} +(3.19098 + 4.39201i) q^{8} +(2.16312 - 6.65740i) q^{9} +1.62460i q^{10} +(10.3713 - 3.66547i) q^{11} -13.8885 q^{12} +(10.7533 + 3.49396i) q^{13} +(0.163119 - 0.118513i) q^{14} +(-7.23607 - 5.25731i) q^{15} +(3.07295 + 9.45756i) q^{16} +(-19.2705 + 6.26137i) q^{17} +(-2.98936 + 4.11450i) q^{18} +(16.9721 + 23.3601i) q^{19} +(-2.39919 + 7.38394i) q^{20} +1.11006i q^{21} +(-7.98936 + 0.204270i) q^{22} -27.6180 q^{23} +(20.6525 + 6.71040i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(-6.64590 - 4.82853i) q^{26} +(2.47214 + 7.60845i) q^{27} +(0.916408 - 0.297759i) q^{28} +(10.2016 - 14.0413i) q^{29} +(3.81966 + 5.25731i) q^{30} +(10.6180 - 32.6789i) q^{31} -28.9402i q^{32} +(24.9443 - 36.2461i) q^{33} +14.7214 q^{34} +(0.590170 + 0.191758i) q^{35} +(-19.6631 + 14.2861i) q^{36} +(-10.7361 - 7.80021i) q^{37} +(-6.48278 - 19.9519i) q^{38} +(43.0132 - 13.9758i) q^{39} +(7.13525 - 9.82084i) q^{40} +(-10.6140 - 14.6089i) q^{41} +(0.249224 - 0.767031i) q^{42} +34.7931i q^{43} +(-36.6140 - 10.8702i) q^{44} -15.6525 q^{45} +(19.0836 + 6.20063i) q^{46} +(-38.4230 + 27.9159i) q^{47} +(32.1803 + 23.3804i) q^{48} +(15.1180 + 46.5285i) q^{49} +(3.45492 - 1.12257i) q^{50} +(-47.6393 + 65.5699i) q^{51} +(-23.0755 - 31.7606i) q^{52} +(12.8475 - 39.5406i) q^{53} -5.81234i q^{54} +(-14.9615 - 19.5232i) q^{55} -1.50658 q^{56} +(109.846 + 35.6911i) q^{57} +(-10.2016 + 7.41192i) q^{58} +(-82.3115 - 59.8028i) q^{59} +(9.59675 + 29.5358i) q^{60} +(48.4164 - 15.7314i) q^{61} +(-14.6738 + 20.1967i) q^{62} +(1.14183 + 1.57160i) q^{63} +(5.79431 - 17.8330i) q^{64} -25.2825i q^{65} +(-25.3738 + 19.4451i) q^{66} +40.1803 q^{67} +(66.9098 + 21.7403i) q^{68} +(-89.3738 + 64.9339i) q^{69} +(-0.364745 - 0.265003i) q^{70} +(8.70820 + 26.8011i) q^{71} +(36.1418 - 11.7432i) q^{72} +(-58.6656 + 80.7463i) q^{73} +(5.66718 + 7.80021i) q^{74} +(-6.18034 + 19.0211i) q^{75} -100.257i q^{76} +(-0.868810 + 2.92641i) q^{77} -32.8591 q^{78} +(-125.172 - 40.6709i) q^{79} +(17.9894 - 13.0700i) q^{80} +(76.8566 + 55.8396i) q^{81} +(4.05418 + 12.4775i) q^{82} +(-119.271 + 38.7533i) q^{83} +(2.26548 - 3.11817i) q^{84} +(26.6312 + 36.6547i) q^{85} +(7.81153 - 24.0414i) q^{86} -69.4242i q^{87} +(49.1935 + 33.8545i) q^{88} +88.9493 q^{89} +(10.8156 + 3.51420i) q^{90} +(-2.53851 + 1.84433i) q^{91} +(77.5795 + 56.3648i) q^{92} +(-42.4721 - 130.716i) q^{93} +(32.8171 - 10.6629i) q^{94} +(37.9508 - 52.2349i) q^{95} +(-68.0426 - 93.6526i) q^{96} +(14.9311 - 45.9533i) q^{97} -35.5446i q^{98} +(-1.96807 - 76.9748i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - 5 q^{2} + 4 q^{3} - 9 q^{4} - 5 q^{5} - 20 q^{6} + 15 q^{7} + 15 q^{8} - 7 q^{9} - q^{11} + 16 q^{12} + 5 q^{13} - 15 q^{14} - 20 q^{15} + 19 q^{16} - 10 q^{17} + 35 q^{18} + 50 q^{19} + 15 q^{20}+ \cdots + 133 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.690983 0.224514i −0.345492 0.112257i 0.131131 0.991365i \(-0.458139\pi\)
−0.476623 + 0.879108i \(0.658139\pi\)
\(3\) 3.23607 2.35114i 1.07869 0.783714i 0.101235 0.994862i \(-0.467720\pi\)
0.977454 + 0.211149i \(0.0677205\pi\)
\(4\) −2.80902 2.04087i −0.702254 0.510218i
\(5\) −0.690983 2.12663i −0.138197 0.425325i
\(6\) −2.76393 + 0.898056i −0.460655 + 0.149676i
\(7\) −0.163119 + 0.224514i −0.0233027 + 0.0320734i −0.820509 0.571633i \(-0.806310\pi\)
0.797207 + 0.603706i \(0.206310\pi\)
\(8\) 3.19098 + 4.39201i 0.398873 + 0.549001i
\(9\) 2.16312 6.65740i 0.240347 0.739711i
\(10\) 1.62460i 0.162460i
\(11\) 10.3713 3.66547i 0.942848 0.333224i
\(12\) −13.8885 −1.15738
\(13\) 10.7533 + 3.49396i 0.827176 + 0.268766i 0.691855 0.722036i \(-0.256794\pi\)
0.135321 + 0.990802i \(0.456794\pi\)
\(14\) 0.163119 0.118513i 0.0116514 0.00846520i
\(15\) −7.23607 5.25731i −0.482405 0.350487i
\(16\) 3.07295 + 9.45756i 0.192059 + 0.591098i
\(17\) −19.2705 + 6.26137i −1.13356 + 0.368316i −0.814928 0.579563i \(-0.803223\pi\)
−0.318632 + 0.947879i \(0.603223\pi\)
\(18\) −2.98936 + 4.11450i −0.166075 + 0.228583i
\(19\) 16.9721 + 23.3601i 0.893270 + 1.22948i 0.972565 + 0.232630i \(0.0747331\pi\)
−0.0792950 + 0.996851i \(0.525267\pi\)
\(20\) −2.39919 + 7.38394i −0.119959 + 0.369197i
\(21\) 1.11006i 0.0528599i
\(22\) −7.98936 + 0.204270i −0.363153 + 0.00928498i
\(23\) −27.6180 −1.20078 −0.600392 0.799706i \(-0.704989\pi\)
−0.600392 + 0.799706i \(0.704989\pi\)
\(24\) 20.6525 + 6.71040i 0.860520 + 0.279600i
\(25\) −4.04508 + 2.93893i −0.161803 + 0.117557i
\(26\) −6.64590 4.82853i −0.255611 0.185713i
\(27\) 2.47214 + 7.60845i 0.0915606 + 0.281795i
\(28\) 0.916408 0.297759i 0.0327289 0.0106342i
\(29\) 10.2016 14.0413i 0.351780 0.484184i −0.596055 0.802943i \(-0.703266\pi\)
0.947836 + 0.318759i \(0.103266\pi\)
\(30\) 3.81966 + 5.25731i 0.127322 + 0.175244i
\(31\) 10.6180 32.6789i 0.342517 1.05416i −0.620382 0.784300i \(-0.713023\pi\)
0.962900 0.269860i \(-0.0869775\pi\)
\(32\) 28.9402i 0.904382i
\(33\) 24.9443 36.2461i 0.755887 1.09837i
\(34\) 14.7214 0.432981
\(35\) 0.590170 + 0.191758i 0.0168620 + 0.00547880i
\(36\) −19.6631 + 14.2861i −0.546198 + 0.396836i
\(37\) −10.7361 7.80021i −0.290164 0.210816i 0.433175 0.901310i \(-0.357393\pi\)
−0.723339 + 0.690494i \(0.757393\pi\)
\(38\) −6.48278 19.9519i −0.170599 0.525051i
\(39\) 43.0132 13.9758i 1.10290 0.358354i
\(40\) 7.13525 9.82084i 0.178381 0.245521i
\(41\) −10.6140 14.6089i −0.258877 0.356314i 0.659718 0.751513i \(-0.270676\pi\)
−0.918596 + 0.395199i \(0.870676\pi\)
\(42\) 0.249224 0.767031i 0.00593390 0.0182627i
\(43\) 34.7931i 0.809141i 0.914507 + 0.404571i \(0.132579\pi\)
−0.914507 + 0.404571i \(0.867421\pi\)
\(44\) −36.6140 10.8702i −0.832136 0.247049i
\(45\) −15.6525 −0.347833
\(46\) 19.0836 + 6.20063i 0.414861 + 0.134796i
\(47\) −38.4230 + 27.9159i −0.817510 + 0.593956i −0.915998 0.401182i \(-0.868599\pi\)
0.0984879 + 0.995138i \(0.468599\pi\)
\(48\) 32.1803 + 23.3804i 0.670424 + 0.487091i
\(49\) 15.1180 + 46.5285i 0.308531 + 0.949562i
\(50\) 3.45492 1.12257i 0.0690983 0.0224514i
\(51\) −47.6393 + 65.5699i −0.934104 + 1.28568i
\(52\) −23.0755 31.7606i −0.443759 0.610782i
\(53\) 12.8475 39.5406i 0.242406 0.746049i −0.753646 0.657280i \(-0.771707\pi\)
0.996052 0.0887689i \(-0.0282933\pi\)
\(54\) 5.81234i 0.107636i
\(55\) −14.9615 19.5232i −0.272027 0.354967i
\(56\) −1.50658 −0.0269032
\(57\) 109.846 + 35.6911i 1.92712 + 0.626160i
\(58\) −10.2016 + 7.41192i −0.175890 + 0.127792i
\(59\) −82.3115 59.8028i −1.39511 1.01361i −0.995283 0.0970170i \(-0.969070\pi\)
−0.399828 0.916590i \(-0.630930\pi\)
\(60\) 9.59675 + 29.5358i 0.159946 + 0.492263i
\(61\) 48.4164 15.7314i 0.793712 0.257893i 0.116028 0.993246i \(-0.462984\pi\)
0.677684 + 0.735353i \(0.262984\pi\)
\(62\) −14.6738 + 20.1967i −0.236674 + 0.325753i
\(63\) 1.14183 + 1.57160i 0.0181243 + 0.0249460i
\(64\) 5.79431 17.8330i 0.0905361 0.278641i
\(65\) 25.2825i 0.388962i
\(66\) −25.3738 + 19.4451i −0.384452 + 0.294623i
\(67\) 40.1803 0.599707 0.299853 0.953985i \(-0.403062\pi\)
0.299853 + 0.953985i \(0.403062\pi\)
\(68\) 66.9098 + 21.7403i 0.983968 + 0.319711i
\(69\) −89.3738 + 64.9339i −1.29527 + 0.941071i
\(70\) −0.364745 0.265003i −0.00521064 0.00378575i
\(71\) 8.70820 + 26.8011i 0.122651 + 0.377480i 0.993466 0.114131i \(-0.0364083\pi\)
−0.870815 + 0.491611i \(0.836408\pi\)
\(72\) 36.1418 11.7432i 0.501970 0.163100i
\(73\) −58.6656 + 80.7463i −0.803639 + 1.10611i 0.188635 + 0.982047i \(0.439594\pi\)
−0.992274 + 0.124067i \(0.960406\pi\)
\(74\) 5.66718 + 7.80021i 0.0765836 + 0.105408i
\(75\) −6.18034 + 19.0211i −0.0824045 + 0.253615i
\(76\) 100.257i 1.31917i
\(77\) −0.868810 + 2.92641i −0.0112833 + 0.0380054i
\(78\) −32.8591 −0.421271
\(79\) −125.172 40.6709i −1.58446 0.514822i −0.621258 0.783606i \(-0.713378\pi\)
−0.963200 + 0.268784i \(0.913378\pi\)
\(80\) 17.9894 13.0700i 0.224867 0.163375i
\(81\) 76.8566 + 55.8396i 0.948847 + 0.689378i
\(82\) 4.05418 + 12.4775i 0.0494412 + 0.152164i
\(83\) −119.271 + 38.7533i −1.43699 + 0.466908i −0.920959 0.389660i \(-0.872593\pi\)
−0.516035 + 0.856567i \(0.672593\pi\)
\(84\) 2.26548 3.11817i 0.0269701 0.0371211i
\(85\) 26.6312 + 36.6547i 0.313308 + 0.431232i
\(86\) 7.81153 24.0414i 0.0908317 0.279551i
\(87\) 69.4242i 0.797979i
\(88\) 49.1935 + 33.8545i 0.559017 + 0.384710i
\(89\) 88.9493 0.999430 0.499715 0.866190i \(-0.333438\pi\)
0.499715 + 0.866190i \(0.333438\pi\)
\(90\) 10.8156 + 3.51420i 0.120173 + 0.0390467i
\(91\) −2.53851 + 1.84433i −0.0278957 + 0.0202674i
\(92\) 77.5795 + 56.3648i 0.843256 + 0.612661i
\(93\) −42.4721 130.716i −0.456690 1.40555i
\(94\) 32.8171 10.6629i 0.349119 0.113436i
\(95\) 37.9508 52.2349i 0.399483 0.549841i
\(96\) −68.0426 93.6526i −0.708777 0.975548i
\(97\) 14.9311 45.9533i 0.153929 0.473745i −0.844122 0.536152i \(-0.819878\pi\)
0.998051 + 0.0624067i \(0.0198776\pi\)
\(98\) 35.5446i 0.362700i
\(99\) −1.96807 76.9748i −0.0198795 0.777524i
\(100\) 17.3607 0.173607
\(101\) 36.5836 + 11.8867i 0.362214 + 0.117690i 0.484469 0.874808i \(-0.339013\pi\)
−0.122256 + 0.992499i \(0.539013\pi\)
\(102\) 47.6393 34.6120i 0.467052 0.339333i
\(103\) −102.075 74.1622i −0.991024 0.720021i −0.0308788 0.999523i \(-0.509831\pi\)
−0.960145 + 0.279502i \(0.909831\pi\)
\(104\) 18.9681 + 58.3777i 0.182385 + 0.561324i
\(105\) 2.36068 0.767031i 0.0224827 0.00730506i
\(106\) −17.7548 + 24.4374i −0.167499 + 0.230542i
\(107\) 51.5542 + 70.9582i 0.481815 + 0.663161i 0.978852 0.204568i \(-0.0655789\pi\)
−0.497038 + 0.867729i \(0.665579\pi\)
\(108\) 8.58359 26.4176i 0.0794777 0.244607i
\(109\) 144.692i 1.32745i 0.747978 + 0.663723i \(0.231025\pi\)
−0.747978 + 0.663723i \(0.768975\pi\)
\(110\) 5.95492 + 16.8492i 0.0541356 + 0.153175i
\(111\) −53.0820 −0.478217
\(112\) −2.62461 0.852788i −0.0234340 0.00761418i
\(113\) 104.867 76.1905i 0.928029 0.674252i −0.0174806 0.999847i \(-0.505565\pi\)
0.945509 + 0.325595i \(0.105565\pi\)
\(114\) −67.8885 49.3239i −0.595514 0.432666i
\(115\) 19.0836 + 58.7333i 0.165944 + 0.510724i
\(116\) −57.3131 + 18.6221i −0.494078 + 0.160536i
\(117\) 46.5213 64.0311i 0.397618 0.547274i
\(118\) 43.4493 + 59.8028i 0.368214 + 0.506804i
\(119\) 1.73762 5.34785i 0.0146019 0.0449399i
\(120\) 48.5569i 0.404641i
\(121\) 94.1287 76.0315i 0.777923 0.628360i
\(122\) −36.9868 −0.303171
\(123\) −68.6950 22.3204i −0.558496 0.181466i
\(124\) −96.5197 + 70.1257i −0.778385 + 0.565530i
\(125\) 9.04508 + 6.57164i 0.0723607 + 0.0525731i
\(126\) −0.436141 1.34230i −0.00346144 0.0106532i
\(127\) −146.655 + 47.6511i −1.15476 + 0.375205i −0.822936 0.568134i \(-0.807665\pi\)
−0.331828 + 0.943340i \(0.607665\pi\)
\(128\) −76.0501 + 104.674i −0.594141 + 0.817766i
\(129\) 81.8034 + 112.593i 0.634135 + 0.872812i
\(130\) −5.67627 + 17.4698i −0.0436637 + 0.134383i
\(131\) 128.496i 0.980883i 0.871474 + 0.490442i \(0.163164\pi\)
−0.871474 + 0.490442i \(0.836836\pi\)
\(132\) −144.043 + 50.9080i −1.09123 + 0.385667i
\(133\) −8.01316 −0.0602493
\(134\) −27.7639 9.02105i −0.207194 0.0673213i
\(135\) 14.4721 10.5146i 0.107201 0.0778861i
\(136\) −88.9919 64.6564i −0.654352 0.475415i
\(137\) −19.1378 58.9000i −0.139692 0.429927i 0.856599 0.515984i \(-0.172573\pi\)
−0.996290 + 0.0860566i \(0.972573\pi\)
\(138\) 76.3344 24.8025i 0.553148 0.179729i
\(139\) 134.155 184.649i 0.965144 1.32841i 0.0206817 0.999786i \(-0.493416\pi\)
0.944462 0.328620i \(-0.106584\pi\)
\(140\) −1.26644 1.74311i −0.00904603 0.0124508i
\(141\) −58.7051 + 180.676i −0.416348 + 1.28139i
\(142\) 20.4742i 0.144185i
\(143\) 124.333 3.17891i 0.869460 0.0222301i
\(144\) 69.6099 0.483402
\(145\) −36.9098 11.9927i −0.254551 0.0827085i
\(146\) 58.6656 42.6231i 0.401819 0.291939i
\(147\) 158.318 + 115.025i 1.07699 + 0.782482i
\(148\) 14.2386 + 43.8218i 0.0962066 + 0.296094i
\(149\) −74.8460 + 24.3189i −0.502322 + 0.163214i −0.549208 0.835686i \(-0.685070\pi\)
0.0468856 + 0.998900i \(0.485070\pi\)
\(150\) 8.54102 11.7557i 0.0569401 0.0783714i
\(151\) 41.7852 + 57.5124i 0.276723 + 0.380877i 0.924645 0.380830i \(-0.124362\pi\)
−0.647922 + 0.761707i \(0.724362\pi\)
\(152\) −48.4402 + 149.084i −0.318686 + 0.980813i
\(153\) 141.835i 0.927029i
\(154\) 1.25735 1.82704i 0.00816464 0.0118639i
\(155\) −76.8328 −0.495696
\(156\) −149.348 48.5260i −0.957356 0.311064i
\(157\) 173.730 126.223i 1.10656 0.803965i 0.124444 0.992227i \(-0.460285\pi\)
0.982119 + 0.188261i \(0.0602852\pi\)
\(158\) 77.3607 + 56.2058i 0.489625 + 0.355733i
\(159\) −51.3901 158.162i −0.323208 0.994732i
\(160\) −61.5451 + 19.9972i −0.384657 + 0.124983i
\(161\) 4.50502 6.20063i 0.0279815 0.0385133i
\(162\) −40.5698 55.8396i −0.250431 0.344689i
\(163\) −28.1753 + 86.7147i −0.172855 + 0.531992i −0.999529 0.0306887i \(-0.990230\pi\)
0.826674 + 0.562681i \(0.190230\pi\)
\(164\) 62.6983i 0.382307i
\(165\) −94.3181 28.0017i −0.571625 0.169707i
\(166\) 91.1146 0.548883
\(167\) 43.1910 + 14.0336i 0.258629 + 0.0840335i 0.435461 0.900207i \(-0.356585\pi\)
−0.176833 + 0.984241i \(0.556585\pi\)
\(168\) −4.87539 + 3.54218i −0.0290202 + 0.0210844i
\(169\) −33.2984 24.1927i −0.197032 0.143152i
\(170\) −10.1722 31.3068i −0.0598365 0.184158i
\(171\) 192.230 62.4595i 1.12415 0.365260i
\(172\) 71.0081 97.7343i 0.412838 0.568223i
\(173\) −89.0780 122.605i −0.514902 0.708701i 0.469835 0.882754i \(-0.344314\pi\)
−0.984736 + 0.174053i \(0.944314\pi\)
\(174\) −15.5867 + 47.9709i −0.0895787 + 0.275695i
\(175\) 1.38757i 0.00792899i
\(176\) 66.5370 + 86.8237i 0.378051 + 0.493316i
\(177\) −406.971 −2.29927
\(178\) −61.4625 19.9704i −0.345295 0.112193i
\(179\) 137.932 100.214i 0.770570 0.559852i −0.131564 0.991308i \(-0.542000\pi\)
0.902134 + 0.431456i \(0.142000\pi\)
\(180\) 43.9681 + 31.9447i 0.244267 + 0.177470i
\(181\) −51.2918 157.860i −0.283380 0.872154i −0.986880 0.161458i \(-0.948380\pi\)
0.703499 0.710696i \(-0.251620\pi\)
\(182\) 2.16814 0.704473i 0.0119129 0.00387073i
\(183\) 119.692 164.742i 0.654054 0.900229i
\(184\) −88.1287 121.299i −0.478960 0.659232i
\(185\) −9.16970 + 28.2214i −0.0495659 + 0.152548i
\(186\) 99.8580i 0.536871i
\(187\) −176.910 + 135.574i −0.946042 + 0.724995i
\(188\) 164.904 0.877147
\(189\) −2.11146 0.686054i −0.0111717 0.00362991i
\(190\) −37.9508 + 27.5729i −0.199741 + 0.145121i
\(191\) −9.05573 6.57937i −0.0474122 0.0344470i 0.563827 0.825893i \(-0.309329\pi\)
−0.611239 + 0.791446i \(0.709329\pi\)
\(192\) −23.1772 71.3322i −0.120715 0.371522i
\(193\) 119.472 38.8189i 0.619027 0.201134i 0.0173185 0.999850i \(-0.494487\pi\)
0.601708 + 0.798716i \(0.294487\pi\)
\(194\) −20.6343 + 28.4007i −0.106362 + 0.146395i
\(195\) −59.4427 81.8159i −0.304834 0.419569i
\(196\) 52.4919 161.553i 0.267816 0.824252i
\(197\) 361.517i 1.83511i −0.397607 0.917556i \(-0.630159\pi\)
0.397607 0.917556i \(-0.369841\pi\)
\(198\) −15.9220 + 53.6302i −0.0804143 + 0.270859i
\(199\) 267.692 1.34519 0.672593 0.740013i \(-0.265181\pi\)
0.672593 + 0.740013i \(0.265181\pi\)
\(200\) −25.8156 8.38800i −0.129078 0.0419400i
\(201\) 130.026 94.4696i 0.646897 0.469998i
\(202\) −22.6099 16.4271i −0.111930 0.0813221i
\(203\) 1.48840 + 4.58082i 0.00733201 + 0.0225656i
\(204\) 267.639 86.9613i 1.31196 0.426281i
\(205\) −23.7336 + 32.6664i −0.115773 + 0.159348i
\(206\) 53.8820 + 74.1622i 0.261563 + 0.360011i
\(207\) −59.7411 + 183.864i −0.288604 + 0.888233i
\(208\) 112.437i 0.540561i
\(209\) 261.649 + 180.065i 1.25191 + 0.861554i
\(210\) −1.80340 −0.00858761
\(211\) −214.971 69.8482i −1.01882 0.331034i −0.248458 0.968643i \(-0.579924\pi\)
−0.770360 + 0.637609i \(0.779924\pi\)
\(212\) −116.786 + 84.8501i −0.550878 + 0.400236i
\(213\) 91.1935 + 66.2560i 0.428138 + 0.311061i
\(214\) −19.6919 60.6056i −0.0920184 0.283204i
\(215\) 73.9919 24.0414i 0.344148 0.111821i
\(216\) −25.5279 + 35.1361i −0.118185 + 0.162667i
\(217\) 5.60488 + 7.71445i 0.0258289 + 0.0355505i
\(218\) 32.4853 99.9794i 0.149015 0.458621i
\(219\) 399.232i 1.82298i
\(220\) 2.18285 + 85.3754i 0.00992206 + 0.388070i
\(221\) −229.098 −1.03664
\(222\) 36.6788 + 11.9177i 0.165220 + 0.0536832i
\(223\) −226.619 + 164.648i −1.01623 + 0.738333i −0.965506 0.260379i \(-0.916152\pi\)
−0.0507223 + 0.998713i \(0.516152\pi\)
\(224\) 6.49749 + 4.72070i 0.0290066 + 0.0210746i
\(225\) 10.8156 + 33.2870i 0.0480693 + 0.147942i
\(226\) −89.5673 + 29.1022i −0.396316 + 0.128771i
\(227\) 51.2392 70.5247i 0.225723 0.310681i −0.681102 0.732189i \(-0.738499\pi\)
0.906825 + 0.421507i \(0.138499\pi\)
\(228\) −235.718 324.438i −1.03385 1.42298i
\(229\) 33.1722 102.094i 0.144857 0.445823i −0.852136 0.523321i \(-0.824693\pi\)
0.996993 + 0.0774974i \(0.0246929\pi\)
\(230\) 44.8682i 0.195079i
\(231\) 4.06888 + 11.5128i 0.0176142 + 0.0498388i
\(232\) 94.2229 0.406133
\(233\) −125.326 40.7210i −0.537881 0.174768i 0.0274639 0.999623i \(-0.491257\pi\)
−0.565345 + 0.824855i \(0.691257\pi\)
\(234\) −46.5213 + 33.7997i −0.198809 + 0.144443i
\(235\) 85.9164 + 62.4219i 0.365602 + 0.265625i
\(236\) 109.165 + 335.974i 0.462562 + 1.42362i
\(237\) −500.689 + 162.684i −2.11261 + 0.686429i
\(238\) −2.40133 + 3.30515i −0.0100896 + 0.0138872i
\(239\) −54.0983 74.4599i −0.226353 0.311548i 0.680702 0.732560i \(-0.261675\pi\)
−0.907055 + 0.421013i \(0.861675\pi\)
\(240\) 27.4853 84.5910i 0.114522 0.352463i
\(241\) 26.5140i 0.110017i −0.998486 0.0550083i \(-0.982481\pi\)
0.998486 0.0550083i \(-0.0175185\pi\)
\(242\) −82.1115 + 31.4033i −0.339304 + 0.129766i
\(243\) 308.000 1.26749
\(244\) −168.108 54.6217i −0.688969 0.223859i
\(245\) 88.5025 64.3008i 0.361235 0.262452i
\(246\) 42.4559 + 30.8460i 0.172585 + 0.125390i
\(247\) 100.887 + 310.498i 0.408449 + 1.25708i
\(248\) 177.408 57.6434i 0.715356 0.232433i
\(249\) −294.853 + 405.830i −1.18415 + 1.62984i
\(250\) −4.77458 6.57164i −0.0190983 0.0262866i
\(251\) −41.7279 + 128.425i −0.166247 + 0.511655i −0.999126 0.0417998i \(-0.986691\pi\)
0.832879 + 0.553455i \(0.186691\pi\)
\(252\) 6.74498i 0.0267658i
\(253\) −286.436 + 101.233i −1.13216 + 0.400131i
\(254\) 112.034 0.441080
\(255\) 172.361 + 56.0034i 0.675924 + 0.219621i
\(256\) 15.3713 11.1679i 0.0600442 0.0436247i
\(257\) 197.636 + 143.591i 0.769013 + 0.558720i 0.901661 0.432443i \(-0.142348\pi\)
−0.132649 + 0.991163i \(0.542348\pi\)
\(258\) −31.2461 96.1657i −0.121109 0.372735i
\(259\) 3.50251 1.13804i 0.0135232 0.00439396i
\(260\) −51.5983 + 71.0190i −0.198455 + 0.273150i
\(261\) −71.4114 98.2893i −0.273607 0.376587i
\(262\) 28.8491 88.7883i 0.110111 0.338887i
\(263\) 1.93304i 0.00734998i 0.999993 + 0.00367499i \(0.00116979\pi\)
−0.999993 + 0.00367499i \(0.998830\pi\)
\(264\) 238.790 6.10532i 0.904508 0.0231262i
\(265\) −92.9656 −0.350813
\(266\) 5.53695 + 1.79907i 0.0208156 + 0.00676340i
\(267\) 287.846 209.132i 1.07807 0.783267i
\(268\) −112.867 82.0029i −0.421146 0.305981i
\(269\) −56.6149 174.243i −0.210464 0.647743i −0.999445 0.0333242i \(-0.989391\pi\)
0.788980 0.614419i \(-0.210609\pi\)
\(270\) −12.3607 + 4.01623i −0.0457803 + 0.0148749i
\(271\) 298.339 410.629i 1.10088 1.51524i 0.266675 0.963786i \(-0.414075\pi\)
0.834208 0.551449i \(-0.185925\pi\)
\(272\) −118.435 163.011i −0.435421 0.599306i
\(273\) −3.87849 + 11.9368i −0.0142069 + 0.0437245i
\(274\) 44.9956i 0.164217i
\(275\) −31.1803 + 45.3077i −0.113383 + 0.164755i
\(276\) 383.574 1.38976
\(277\) 33.6985 + 10.9493i 0.121655 + 0.0395282i 0.369212 0.929345i \(-0.379628\pi\)
−0.247557 + 0.968873i \(0.579628\pi\)
\(278\) −134.155 + 97.4693i −0.482572 + 0.350609i
\(279\) −194.589 141.377i −0.697450 0.506727i
\(280\) 1.04102 + 3.20393i 0.00371793 + 0.0114426i
\(281\) −325.066 + 105.620i −1.15682 + 0.375873i −0.823707 0.567015i \(-0.808098\pi\)
−0.333110 + 0.942888i \(0.608098\pi\)
\(282\) 81.1285 111.664i 0.287690 0.395971i
\(283\) 243.002 + 334.463i 0.858664 + 1.18185i 0.981886 + 0.189471i \(0.0606772\pi\)
−0.123222 + 0.992379i \(0.539323\pi\)
\(284\) 30.2361 93.0570i 0.106465 0.327666i
\(285\) 258.263i 0.906187i
\(286\) −86.6256 25.7179i −0.302887 0.0899227i
\(287\) 5.01124 0.0174608
\(288\) −192.667 62.6012i −0.668981 0.217365i
\(289\) 98.3419 71.4496i 0.340283 0.247230i
\(290\) 22.8115 + 16.5735i 0.0786604 + 0.0571502i
\(291\) −59.7245 183.813i −0.205239 0.631660i
\(292\) 329.586 107.089i 1.12872 0.366743i
\(293\) 113.360 156.026i 0.386893 0.532513i −0.570501 0.821297i \(-0.693251\pi\)
0.957394 + 0.288784i \(0.0932510\pi\)
\(294\) −83.5704 115.025i −0.284253 0.391241i
\(295\) −70.3024 + 216.369i −0.238313 + 0.733453i
\(296\) 72.0433i 0.243389i
\(297\) 53.5279 + 69.8482i 0.180228 + 0.235179i
\(298\) 57.1772 0.191870
\(299\) −296.985 96.4962i −0.993260 0.322730i
\(300\) 56.1803 40.8174i 0.187268 0.136058i
\(301\) −7.81153 5.67541i −0.0259519 0.0188552i
\(302\) −15.9605 49.1215i −0.0528494 0.162654i
\(303\) 146.334 47.5469i 0.482952 0.156921i
\(304\) −168.776 + 232.300i −0.555183 + 0.764143i
\(305\) −66.9098 92.0935i −0.219376 0.301946i
\(306\) 31.8441 98.0059i 0.104066 0.320281i
\(307\) 335.115i 1.09158i −0.837922 0.545790i \(-0.816230\pi\)
0.837922 0.545790i \(-0.183770\pi\)
\(308\) 8.41294 6.44722i 0.0273147 0.0209325i
\(309\) −504.689 −1.63330
\(310\) 53.0902 + 17.2500i 0.171259 + 0.0556453i
\(311\) −175.687 + 127.644i −0.564910 + 0.410431i −0.833253 0.552893i \(-0.813524\pi\)
0.268343 + 0.963323i \(0.413524\pi\)
\(312\) 198.636 + 144.318i 0.636655 + 0.462557i
\(313\) 183.753 + 565.533i 0.587069 + 1.80681i 0.590797 + 0.806821i \(0.298814\pi\)
−0.00372731 + 0.999993i \(0.501186\pi\)
\(314\) −148.384 + 48.2127i −0.472559 + 0.153544i
\(315\) 2.55322 3.51420i 0.00810545 0.0111562i
\(316\) 268.607 + 369.706i 0.850022 + 1.16995i
\(317\) −22.1860 + 68.2814i −0.0699872 + 0.215399i −0.979932 0.199330i \(-0.936123\pi\)
0.909945 + 0.414729i \(0.136123\pi\)
\(318\) 120.825i 0.379954i
\(319\) 54.3363 183.021i 0.170333 0.573733i
\(320\) −41.9280 −0.131025
\(321\) 333.666 + 108.415i 1.03946 + 0.337740i
\(322\) −4.50502 + 3.27309i −0.0139908 + 0.0101649i
\(323\) −473.328 343.893i −1.46541 1.06468i
\(324\) −101.930 313.709i −0.314599 0.968237i
\(325\) −53.7664 + 17.4698i −0.165435 + 0.0537532i
\(326\) 38.9373 53.5926i 0.119440 0.164395i
\(327\) 340.190 + 468.232i 1.04034 + 1.43190i
\(328\) 30.2933 93.2333i 0.0923578 0.284248i
\(329\) 13.1801i 0.0400611i
\(330\) 58.8854 + 40.5244i 0.178441 + 0.122801i
\(331\) −292.681 −0.884232 −0.442116 0.896958i \(-0.645772\pi\)
−0.442116 + 0.896958i \(0.645772\pi\)
\(332\) 414.123 + 134.557i 1.24736 + 0.405292i
\(333\) −75.1525 + 54.6015i −0.225683 + 0.163968i
\(334\) −26.6935 19.3940i −0.0799206 0.0580657i
\(335\) −27.7639 85.4486i −0.0828774 0.255070i
\(336\) −10.4984 + 3.41115i −0.0312454 + 0.0101522i
\(337\) 230.410 317.132i 0.683710 0.941046i −0.316261 0.948672i \(-0.602428\pi\)
0.999971 + 0.00762639i \(0.00242758\pi\)
\(338\) 17.5770 + 24.1927i 0.0520030 + 0.0715760i
\(339\) 160.223 493.115i 0.472634 1.45462i
\(340\) 157.314i 0.462690i
\(341\) −9.66061 377.844i −0.0283302 1.10805i
\(342\) −146.851 −0.429389
\(343\) −25.8450 8.39755i −0.0753499 0.0244827i
\(344\) −152.812 + 111.024i −0.444220 + 0.322744i
\(345\) 199.846 + 145.197i 0.579264 + 0.420860i
\(346\) 34.0248 + 104.717i 0.0983375 + 0.302652i
\(347\) 60.4984 19.6571i 0.174347 0.0566488i −0.220543 0.975377i \(-0.570783\pi\)
0.394890 + 0.918729i \(0.370783\pi\)
\(348\) −141.686 + 195.014i −0.407143 + 0.560384i
\(349\) 144.289 + 198.596i 0.413435 + 0.569044i 0.964052 0.265714i \(-0.0856076\pi\)
−0.550617 + 0.834758i \(0.685608\pi\)
\(350\) −0.311529 + 0.958789i −0.000890084 + 0.00273940i
\(351\) 90.4534i 0.257702i
\(352\) −106.080 300.149i −0.301362 0.852695i
\(353\) 216.535 0.613413 0.306707 0.951804i \(-0.400773\pi\)
0.306707 + 0.951804i \(0.400773\pi\)
\(354\) 281.210 + 91.3706i 0.794378 + 0.258109i
\(355\) 50.9787 37.0382i 0.143602 0.104333i
\(356\) −249.860 181.534i −0.701854 0.509927i
\(357\) −6.95048 21.3914i −0.0194691 0.0599199i
\(358\) −117.808 + 38.2782i −0.329073 + 0.106922i
\(359\) −401.418 + 552.505i −1.11816 + 1.53901i −0.309339 + 0.950952i \(0.600108\pi\)
−0.808818 + 0.588059i \(0.799892\pi\)
\(360\) −49.9468 68.7459i −0.138741 0.190961i
\(361\) −146.088 + 449.612i −0.404675 + 1.24546i
\(362\) 120.594i 0.333133i
\(363\) 125.846 467.353i 0.346683 1.28747i
\(364\) 10.8948 0.0299306
\(365\) 212.254 + 68.9656i 0.581518 + 0.188947i
\(366\) −119.692 + 86.9613i −0.327027 + 0.237599i
\(367\) −59.6180 43.3150i −0.162447 0.118025i 0.503592 0.863942i \(-0.332012\pi\)
−0.666039 + 0.745917i \(0.732012\pi\)
\(368\) −84.8688 261.199i −0.230622 0.709781i
\(369\) −120.216 + 39.0607i −0.325790 + 0.105855i
\(370\) 12.6722 17.4418i 0.0342492 0.0471400i
\(371\) 6.78175 + 9.33427i 0.0182796 + 0.0251598i
\(372\) −147.469 + 453.863i −0.396422 + 1.22006i
\(373\) 58.3795i 0.156514i 0.996933 + 0.0782568i \(0.0249354\pi\)
−0.996933 + 0.0782568i \(0.975065\pi\)
\(374\) 152.680 53.9607i 0.408235 0.144280i
\(375\) 44.7214 0.119257
\(376\) −245.214 79.6749i −0.652165 0.211901i
\(377\) 158.761 115.346i 0.421116 0.305959i
\(378\) 1.30495 + 0.948103i 0.00345225 + 0.00250821i
\(379\) −57.9346 178.304i −0.152862 0.470460i 0.845076 0.534646i \(-0.179555\pi\)
−0.997938 + 0.0641858i \(0.979555\pi\)
\(380\) −213.209 + 69.2759i −0.561077 + 0.182305i
\(381\) −362.551 + 499.009i −0.951578 + 1.30973i
\(382\) 4.78019 + 6.57937i 0.0125136 + 0.0172235i
\(383\) −1.89202 + 5.82303i −0.00493999 + 0.0152037i −0.953496 0.301405i \(-0.902544\pi\)
0.948556 + 0.316609i \(0.102544\pi\)
\(384\) 517.537i 1.34775i
\(385\) 6.82373 0.174467i 0.0177240 0.000453161i
\(386\) −91.2686 −0.236447
\(387\) 231.631 + 75.2615i 0.598530 + 0.194474i
\(388\) −135.726 + 98.6110i −0.349810 + 0.254152i
\(389\) 182.923 + 132.901i 0.470239 + 0.341649i 0.797534 0.603273i \(-0.206137\pi\)
−0.327295 + 0.944922i \(0.606137\pi\)
\(390\) 22.7051 + 69.8791i 0.0582182 + 0.179177i
\(391\) 532.214 172.927i 1.36116 0.442268i
\(392\) −156.112 + 214.870i −0.398246 + 0.548139i
\(393\) 302.111 + 415.821i 0.768731 + 1.05807i
\(394\) −81.1656 + 249.802i −0.206004 + 0.634016i
\(395\) 294.298i 0.745057i
\(396\) −151.567 + 220.240i −0.382746 + 0.556162i
\(397\) −215.123 −0.541873 −0.270936 0.962597i \(-0.587333\pi\)
−0.270936 + 0.962597i \(0.587333\pi\)
\(398\) −184.971 60.1006i −0.464750 0.151006i
\(399\) −25.9311 + 18.8401i −0.0649903 + 0.0472182i
\(400\) −40.2254 29.2255i −0.100564 0.0730637i
\(401\) −167.199 514.586i −0.416955 1.28326i −0.910490 0.413531i \(-0.864295\pi\)
0.493535 0.869726i \(-0.335705\pi\)
\(402\) −111.056 + 36.0842i −0.276258 + 0.0897617i
\(403\) 228.358 314.307i 0.566644 0.779919i
\(404\) −78.5047 108.052i −0.194318 0.267456i
\(405\) 65.6434 202.030i 0.162082 0.498838i
\(406\) 3.49943i 0.00861929i
\(407\) −139.939 41.5458i −0.343830 0.102078i
\(408\) −440.000 −1.07843
\(409\) 348.785 + 113.327i 0.852774 + 0.277083i 0.702608 0.711578i \(-0.252019\pi\)
0.150167 + 0.988661i \(0.452019\pi\)
\(410\) 23.7336 17.2434i 0.0578867 0.0420572i
\(411\) −200.413 145.609i −0.487624 0.354279i
\(412\) 135.376 + 416.646i 0.328583 + 1.01128i
\(413\) 26.8531 8.72511i 0.0650197 0.0211262i
\(414\) 82.5602 113.634i 0.199421 0.274479i
\(415\) 164.828 + 226.866i 0.397175 + 0.546665i
\(416\) 101.116 311.203i 0.243067 0.748083i
\(417\) 912.952i 2.18933i
\(418\) −140.368 183.166i −0.335809 0.438195i
\(419\) 164.543 0.392704 0.196352 0.980533i \(-0.437090\pi\)
0.196352 + 0.980533i \(0.437090\pi\)
\(420\) −8.19660 2.66324i −0.0195157 0.00634104i
\(421\) −97.2887 + 70.6844i −0.231090 + 0.167896i −0.697304 0.716775i \(-0.745617\pi\)
0.466215 + 0.884672i \(0.345617\pi\)
\(422\) 132.859 + 96.5278i 0.314832 + 0.228739i
\(423\) 102.734 + 316.183i 0.242870 + 0.747476i
\(424\) 214.659 69.7470i 0.506271 0.164498i
\(425\) 59.5492 81.9624i 0.140116 0.192853i
\(426\) −48.1378 66.2560i −0.112999 0.155530i
\(427\) −4.36570 + 13.4363i −0.0102241 + 0.0314666i
\(428\) 304.538i 0.711538i
\(429\) 394.875 302.611i 0.920455 0.705387i
\(430\) −56.5248 −0.131453
\(431\) 514.135 + 167.052i 1.19289 + 0.387593i 0.837140 0.546989i \(-0.184226\pi\)
0.355748 + 0.934582i \(0.384226\pi\)
\(432\) −64.3607 + 46.7608i −0.148983 + 0.108243i
\(433\) −172.618 125.414i −0.398656 0.289641i 0.370337 0.928897i \(-0.379242\pi\)
−0.768993 + 0.639257i \(0.779242\pi\)
\(434\) −2.14087 6.58893i −0.00493289 0.0151819i
\(435\) −147.639 + 47.9709i −0.339401 + 0.110278i
\(436\) 295.297 406.441i 0.677286 0.932205i
\(437\) −468.737 645.161i −1.07262 1.47634i
\(438\) 89.6331 275.862i 0.204642 0.629823i
\(439\) 29.8597i 0.0680175i 0.999422 + 0.0340087i \(0.0108274\pi\)
−0.999422 + 0.0340087i \(0.989173\pi\)
\(440\) 38.0041 128.009i 0.0863729 0.290930i
\(441\) 342.461 0.776555
\(442\) 158.303 + 51.4358i 0.358152 + 0.116371i
\(443\) 46.3262 33.6580i 0.104574 0.0759774i −0.534269 0.845314i \(-0.679413\pi\)
0.638843 + 0.769337i \(0.279413\pi\)
\(444\) 149.108 + 108.334i 0.335830 + 0.243994i
\(445\) −61.4625 189.162i −0.138118 0.425083i
\(446\) 193.556 62.8901i 0.433981 0.141009i
\(447\) −185.029 + 254.671i −0.413936 + 0.569734i
\(448\) 3.05861 + 4.20981i 0.00682725 + 0.00939690i
\(449\) 183.771 565.590i 0.409291 1.25967i −0.507968 0.861376i \(-0.669603\pi\)
0.917259 0.398291i \(-0.130397\pi\)
\(450\) 25.4290i 0.0565089i
\(451\) −163.629 112.608i −0.362814 0.249686i
\(452\) −450.069 −0.995728
\(453\) 270.440 + 87.8712i 0.596997 + 0.193976i
\(454\) −51.2392 + 37.2274i −0.112862 + 0.0819988i
\(455\) 5.67627 + 4.12405i 0.0124753 + 0.00906386i
\(456\) 193.761 + 596.335i 0.424914 + 1.30775i
\(457\) −451.899 + 146.831i −0.988837 + 0.321293i −0.758396 0.651794i \(-0.774017\pi\)
−0.230441 + 0.973086i \(0.574017\pi\)
\(458\) −45.8429 + 63.0973i −0.100094 + 0.137767i
\(459\) −95.2786 131.140i −0.207579 0.285708i
\(460\) 66.2608 203.930i 0.144045 0.443326i
\(461\) 290.362i 0.629853i 0.949116 + 0.314927i \(0.101980\pi\)
−0.949116 + 0.314927i \(0.898020\pi\)
\(462\) −0.226751 8.86865i −0.000490803 0.0191962i
\(463\) 86.1358 0.186039 0.0930193 0.995664i \(-0.470348\pi\)
0.0930193 + 0.995664i \(0.470348\pi\)
\(464\) 164.146 + 53.3342i 0.353763 + 0.114944i
\(465\) −248.636 + 180.645i −0.534702 + 0.388483i
\(466\) 77.4559 + 56.2750i 0.166214 + 0.120762i
\(467\) 69.8177 + 214.877i 0.149503 + 0.460122i 0.997563 0.0697786i \(-0.0222293\pi\)
−0.848060 + 0.529900i \(0.822229\pi\)
\(468\) −261.358 + 84.9204i −0.558458 + 0.181454i
\(469\) −6.55418 + 9.02105i −0.0139748 + 0.0192346i
\(470\) −45.3522 62.4219i −0.0964940 0.132813i
\(471\) 265.437 816.930i 0.563559 1.73446i
\(472\) 552.343i 1.17022i
\(473\) 127.533 + 360.850i 0.269626 + 0.762897i
\(474\) 382.492 0.806946
\(475\) −137.307 44.6139i −0.289068 0.0939240i
\(476\) −15.7953 + 11.4759i −0.0331833 + 0.0241091i
\(477\) −235.447 171.062i −0.493599 0.358621i
\(478\) 20.6637 + 63.5964i 0.0432295 + 0.133047i
\(479\) 79.9888 25.9899i 0.166991 0.0542587i −0.224328 0.974514i \(-0.572019\pi\)
0.391319 + 0.920255i \(0.372019\pi\)
\(480\) −152.148 + 209.414i −0.316975 + 0.436278i
\(481\) −88.1945 121.389i −0.183356 0.252369i
\(482\) −5.95277 + 18.3207i −0.0123501 + 0.0380098i
\(483\) 30.6576i 0.0634733i
\(484\) −419.580 + 21.4694i −0.866900 + 0.0443583i
\(485\) −108.043 −0.222768
\(486\) −212.823 69.1503i −0.437907 0.142285i
\(487\) −535.336 + 388.945i −1.09925 + 0.798654i −0.980938 0.194322i \(-0.937749\pi\)
−0.118315 + 0.992976i \(0.537749\pi\)
\(488\) 223.589 + 162.447i 0.458173 + 0.332882i
\(489\) 112.701 + 346.859i 0.230473 + 0.709323i
\(490\) −75.5902 + 24.5607i −0.154266 + 0.0501239i
\(491\) −438.057 + 602.934i −0.892174 + 1.22797i 0.0807242 + 0.996736i \(0.474277\pi\)
−0.972898 + 0.231235i \(0.925723\pi\)
\(492\) 147.413 + 202.896i 0.299619 + 0.412390i
\(493\) −108.673 + 334.460i −0.220431 + 0.678417i
\(494\) 237.200i 0.480161i
\(495\) −162.337 + 57.3737i −0.327953 + 0.115906i
\(496\) 341.692 0.688895
\(497\) −7.43769 2.41665i −0.0149652 0.00486248i
\(498\) 294.853 214.223i 0.592074 0.430167i
\(499\) −224.927 163.419i −0.450756 0.327493i 0.339138 0.940736i \(-0.389864\pi\)
−0.789894 + 0.613243i \(0.789864\pi\)
\(500\) −11.9959 36.9197i −0.0239919 0.0738394i
\(501\) 172.764 56.1344i 0.344838 0.112045i
\(502\) 57.6666 79.3713i 0.114874 0.158110i
\(503\) 158.365 + 217.971i 0.314842 + 0.433342i 0.936884 0.349642i \(-0.113697\pi\)
−0.622042 + 0.782984i \(0.713697\pi\)
\(504\) −3.25891 + 10.0299i −0.00646609 + 0.0199006i
\(505\) 86.0132i 0.170323i
\(506\) 220.650 5.64152i 0.436068 0.0111493i
\(507\) −164.636 −0.324726
\(508\) 509.206 + 165.451i 1.00237 + 0.325691i
\(509\) −424.177 + 308.183i −0.833354 + 0.605467i −0.920506 0.390728i \(-0.872223\pi\)
0.0871522 + 0.996195i \(0.472223\pi\)
\(510\) −106.525 77.3948i −0.208872 0.151754i
\(511\) −8.55920 26.3425i −0.0167499 0.0515509i
\(512\) 479.078 155.662i 0.935699 0.304027i
\(513\) −135.777 + 186.881i −0.264673 + 0.364291i
\(514\) −104.325 143.591i −0.202967 0.279360i
\(515\) −87.1829 + 268.321i −0.169287 + 0.521012i
\(516\) 483.225i 0.936483i
\(517\) −296.172 + 430.363i −0.572867 + 0.832424i
\(518\) −2.67568 −0.00516541
\(519\) −576.525 187.324i −1.11084 0.360933i
\(520\) 111.041 80.6760i 0.213540 0.155146i
\(521\) 308.640 + 224.240i 0.592400 + 0.430404i 0.843173 0.537642i \(-0.180685\pi\)
−0.250773 + 0.968046i \(0.580685\pi\)
\(522\) 27.2767 + 83.9491i 0.0522543 + 0.160822i
\(523\) 607.503 197.390i 1.16157 0.377418i 0.336083 0.941832i \(-0.390898\pi\)
0.825492 + 0.564414i \(0.190898\pi\)
\(524\) 262.243 360.947i 0.500464 0.688829i
\(525\) −3.26238 4.49028i −0.00621406 0.00855291i
\(526\) 0.433995 1.33570i 0.000825086 0.00253935i
\(527\) 696.223i 1.32111i
\(528\) 419.453 + 124.529i 0.794418 + 0.235851i
\(529\) 233.756 0.441882
\(530\) 64.2376 + 20.8721i 0.121203 + 0.0393813i
\(531\) −576.181 + 418.620i −1.08509 + 0.788361i
\(532\) 22.5091 + 16.3538i 0.0423103 + 0.0307402i
\(533\) −63.0923 194.178i −0.118372 0.364312i
\(534\) −245.850 + 79.8814i −0.460393 + 0.149591i
\(535\) 115.279 158.667i 0.215474 0.296575i
\(536\) 128.215 + 176.473i 0.239207 + 0.329240i
\(537\) 210.741 648.596i 0.392442 1.20781i
\(538\) 133.110i 0.247416i
\(539\) 327.343 + 427.148i 0.607315 + 0.792482i
\(540\) −62.1115 −0.115021
\(541\) 117.236 + 38.0923i 0.216703 + 0.0704109i 0.415356 0.909659i \(-0.363657\pi\)
−0.198654 + 0.980070i \(0.563657\pi\)
\(542\) −298.339 + 216.756i −0.550442 + 0.399919i
\(543\) −537.135 390.251i −0.989198 0.718695i
\(544\) 181.205 + 557.693i 0.333098 + 1.02517i
\(545\) 307.705 99.9794i 0.564597 0.183449i
\(546\) 5.35995 7.37733i 0.00981675 0.0135116i
\(547\) −199.538 274.640i −0.364786 0.502085i 0.586688 0.809813i \(-0.300431\pi\)
−0.951474 + 0.307728i \(0.900431\pi\)
\(548\) −66.4489 + 204.509i −0.121257 + 0.373191i
\(549\) 356.356i 0.649100i
\(550\) 31.7173 24.3064i 0.0576678 0.0441935i
\(551\) 501.151 0.909530
\(552\) −570.381 185.328i −1.03330 0.335739i
\(553\) 29.5492 21.4687i 0.0534343 0.0388223i
\(554\) −20.8268 15.1316i −0.0375936 0.0273133i
\(555\) 36.6788 + 112.886i 0.0660879 + 0.203398i
\(556\) −753.687 + 244.888i −1.35555 + 0.440446i
\(557\) −310.414 + 427.248i −0.557296 + 0.767052i −0.990980 0.134013i \(-0.957213\pi\)
0.433684 + 0.901065i \(0.357213\pi\)
\(558\) 102.716 + 141.377i 0.184079 + 0.253364i
\(559\) −121.565 + 374.140i −0.217469 + 0.669302i
\(560\) 6.17083i 0.0110193i
\(561\) −253.738 + 854.667i −0.452297 + 1.52347i
\(562\) 248.328 0.441865
\(563\) −244.087 79.3087i −0.433547 0.140868i 0.0841094 0.996457i \(-0.473195\pi\)
−0.517657 + 0.855589i \(0.673195\pi\)
\(564\) 533.639 387.712i 0.946169 0.687432i
\(565\) −234.490 170.367i −0.415027 0.301535i
\(566\) −92.8185 285.666i −0.163990 0.504710i
\(567\) −25.0735 + 8.14689i −0.0442214 + 0.0143684i
\(568\) −89.9230 + 123.768i −0.158315 + 0.217902i
\(569\) 146.337 + 201.415i 0.257182 + 0.353981i 0.918010 0.396556i \(-0.129795\pi\)
−0.660828 + 0.750537i \(0.729795\pi\)
\(570\) −57.9837 + 178.456i −0.101726 + 0.313080i
\(571\) 393.435i 0.689028i 0.938781 + 0.344514i \(0.111956\pi\)
−0.938781 + 0.344514i \(0.888044\pi\)
\(572\) −355.741 244.818i −0.621924 0.428003i
\(573\) −44.7740 −0.0781396
\(574\) −3.46268 1.12509i −0.00603254 0.00196009i
\(575\) 111.717 81.1674i 0.194291 0.141161i
\(576\) −106.188 77.1500i −0.184354 0.133941i
\(577\) 76.8228 + 236.436i 0.133142 + 0.409768i 0.995296 0.0968772i \(-0.0308854\pi\)
−0.862155 + 0.506645i \(0.830885\pi\)
\(578\) −83.9940 + 27.2913i −0.145318 + 0.0472168i
\(579\) 295.351 406.516i 0.510106 0.702101i
\(580\) 79.2047 + 109.016i 0.136560 + 0.187959i
\(581\) 10.7546 33.0993i 0.0185105 0.0569695i
\(582\) 140.421i 0.241273i
\(583\) −11.6891 457.181i −0.0200499 0.784186i
\(584\) −541.840 −0.927808
\(585\) −168.316 54.6891i −0.287719 0.0934856i
\(586\) −113.360 + 82.3607i −0.193447 + 0.140547i
\(587\) 308.959 + 224.472i 0.526336 + 0.382406i 0.818986 0.573814i \(-0.194537\pi\)
−0.292649 + 0.956220i \(0.594537\pi\)
\(588\) −209.967 646.213i −0.357088 1.09900i
\(589\) 943.596 306.593i 1.60203 0.520531i
\(590\) 97.1556 133.723i 0.164670 0.226649i
\(591\) −849.978 1169.89i −1.43820 1.97952i
\(592\) 40.7796 125.507i 0.0688845 0.212005i
\(593\) 467.858i 0.788968i 0.918903 + 0.394484i \(0.129077\pi\)
−0.918903 + 0.394484i \(0.870923\pi\)
\(594\) −21.3050 60.2817i −0.0358669 0.101484i
\(595\) −12.5735 −0.0211320
\(596\) 259.875 + 84.4386i 0.436033 + 0.141676i
\(597\) 866.269 629.382i 1.45104 1.05424i
\(598\) 183.547 + 133.354i 0.306934 + 0.223001i
\(599\) 180.089 + 554.257i 0.300649 + 0.925304i 0.981265 + 0.192663i \(0.0617124\pi\)
−0.680616 + 0.732641i \(0.738288\pi\)
\(600\) −103.262 + 33.5520i −0.172104 + 0.0559200i
\(601\) 439.974 605.572i 0.732070 1.00761i −0.266966 0.963706i \(-0.586021\pi\)
0.999036 0.0439019i \(-0.0139789\pi\)
\(602\) 4.12343 + 5.67541i 0.00684954 + 0.00942759i
\(603\) 86.9149 267.496i 0.144137 0.443609i
\(604\) 246.832i 0.408662i
\(605\) −226.732 147.640i −0.374764 0.244033i
\(606\) −111.790 −0.184471
\(607\) −715.161 232.370i −1.17819 0.382817i −0.346496 0.938052i \(-0.612628\pi\)
−0.831694 + 0.555235i \(0.812628\pi\)
\(608\) 676.048 491.178i 1.11192 0.807858i
\(609\) 15.5867 + 11.3244i 0.0255939 + 0.0185951i
\(610\) 25.5573 + 78.6572i 0.0418972 + 0.128946i
\(611\) −510.710 + 165.940i −0.835860 + 0.271587i
\(612\) 289.468 398.418i 0.472987 0.651010i
\(613\) −589.502 811.379i −0.961666 1.32362i −0.946146 0.323741i \(-0.895059\pi\)
−0.0155207 0.999880i \(-0.504941\pi\)
\(614\) −75.2380 + 231.559i −0.122537 + 0.377131i
\(615\) 161.512i 0.262621i
\(616\) −15.6252 + 5.52231i −0.0253656 + 0.00896480i
\(617\) 436.456 0.707384 0.353692 0.935362i \(-0.384926\pi\)
0.353692 + 0.935362i \(0.384926\pi\)
\(618\) 348.731 + 113.310i 0.564290 + 0.183349i
\(619\) −102.839 + 74.7172i −0.166138 + 0.120706i −0.667748 0.744388i \(-0.732741\pi\)
0.501610 + 0.865094i \(0.332741\pi\)
\(620\) 215.825 + 156.806i 0.348104 + 0.252913i
\(621\) −68.2755 210.130i −0.109945 0.338374i
\(622\) 150.055 48.7557i 0.241245 0.0783853i
\(623\) −14.5093 + 19.9704i −0.0232894 + 0.0320552i
\(624\) 264.354 + 363.853i 0.423645 + 0.583097i
\(625\) 7.72542 23.7764i 0.0123607 0.0380423i
\(626\) 432.028i 0.690141i
\(627\) 1270.07 32.4729i 2.02563 0.0517908i
\(628\) −745.616 −1.18729
\(629\) 255.729 + 83.0915i 0.406565 + 0.132101i
\(630\) −2.55322 + 1.85502i −0.00405272 + 0.00294448i
\(631\) 182.154 + 132.343i 0.288675 + 0.209735i 0.722692 0.691170i \(-0.242904\pi\)
−0.434017 + 0.900905i \(0.642904\pi\)
\(632\) −220.795 679.538i −0.349360 1.07522i
\(633\) −859.882 + 279.393i −1.35842 + 0.441379i
\(634\) 30.6602 42.2002i 0.0483600 0.0665618i
\(635\) 202.672 + 278.954i 0.319169 + 0.439298i
\(636\) −178.433 + 549.162i −0.280556 + 0.863462i
\(637\) 553.156i 0.868377i
\(638\) −78.6362 + 114.265i −0.123254 + 0.179099i
\(639\) 197.262 0.308705
\(640\) 275.152 + 89.4023i 0.429925 + 0.139691i
\(641\) 852.241 619.190i 1.32955 0.965975i 0.329790 0.944054i \(-0.393022\pi\)
0.999760 0.0219202i \(-0.00697799\pi\)
\(642\) −206.217 149.825i −0.321210 0.233373i
\(643\) −259.872 799.805i −0.404156 1.24386i −0.921598 0.388146i \(-0.873116\pi\)
0.517442 0.855718i \(-0.326884\pi\)
\(644\) −25.3094 + 8.22352i −0.0393003 + 0.0127694i
\(645\) 182.918 251.765i 0.283594 0.390333i
\(646\) 249.853 + 343.893i 0.386769 + 0.532342i
\(647\) 19.8766 61.1738i 0.0307211 0.0945499i −0.934520 0.355910i \(-0.884171\pi\)
0.965241 + 0.261360i \(0.0841710\pi\)
\(648\) 515.738i 0.795892i
\(649\) −1072.88 318.524i −1.65314 0.490792i
\(650\) 41.0739 0.0631906
\(651\) 36.2755 + 11.7866i 0.0557228 + 0.0181054i
\(652\) 256.118 186.081i 0.392820 0.285400i
\(653\) 865.002 + 628.461i 1.32466 + 0.962421i 0.999862 + 0.0166374i \(0.00529610\pi\)
0.324797 + 0.945784i \(0.394704\pi\)
\(654\) −129.941 399.918i −0.198687 0.611495i
\(655\) 273.262 88.7883i 0.417194 0.135555i
\(656\) 105.548 145.275i 0.160897 0.221455i
\(657\) 410.659 + 565.224i 0.625052 + 0.860311i
\(658\) −2.95912 + 9.10724i −0.00449714 + 0.0138408i
\(659\) 283.355i 0.429978i 0.976617 + 0.214989i \(0.0689715\pi\)
−0.976617 + 0.214989i \(0.931028\pi\)
\(660\) 207.793 + 271.148i 0.314838 + 0.410831i
\(661\) −845.155 −1.27860 −0.639300 0.768957i \(-0.720776\pi\)
−0.639300 + 0.768957i \(0.720776\pi\)
\(662\) 202.237 + 65.7109i 0.305495 + 0.0992612i
\(663\) −741.378 + 538.642i −1.11822 + 0.812432i
\(664\) −550.795 400.176i −0.829511 0.602675i
\(665\) 5.53695 + 17.0410i 0.00832625 + 0.0256256i
\(666\) 64.1879 20.8559i 0.0963782 0.0313152i
\(667\) −281.749 + 387.794i −0.422412 + 0.581400i
\(668\) −92.6834 127.568i −0.138748 0.190970i
\(669\) −346.243 + 1065.63i −0.517553 + 1.59286i
\(670\) 65.2769i 0.0974282i
\(671\) 444.479 340.625i 0.662413 0.507637i
\(672\) 32.1253 0.0478056
\(673\) −422.060 137.135i −0.627132 0.203767i −0.0218275 0.999762i \(-0.506948\pi\)
−0.605304 + 0.795994i \(0.706948\pi\)
\(674\) −230.410 + 167.403i −0.341855 + 0.248372i
\(675\) −32.3607 23.5114i −0.0479417 0.0348317i
\(676\) 44.1616 + 135.915i 0.0653278 + 0.201058i
\(677\) 914.604 297.173i 1.35097 0.438955i 0.457949 0.888979i \(-0.348584\pi\)
0.893017 + 0.450023i \(0.148584\pi\)
\(678\) −221.423 + 304.762i −0.326582 + 0.449502i
\(679\) 7.88160 + 10.8481i 0.0116077 + 0.0159766i
\(680\) −76.0081 + 233.929i −0.111777 + 0.344013i
\(681\) 348.693i 0.512031i
\(682\) −78.1559 + 263.253i −0.114598 + 0.386001i
\(683\) −488.033 −0.714542 −0.357271 0.934001i \(-0.616293\pi\)
−0.357271 + 0.934001i \(0.616293\pi\)
\(684\) −667.450 216.868i −0.975804 0.317058i
\(685\) −112.034 + 81.3978i −0.163554 + 0.118829i
\(686\) 15.9731 + 11.6051i 0.0232844 + 0.0169171i
\(687\) −132.689 408.374i −0.193142 0.594431i
\(688\) −329.058 + 106.917i −0.478281 + 0.155403i
\(689\) 276.306 380.303i 0.401025 0.551964i
\(690\) −105.492 145.197i −0.152886 0.210430i
\(691\) −153.473 + 472.340i −0.222102 + 0.683560i 0.776471 + 0.630153i \(0.217008\pi\)
−0.998573 + 0.0534066i \(0.982992\pi\)
\(692\) 526.197i 0.760400i
\(693\) 17.6030 + 12.1142i 0.0254011 + 0.0174808i
\(694\) −46.2167 −0.0665947
\(695\) −485.377 157.709i −0.698385 0.226919i
\(696\) 304.912 221.531i 0.438092 0.318292i
\(697\) 296.008 + 215.062i 0.424689 + 0.308555i
\(698\) −55.1134 169.622i −0.0789590 0.243011i
\(699\) −501.305 + 162.884i −0.717174 + 0.233024i
\(700\) −2.83186 + 3.89772i −0.00404551 + 0.00556816i
\(701\) 294.515 + 405.366i 0.420136 + 0.578268i 0.965654 0.259831i \(-0.0836670\pi\)
−0.545518 + 0.838099i \(0.683667\pi\)
\(702\) 20.3081 62.5018i 0.0289289 0.0890339i
\(703\) 383.182i 0.545067i
\(704\) −5.27184 206.191i −0.00748840 0.292885i
\(705\) 424.794 0.602545
\(706\) −149.622 48.6151i −0.211929 0.0688599i
\(707\) −8.63621 + 6.27458i −0.0122153 + 0.00887493i
\(708\) 1143.19 + 830.574i 1.61467 + 1.17313i
\(709\) −0.643159 1.97944i −0.000907135 0.00279188i 0.950602 0.310413i \(-0.100467\pi\)
−0.951509 + 0.307621i \(0.900467\pi\)
\(710\) −43.5410 + 14.1473i −0.0613254 + 0.0199258i
\(711\) −541.525 + 745.345i −0.761638 + 1.04831i
\(712\) 283.836 + 390.666i 0.398646 + 0.548689i
\(713\) −293.249 + 902.528i −0.411289 + 1.26582i
\(714\) 16.3416i 0.0228873i
\(715\) −92.6722 262.213i −0.129611 0.366731i
\(716\) −591.976 −0.826783
\(717\) −350.132 113.765i −0.488329 0.158668i
\(718\) 401.418 291.647i 0.559078 0.406194i
\(719\) −568.638 413.140i −0.790874 0.574603i 0.117349 0.993091i \(-0.462560\pi\)
−0.908223 + 0.418487i \(0.862560\pi\)
\(720\) −48.0993 148.034i −0.0668045 0.205603i
\(721\) 33.3009 10.8201i 0.0461871 0.0150071i
\(722\) 201.888 277.875i 0.279624 0.384869i
\(723\) −62.3382 85.8012i −0.0862216 0.118674i
\(724\) −178.092 + 548.111i −0.245984 + 0.757060i
\(725\) 86.7802i 0.119697i
\(726\) −191.885 + 294.679i −0.264304 + 0.405894i
\(727\) 1163.47 1.60037 0.800184 0.599754i \(-0.204735\pi\)
0.800184 + 0.599754i \(0.204735\pi\)
\(728\) −16.2007 5.26392i −0.0222537 0.00723065i
\(729\) 304.999 221.595i 0.418381 0.303971i
\(730\) −131.180 95.3081i −0.179699 0.130559i
\(731\) −217.852 670.480i −0.298019 0.917209i
\(732\) −672.433 + 218.487i −0.918625 + 0.298479i
\(733\) 768.849 1058.23i 1.04891 1.44370i 0.159155 0.987254i \(-0.449123\pi\)
0.889752 0.456443i \(-0.150877\pi\)
\(734\) 31.4702 + 43.3150i 0.0428750 + 0.0590123i
\(735\) 135.220 416.164i 0.183973 0.566209i
\(736\) 799.272i 1.08597i
\(737\) 416.723 147.280i 0.565432 0.199837i
\(738\) 91.8371 0.124441
\(739\) −1085.92 352.838i −1.46945 0.477453i −0.538508 0.842621i \(-0.681012\pi\)
−0.930942 + 0.365167i \(0.881012\pi\)
\(740\) 83.3541 60.5603i 0.112641 0.0818382i
\(741\) 1056.50 + 767.594i 1.42578 + 1.03589i
\(742\) −2.59040 7.97242i −0.00349110 0.0107445i
\(743\) −542.947 + 176.414i −0.730749 + 0.237435i −0.650677 0.759354i \(-0.725515\pi\)
−0.0800717 + 0.996789i \(0.525515\pi\)
\(744\) 438.577 603.650i 0.589486 0.811357i
\(745\) 103.435 + 142.365i 0.138838 + 0.191095i
\(746\) 13.1070 40.3393i 0.0175697 0.0540741i
\(747\) 877.859i 1.17518i
\(748\) 773.632 19.7800i 1.03427 0.0264438i
\(749\) −24.3406 −0.0324974
\(750\) −30.9017 10.0406i −0.0412023 0.0133874i
\(751\) 496.597 360.799i 0.661247 0.480424i −0.205837 0.978586i \(-0.565992\pi\)
0.867084 + 0.498162i \(0.165992\pi\)
\(752\) −382.089 277.604i −0.508097 0.369154i
\(753\) 166.912 + 513.702i 0.221662 + 0.682207i
\(754\) −135.598 + 44.0584i −0.179838 + 0.0584329i
\(755\) 93.4346 128.602i 0.123754 0.170333i
\(756\) 4.53097 + 6.23634i 0.00599335 + 0.00824913i
\(757\) −251.984 + 775.528i −0.332872 + 1.02448i 0.634888 + 0.772604i \(0.281046\pi\)
−0.967761 + 0.251872i \(0.918954\pi\)
\(758\) 136.212i 0.179700i
\(759\) −688.912 + 1001.05i −0.907657 + 1.31890i
\(760\) 350.517 0.461206
\(761\) −488.577 158.748i −0.642020 0.208605i −0.0301278 0.999546i \(-0.509591\pi\)
−0.611892 + 0.790941i \(0.709591\pi\)
\(762\) 362.551 263.409i 0.475789 0.345681i
\(763\) −32.4853 23.6019i −0.0425757 0.0309331i
\(764\) 12.0100 + 36.9631i 0.0157200 + 0.0483811i
\(765\) 301.631 98.0059i 0.394289 0.128112i
\(766\) 2.61470 3.59883i 0.00341345 0.00469821i
\(767\) −676.171 930.670i −0.881579 1.21339i
\(768\) 23.4853 72.2803i 0.0305798 0.0941150i
\(769\) 501.416i 0.652036i −0.945364 0.326018i \(-0.894293\pi\)
0.945364 0.326018i \(-0.105707\pi\)
\(770\) −4.75425 1.41147i −0.00617435 0.00183308i
\(771\) 977.167 1.26740
\(772\) −414.823 134.784i −0.537336 0.174591i
\(773\) 363.619 264.185i 0.470400 0.341765i −0.327197 0.944956i \(-0.606104\pi\)
0.797597 + 0.603191i \(0.206104\pi\)
\(774\) −143.156 104.009i −0.184956 0.134378i
\(775\) 53.0902 + 163.395i 0.0685034 + 0.210832i
\(776\) 249.472 81.0584i 0.321485 0.104457i
\(777\) 8.65869 11.9177i 0.0111437 0.0153380i
\(778\) −96.5585 132.901i −0.124111 0.170824i
\(779\) 161.124 495.888i 0.206834 0.636569i
\(780\) 351.137i 0.450176i
\(781\) 188.554 + 246.043i 0.241427 + 0.315036i
\(782\) −406.575 −0.519917
\(783\) 132.053 + 42.9065i 0.168650 + 0.0547976i
\(784\) −393.590 + 285.960i −0.502028 + 0.364744i
\(785\) −388.473 282.242i −0.494870 0.359544i
\(786\) −115.396 355.153i −0.146815 0.451849i
\(787\) 547.379 177.854i 0.695526 0.225990i 0.0601458 0.998190i \(-0.480843\pi\)
0.635380 + 0.772200i \(0.280843\pi\)
\(788\) −737.809 + 1015.51i −0.936306 + 1.28872i
\(789\) 4.54486 + 6.25546i 0.00576028 + 0.00792834i
\(790\) 66.0739 203.355i 0.0836379 0.257411i
\(791\) 35.9723i 0.0454770i
\(792\) 331.794 254.269i 0.418932 0.321047i
\(793\) 575.601 0.725852
\(794\) 148.647 + 48.2982i 0.187212 + 0.0608290i
\(795\) −300.843 + 218.575i −0.378419 + 0.274937i
\(796\) −751.951 546.325i −0.944662 0.686337i
\(797\) 7.71885 + 23.7562i 0.00968488 + 0.0298070i 0.955782 0.294076i \(-0.0950117\pi\)
−0.946097 + 0.323883i \(0.895012\pi\)
\(798\) 22.1478 7.19626i 0.0277542 0.00901787i
\(799\) 565.639 778.535i 0.707933 0.974386i
\(800\) 85.0532 + 117.066i 0.106317 + 0.146332i
\(801\) 192.408 592.171i 0.240210 0.739289i
\(802\) 393.109i 0.490160i
\(803\) −312.467 + 1052.48i −0.389125 + 1.31069i
\(804\) −558.046 −0.694088
\(805\) −16.2993 5.29597i −0.0202476 0.00657885i
\(806\) −228.358 + 165.911i −0.283322 + 0.205846i
\(807\) −592.879 430.752i −0.734671 0.533769i
\(808\) 64.5310 + 198.606i 0.0798651 + 0.245799i
\(809\) −711.977 + 231.335i −0.880070 + 0.285952i −0.713987 0.700159i \(-0.753112\pi\)
−0.166084 + 0.986112i \(0.553112\pi\)
\(810\) −90.7169 + 124.861i −0.111996 + 0.154150i
\(811\) 138.201 + 190.218i 0.170409 + 0.234547i 0.885676 0.464303i \(-0.153695\pi\)
−0.715268 + 0.698851i \(0.753695\pi\)
\(812\) 5.16792 15.9052i 0.00636443 0.0195877i
\(813\) 2030.26i 2.49725i
\(814\) 87.3676 + 60.1256i 0.107331 + 0.0738644i
\(815\) 203.878 0.250158
\(816\) −766.525 249.059i −0.939369 0.305219i
\(817\) −812.771 + 590.513i −0.994824 + 0.722782i
\(818\) −215.561 156.614i −0.263522 0.191460i
\(819\) 6.78736 + 20.8894i 0.00828738 + 0.0255059i
\(820\) 133.336 43.3235i 0.162605 0.0528335i
\(821\) −90.2423 + 124.208i −0.109918 + 0.151288i −0.860432 0.509566i \(-0.829806\pi\)
0.750514 + 0.660854i \(0.229806\pi\)
\(822\) 105.791 + 145.609i 0.128699 + 0.177140i
\(823\) 399.465 1229.43i 0.485377 1.49384i −0.346057 0.938214i \(-0.612480\pi\)
0.831434 0.555624i \(-0.187520\pi\)
\(824\) 684.967i 0.831270i
\(825\) 5.62306 + 219.928i 0.00681583 + 0.266580i
\(826\) −20.5140 −0.0248353
\(827\) 594.248 + 193.083i 0.718559 + 0.233474i 0.645398 0.763846i \(-0.276691\pi\)
0.0731605 + 0.997320i \(0.476691\pi\)
\(828\) 543.057 394.554i 0.655866 0.476514i
\(829\) 1192.01 + 866.043i 1.43788 + 1.04468i 0.988479 + 0.151355i \(0.0483638\pi\)
0.449405 + 0.893328i \(0.351636\pi\)
\(830\) −62.9586 193.767i −0.0758538 0.233454i
\(831\) 134.794 43.7973i 0.162207 0.0527043i
\(832\) 124.616 171.519i 0.149779 0.206152i
\(833\) −582.664 801.969i −0.699477 0.962748i
\(834\) −204.971 + 630.835i −0.245768 + 0.756396i
\(835\) 101.548i 0.121614i
\(836\) −367.489 1039.80i −0.439580 1.24378i
\(837\) 274.885 0.328417
\(838\) −113.696 36.9422i −0.135676 0.0440838i
\(839\) 1083.63 787.303i 1.29157 0.938383i 0.291737 0.956498i \(-0.405767\pi\)
0.999836 + 0.0181155i \(0.00576666\pi\)
\(840\) 10.9017 + 7.92055i 0.0129782 + 0.00942922i
\(841\) 166.797 + 513.350i 0.198332 + 0.610404i
\(842\) 83.0945 26.9990i 0.0986870 0.0320654i
\(843\) −803.607 + 1106.07i −0.953270 + 1.31206i
\(844\) 461.305 + 634.932i 0.546570 + 0.752289i
\(845\) −28.4402 + 87.5300i −0.0336570 + 0.103586i
\(846\) 241.542i 0.285511i
\(847\) 1.71597 + 33.5354i 0.00202594 + 0.0395931i
\(848\) 413.438 0.487544
\(849\) 1572.74 + 511.015i 1.85246 + 0.601902i
\(850\) −59.5492 + 43.2650i −0.0700578 + 0.0509000i
\(851\) 296.509 + 215.426i 0.348424 + 0.253145i
\(852\) −120.944 372.228i −0.141953 0.436888i
\(853\) 1106.68 359.583i 1.29740 0.421551i 0.422724 0.906259i \(-0.361074\pi\)
0.874676 + 0.484708i \(0.161074\pi\)
\(854\) 6.03326 8.30406i 0.00706470 0.00972373i
\(855\) −265.656 365.644i −0.310709 0.427654i
\(856\) −147.141 + 452.853i −0.171894 + 0.529034i
\(857\) 1069.27i 1.24769i −0.781549 0.623844i \(-0.785570\pi\)
0.781549 0.623844i \(-0.214430\pi\)
\(858\) −340.793 + 120.444i −0.397194 + 0.140378i
\(859\) 998.288 1.16215 0.581076 0.813849i \(-0.302632\pi\)
0.581076 + 0.813849i \(0.302632\pi\)
\(860\) −256.910 83.4751i −0.298732 0.0970640i
\(861\) 16.2167 11.7821i 0.0188347 0.0136842i
\(862\) −317.753 230.861i −0.368623 0.267820i
\(863\) 217.399 + 669.085i 0.251911 + 0.775301i 0.994423 + 0.105468i \(0.0336342\pi\)
−0.742512 + 0.669833i \(0.766366\pi\)
\(864\) 220.190 71.5442i 0.254850 0.0828058i
\(865\) −199.184 + 274.154i −0.230271 + 0.316941i
\(866\) 91.1189 + 125.414i 0.105218 + 0.144820i
\(867\) 150.253 462.431i 0.173302 0.533370i
\(868\) 33.1089i 0.0381438i
\(869\) −1447.28 + 37.0036i −1.66545 + 0.0425818i
\(870\) 112.786 0.129640
\(871\) 432.071 + 140.388i 0.496063 + 0.161181i
\(872\) −635.487 + 461.708i −0.728770 + 0.529482i
\(873\) −273.631 198.805i −0.313438 0.227726i
\(874\) 179.042 + 551.033i 0.204853 + 0.630473i
\(875\) −2.95085 + 0.958789i −0.00337240 + 0.00109576i
\(876\) 814.780 1121.45i 0.930114 1.28019i
\(877\) −198.377 273.042i −0.226199 0.311336i 0.680800 0.732470i \(-0.261632\pi\)
−0.906999 + 0.421133i \(0.861632\pi\)
\(878\) 6.70391 20.6325i 0.00763544 0.0234995i
\(879\) 771.436i 0.877629i
\(880\) 138.666 201.493i 0.157575 0.228969i
\(881\) −1011.82 −1.14849 −0.574246 0.818682i \(-0.694705\pi\)
−0.574246 + 0.818682i \(0.694705\pi\)
\(882\) −236.635 76.8873i −0.268293 0.0871738i
\(883\) −260.572 + 189.317i −0.295099 + 0.214402i −0.725476 0.688247i \(-0.758380\pi\)
0.430377 + 0.902649i \(0.358380\pi\)
\(884\) 643.541 + 467.560i 0.727988 + 0.528914i
\(885\) 281.210 + 865.475i 0.317751 + 0.977937i
\(886\) −39.5673 + 12.8562i −0.0446584 + 0.0145104i
\(887\) −437.553 + 602.240i −0.493296 + 0.678963i −0.980992 0.194050i \(-0.937837\pi\)
0.487696 + 0.873014i \(0.337837\pi\)
\(888\) −169.384 233.137i −0.190748 0.262542i
\(889\) 13.2239 40.6989i 0.0148750 0.0457805i
\(890\) 144.507i 0.162367i
\(891\) 1001.78 + 297.415i 1.12434 + 0.333799i
\(892\) 972.603 1.09036
\(893\) −1304.24 423.773i −1.46052 0.474550i
\(894\) 185.029 134.432i 0.206968 0.150371i
\(895\) −308.425 224.084i −0.344609 0.250373i
\(896\) −11.0956 34.1486i −0.0123834 0.0381123i
\(897\) −1187.94 + 385.985i −1.32435 + 0.430306i
\(898\) −253.966 + 349.554i −0.282813 + 0.389258i
\(899\) −350.535 482.470i −0.389916 0.536674i
\(900\) 37.5532 115.577i 0.0417258 0.128419i
\(901\) 842.411i 0.934973i
\(902\) 87.7829 + 114.547i 0.0973203 + 0.126993i
\(903\) −38.6223 −0.0427711
\(904\) 669.259 + 217.456i 0.740331 + 0.240548i
\(905\) −300.267 + 218.157i −0.331787 + 0.241058i
\(906\) −167.141 121.435i −0.184482 0.134034i
\(907\) −173.823 534.971i −0.191646 0.589825i −0.999999 0.00112787i \(-0.999641\pi\)
0.808354 0.588697i \(-0.200359\pi\)
\(908\) −287.863 + 93.5325i −0.317030 + 0.103009i
\(909\) 158.269 217.839i 0.174114 0.239647i
\(910\) −2.99630 4.12405i −0.00329264 0.00453193i
\(911\) −21.9218 + 67.4684i −0.0240634 + 0.0740597i −0.962367 0.271753i \(-0.912397\pi\)
0.938304 + 0.345813i \(0.112397\pi\)
\(912\) 1148.55i 1.25938i
\(913\) −1094.94 + 839.106i −1.19928 + 0.919064i
\(914\) 345.220 0.377702
\(915\) −433.050 140.706i −0.473278 0.153777i
\(916\) −301.541 + 219.082i −0.329193 + 0.239173i
\(917\) −28.8491 20.9601i −0.0314603 0.0228572i
\(918\) 36.3932 + 112.007i 0.0396440 + 0.122012i
\(919\) 64.4021 20.9255i 0.0700784 0.0227699i −0.273768 0.961796i \(-0.588270\pi\)
0.343846 + 0.939026i \(0.388270\pi\)
\(920\) −197.062 + 271.232i −0.214198 + 0.294818i
\(921\) −787.902 1084.45i −0.855486 1.17748i
\(922\) 65.1904 200.635i 0.0707054 0.217609i
\(923\) 318.626i 0.345207i
\(924\) 12.0665 40.6436i 0.0130590 0.0439866i
\(925\) 66.3525 0.0717325
\(926\) −59.5184 19.3387i −0.0642747 0.0208841i
\(927\) −714.528 + 519.135i −0.770796 + 0.560016i
\(928\) −406.359 295.237i −0.437887 0.318144i
\(929\) 385.947 + 1187.82i 0.415443 + 1.27860i 0.911854 + 0.410515i \(0.134651\pi\)
−0.496411 + 0.868088i \(0.665349\pi\)
\(930\) 212.361 69.0002i 0.228345 0.0741937i
\(931\) −830.328 + 1142.85i −0.891866 + 1.22755i
\(932\) 268.937 + 370.160i 0.288559 + 0.397168i
\(933\) −268.426 + 826.129i −0.287702 + 0.885455i
\(934\) 164.151i 0.175751i
\(935\) 410.557 + 282.542i 0.439099 + 0.302184i
\(936\) 429.674 0.459053
\(937\) −515.209 167.401i −0.549849 0.178657i 0.0208996 0.999782i \(-0.493347\pi\)
−0.570749 + 0.821125i \(0.693347\pi\)
\(938\) 6.55418 4.76189i 0.00698739 0.00507664i
\(939\) 1924.28 + 1398.07i 2.04929 + 1.48890i
\(940\) −113.946 350.688i −0.121219 0.373073i
\(941\) −561.217 + 182.350i −0.596405 + 0.193784i −0.591636 0.806205i \(-0.701518\pi\)
−0.00476834 + 0.999989i \(0.501518\pi\)
\(942\) −366.824 + 504.890i −0.389410 + 0.535977i
\(943\) 293.137 + 403.468i 0.310856 + 0.427856i
\(944\) 312.650 962.238i 0.331197 1.01932i
\(945\) 4.96433i 0.00525326i
\(946\) −7.10716 277.974i −0.00751286 0.293842i
\(947\) −527.364 −0.556878 −0.278439 0.960454i \(-0.589817\pi\)
−0.278439 + 0.960454i \(0.589817\pi\)
\(948\) 1738.46 + 564.860i 1.83382 + 0.595844i
\(949\) −912.973 + 663.313i −0.962036 + 0.698960i
\(950\) 84.8607 + 61.6549i 0.0893270 + 0.0648999i
\(951\) 88.7438 + 273.125i 0.0933163 + 0.287198i
\(952\) 29.0325 9.43324i 0.0304963 0.00990886i
\(953\) 1038.40 1429.23i 1.08961 1.49972i 0.241125 0.970494i \(-0.422483\pi\)
0.848483 0.529223i \(-0.177517\pi\)
\(954\) 124.284 + 171.062i 0.130277 + 0.179310i
\(955\) −7.73452 + 23.8044i −0.00809897 + 0.0249261i
\(956\) 319.567i 0.334275i
\(957\) −254.472 720.021i −0.265906 0.752373i
\(958\) −61.1060 −0.0637849
\(959\) 16.3456 + 5.31101i 0.0170444 + 0.00553807i
\(960\) −135.682 + 98.5787i −0.141335 + 0.102686i
\(961\) −177.706 129.111i −0.184917 0.134350i
\(962\) 33.6873 + 103.679i 0.0350180 + 0.107774i
\(963\) 583.915 189.725i 0.606350 0.197015i
\(964\) −54.1117 + 74.4783i −0.0561325 + 0.0772597i
\(965\) −165.106 227.250i −0.171095 0.235492i
\(966\) −6.88307 + 21.1839i −0.00712533 + 0.0219295i
\(967\) 1457.23i 1.50696i 0.657470 + 0.753481i \(0.271627\pi\)
−0.657470 + 0.753481i \(0.728373\pi\)
\(968\) 634.294 + 170.799i 0.655263 + 0.176445i
\(969\) −2340.26 −2.41513
\(970\) 74.6556 + 24.2571i 0.0769645 + 0.0250073i
\(971\) −151.983 + 110.422i −0.156522 + 0.113720i −0.663290 0.748363i \(-0.730840\pi\)
0.506768 + 0.862083i \(0.330840\pi\)
\(972\) −865.177 628.588i −0.890100 0.646696i
\(973\) 19.5729 + 60.2393i 0.0201161 + 0.0619109i
\(974\) 457.232 148.564i 0.469437 0.152529i
\(975\) −132.918 + 182.946i −0.136326 + 0.187637i
\(976\) 297.562 + 409.559i 0.304879 + 0.419631i
\(977\) 389.172 1197.75i 0.398334 1.22595i −0.528001 0.849244i \(-0.677058\pi\)
0.926335 0.376702i \(-0.122942\pi\)
\(978\) 264.977i 0.270937i
\(979\) 922.522 326.041i 0.942310 0.333035i
\(980\) −379.835 −0.387586
\(981\) 963.269 + 312.985i 0.981926 + 0.319047i
\(982\) 438.057 318.267i 0.446087 0.324101i
\(983\) 842.819 + 612.344i 0.857395 + 0.622934i 0.927175 0.374628i \(-0.122230\pi\)
−0.0697799 + 0.997562i \(0.522230\pi\)
\(984\) −121.173 372.933i −0.123144 0.378997i
\(985\) −768.812 + 249.802i −0.780520 + 0.253606i
\(986\) 150.182 206.708i 0.152314 0.209643i
\(987\) −30.9883 42.6518i −0.0313965 0.0432135i
\(988\) 350.293 1078.09i 0.354548 1.09119i
\(989\) 960.916i 0.971604i
\(990\) 125.053 3.19732i 0.126316 0.00322962i
\(991\) −664.312 −0.670345 −0.335173 0.942157i \(-0.608795\pi\)
−0.335173 + 0.942157i \(0.608795\pi\)
\(992\) −945.736 307.288i −0.953363 0.309767i
\(993\) −947.135 + 688.134i −0.953811 + 0.692985i
\(994\) 4.59675 + 3.33973i 0.00462449 + 0.00335989i
\(995\) −184.971 569.281i −0.185900 0.572142i
\(996\) 1656.49 538.227i 1.66315 0.540389i
\(997\) −116.026 + 159.697i −0.116375 + 0.160177i −0.863231 0.504809i \(-0.831563\pi\)
0.746855 + 0.664987i \(0.231563\pi\)
\(998\) 118.731 + 163.419i 0.118969 + 0.163747i
\(999\) 32.8065 100.968i 0.0328393 0.101069i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.a.46.1 yes 4
5.2 odd 4 275.3.q.c.24.2 8
5.3 odd 4 275.3.q.c.24.1 8
5.4 even 2 275.3.x.d.101.1 4
11.4 even 5 605.3.c.a.241.2 4
11.6 odd 10 inner 55.3.i.a.6.1 4
11.7 odd 10 605.3.c.a.241.3 4
55.17 even 20 275.3.q.c.149.1 8
55.28 even 20 275.3.q.c.149.2 8
55.39 odd 10 275.3.x.d.226.1 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.a.6.1 4 11.6 odd 10 inner
55.3.i.a.46.1 yes 4 1.1 even 1 trivial
275.3.q.c.24.1 8 5.3 odd 4
275.3.q.c.24.2 8 5.2 odd 4
275.3.q.c.149.1 8 55.17 even 20
275.3.q.c.149.2 8 55.28 even 20
275.3.x.d.101.1 4 5.4 even 2
275.3.x.d.226.1 4 55.39 odd 10
605.3.c.a.241.2 4 11.4 even 5
605.3.c.a.241.3 4 11.7 odd 10