Properties

Label 55.3.i.b
Level $55$
Weight $3$
Character orbit 55.i
Analytic conductor $1.499$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of a primitive root of unity \(\zeta_{10}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q + ( - \zeta_{10}^{3} + 2 \zeta_{10}^{2} + 2) q^{2} + (4 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + \cdots - 4) q^{3}+ \cdots + ( - 8 \zeta_{10}^{3} - 7 \zeta_{10} + 7) q^{9}+O(q^{10}) \) Copy content Toggle raw display \( q + ( - \zeta_{10}^{3} + 2 \zeta_{10}^{2} + 2) q^{2} + (4 \zeta_{10}^{3} - 3 \zeta_{10}^{2} + \cdots - 4) q^{3}+ \cdots + ( - 111 \zeta_{10}^{3} + 17 \zeta_{10}^{2} + \cdots + 68) q^{99}+O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 5 q^{2} - 6 q^{3} + 11 q^{4} + 5 q^{5} - 25 q^{6} + 30 q^{7} - 5 q^{8} + 13 q^{9}+O(q^{10}) \) Copy content Toggle raw display \( 4 q + 5 q^{2} - 6 q^{3} + 11 q^{4} + 5 q^{5} - 25 q^{6} + 30 q^{7} - 5 q^{8} + 13 q^{9} - q^{11} - 34 q^{12} - 30 q^{13} + 50 q^{14} - 20 q^{15} - 21 q^{16} - 50 q^{17} + 40 q^{18} - 45 q^{19} + 5 q^{20} + 65 q^{22} - 16 q^{23} - 55 q^{24} - 5 q^{25} - 60 q^{26} + 57 q^{27} + 150 q^{28} - 70 q^{29} - 30 q^{30} + 98 q^{31} - 121 q^{33} - 130 q^{34} + 70 q^{35} + 102 q^{36} + 16 q^{37} + 50 q^{38} + 120 q^{39} - 35 q^{40} + 40 q^{41} - 70 q^{42} + 56 q^{44} + 70 q^{45} + 10 q^{46} - 24 q^{47} + 74 q^{48} + 11 q^{49} - 25 q^{50} + 95 q^{51} - 120 q^{52} - 106 q^{53} - 45 q^{55} - 155 q^{57} - 70 q^{58} + 217 q^{59} - 5 q^{60} - 80 q^{61} + 50 q^{62} - 100 q^{63} + 31 q^{64} - 330 q^{66} + 66 q^{67} - 210 q^{68} - 16 q^{69} + 130 q^{70} + 38 q^{71} + 85 q^{72} - 230 q^{73} - 100 q^{74} - 5 q^{75} + 300 q^{78} - 100 q^{79} + 15 q^{80} + 40 q^{81} + 45 q^{82} + 185 q^{83} - 180 q^{84} - 85 q^{85} - 45 q^{86} + 135 q^{88} + 402 q^{89} + 155 q^{90} - 240 q^{91} - 14 q^{92} + 278 q^{93} - 160 q^{94} - 145 q^{95} + 100 q^{96} + 101 q^{97} + 113 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(\zeta_{10}\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
6.1
0.809017 0.587785i
−0.309017 + 0.951057i
0.809017 + 0.587785i
−0.309017 0.951057i
2.92705 0.951057i −3.73607 2.71441i 4.42705 3.21644i 0.690983 2.12663i −13.5172 4.39201i 6.38197 + 8.78402i 2.66312 3.66547i 3.80902 + 11.7229i 6.88191i
41.1 −0.427051 0.587785i 0.736068 + 2.26538i 1.07295 3.30220i 1.80902 + 1.31433i 1.01722 1.40008i 8.61803 + 2.80017i −5.16312 + 1.67760i 2.69098 1.95511i 1.62460i
46.1 2.92705 + 0.951057i −3.73607 + 2.71441i 4.42705 + 3.21644i 0.690983 + 2.12663i −13.5172 + 4.39201i 6.38197 8.78402i 2.66312 + 3.66547i 3.80902 11.7229i 6.88191i
51.1 −0.427051 + 0.587785i 0.736068 2.26538i 1.07295 + 3.30220i 1.80902 1.31433i 1.01722 + 1.40008i 8.61803 2.80017i −5.16312 1.67760i 2.69098 + 1.95511i 1.62460i
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
11.d odd 10 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 55.3.i.b 4
5.b even 2 1 275.3.x.a 4
5.c odd 4 2 275.3.q.a 8
11.c even 5 1 605.3.c.b 4
11.d odd 10 1 inner 55.3.i.b 4
11.d odd 10 1 605.3.c.b 4
55.h odd 10 1 275.3.x.a 4
55.l even 20 2 275.3.q.a 8
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
55.3.i.b 4 1.a even 1 1 trivial
55.3.i.b 4 11.d odd 10 1 inner
275.3.q.a 8 5.c odd 4 2
275.3.q.a 8 55.l even 20 2
275.3.x.a 4 5.b even 2 1
275.3.x.a 4 55.h odd 10 1
605.3.c.b 4 11.c even 5 1
605.3.c.b 4 11.d odd 10 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{4} - 5T_{2}^{3} + 5T_{2}^{2} + 5T_{2} + 5 \) acting on \(S_{3}^{\mathrm{new}}(55, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{4} - 5 T^{3} + \cdots + 5 \) Copy content Toggle raw display
$3$ \( T^{4} + 6 T^{3} + \cdots + 121 \) Copy content Toggle raw display
$5$ \( T^{4} - 5 T^{3} + \cdots + 25 \) Copy content Toggle raw display
$7$ \( T^{4} - 30 T^{3} + \cdots + 9680 \) Copy content Toggle raw display
$11$ \( T^{4} + T^{3} + \cdots + 14641 \) Copy content Toggle raw display
$13$ \( T^{4} + 30 T^{3} + \cdots + 6480 \) Copy content Toggle raw display
$17$ \( T^{4} + 50 T^{3} + \cdots + 18605 \) Copy content Toggle raw display
$19$ \( T^{4} + 45 T^{3} + \cdots + 59405 \) Copy content Toggle raw display
$23$ \( (T^{2} + 8 T - 4)^{2} \) Copy content Toggle raw display
$29$ \( T^{4} + 70 T^{3} + \cdots + 192080 \) Copy content Toggle raw display
$31$ \( T^{4} - 98 T^{3} + \cdots + 2421136 \) Copy content Toggle raw display
$37$ \( T^{4} - 16 T^{3} + \cdots + 190096 \) Copy content Toggle raw display
$41$ \( T^{4} - 40 T^{3} + \cdots + 15125 \) Copy content Toggle raw display
$43$ \( T^{4} + 4325 T^{2} + 4560125 \) Copy content Toggle raw display
$47$ \( T^{4} + 24 T^{3} + \cdots + 3444736 \) Copy content Toggle raw display
$53$ \( T^{4} + 106 T^{3} + \cdots + 6948496 \) Copy content Toggle raw display
$59$ \( T^{4} - 217 T^{3} + \cdots + 46389721 \) Copy content Toggle raw display
$61$ \( T^{4} + 80 T^{3} + \cdots + 16128080 \) Copy content Toggle raw display
$67$ \( (T^{2} - 33 T - 509)^{2} \) Copy content Toggle raw display
$71$ \( T^{4} - 38 T^{3} + \cdots + 5216656 \) Copy content Toggle raw display
$73$ \( T^{4} + 230 T^{3} + \cdots + 32385125 \) Copy content Toggle raw display
$79$ \( T^{4} + 100 T^{3} + \cdots + 237774080 \) Copy content Toggle raw display
$83$ \( T^{4} - 185 T^{3} + \cdots + 13138205 \) Copy content Toggle raw display
$89$ \( (T^{2} - 201 T + 10039)^{2} \) Copy content Toggle raw display
$97$ \( T^{4} - 101 T^{3} + \cdots + 5755201 \) Copy content Toggle raw display
show more
show less