Properties

Label 55.3.i.c.46.1
Level $55$
Weight $3$
Character 55.46
Analytic conductor $1.499$
Analytic rank $0$
Dimension $12$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [55,3,Mod(6,55)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(55, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 9]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("55.6");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 55 = 5 \cdot 11 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 55.i (of order \(10\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.49864145398\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(3\) over \(\Q(\zeta_{10})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} - \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} - 2 x^{11} + 6 x^{10} + 5 x^{9} - 30 x^{8} + 88 x^{7} - 131 x^{6} - 12 x^{5} + 240 x^{4} + \cdots + 1331 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{10}]$

Embedding invariants

Embedding label 46.1
Root \(0.344310 + 1.50447i\) of defining polynomial
Character \(\chi\) \(=\) 55.46
Dual form 55.3.i.c.6.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-3.35007 - 1.08850i) q^{2} +(4.10532 - 2.98269i) q^{3} +(6.80207 + 4.94199i) q^{4} +(0.690983 + 2.12663i) q^{5} +(-16.9998 + 5.52357i) q^{6} +(4.13101 - 5.68585i) q^{7} +(-9.12620 - 12.5611i) q^{8} +(5.17608 - 15.9303i) q^{9} -7.87649i q^{10} +(-10.8790 + 1.62675i) q^{11} +42.6651 q^{12} +(-1.31604 - 0.427606i) q^{13} +(-20.0282 + 14.5514i) q^{14} +(9.17978 + 6.66950i) q^{15} +(6.50794 + 20.0294i) q^{16} +(-8.29537 + 2.69533i) q^{17} +(-34.6804 + 47.7335i) q^{18} +(15.7882 + 21.7306i) q^{19} +(-5.80966 + 17.8803i) q^{20} -35.6638i q^{21} +(38.2163 + 6.39217i) q^{22} +19.2951 q^{23} +(-74.9320 - 24.3469i) q^{24} +(-4.04508 + 2.93893i) q^{25} +(3.94336 + 2.86502i) q^{26} +(-12.1529 - 37.4029i) q^{27} +(56.1988 - 18.2601i) q^{28} +(7.84308 - 10.7951i) q^{29} +(-23.4931 - 32.3355i) q^{30} +(-13.6245 + 41.9320i) q^{31} -12.0781i q^{32} +(-39.8099 + 39.1272i) q^{33} +30.7240 q^{34} +(14.9461 + 4.85629i) q^{35} +(113.936 - 82.7790i) q^{36} +(-35.4749 - 25.7741i) q^{37} +(-29.2377 - 89.9845i) q^{38} +(-6.67817 + 2.16987i) q^{39} +(20.4068 - 28.0876i) q^{40} +(27.4136 + 37.7315i) q^{41} +(-38.8202 + 119.476i) q^{42} -0.643266i q^{43} +(-82.0394 - 42.6989i) q^{44} +37.4544 q^{45} +(-64.6401 - 21.0028i) q^{46} +(-30.8740 + 22.4313i) q^{47} +(86.4587 + 62.8159i) q^{48} +(-0.121778 - 0.374794i) q^{49} +(16.7504 - 5.44252i) q^{50} +(-26.0158 + 35.8077i) q^{51} +(-6.83854 - 9.41244i) q^{52} +(7.09822 - 21.8461i) q^{53} +138.531i q^{54} +(-10.9767 - 22.0116i) q^{55} -109.121 q^{56} +(129.631 + 42.1197i) q^{57} +(-38.0254 + 27.6270i) q^{58} +(39.1061 + 28.4122i) q^{59} +(29.4809 + 90.7328i) q^{60} +(22.6511 - 7.35977i) q^{61} +(91.2863 - 125.645i) q^{62} +(-69.1949 - 95.2387i) q^{63} +(12.8847 - 39.6551i) q^{64} -3.09418i q^{65} +(175.956 - 87.7456i) q^{66} -87.4921 q^{67} +(-69.7460 - 22.6618i) q^{68} +(79.2128 - 57.5515i) q^{69} +(-44.7845 - 32.5379i) q^{70} +(-24.6333 - 75.8135i) q^{71} +(-247.341 + 80.3659i) q^{72} +(-17.5224 + 24.1175i) q^{73} +(90.7884 + 124.960i) q^{74} +(-7.84047 + 24.1305i) q^{75} +225.838i q^{76} +(-35.6920 + 68.5767i) q^{77} +24.7342 q^{78} +(-45.9661 - 14.9353i) q^{79} +(-38.0981 + 27.6799i) q^{80} +(-39.4928 - 28.6932i) q^{81} +(-50.7665 - 156.243i) q^{82} +(-0.345084 + 0.112125i) q^{83} +(176.250 - 242.587i) q^{84} +(-11.4639 - 15.7787i) q^{85} +(-0.700197 + 2.15499i) q^{86} -67.7108i q^{87} +(119.718 + 121.807i) q^{88} +9.77933 q^{89} +(-125.475 - 40.7693i) q^{90} +(-7.86786 + 5.71633i) q^{91} +(131.247 + 95.3564i) q^{92} +(69.1371 + 212.782i) q^{93} +(127.847 - 41.5399i) q^{94} +(-35.3035 + 48.5910i) q^{95} +(-36.0252 - 49.5844i) q^{96} +(13.2503 - 40.7803i) q^{97} +1.38814i q^{98} +(-30.3962 + 181.727i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q - 5 q^{2} + 7 q^{3} + 13 q^{4} + 15 q^{5} - 15 q^{6} - 40 q^{7} - 15 q^{8} - 16 q^{9} - 8 q^{11} + 68 q^{12} - 15 q^{13} - 5 q^{14} + 35 q^{15} + 77 q^{16} - 5 q^{17} - 115 q^{18} + 15 q^{19} - 20 q^{20}+ \cdots + 509 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/55\mathbb{Z}\right)^\times\).

\(n\) \(12\) \(46\)
\(\chi(n)\) \(1\) \(e\left(\frac{1}{10}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −3.35007 1.08850i −1.67504 0.544252i −0.691097 0.722762i \(-0.742872\pi\)
−0.983938 + 0.178510i \(0.942872\pi\)
\(3\) 4.10532 2.98269i 1.36844 0.994231i 0.370584 0.928799i \(-0.379158\pi\)
0.997857 0.0654317i \(-0.0208425\pi\)
\(4\) 6.80207 + 4.94199i 1.70052 + 1.23550i
\(5\) 0.690983 + 2.12663i 0.138197 + 0.425325i
\(6\) −16.9998 + 5.52357i −2.83330 + 0.920595i
\(7\) 4.13101 5.68585i 0.590144 0.812264i −0.404617 0.914486i \(-0.632595\pi\)
0.994762 + 0.102222i \(0.0325953\pi\)
\(8\) −9.12620 12.5611i −1.14078 1.57014i
\(9\) 5.17608 15.9303i 0.575119 1.77004i
\(10\) 7.87649i 0.787649i
\(11\) −10.8790 + 1.62675i −0.989004 + 0.147886i
\(12\) 42.6651 3.55543
\(13\) −1.31604 0.427606i −0.101233 0.0328928i 0.257962 0.966155i \(-0.416949\pi\)
−0.359196 + 0.933262i \(0.616949\pi\)
\(14\) −20.0282 + 14.5514i −1.43059 + 1.03938i
\(15\) 9.17978 + 6.66950i 0.611985 + 0.444633i
\(16\) 6.50794 + 20.0294i 0.406746 + 1.25184i
\(17\) −8.29537 + 2.69533i −0.487963 + 0.158549i −0.542657 0.839954i \(-0.682582\pi\)
0.0546941 + 0.998503i \(0.482582\pi\)
\(18\) −34.6804 + 47.7335i −1.92669 + 2.65186i
\(19\) 15.7882 + 21.7306i 0.830957 + 1.14371i 0.987744 + 0.156082i \(0.0498864\pi\)
−0.156787 + 0.987632i \(0.550114\pi\)
\(20\) −5.80966 + 17.8803i −0.290483 + 0.894015i
\(21\) 35.6638i 1.69827i
\(22\) 38.2163 + 6.39217i 1.73710 + 0.290553i
\(23\) 19.2951 0.838919 0.419460 0.907774i \(-0.362220\pi\)
0.419460 + 0.907774i \(0.362220\pi\)
\(24\) −74.9320 24.3469i −3.12217 1.01445i
\(25\) −4.04508 + 2.93893i −0.161803 + 0.117557i
\(26\) 3.94336 + 2.86502i 0.151668 + 0.110193i
\(27\) −12.1529 37.4029i −0.450109 1.38529i
\(28\) 56.1988 18.2601i 2.00710 0.652146i
\(29\) 7.84308 10.7951i 0.270451 0.372244i −0.652091 0.758141i \(-0.726108\pi\)
0.922542 + 0.385897i \(0.126108\pi\)
\(30\) −23.4931 32.3355i −0.783105 1.07785i
\(31\) −13.6245 + 41.9320i −0.439501 + 1.35265i 0.448902 + 0.893581i \(0.351815\pi\)
−0.888403 + 0.459064i \(0.848185\pi\)
\(32\) 12.0781i 0.377440i
\(33\) −39.8099 + 39.1272i −1.20636 + 1.18567i
\(34\) 30.7240 0.903646
\(35\) 14.9461 + 4.85629i 0.427032 + 0.138751i
\(36\) 113.936 82.7790i 3.16488 2.29942i
\(37\) −35.4749 25.7741i −0.958782 0.696596i −0.00591474 0.999983i \(-0.501883\pi\)
−0.952868 + 0.303386i \(0.901883\pi\)
\(38\) −29.2377 89.9845i −0.769414 2.36801i
\(39\) −6.67817 + 2.16987i −0.171235 + 0.0556376i
\(40\) 20.4068 28.0876i 0.510170 0.702189i
\(41\) 27.4136 + 37.7315i 0.668623 + 0.920281i 0.999728 0.0233128i \(-0.00742137\pi\)
−0.331105 + 0.943594i \(0.607421\pi\)
\(42\) −38.8202 + 119.476i −0.924289 + 2.84467i
\(43\) 0.643266i 0.0149597i −0.999972 0.00747983i \(-0.997619\pi\)
0.999972 0.00747983i \(-0.00238093\pi\)
\(44\) −82.0394 42.6989i −1.86453 0.970430i
\(45\) 37.4544 0.832321
\(46\) −64.6401 21.0028i −1.40522 0.456584i
\(47\) −30.8740 + 22.4313i −0.656894 + 0.477262i −0.865613 0.500714i \(-0.833071\pi\)
0.208719 + 0.977976i \(0.433071\pi\)
\(48\) 86.4587 + 62.8159i 1.80122 + 1.30866i
\(49\) −0.121778 0.374794i −0.00248526 0.00764885i
\(50\) 16.7504 5.44252i 0.335007 0.108850i
\(51\) −26.0158 + 35.8077i −0.510114 + 0.702112i
\(52\) −6.83854 9.41244i −0.131510 0.181008i
\(53\) 7.09822 21.8461i 0.133929 0.412190i −0.861493 0.507769i \(-0.830470\pi\)
0.995422 + 0.0955790i \(0.0304702\pi\)
\(54\) 138.531i 2.56539i
\(55\) −10.9767 22.0116i −0.199577 0.400211i
\(56\) −109.121 −1.94859
\(57\) 129.631 + 42.1197i 2.27423 + 0.738943i
\(58\) −38.0254 + 27.6270i −0.655610 + 0.476328i
\(59\) 39.1061 + 28.4122i 0.662815 + 0.481563i 0.867612 0.497241i \(-0.165654\pi\)
−0.204797 + 0.978804i \(0.565654\pi\)
\(60\) 29.4809 + 90.7328i 0.491348 + 1.51221i
\(61\) 22.6511 7.35977i 0.371329 0.120652i −0.117407 0.993084i \(-0.537458\pi\)
0.488736 + 0.872432i \(0.337458\pi\)
\(62\) 91.2863 125.645i 1.47236 2.02653i
\(63\) −69.1949 95.2387i −1.09833 1.51172i
\(64\) 12.8847 39.6551i 0.201324 0.619611i
\(65\) 3.09418i 0.0476028i
\(66\) 175.956 87.7456i 2.66600 1.32948i
\(67\) −87.4921 −1.30585 −0.652926 0.757422i \(-0.726459\pi\)
−0.652926 + 0.757422i \(0.726459\pi\)
\(68\) −69.7460 22.6618i −1.02568 0.333262i
\(69\) 79.2128 57.5515i 1.14801 0.834079i
\(70\) −44.7845 32.5379i −0.639779 0.464826i
\(71\) −24.6333 75.8135i −0.346948 1.06780i −0.960533 0.278167i \(-0.910273\pi\)
0.613585 0.789629i \(-0.289727\pi\)
\(72\) −247.341 + 80.3659i −3.43529 + 1.11619i
\(73\) −17.5224 + 24.1175i −0.240033 + 0.330376i −0.911989 0.410214i \(-0.865454\pi\)
0.671957 + 0.740590i \(0.265454\pi\)
\(74\) 90.7884 + 124.960i 1.22687 + 1.68864i
\(75\) −7.84047 + 24.1305i −0.104540 + 0.321740i
\(76\) 225.838i 2.97155i
\(77\) −35.6920 + 68.5767i −0.463533 + 0.890607i
\(78\) 24.7342 0.317106
\(79\) −45.9661 14.9353i −0.581849 0.189054i 0.00327973 0.999995i \(-0.498956\pi\)
−0.585129 + 0.810940i \(0.698956\pi\)
\(80\) −38.0981 + 27.6799i −0.476227 + 0.345999i
\(81\) −39.4928 28.6932i −0.487565 0.354237i
\(82\) −50.7665 156.243i −0.619103 1.90540i
\(83\) −0.345084 + 0.112125i −0.00415764 + 0.00135090i −0.311095 0.950379i \(-0.600696\pi\)
0.306937 + 0.951730i \(0.400696\pi\)
\(84\) 176.250 242.587i 2.09821 2.88794i
\(85\) −11.4639 15.7787i −0.134870 0.185632i
\(86\) −0.700197 + 2.15499i −0.00814183 + 0.0250580i
\(87\) 67.7108i 0.778285i
\(88\) 119.718 + 121.807i 1.36043 + 1.38417i
\(89\) 9.77933 0.109880 0.0549401 0.998490i \(-0.482503\pi\)
0.0549401 + 0.998490i \(0.482503\pi\)
\(90\) −125.475 40.7693i −1.39417 0.452992i
\(91\) −7.86786 + 5.71633i −0.0864599 + 0.0628168i
\(92\) 131.247 + 95.3564i 1.42660 + 1.03648i
\(93\) 69.1371 + 212.782i 0.743410 + 2.28798i
\(94\) 127.847 41.5399i 1.36007 0.441914i
\(95\) −35.3035 + 48.5910i −0.371615 + 0.511485i
\(96\) −36.0252 49.5844i −0.375262 0.516505i
\(97\) 13.2503 40.7803i 0.136601 0.420415i −0.859234 0.511582i \(-0.829060\pi\)
0.995836 + 0.0911669i \(0.0290597\pi\)
\(98\) 1.38814i 0.0141647i
\(99\) −30.3962 + 181.727i −0.307032 + 1.83563i
\(100\) −42.0391 −0.420391
\(101\) −121.223 39.3878i −1.20023 0.389978i −0.360384 0.932804i \(-0.617354\pi\)
−0.839845 + 0.542826i \(0.817354\pi\)
\(102\) 126.132 91.6401i 1.23659 0.898432i
\(103\) −45.1623 32.8123i −0.438469 0.318566i 0.346557 0.938029i \(-0.387351\pi\)
−0.785026 + 0.619462i \(0.787351\pi\)
\(104\) 6.63919 + 20.4333i 0.0638384 + 0.196474i
\(105\) 75.8435 24.6431i 0.722319 0.234696i
\(106\) −47.5591 + 65.4595i −0.448671 + 0.617542i
\(107\) 23.5956 + 32.4765i 0.220519 + 0.303519i 0.904915 0.425592i \(-0.139934\pi\)
−0.684396 + 0.729111i \(0.739934\pi\)
\(108\) 102.180 314.477i 0.946108 2.91182i
\(109\) 157.965i 1.44922i −0.689159 0.724610i \(-0.742020\pi\)
0.689159 0.724610i \(-0.257980\pi\)
\(110\) 12.8131 + 85.6887i 0.116482 + 0.778988i
\(111\) −222.512 −2.00461
\(112\) 140.768 + 45.7384i 1.25686 + 0.408379i
\(113\) 133.752 97.1766i 1.18365 0.859970i 0.191069 0.981577i \(-0.438805\pi\)
0.992578 + 0.121606i \(0.0388046\pi\)
\(114\) −388.426 282.208i −3.40725 2.47551i
\(115\) 13.3326 + 41.0336i 0.115936 + 0.356814i
\(116\) 106.698 34.6684i 0.919813 0.298865i
\(117\) −13.6238 + 18.7515i −0.116443 + 0.160270i
\(118\) −100.081 137.750i −0.848147 1.16737i
\(119\) −18.9430 + 58.3006i −0.159185 + 0.489921i
\(120\) 176.176i 1.46813i
\(121\) 115.707 35.3949i 0.956259 0.292520i
\(122\) −83.8938 −0.687654
\(123\) 225.083 + 73.1339i 1.82994 + 0.594585i
\(124\) −299.903 + 217.892i −2.41857 + 1.75719i
\(125\) −9.04508 6.57164i −0.0723607 0.0525731i
\(126\) 128.140 + 394.375i 1.01699 + 3.12996i
\(127\) 76.9214 24.9933i 0.605680 0.196797i 0.00990806 0.999951i \(-0.496846\pi\)
0.595772 + 0.803153i \(0.296846\pi\)
\(128\) −114.727 + 157.908i −0.896303 + 1.23365i
\(129\) −1.91866 2.64081i −0.0148734 0.0204714i
\(130\) −3.36803 + 10.3657i −0.0259079 + 0.0797365i
\(131\) 217.878i 1.66319i −0.555383 0.831595i \(-0.687428\pi\)
0.555383 0.831595i \(-0.312572\pi\)
\(132\) −464.156 + 69.4054i −3.51633 + 0.525799i
\(133\) 188.778 1.41938
\(134\) 293.105 + 95.2355i 2.18735 + 0.710713i
\(135\) 71.1445 51.6895i 0.526996 0.382885i
\(136\) 109.562 + 79.6012i 0.805600 + 0.585303i
\(137\) 14.1875 + 43.6645i 0.103558 + 0.318719i 0.989389 0.145288i \(-0.0464110\pi\)
−0.885831 + 0.464008i \(0.846411\pi\)
\(138\) −328.014 + 106.578i −2.37691 + 0.772305i
\(139\) −111.105 + 152.922i −0.799314 + 1.10016i 0.193571 + 0.981086i \(0.437993\pi\)
−0.992885 + 0.119075i \(0.962007\pi\)
\(140\) 77.6648 + 106.896i 0.554749 + 0.763546i
\(141\) −59.8422 + 184.175i −0.424413 + 1.30621i
\(142\) 280.794i 1.97742i
\(143\) 15.0128 + 2.51109i 0.104985 + 0.0175600i
\(144\) 352.760 2.44972
\(145\) 28.3765 + 9.22009i 0.195700 + 0.0635869i
\(146\) 84.9532 61.7221i 0.581871 0.422754i
\(147\) −1.61783 1.17542i −0.0110057 0.00799608i
\(148\) −113.928 350.634i −0.769783 2.36915i
\(149\) 67.5694 21.9546i 0.453486 0.147347i −0.0733632 0.997305i \(-0.523373\pi\)
0.526849 + 0.849959i \(0.323373\pi\)
\(150\) 52.5323 72.3045i 0.350215 0.482030i
\(151\) −135.014 185.830i −0.894130 1.23066i −0.972303 0.233724i \(-0.924909\pi\)
0.0781732 0.996940i \(-0.475091\pi\)
\(152\) 128.875 396.635i 0.847859 2.60944i
\(153\) 146.099i 0.954896i
\(154\) 194.217 190.886i 1.26115 1.23952i
\(155\) −98.5881 −0.636052
\(156\) −56.1488 18.2439i −0.359928 0.116948i
\(157\) −157.402 + 114.359i −1.00256 + 0.728402i −0.962636 0.270800i \(-0.912712\pi\)
−0.0399244 + 0.999203i \(0.512712\pi\)
\(158\) 137.732 + 100.069i 0.871725 + 0.633345i
\(159\) −36.0196 110.857i −0.226539 0.697214i
\(160\) 25.6856 8.34575i 0.160535 0.0521609i
\(161\) 79.7084 109.709i 0.495083 0.681424i
\(162\) 101.071 + 139.112i 0.623894 + 0.858717i
\(163\) −61.7552 + 190.063i −0.378866 + 1.16603i 0.561966 + 0.827160i \(0.310045\pi\)
−0.940833 + 0.338871i \(0.889955\pi\)
\(164\) 392.130i 2.39104i
\(165\) −110.717 57.6246i −0.671011 0.349240i
\(166\) 1.27810 0.00769942
\(167\) −187.455 60.9077i −1.12248 0.364717i −0.311768 0.950158i \(-0.600921\pi\)
−0.810715 + 0.585441i \(0.800921\pi\)
\(168\) −447.978 + 325.475i −2.66653 + 1.93735i
\(169\) −135.175 98.2102i −0.799851 0.581126i
\(170\) 21.2297 + 65.3384i 0.124881 + 0.384344i
\(171\) 427.896 139.032i 2.50232 0.813052i
\(172\) 3.17901 4.37554i 0.0184826 0.0254392i
\(173\) −55.8009 76.8033i −0.322548 0.443950i 0.616695 0.787202i \(-0.288471\pi\)
−0.939243 + 0.343253i \(0.888471\pi\)
\(174\) −73.7034 + 226.836i −0.423583 + 1.30365i
\(175\) 35.1405i 0.200803i
\(176\) −103.383 207.314i −0.587403 1.17792i
\(177\) 245.288 1.38581
\(178\) −32.7615 10.6448i −0.184053 0.0598025i
\(179\) −92.8713 + 67.4749i −0.518834 + 0.376955i −0.816164 0.577820i \(-0.803904\pi\)
0.297331 + 0.954775i \(0.403904\pi\)
\(180\) 254.768 + 185.099i 1.41538 + 1.02833i
\(181\) 9.40537 + 28.9468i 0.0519634 + 0.159927i 0.973671 0.227959i \(-0.0732053\pi\)
−0.921707 + 0.387886i \(0.873205\pi\)
\(182\) 32.5801 10.5859i 0.179012 0.0581644i
\(183\) 71.0380 97.7754i 0.388186 0.534292i
\(184\) −176.091 242.369i −0.957018 1.31722i
\(185\) 30.2992 93.2514i 0.163780 0.504062i
\(186\) 788.092i 4.23705i
\(187\) 85.8611 42.8171i 0.459150 0.228968i
\(188\) −320.862 −1.70672
\(189\) −262.871 85.4119i −1.39085 0.451915i
\(190\) 171.161 124.355i 0.900846 0.654503i
\(191\) 270.543 + 196.561i 1.41646 + 1.02912i 0.992344 + 0.123506i \(0.0394137\pi\)
0.424112 + 0.905610i \(0.360586\pi\)
\(192\) −65.3830 201.228i −0.340536 1.04806i
\(193\) 77.4563 25.1671i 0.401328 0.130399i −0.101397 0.994846i \(-0.532331\pi\)
0.502724 + 0.864447i \(0.332331\pi\)
\(194\) −88.7790 + 122.194i −0.457624 + 0.629865i
\(195\) −9.22900 12.7026i −0.0473282 0.0651417i
\(196\) 1.02389 3.15120i 0.00522391 0.0160775i
\(197\) 181.283i 0.920220i −0.887862 0.460110i \(-0.847810\pi\)
0.887862 0.460110i \(-0.152190\pi\)
\(198\) 299.640 575.712i 1.51333 2.90764i
\(199\) 324.592 1.63111 0.815557 0.578676i \(-0.196431\pi\)
0.815557 + 0.578676i \(0.196431\pi\)
\(200\) 73.8325 + 23.9896i 0.369163 + 0.119948i
\(201\) −359.183 + 260.962i −1.78698 + 1.29832i
\(202\) 363.232 + 263.904i 1.79818 + 1.30645i
\(203\) −28.9793 89.1891i −0.142755 0.439355i
\(204\) −353.923 + 114.997i −1.73492 + 0.563709i
\(205\) −61.2986 + 84.3703i −0.299017 + 0.411562i
\(206\) 115.581 + 159.083i 0.561071 + 0.772248i
\(207\) 99.8731 307.378i 0.482479 1.48492i
\(208\) 29.1422i 0.140107i
\(209\) −207.111 210.725i −0.990960 1.00825i
\(210\) −280.905 −1.33764
\(211\) 193.344 + 62.8214i 0.916324 + 0.297732i 0.728958 0.684558i \(-0.240005\pi\)
0.187366 + 0.982290i \(0.440005\pi\)
\(212\) 156.246 113.519i 0.737008 0.535468i
\(213\) −327.256 237.766i −1.53641 1.11627i
\(214\) −43.6960 134.482i −0.204187 0.628423i
\(215\) 1.36799 0.444486i 0.00636273 0.00206737i
\(216\) −358.913 + 494.001i −1.66163 + 2.28704i
\(217\) 182.136 + 250.688i 0.839336 + 1.15525i
\(218\) −171.946 + 529.194i −0.788741 + 2.42750i
\(219\) 151.274i 0.690748i
\(220\) 34.1168 203.971i 0.155077 0.927143i
\(221\) 12.0695 0.0546133
\(222\) 745.432 + 242.205i 3.35780 + 1.09102i
\(223\) 272.507 197.988i 1.22201 0.887840i 0.225741 0.974187i \(-0.427520\pi\)
0.996265 + 0.0863476i \(0.0275196\pi\)
\(224\) −68.6741 49.8947i −0.306581 0.222744i
\(225\) 25.8804 + 79.6516i 0.115024 + 0.354007i
\(226\) −553.856 + 179.959i −2.45069 + 0.796278i
\(227\) −201.019 + 276.679i −0.885548 + 1.21885i 0.0893055 + 0.996004i \(0.471535\pi\)
−0.974853 + 0.222848i \(0.928465\pi\)
\(228\) 673.605 + 927.138i 2.95441 + 4.06639i
\(229\) 82.7537 254.690i 0.361370 1.11218i −0.590853 0.806779i \(-0.701209\pi\)
0.952223 0.305403i \(-0.0987913\pi\)
\(230\) 151.978i 0.660774i
\(231\) 58.0160 + 387.988i 0.251151 + 1.67960i
\(232\) −207.176 −0.893000
\(233\) −63.8765 20.7547i −0.274148 0.0890761i 0.168717 0.985665i \(-0.446038\pi\)
−0.442865 + 0.896589i \(0.646038\pi\)
\(234\) 66.0518 47.9895i 0.282273 0.205083i
\(235\) −69.0364 50.1579i −0.293772 0.213438i
\(236\) 125.589 + 386.524i 0.532158 + 1.63781i
\(237\) −233.253 + 75.7885i −0.984190 + 0.319783i
\(238\) 126.921 174.692i 0.533281 0.733999i
\(239\) 41.9930 + 57.7984i 0.175703 + 0.241834i 0.887781 0.460266i \(-0.152246\pi\)
−0.712078 + 0.702100i \(0.752246\pi\)
\(240\) −73.8445 + 227.270i −0.307686 + 0.946959i
\(241\) 376.422i 1.56192i 0.624584 + 0.780958i \(0.285268\pi\)
−0.624584 + 0.780958i \(0.714732\pi\)
\(242\) −426.156 7.37240i −1.76097 0.0304645i
\(243\) 106.236 0.437186
\(244\) 190.446 + 61.8796i 0.780516 + 0.253605i
\(245\) 0.712900 0.517952i 0.00290980 0.00211409i
\(246\) −674.438 490.008i −2.74162 1.99190i
\(247\) −11.4857 35.3493i −0.0465008 0.143115i
\(248\) 651.054 211.540i 2.62522 0.852985i
\(249\) −1.08225 + 1.48959i −0.00434638 + 0.00598228i
\(250\) 23.1484 + 31.8611i 0.0925937 + 0.127444i
\(251\) 83.9714 258.437i 0.334548 1.02963i −0.632397 0.774644i \(-0.717929\pi\)
0.966944 0.254987i \(-0.0820712\pi\)
\(252\) 989.781i 3.92770i
\(253\) −209.913 + 31.3883i −0.829695 + 0.124065i
\(254\) −284.897 −1.12164
\(255\) −94.1262 30.5835i −0.369122 0.119935i
\(256\) 421.295 306.089i 1.64569 1.19566i
\(257\) −76.6625 55.6986i −0.298298 0.216726i 0.428561 0.903513i \(-0.359021\pi\)
−0.726859 + 0.686787i \(0.759021\pi\)
\(258\) 3.55312 + 10.9354i 0.0137718 + 0.0423852i
\(259\) −293.095 + 95.2322i −1.13164 + 0.367692i
\(260\) 15.2914 21.0469i 0.0588132 0.0809494i
\(261\) −131.373 180.819i −0.503343 0.692793i
\(262\) −237.161 + 729.906i −0.905194 + 2.78590i
\(263\) 240.380i 0.913991i 0.889469 + 0.456996i \(0.151074\pi\)
−0.889469 + 0.456996i \(0.848926\pi\)
\(264\) 854.795 + 142.975i 3.23786 + 0.541574i
\(265\) 51.3632 0.193824
\(266\) −632.419 205.485i −2.37752 0.772502i
\(267\) 40.1473 29.1687i 0.150365 0.109246i
\(268\) −595.127 432.385i −2.22062 1.61338i
\(269\) −33.7200 103.779i −0.125353 0.385797i 0.868612 0.495493i \(-0.165012\pi\)
−0.993965 + 0.109696i \(0.965012\pi\)
\(270\) −294.603 + 95.7225i −1.09112 + 0.354528i
\(271\) −171.743 + 236.384i −0.633737 + 0.872264i −0.998262 0.0589293i \(-0.981231\pi\)
0.364525 + 0.931194i \(0.381231\pi\)
\(272\) −107.972 148.610i −0.396954 0.546361i
\(273\) −15.2500 + 46.9348i −0.0558609 + 0.171922i
\(274\) 161.722i 0.590228i
\(275\) 39.2258 38.5531i 0.142639 0.140193i
\(276\) 823.230 2.98272
\(277\) −98.0954 31.8731i −0.354135 0.115065i 0.126546 0.991961i \(-0.459611\pi\)
−0.480682 + 0.876895i \(0.659611\pi\)
\(278\) 538.665 391.363i 1.93764 1.40778i
\(279\) 597.469 + 434.086i 2.14146 + 1.55587i
\(280\) −75.4009 232.060i −0.269289 0.828786i
\(281\) 324.936 105.578i 1.15636 0.375723i 0.332822 0.942990i \(-0.391999\pi\)
0.823534 + 0.567267i \(0.191999\pi\)
\(282\) 400.951 551.862i 1.42181 1.95696i
\(283\) −11.9948 16.5094i −0.0423844 0.0583371i 0.787299 0.616572i \(-0.211479\pi\)
−0.829683 + 0.558235i \(0.811479\pi\)
\(284\) 207.112 637.426i 0.729269 2.24446i
\(285\) 304.781i 1.06941i
\(286\) −47.5607 24.7538i −0.166296 0.0865519i
\(287\) 327.781 1.14210
\(288\) −192.408 62.5171i −0.668082 0.217073i
\(289\) −172.258 + 125.152i −0.596047 + 0.433053i
\(290\) −85.0273 61.7759i −0.293198 0.213020i
\(291\) −67.2382 206.938i −0.231059 0.711126i
\(292\) −238.377 + 77.4533i −0.816359 + 0.265251i
\(293\) 58.4929 80.5085i 0.199634 0.274773i −0.697449 0.716634i \(-0.745682\pi\)
0.897083 + 0.441861i \(0.145682\pi\)
\(294\) 4.14040 + 5.69877i 0.0140830 + 0.0193836i
\(295\) −33.4006 + 102.796i −0.113222 + 0.348462i
\(296\) 680.825i 2.30008i
\(297\) 193.057 + 387.138i 0.650025 + 1.30350i
\(298\) −250.260 −0.839799
\(299\) −25.3931 8.25072i −0.0849267 0.0275944i
\(300\) −172.584 + 125.390i −0.575280 + 0.417966i
\(301\) −3.65751 2.65734i −0.0121512 0.00882836i
\(302\) 250.028 + 769.507i 0.827908 + 2.54804i
\(303\) −615.142 + 199.872i −2.03017 + 0.659643i
\(304\) −332.501 + 457.649i −1.09375 + 1.50542i
\(305\) 31.3030 + 43.0849i 0.102633 + 0.141262i
\(306\) 159.030 489.443i 0.519704 1.59949i
\(307\) 461.259i 1.50247i −0.660034 0.751236i \(-0.729458\pi\)
0.660034 0.751236i \(-0.270542\pi\)
\(308\) −581.685 + 290.074i −1.88859 + 0.941798i
\(309\) −283.275 −0.916748
\(310\) 330.277 + 107.314i 1.06541 + 0.346173i
\(311\) −353.614 + 256.915i −1.13702 + 0.826094i −0.986701 0.162543i \(-0.948030\pi\)
−0.150320 + 0.988637i \(0.548030\pi\)
\(312\) 88.2023 + 64.0827i 0.282700 + 0.205393i
\(313\) 25.8727 + 79.6280i 0.0826604 + 0.254403i 0.983842 0.179039i \(-0.0572989\pi\)
−0.901182 + 0.433442i \(0.857299\pi\)
\(314\) 651.788 211.779i 2.07576 0.674455i
\(315\) 154.725 212.960i 0.491189 0.676064i
\(316\) −238.854 328.755i −0.755868 1.04036i
\(317\) −10.2957 + 31.6870i −0.0324787 + 0.0999591i −0.965982 0.258610i \(-0.916735\pi\)
0.933503 + 0.358570i \(0.116735\pi\)
\(318\) 410.587i 1.29115i
\(319\) −67.7644 + 130.199i −0.212428 + 0.408147i
\(320\) 93.2347 0.291358
\(321\) 193.735 + 62.9483i 0.603535 + 0.196101i
\(322\) −386.448 + 280.771i −1.20015 + 0.871959i
\(323\) −189.540 137.709i −0.586811 0.426343i
\(324\) −126.831 390.346i −0.391454 1.20477i
\(325\) 6.58018 2.13803i 0.0202467 0.00657855i
\(326\) 413.769 569.504i 1.26923 1.74694i
\(327\) −471.161 648.498i −1.44086 1.98317i
\(328\) 223.769 688.691i 0.682224 2.09967i
\(329\) 268.209i 0.815224i
\(330\) 308.185 + 313.562i 0.933893 + 0.950189i
\(331\) 158.074 0.477566 0.238783 0.971073i \(-0.423252\pi\)
0.238783 + 0.971073i \(0.423252\pi\)
\(332\) −2.90140 0.942723i −0.00873917 0.00283953i
\(333\) −594.210 + 431.719i −1.78441 + 1.29645i
\(334\) 561.688 + 408.090i 1.68170 + 1.22183i
\(335\) −60.4556 186.063i −0.180464 0.555412i
\(336\) 714.323 232.098i 2.12596 0.690767i
\(337\) 221.891 305.407i 0.658432 0.906253i −0.340997 0.940065i \(-0.610764\pi\)
0.999428 + 0.0338111i \(0.0107645\pi\)
\(338\) 345.943 + 476.150i 1.02350 + 1.40873i
\(339\) 259.248 797.883i 0.764743 2.35364i
\(340\) 163.983i 0.482302i
\(341\) 80.0092 478.344i 0.234631 1.40277i
\(342\) −1584.82 −4.63397
\(343\) 324.887 + 105.562i 0.947194 + 0.307762i
\(344\) −8.08015 + 5.87057i −0.0234888 + 0.0170656i
\(345\) 177.125 + 128.689i 0.513406 + 0.373012i
\(346\) 103.336 + 318.036i 0.298660 + 0.919179i
\(347\) −638.027 + 207.307i −1.83869 + 0.597428i −0.840217 + 0.542250i \(0.817573\pi\)
−0.998477 + 0.0551779i \(0.982427\pi\)
\(348\) 334.626 460.573i 0.961569 1.32349i
\(349\) 218.524 + 300.773i 0.626144 + 0.861813i 0.997782 0.0665649i \(-0.0212039\pi\)
−0.371639 + 0.928377i \(0.621204\pi\)
\(350\) 38.2505 117.723i 0.109287 0.336352i
\(351\) 54.4202i 0.155043i
\(352\) 19.6480 + 131.398i 0.0558182 + 0.373290i
\(353\) 189.013 0.535449 0.267724 0.963496i \(-0.413728\pi\)
0.267724 + 0.963496i \(0.413728\pi\)
\(354\) −821.732 266.997i −2.32128 0.754229i
\(355\) 144.206 104.772i 0.406214 0.295132i
\(356\) 66.5197 + 48.3294i 0.186853 + 0.135757i
\(357\) 96.1256 + 295.844i 0.269259 + 0.828695i
\(358\) 384.572 124.955i 1.07422 0.349036i
\(359\) −36.7416 + 50.5704i −0.102344 + 0.140865i −0.857117 0.515121i \(-0.827747\pi\)
0.754773 + 0.655986i \(0.227747\pi\)
\(360\) −341.817 470.470i −0.949491 1.30686i
\(361\) −111.396 + 342.841i −0.308576 + 0.949699i
\(362\) 107.211i 0.296164i
\(363\) 369.444 490.427i 1.01775 1.35104i
\(364\) −81.7677 −0.224637
\(365\) −63.3966 20.5988i −0.173689 0.0564350i
\(366\) −344.411 + 250.229i −0.941014 + 0.683687i
\(367\) 243.134 + 176.647i 0.662491 + 0.481328i 0.867503 0.497432i \(-0.165724\pi\)
−0.205013 + 0.978759i \(0.565724\pi\)
\(368\) 125.572 + 386.470i 0.341227 + 1.05019i
\(369\) 742.970 241.406i 2.01347 0.654216i
\(370\) −203.009 + 279.418i −0.548673 + 0.755184i
\(371\) −94.8907 130.606i −0.255770 0.352037i
\(372\) −581.293 + 1789.03i −1.56261 + 4.80923i
\(373\) 306.810i 0.822546i −0.911512 0.411273i \(-0.865084\pi\)
0.911512 0.411273i \(-0.134916\pi\)
\(374\) −334.247 + 49.9801i −0.893710 + 0.133637i
\(375\) −56.7342 −0.151291
\(376\) 563.525 + 183.100i 1.49874 + 0.486969i
\(377\) −14.9378 + 10.8530i −0.0396228 + 0.0287877i
\(378\) 787.665 + 572.272i 2.08377 + 1.51395i
\(379\) 137.394 + 422.855i 0.362517 + 1.11571i 0.951522 + 0.307582i \(0.0995198\pi\)
−0.589005 + 0.808129i \(0.700480\pi\)
\(380\) −480.273 + 156.050i −1.26388 + 0.410658i
\(381\) 241.240 332.038i 0.633176 0.871492i
\(382\) −692.381 952.981i −1.81252 2.49471i
\(383\) −23.7402 + 73.0650i −0.0619850 + 0.190770i −0.977254 0.212074i \(-0.931978\pi\)
0.915269 + 0.402844i \(0.131978\pi\)
\(384\) 990.457i 2.57932i
\(385\) −170.500 28.5183i −0.442856 0.0740734i
\(386\) −286.878 −0.743208
\(387\) −10.2474 3.32959i −0.0264791 0.00860359i
\(388\) 291.665 211.907i 0.751714 0.546153i
\(389\) −124.773 90.6528i −0.320753 0.233041i 0.415744 0.909482i \(-0.363521\pi\)
−0.736497 + 0.676441i \(0.763521\pi\)
\(390\) 17.0909 + 52.6005i 0.0438229 + 0.134873i
\(391\) −160.060 + 52.0068i −0.409362 + 0.133010i
\(392\) −3.59647 + 4.95011i −0.00917466 + 0.0126278i
\(393\) −649.862 894.459i −1.65359 2.27598i
\(394\) −197.328 + 607.312i −0.500832 + 1.54140i
\(395\) 108.073i 0.273602i
\(396\) −1104.85 + 1085.90i −2.79002 + 2.74217i
\(397\) 249.821 0.629271 0.314636 0.949213i \(-0.398118\pi\)
0.314636 + 0.949213i \(0.398118\pi\)
\(398\) −1087.41 353.320i −2.73217 0.887737i
\(399\) 774.994 563.066i 1.94234 1.41119i
\(400\) −85.1900 61.8942i −0.212975 0.154735i
\(401\) −210.623 648.231i −0.525244 1.61654i −0.763832 0.645415i \(-0.776684\pi\)
0.238588 0.971121i \(-0.423316\pi\)
\(402\) 1487.35 483.269i 3.69987 1.20216i
\(403\) 35.8607 49.3581i 0.0889845 0.122477i
\(404\) −629.914 867.002i −1.55919 2.14605i
\(405\) 33.7308 103.813i 0.0832860 0.256328i
\(406\) 330.334i 0.813630i
\(407\) 427.862 + 222.688i 1.05126 + 0.547146i
\(408\) 687.212 1.68434
\(409\) 32.8400 + 10.6704i 0.0802934 + 0.0260889i 0.348888 0.937164i \(-0.386559\pi\)
−0.268595 + 0.963253i \(0.586559\pi\)
\(410\) 297.192 215.923i 0.724859 0.526641i
\(411\) 188.482 + 136.940i 0.458594 + 0.333188i
\(412\) −145.039 446.384i −0.352036 1.08346i
\(413\) 323.095 104.980i 0.782313 0.254189i
\(414\) −669.164 + 921.025i −1.61634 + 2.22470i
\(415\) −0.476894 0.656389i −0.00114914 0.00158166i
\(416\) −5.16466 + 15.8952i −0.0124150 + 0.0382096i
\(417\) 959.187i 2.30021i
\(418\) 464.461 + 931.383i 1.11115 + 2.22819i
\(419\) −479.485 −1.14436 −0.572178 0.820130i \(-0.693901\pi\)
−0.572178 + 0.820130i \(0.693901\pi\)
\(420\) 637.679 + 207.194i 1.51828 + 0.493320i
\(421\) 294.374 213.875i 0.699226 0.508017i −0.180454 0.983583i \(-0.557757\pi\)
0.879680 + 0.475566i \(0.157757\pi\)
\(422\) −579.336 420.912i −1.37283 0.997423i
\(423\) 197.531 + 607.939i 0.466977 + 1.43721i
\(424\) −339.192 + 110.210i −0.799980 + 0.259929i
\(425\) 25.6341 35.2823i 0.0603155 0.0830172i
\(426\) 837.523 + 1152.75i 1.96602 + 2.70599i
\(427\) 51.7252 159.194i 0.121136 0.372819i
\(428\) 337.517i 0.788590i
\(429\) 69.1223 34.4698i 0.161124 0.0803492i
\(430\) −5.06667 −0.0117830
\(431\) 424.328 + 137.873i 0.984520 + 0.319890i 0.756663 0.653805i \(-0.226828\pi\)
0.227856 + 0.973695i \(0.426828\pi\)
\(432\) 670.066 486.832i 1.55108 1.12692i
\(433\) 162.759 + 118.251i 0.375886 + 0.273097i 0.759648 0.650335i \(-0.225371\pi\)
−0.383761 + 0.923432i \(0.625371\pi\)
\(434\) −337.293 1038.08i −0.777172 2.39189i
\(435\) 143.996 46.7870i 0.331024 0.107556i
\(436\) 780.662 1074.49i 1.79051 2.46442i
\(437\) 304.635 + 419.295i 0.697106 + 0.959484i
\(438\) 164.662 506.778i 0.375941 1.15703i
\(439\) 294.210i 0.670182i −0.942186 0.335091i \(-0.891233\pi\)
0.942186 0.335091i \(-0.108767\pi\)
\(440\) −176.315 + 338.763i −0.400717 + 0.769915i
\(441\) −6.60092 −0.0149681
\(442\) −40.4338 13.1377i −0.0914792 0.0297234i
\(443\) −674.795 + 490.267i −1.52324 + 1.10670i −0.563387 + 0.826193i \(0.690502\pi\)
−0.959853 + 0.280505i \(0.909498\pi\)
\(444\) −1513.54 1099.65i −3.40888 2.47670i
\(445\) 6.75735 + 20.7970i 0.0151851 + 0.0467348i
\(446\) −1128.43 + 366.649i −2.53011 + 0.822084i
\(447\) 211.910 291.670i 0.474072 0.652505i
\(448\) −172.246 237.076i −0.384477 0.529188i
\(449\) 123.808 381.041i 0.275741 0.848645i −0.713281 0.700878i \(-0.752792\pi\)
0.989022 0.147766i \(-0.0472084\pi\)
\(450\) 295.009i 0.655577i
\(451\) −359.613 365.888i −0.797368 0.811282i
\(452\) 1390.04 3.07530
\(453\) −1108.55 360.189i −2.44713 0.795120i
\(454\) 974.596 708.085i 2.14669 1.55966i
\(455\) −17.5931 12.7821i −0.0386661 0.0280925i
\(456\) −653.969 2012.71i −1.43414 4.41384i
\(457\) 389.643 126.603i 0.852610 0.277030i 0.150071 0.988675i \(-0.452050\pi\)
0.702539 + 0.711645i \(0.252050\pi\)
\(458\) −554.462 + 763.151i −1.21062 + 1.66627i
\(459\) 201.626 + 277.515i 0.439273 + 0.604607i
\(460\) −112.098 + 345.003i −0.243692 + 0.750006i
\(461\) 144.172i 0.312738i −0.987699 0.156369i \(-0.950021\pi\)
0.987699 0.156369i \(-0.0499789\pi\)
\(462\) 227.969 1362.94i 0.493439 2.95008i
\(463\) −650.569 −1.40512 −0.702558 0.711627i \(-0.747959\pi\)
−0.702558 + 0.711627i \(0.747959\pi\)
\(464\) 267.261 + 86.8383i 0.575993 + 0.187152i
\(465\) −404.736 + 294.058i −0.870400 + 0.632382i
\(466\) 191.399 + 139.060i 0.410728 + 0.298411i
\(467\) 191.750 + 590.147i 0.410600 + 1.26370i 0.916128 + 0.400887i \(0.131298\pi\)
−0.505528 + 0.862810i \(0.668702\pi\)
\(468\) −185.340 + 60.2206i −0.396026 + 0.128677i
\(469\) −361.431 + 497.467i −0.770641 + 1.06070i
\(470\) 176.680 + 243.179i 0.375915 + 0.517402i
\(471\) −305.088 + 938.963i −0.647744 + 1.99355i
\(472\) 750.513i 1.59007i
\(473\) 1.04643 + 6.99812i 0.00221233 + 0.0147952i
\(474\) 863.910 1.82259
\(475\) −127.729 41.5017i −0.268903 0.0873720i
\(476\) −416.973 + 302.949i −0.875994 + 0.636447i
\(477\) −311.274 226.154i −0.652567 0.474117i
\(478\) −77.7657 239.338i −0.162690 0.500708i
\(479\) 175.919 57.1597i 0.367264 0.119331i −0.119570 0.992826i \(-0.538152\pi\)
0.486834 + 0.873494i \(0.338152\pi\)
\(480\) 80.5548 110.874i 0.167822 0.230988i
\(481\) 35.6652 + 49.0889i 0.0741479 + 0.102056i
\(482\) 409.736 1261.04i 0.850075 2.61626i
\(483\) 688.137i 1.42472i
\(484\) 961.971 + 331.066i 1.98754 + 0.684021i
\(485\) 95.8801 0.197691
\(486\) −355.899 115.638i −0.732302 0.237939i
\(487\) 362.280 263.212i 0.743901 0.540475i −0.150030 0.988681i \(-0.547937\pi\)
0.893930 + 0.448206i \(0.147937\pi\)
\(488\) −299.165 217.356i −0.613044 0.445402i
\(489\) 313.374 + 964.467i 0.640847 + 1.97233i
\(490\) −2.95206 + 0.959182i −0.00602461 + 0.00195751i
\(491\) −262.558 + 361.380i −0.534742 + 0.736009i −0.987844 0.155450i \(-0.950317\pi\)
0.453102 + 0.891459i \(0.350317\pi\)
\(492\) 1169.60 + 1609.82i 2.37724 + 3.27199i
\(493\) −35.9650 + 110.689i −0.0729513 + 0.224521i
\(494\) 130.925i 0.265030i
\(495\) −407.469 + 60.9289i −0.823169 + 0.123089i
\(496\) −928.540 −1.87206
\(497\) −532.825 173.125i −1.07208 0.348340i
\(498\) 5.24703 3.81219i 0.0105362 0.00765500i
\(499\) 243.249 + 176.731i 0.487473 + 0.354170i 0.804212 0.594343i \(-0.202588\pi\)
−0.316739 + 0.948513i \(0.602588\pi\)
\(500\) −29.0483 89.4015i −0.0580966 0.178803i
\(501\) −951.231 + 309.074i −1.89866 + 0.616914i
\(502\) −562.621 + 774.381i −1.12076 + 1.54259i
\(503\) 461.634 + 635.385i 0.917762 + 1.26319i 0.964446 + 0.264281i \(0.0851347\pi\)
−0.0466837 + 0.998910i \(0.514865\pi\)
\(504\) −564.819 + 1738.33i −1.12067 + 3.44908i
\(505\) 285.013i 0.564382i
\(506\) 737.389 + 123.338i 1.45729 + 0.243751i
\(507\) −847.867 −1.67232
\(508\) 646.741 + 210.139i 1.27311 + 0.413659i
\(509\) −582.553 + 423.249i −1.14450 + 0.831531i −0.987740 0.156105i \(-0.950106\pi\)
−0.156764 + 0.987636i \(0.550106\pi\)
\(510\) 282.039 + 204.913i 0.553018 + 0.401791i
\(511\) 64.7432 + 199.259i 0.126699 + 0.389939i
\(512\) −1002.02 + 325.577i −1.95707 + 0.635892i
\(513\) 620.913 854.614i 1.21036 1.66591i
\(514\) 196.197 + 270.042i 0.381706 + 0.525373i
\(515\) 38.5732 118.716i 0.0748995 0.230517i
\(516\) 27.4450i 0.0531880i
\(517\) 299.390 294.255i 0.579091 0.569159i
\(518\) 1085.55 2.09565
\(519\) −458.161 148.866i −0.882777 0.286832i
\(520\) −38.8665 + 28.2382i −0.0747432 + 0.0543041i
\(521\) 584.860 + 424.925i 1.12257 + 0.815596i 0.984597 0.174840i \(-0.0559408\pi\)
0.137974 + 0.990436i \(0.455941\pi\)
\(522\) 243.286 + 748.756i 0.466064 + 1.43440i
\(523\) −603.092 + 195.956i −1.15314 + 0.374678i −0.822325 0.569018i \(-0.807323\pi\)
−0.330814 + 0.943696i \(0.607323\pi\)
\(524\) 1076.75 1482.02i 2.05487 2.82828i
\(525\) 104.813 + 144.263i 0.199644 + 0.274787i
\(526\) 261.654 805.289i 0.497442 1.53097i
\(527\) 384.564i 0.729723i
\(528\) −1042.77 542.731i −1.97495 1.02790i
\(529\) −156.697 −0.296214
\(530\) −172.070 55.9091i −0.324661 0.105489i
\(531\) 655.032 475.909i 1.23358 0.896250i
\(532\) 1284.08 + 932.939i 2.41368 + 1.75364i
\(533\) −19.9430 61.3782i −0.0374165 0.115156i
\(534\) −166.247 + 54.0168i −0.311323 + 0.101155i
\(535\) −52.7613 + 72.6197i −0.0986192 + 0.135738i
\(536\) 798.471 + 1099.00i 1.48968 + 2.05037i
\(537\) −180.010 + 554.013i −0.335213 + 1.03168i
\(538\) 384.373i 0.714447i
\(539\) 1.93452 + 3.87930i 0.00358910 + 0.00719721i
\(540\) 739.379 1.36922
\(541\) −28.3507 9.21172i −0.0524043 0.0170272i 0.282698 0.959209i \(-0.408771\pi\)
−0.335102 + 0.942182i \(0.608771\pi\)
\(542\) 832.655 604.959i 1.53626 1.11616i
\(543\) 124.951 + 90.7825i 0.230113 + 0.167187i
\(544\) 32.5544 + 100.192i 0.0598427 + 0.184177i
\(545\) 335.933 109.151i 0.616390 0.200277i
\(546\) 102.177 140.635i 0.187138 0.257573i
\(547\) −333.214 458.629i −0.609165 0.838444i 0.387343 0.921936i \(-0.373393\pi\)
−0.996509 + 0.0834913i \(0.973393\pi\)
\(548\) −119.286 + 367.123i −0.217675 + 0.669933i
\(549\) 398.933i 0.726655i
\(550\) −173.374 + 86.4581i −0.315226 + 0.157196i
\(551\) 358.411 0.650474
\(552\) −1445.82 469.777i −2.61925 0.851045i
\(553\) −274.806 + 199.658i −0.496937 + 0.361046i
\(554\) 293.933 + 213.555i 0.530564 + 0.385478i
\(555\) −153.752 473.200i −0.277031 0.852613i
\(556\) −1511.48 + 491.111i −2.71849 + 0.883292i
\(557\) −259.771 + 357.544i −0.466375 + 0.641910i −0.975816 0.218596i \(-0.929852\pi\)
0.509440 + 0.860506i \(0.329852\pi\)
\(558\) −1529.06 2104.57i −2.74025 3.77163i
\(559\) −0.275064 + 0.846560i −0.000492065 + 0.00151442i
\(560\) 330.966i 0.591011i
\(561\) 224.777 431.875i 0.400673 0.769831i
\(562\) −1203.48 −2.14142
\(563\) 867.024 + 281.713i 1.54001 + 0.500379i 0.951378 0.308025i \(-0.0996680\pi\)
0.588629 + 0.808403i \(0.299668\pi\)
\(564\) −1317.24 + 957.034i −2.33554 + 1.69687i
\(565\) 299.079 + 217.294i 0.529343 + 0.384590i
\(566\) 22.2128 + 68.3641i 0.0392453 + 0.120785i
\(567\) −326.290 + 106.018i −0.575467 + 0.186981i
\(568\) −727.496 + 1001.31i −1.28080 + 1.76287i
\(569\) 83.3233 + 114.685i 0.146438 + 0.201555i 0.875935 0.482430i \(-0.160246\pi\)
−0.729497 + 0.683984i \(0.760246\pi\)
\(570\) 331.756 1021.04i 0.582028 1.79130i
\(571\) 313.919i 0.549771i 0.961477 + 0.274885i \(0.0886399\pi\)
−0.961477 + 0.274885i \(0.911360\pi\)
\(572\) 89.7085 + 91.2738i 0.156833 + 0.159570i
\(573\) 1696.95 2.96151
\(574\) −1098.09 356.791i −1.91305 0.621588i
\(575\) −78.0505 + 56.7070i −0.135740 + 0.0986209i
\(576\) −565.026 410.515i −0.980948 0.712700i
\(577\) −44.1138 135.768i −0.0764537 0.235300i 0.905525 0.424294i \(-0.139478\pi\)
−0.981978 + 0.188993i \(0.939478\pi\)
\(578\) 713.304 231.767i 1.23409 0.400980i
\(579\) 242.917 334.347i 0.419546 0.577456i
\(580\) 147.453 + 202.952i 0.254230 + 0.349918i
\(581\) −0.788022 + 2.42528i −0.00135632 + 0.00417432i
\(582\) 766.445i 1.31692i
\(583\) −41.6838 + 249.212i −0.0714989 + 0.427464i
\(584\) 462.856 0.792561
\(585\) −49.2914 16.0157i −0.0842587 0.0273773i
\(586\) −283.589 + 206.040i −0.483940 + 0.351603i
\(587\) 663.273 + 481.896i 1.12994 + 0.820947i 0.985686 0.168594i \(-0.0539228\pi\)
0.144251 + 0.989541i \(0.453923\pi\)
\(588\) −5.19567 15.9906i −0.00883617 0.0271949i
\(589\) −1126.31 + 365.961i −1.91225 + 0.621327i
\(590\) 223.789 308.019i 0.379303 0.522065i
\(591\) −540.712 744.227i −0.914911 1.25927i
\(592\) 285.370 878.277i 0.482043 1.48358i
\(593\) 855.267i 1.44227i −0.692793 0.721136i \(-0.743620\pi\)
0.692793 0.721136i \(-0.256380\pi\)
\(594\) −225.355 1507.08i −0.379385 2.53718i
\(595\) −137.073 −0.230375
\(596\) 568.111 + 184.591i 0.953207 + 0.309716i
\(597\) 1332.55 968.157i 2.23208 1.62170i
\(598\) 76.0877 + 55.2810i 0.127237 + 0.0924431i
\(599\) −77.9607 239.938i −0.130151 0.400565i 0.864653 0.502370i \(-0.167538\pi\)
−0.994804 + 0.101805i \(0.967538\pi\)
\(600\) 374.660 121.734i 0.624434 0.202891i
\(601\) −73.8436 + 101.637i −0.122868 + 0.169113i −0.866020 0.500009i \(-0.833330\pi\)
0.743152 + 0.669123i \(0.233330\pi\)
\(602\) 9.36040 + 12.8835i 0.0155488 + 0.0214011i
\(603\) −452.866 + 1393.78i −0.751021 + 2.31141i
\(604\) 1931.27i 3.19746i
\(605\) 155.224 + 221.609i 0.256568 + 0.366296i
\(606\) 2278.33 3.75962
\(607\) 275.319 + 89.4566i 0.453573 + 0.147375i 0.526889 0.849934i \(-0.323358\pi\)
−0.0733160 + 0.997309i \(0.523358\pi\)
\(608\) 262.464 190.691i 0.431684 0.313637i
\(609\) −384.993 279.714i −0.632172 0.459300i
\(610\) −57.9692 178.411i −0.0950315 0.292477i
\(611\) 50.2231 16.3185i 0.0821981 0.0267078i
\(612\) −722.021 + 993.776i −1.17977 + 1.62382i
\(613\) 194.770 + 268.077i 0.317732 + 0.437320i 0.937773 0.347249i \(-0.112884\pi\)
−0.620041 + 0.784569i \(0.712884\pi\)
\(614\) −502.082 + 1545.25i −0.817723 + 2.51669i
\(615\) 529.202i 0.860491i
\(616\) 1187.13 177.513i 1.92717 0.288170i
\(617\) −753.160 −1.22068 −0.610340 0.792139i \(-0.708967\pi\)
−0.610340 + 0.792139i \(0.708967\pi\)
\(618\) 948.991 + 308.346i 1.53558 + 0.498942i
\(619\) 280.470 203.774i 0.453102 0.329198i −0.337717 0.941248i \(-0.609655\pi\)
0.790819 + 0.612050i \(0.209655\pi\)
\(620\) −670.603 487.221i −1.08162 0.785841i
\(621\) −234.493 721.694i −0.377605 1.16215i
\(622\) 1464.28 475.775i 2.35415 0.764911i
\(623\) 40.3985 55.6038i 0.0648451 0.0892517i
\(624\) −86.9222 119.638i −0.139298 0.191728i
\(625\) 7.72542 23.7764i 0.0123607 0.0380423i
\(626\) 294.922i 0.471121i
\(627\) −1478.78 247.345i −2.35850 0.394490i
\(628\) −1635.82 −2.60481
\(629\) 363.747 + 118.189i 0.578295 + 0.187899i
\(630\) −750.146 + 545.013i −1.19071 + 0.865100i
\(631\) −789.719 573.764i −1.25154 0.909293i −0.253225 0.967407i \(-0.581491\pi\)
−0.998310 + 0.0581139i \(0.981491\pi\)
\(632\) 231.892 + 713.689i 0.366917 + 1.12925i
\(633\) 981.119 318.785i 1.54995 0.503609i
\(634\) 68.9829 94.9469i 0.108806 0.149758i
\(635\) 106.303 + 146.313i 0.167406 + 0.230414i
\(636\) 302.847 932.066i 0.476174 1.46551i
\(637\) 0.545315i 0.000856067i
\(638\) 368.737 362.414i 0.577958 0.568046i
\(639\) −1335.24 −2.08957
\(640\) −415.085 134.869i −0.648571 0.210733i
\(641\) 328.612 238.751i 0.512655 0.372466i −0.301175 0.953569i \(-0.597379\pi\)
0.813830 + 0.581103i \(0.197379\pi\)
\(642\) −580.506 421.762i −0.904215 0.656951i
\(643\) 55.6814 + 171.370i 0.0865963 + 0.266516i 0.984973 0.172711i \(-0.0552525\pi\)
−0.898376 + 0.439227i \(0.855253\pi\)
\(644\) 1084.36 352.331i 1.68380 0.547098i
\(645\) 4.29026 5.90504i 0.00665157 0.00915510i
\(646\) 485.076 + 667.649i 0.750891 + 1.03351i
\(647\) −4.54333 + 13.9829i −0.00702215 + 0.0216120i −0.954506 0.298191i \(-0.903617\pi\)
0.947484 + 0.319803i \(0.103617\pi\)
\(648\) 757.934i 1.16965i
\(649\) −471.656 245.482i −0.726743 0.378247i
\(650\) −24.3713 −0.0374943
\(651\) 1495.45 + 485.902i 2.29716 + 0.746394i
\(652\) −1359.35 + 987.628i −2.08490 + 1.51477i
\(653\) −259.719 188.697i −0.397732 0.288969i 0.370885 0.928679i \(-0.379055\pi\)
−0.768617 + 0.639710i \(0.779055\pi\)
\(654\) 872.531 + 2685.37i 1.33415 + 4.10608i
\(655\) 463.345 150.550i 0.707397 0.229847i
\(656\) −577.333 + 794.631i −0.880081 + 1.21133i
\(657\) 293.502 + 403.971i 0.446731 + 0.614872i
\(658\) 291.946 898.519i 0.443688 1.36553i
\(659\) 589.500i 0.894536i 0.894400 + 0.447268i \(0.147603\pi\)
−0.894400 + 0.447268i \(0.852397\pi\)
\(660\) −468.323 939.129i −0.709581 1.42292i
\(661\) −303.814 −0.459628 −0.229814 0.973235i \(-0.573812\pi\)
−0.229814 + 0.973235i \(0.573812\pi\)
\(662\) −529.560 172.065i −0.799940 0.259916i
\(663\) 49.5494 35.9997i 0.0747351 0.0542982i
\(664\) 4.55772 + 3.31138i 0.00686403 + 0.00498701i
\(665\) 130.442 + 401.460i 0.196154 + 0.603699i
\(666\) 2460.57 799.489i 3.69456 1.20043i
\(667\) 151.333 208.293i 0.226887 0.312283i
\(668\) −974.074 1340.70i −1.45819 2.00703i
\(669\) 528.193 1625.61i 0.789526 2.42991i
\(670\) 689.131i 1.02855i
\(671\) −234.449 + 116.915i −0.349403 + 0.174240i
\(672\) −430.750 −0.640997
\(673\) 689.638 + 224.077i 1.02472 + 0.332952i 0.772702 0.634770i \(-0.218905\pi\)
0.252020 + 0.967722i \(0.418905\pi\)
\(674\) −1075.79 + 781.607i −1.59613 + 1.15965i
\(675\) 159.084 + 115.581i 0.235680 + 0.171232i
\(676\) −434.114 1336.07i −0.642180 1.97643i
\(677\) −331.808 + 107.811i −0.490115 + 0.159248i −0.543640 0.839318i \(-0.682954\pi\)
0.0535250 + 0.998567i \(0.482954\pi\)
\(678\) −1737.00 + 2390.77i −2.56194 + 3.52621i
\(679\) −177.133 243.803i −0.260874 0.359062i
\(680\) −93.5768 + 288.000i −0.137613 + 0.423529i
\(681\) 1735.44i 2.54837i
\(682\) −788.716 + 1515.40i −1.15647 + 2.22199i
\(683\) −320.721 −0.469578 −0.234789 0.972046i \(-0.575440\pi\)
−0.234789 + 0.972046i \(0.575440\pi\)
\(684\) 3597.67 + 1168.95i 5.25975 + 1.70900i
\(685\) −83.0549 + 60.3429i −0.121248 + 0.0880918i
\(686\) −973.491 707.283i −1.41908 1.03102i
\(687\) −419.930 1292.41i −0.611252 1.88124i
\(688\) 12.8842 4.18633i 0.0187271 0.00608479i
\(689\) −18.6830 + 25.7150i −0.0271162 + 0.0373222i
\(690\) −453.304 623.919i −0.656962 0.904230i
\(691\) 195.510 601.717i 0.282937 0.870791i −0.704072 0.710128i \(-0.748637\pi\)
0.987009 0.160663i \(-0.0513631\pi\)
\(692\) 798.189i 1.15345i
\(693\) 907.704 + 923.543i 1.30982 + 1.33267i
\(694\) 2363.09 3.40503
\(695\) −401.980 130.611i −0.578389 0.187930i
\(696\) −850.524 + 617.942i −1.22202 + 0.887848i
\(697\) −329.105 239.108i −0.472173 0.343054i
\(698\) −404.679 1245.47i −0.579769 1.78435i
\(699\) −324.139 + 105.319i −0.463718 + 0.150671i
\(700\) −173.664 + 239.028i −0.248091 + 0.341468i
\(701\) 152.233 + 209.530i 0.217165 + 0.298902i 0.903676 0.428218i \(-0.140858\pi\)
−0.686510 + 0.727120i \(0.740858\pi\)
\(702\) 59.2366 182.312i 0.0843826 0.259703i
\(703\) 1177.82i 1.67541i
\(704\) −75.6647 + 452.370i −0.107478 + 0.642571i
\(705\) −433.022 −0.614216
\(706\) −633.209 205.742i −0.896896 0.291419i
\(707\) −724.727 + 526.545i −1.02507 + 0.744759i
\(708\) 1668.47 + 1212.21i 2.35659 + 1.71216i
\(709\) −412.437 1269.35i −0.581716 1.79034i −0.612076 0.790799i \(-0.709665\pi\)
0.0303602 0.999539i \(-0.490335\pi\)
\(710\) −597.145 + 194.024i −0.841049 + 0.273273i
\(711\) −475.848 + 654.948i −0.669265 + 0.921165i
\(712\) −89.2482 122.840i −0.125349 0.172528i
\(713\) −262.887 + 809.084i −0.368706 + 1.13476i
\(714\) 1095.73i 1.53464i
\(715\) 5.03346 + 33.6618i 0.00703980 + 0.0470794i
\(716\) −965.177 −1.34801
\(717\) 344.790 + 112.029i 0.480878 + 0.156247i
\(718\) 178.133 129.421i 0.248096 0.180252i
\(719\) 504.172 + 366.303i 0.701213 + 0.509461i 0.880327 0.474367i \(-0.157323\pi\)
−0.179114 + 0.983828i \(0.557323\pi\)
\(720\) 243.751 + 750.189i 0.338543 + 1.04193i
\(721\) −373.132 + 121.238i −0.517520 + 0.168152i
\(722\) 746.369 1027.29i 1.03375 1.42284i
\(723\) 1122.75 + 1545.33i 1.55290 + 2.13739i
\(724\) −79.0787 + 243.379i −0.109225 + 0.336159i
\(725\) 66.7172i 0.0920238i
\(726\) −1771.50 + 1240.82i −2.44008 + 1.70912i
\(727\) 512.020 0.704292 0.352146 0.935945i \(-0.385452\pi\)
0.352146 + 0.935945i \(0.385452\pi\)
\(728\) 143.607 + 46.6608i 0.197263 + 0.0640946i
\(729\) 791.568 575.108i 1.08583 0.788900i
\(730\) 189.961 + 138.015i 0.260221 + 0.189061i
\(731\) 1.73381 + 5.33613i 0.00237184 + 0.00729976i
\(732\) 966.410 314.006i 1.32023 0.428970i
\(733\) 182.666 251.419i 0.249204 0.342999i −0.666029 0.745926i \(-0.732007\pi\)
0.915232 + 0.402927i \(0.132007\pi\)
\(734\) −622.235 856.433i −0.847732 1.16680i
\(735\) 1.38179 4.25272i 0.00187999 0.00578602i
\(736\) 233.048i 0.316642i
\(737\) 951.831 142.328i 1.29149 0.193117i
\(738\) −2751.77 −3.72869
\(739\) −1161.65 377.444i −1.57192 0.510749i −0.611964 0.790886i \(-0.709620\pi\)
−0.959960 + 0.280137i \(0.909620\pi\)
\(740\) 666.945 484.564i 0.901277 0.654816i
\(741\) −152.589 110.862i −0.205923 0.149612i
\(742\) 175.726 + 540.828i 0.236827 + 0.728878i
\(743\) 971.621 315.699i 1.30770 0.424898i 0.429447 0.903092i \(-0.358709\pi\)
0.878254 + 0.478195i \(0.158709\pi\)
\(744\) 2041.83 2810.34i 2.74439 3.77733i
\(745\) 93.3786 + 128.525i 0.125340 + 0.172516i
\(746\) −333.964 + 1027.83i −0.447672 + 1.37779i
\(747\) 6.07766i 0.00813610i
\(748\) 795.635 + 133.080i 1.06368 + 0.177915i
\(749\) 282.130 0.376675
\(750\) 190.064 + 61.7554i 0.253418 + 0.0823405i
\(751\) −300.333 + 218.205i −0.399911 + 0.290552i −0.769505 0.638641i \(-0.779497\pi\)
0.369594 + 0.929193i \(0.379497\pi\)
\(752\) −650.211 472.406i −0.864643 0.628200i
\(753\) −426.110 1311.43i −0.565883 1.74161i
\(754\) 61.8562 20.0983i 0.0820374 0.0266556i
\(755\) 301.900 415.529i 0.399867 0.550370i
\(756\) −1365.96 1880.08i −1.80683 2.48688i
\(757\) 252.489 777.082i 0.333539 1.02653i −0.633898 0.773417i \(-0.718546\pi\)
0.967437 0.253112i \(-0.0814540\pi\)
\(758\) 1566.15i 2.06616i
\(759\) −768.138 + 754.965i −1.01204 + 0.994683i
\(760\) 932.545 1.22703
\(761\) 284.940 + 92.5825i 0.374428 + 0.121659i 0.490185 0.871619i \(-0.336929\pi\)
−0.115757 + 0.993278i \(0.536929\pi\)
\(762\) −1169.60 + 849.761i −1.53490 + 1.11517i
\(763\) −898.165 652.555i −1.17715 0.855249i
\(764\) 868.849 + 2674.04i 1.13724 + 3.50006i
\(765\) −310.698 + 100.952i −0.406142 + 0.131963i
\(766\) 159.063 218.931i 0.207654 0.285811i
\(767\) −39.3157 54.1135i −0.0512591 0.0705521i
\(768\) 816.585 2513.19i 1.06326 3.27238i
\(769\) 1280.08i 1.66460i 0.554327 + 0.832299i \(0.312976\pi\)
−0.554327 + 0.832299i \(0.687024\pi\)
\(770\) 540.144 + 281.128i 0.701485 + 0.365101i
\(771\) −480.856 −0.623679
\(772\) 651.238 + 211.600i 0.843573 + 0.274093i
\(773\) −530.985 + 385.783i −0.686914 + 0.499072i −0.875644 0.482957i \(-0.839563\pi\)
0.188730 + 0.982029i \(0.439563\pi\)
\(774\) 30.7053 + 22.3087i 0.0396710 + 0.0288227i
\(775\) −68.1227 209.660i −0.0879002 0.270529i
\(776\) −633.172 + 205.730i −0.815943 + 0.265116i
\(777\) −919.200 + 1265.17i −1.18301 + 1.62828i
\(778\) 319.322 + 439.509i 0.410440 + 0.564922i
\(779\) −387.117 + 1191.42i −0.496941 + 1.52943i
\(780\) 132.014i 0.169248i
\(781\) 391.316 + 784.707i 0.501045 + 1.00475i
\(782\) 592.823 0.758086
\(783\) −499.083 162.162i −0.637399 0.207103i
\(784\) 6.71436 4.87827i 0.00856424 0.00622229i
\(785\) −351.961 255.715i −0.448358 0.325751i
\(786\) 1203.46 + 3703.88i 1.53112 + 4.71231i
\(787\) 176.218 57.2567i 0.223911 0.0727531i −0.194913 0.980821i \(-0.562442\pi\)
0.418824 + 0.908067i \(0.362442\pi\)
\(788\) 895.901 1233.10i 1.13693 1.56485i
\(789\) 716.978 + 986.836i 0.908718 + 1.25074i
\(790\) −117.638 + 362.051i −0.148908 + 0.458293i
\(791\) 1161.93i 1.46894i
\(792\) 2560.10 1276.67i 3.23245 1.61195i
\(793\) −32.9567 −0.0415595
\(794\) −836.917 271.931i −1.05405 0.342482i
\(795\) 210.863 153.201i 0.265236 0.192705i
\(796\) 2207.90 + 1604.13i 2.77374 + 2.01524i
\(797\) 218.892 + 673.681i 0.274645 + 0.845272i 0.989313 + 0.145807i \(0.0465780\pi\)
−0.714668 + 0.699464i \(0.753422\pi\)
\(798\) −3209.19 + 1042.73i −4.02154 + 1.30668i
\(799\) 195.652 269.292i 0.244871 0.337036i
\(800\) 35.4966 + 48.8569i 0.0443707 + 0.0610711i
\(801\) 50.6186 155.788i 0.0631942 0.194492i
\(802\) 2400.88i 2.99362i
\(803\) 151.394 290.880i 0.188535 0.362241i
\(804\) −3732.86 −4.64286
\(805\) 288.388 + 93.7029i 0.358246 + 0.116401i
\(806\) −173.862 + 126.318i −0.215710 + 0.156723i
\(807\) −447.973 325.472i −0.555110 0.403311i
\(808\) 611.552 + 1882.16i 0.756871 + 2.32941i
\(809\) 848.378 275.655i 1.04867 0.340735i 0.266527 0.963828i \(-0.414124\pi\)
0.782148 + 0.623093i \(0.214124\pi\)
\(810\) −226.001 + 311.064i −0.279014 + 0.384030i
\(811\) −163.153 224.561i −0.201175 0.276893i 0.696495 0.717561i \(-0.254742\pi\)
−0.897670 + 0.440668i \(0.854742\pi\)
\(812\) 243.653 749.886i 0.300065 0.923505i
\(813\) 1482.69i 1.82372i
\(814\) −1190.97 1211.75i −1.46311 1.48864i
\(815\) −446.865 −0.548301
\(816\) −886.516 288.047i −1.08642 0.352998i
\(817\) 13.9785 10.1560i 0.0171096 0.0124308i
\(818\) −98.4017 71.4930i −0.120295 0.0873997i
\(819\) 50.3384 + 154.926i 0.0614632 + 0.189164i
\(820\) −833.914 + 270.955i −1.01697 + 0.330433i
\(821\) 461.140 634.705i 0.561681 0.773088i −0.429858 0.902897i \(-0.641436\pi\)
0.991539 + 0.129809i \(0.0414363\pi\)
\(822\) −482.368 663.923i −0.586822 0.807692i
\(823\) 327.948 1009.32i 0.398479 1.22639i −0.527740 0.849406i \(-0.676960\pi\)
0.926219 0.376986i \(-0.123040\pi\)
\(824\) 866.742i 1.05187i
\(825\) 46.0426 275.271i 0.0558093 0.333662i
\(826\) −1196.66 −1.44874
\(827\) 809.495 + 263.021i 0.978833 + 0.318042i 0.754376 0.656442i \(-0.227939\pi\)
0.224456 + 0.974484i \(0.427939\pi\)
\(828\) 2198.40 1597.23i 2.65508 1.92903i
\(829\) −429.985 312.403i −0.518680 0.376843i 0.297427 0.954745i \(-0.403872\pi\)
−0.816106 + 0.577902i \(0.803872\pi\)
\(830\) 0.883148 + 2.71805i 0.00106403 + 0.00327476i
\(831\) −497.781 + 161.739i −0.599015 + 0.194632i
\(832\) −33.9135 + 46.6779i −0.0407614 + 0.0561033i
\(833\) 2.02039 + 2.78082i 0.00242543 + 0.00333832i
\(834\) 1044.08 3213.34i 1.25189 3.85293i
\(835\) 440.732i 0.527823i
\(836\) −367.381 2456.90i −0.439451 2.93888i
\(837\) 1733.96 2.07163
\(838\) 1606.31 + 521.921i 1.91684 + 0.622818i
\(839\) 548.789 398.718i 0.654098 0.475230i −0.210566 0.977580i \(-0.567531\pi\)
0.864665 + 0.502349i \(0.167531\pi\)
\(840\) −1001.71 727.784i −1.19251 0.866409i
\(841\) 204.864 + 630.505i 0.243595 + 0.749709i
\(842\) −1218.98 + 396.070i −1.44772 + 0.470392i
\(843\) 1019.06 1402.62i 1.20885 1.66384i
\(844\) 1004.68 + 1382.82i 1.19038 + 1.63842i
\(845\) 115.453 355.328i 0.136631 0.420506i
\(846\) 2251.65i 2.66153i
\(847\) 276.738 804.111i 0.326727 0.949364i
\(848\) 483.758 0.570470
\(849\) −98.4850 31.9997i −0.116001 0.0376910i
\(850\) −124.281 + 90.2954i −0.146213 + 0.106230i
\(851\) −684.494 497.314i −0.804341 0.584388i
\(852\) −1050.98 3234.59i −1.23355 3.79647i
\(853\) −987.480 + 320.852i −1.15766 + 0.376145i −0.824022 0.566558i \(-0.808275\pi\)
−0.333633 + 0.942703i \(0.608275\pi\)
\(854\) −346.566 + 477.007i −0.405815 + 0.558556i
\(855\) 591.338 + 813.906i 0.691623 + 0.951937i
\(856\) 192.604 592.774i 0.225005 0.692494i
\(857\) 912.313i 1.06454i −0.846574 0.532271i \(-0.821339\pi\)
0.846574 0.532271i \(-0.178661\pi\)
\(858\) −269.085 + 40.2364i −0.313619 + 0.0468956i
\(859\) 1634.47 1.90276 0.951381 0.308017i \(-0.0996654\pi\)
0.951381 + 0.308017i \(0.0996654\pi\)
\(860\) 11.5018 + 3.73715i 0.0133742 + 0.00434553i
\(861\) 1345.65 977.671i 1.56289 1.13551i
\(862\) −1271.45 923.765i −1.47500 1.07165i
\(863\) −92.7185 285.358i −0.107437 0.330659i 0.882857 0.469641i \(-0.155617\pi\)
−0.990295 + 0.138983i \(0.955617\pi\)
\(864\) −451.755 + 146.784i −0.522865 + 0.169889i
\(865\) 124.775 171.737i 0.144248 0.198540i
\(866\) −416.536 573.313i −0.480989 0.662024i
\(867\) −333.882 + 1027.58i −0.385100 + 1.18522i
\(868\) 2605.31i 3.00151i
\(869\) 524.363 + 87.7064i 0.603410 + 0.100928i
\(870\) −533.323 −0.613015
\(871\) 115.143 + 37.4121i 0.132196 + 0.0429531i
\(872\) −1984.22 + 1441.62i −2.27548 + 1.65324i
\(873\) −581.058 422.163i −0.665588 0.483578i
\(874\) −564.146 1736.26i −0.645476 1.98657i
\(875\) −74.7307 + 24.2815i −0.0854065 + 0.0277502i
\(876\) −747.594 + 1028.98i −0.853418 + 1.17463i
\(877\) −545.422 750.709i −0.621918 0.855997i 0.375573 0.926793i \(-0.377446\pi\)
−0.997491 + 0.0707963i \(0.977446\pi\)
\(878\) −320.249 + 985.624i −0.364748 + 1.12258i
\(879\) 504.980i 0.574493i
\(880\) 369.443 363.107i 0.419822 0.412622i
\(881\) −672.698 −0.763562 −0.381781 0.924253i \(-0.624689\pi\)
−0.381781 + 0.924253i \(0.624689\pi\)
\(882\) 22.1135 + 7.18513i 0.0250720 + 0.00814640i
\(883\) −297.083 + 215.844i −0.336448 + 0.244443i −0.743161 0.669112i \(-0.766675\pi\)
0.406714 + 0.913556i \(0.366675\pi\)
\(884\) 82.0978 + 59.6476i 0.0928708 + 0.0674746i
\(885\) 169.490 + 521.636i 0.191514 + 0.589419i
\(886\) 2794.27 907.913i 3.15380 1.02473i
\(887\) −59.0634 + 81.2937i −0.0665878 + 0.0916502i −0.841012 0.541016i \(-0.818040\pi\)
0.774424 + 0.632667i \(0.218040\pi\)
\(888\) 2030.69 + 2795.01i 2.28681 + 3.14753i
\(889\) 175.655 540.611i 0.197587 0.608111i
\(890\) 77.0268i 0.0865470i
\(891\) 476.320 + 247.910i 0.534590 + 0.278237i
\(892\) 2832.07 3.17497
\(893\) −974.890 316.761i −1.09170 0.354715i
\(894\) −1027.40 + 746.449i −1.14922 + 0.834954i
\(895\) −207.666 150.878i −0.232030 0.168579i
\(896\) 423.902 + 1304.64i 0.473105 + 1.45607i
\(897\) −128.856 + 41.8679i −0.143652 + 0.0466755i
\(898\) −829.530 + 1141.75i −0.923753 + 1.27144i
\(899\) 345.801 + 475.954i 0.384650 + 0.529426i
\(900\) −217.598 + 669.696i −0.241775 + 0.744107i
\(901\) 200.353i 0.222368i
\(902\) 806.459 + 1617.19i 0.894079 + 1.79290i
\(903\) −22.9413 −0.0254056
\(904\) −2441.30 793.226i −2.70055 0.877462i
\(905\) −55.0600 + 40.0034i −0.0608398 + 0.0442027i
\(906\) 3321.65 + 2413.32i 3.66628 + 2.66371i
\(907\) 273.782 + 842.615i 0.301855 + 0.929014i 0.980832 + 0.194854i \(0.0624234\pi\)
−0.678977 + 0.734159i \(0.737577\pi\)
\(908\) −2734.69 + 888.556i −3.01178 + 0.978586i
\(909\) −1254.92 + 1727.25i −1.38055 + 1.90016i
\(910\) 45.0246 + 61.9711i 0.0494776 + 0.0681001i
\(911\) −140.808 + 433.363i −0.154564 + 0.475700i −0.998116 0.0613472i \(-0.980460\pi\)
0.843552 + 0.537047i \(0.180460\pi\)
\(912\) 2870.55i 3.14753i
\(913\) 3.57179 1.78117i 0.00391214 0.00195090i
\(914\) −1443.14 −1.57893
\(915\) 257.018 + 83.5101i 0.280894 + 0.0912679i
\(916\) 1821.57 1323.45i 1.98862 1.44481i
\(917\) −1238.82 900.055i −1.35095 0.981522i
\(918\) −373.386 1149.16i −0.406739 1.25181i
\(919\) 432.307 140.465i 0.470410 0.152845i −0.0642130 0.997936i \(-0.520454\pi\)
0.534623 + 0.845091i \(0.320454\pi\)
\(920\) 393.752 541.954i 0.427992 0.589080i
\(921\) −1375.79 1893.62i −1.49380 2.05604i
\(922\) −156.932 + 482.987i −0.170208 + 0.523848i
\(923\) 110.307i 0.119509i
\(924\) −1522.80 + 2925.83i −1.64806 + 3.16649i
\(925\) 219.247 0.237024
\(926\) 2179.45 + 708.147i 2.35362 + 0.764737i
\(927\) −756.475 + 549.611i −0.816046 + 0.592892i
\(928\) −130.384 94.7294i −0.140500 0.102079i
\(929\) −513.395 1580.07i −0.552632 1.70083i −0.702115 0.712063i \(-0.747761\pi\)
0.149483 0.988764i \(-0.452239\pi\)
\(930\) 1675.98 544.558i 1.80213 0.585546i
\(931\) 6.22183 8.56362i 0.00668296 0.00919830i
\(932\) −331.923 456.852i −0.356140 0.490185i
\(933\) −685.399 + 2109.44i −0.734618 + 2.26092i
\(934\) 2185.75i 2.34021i
\(935\) 150.385 + 153.009i 0.160839 + 0.163646i
\(936\) 359.874 0.384481
\(937\) −222.178 72.1899i −0.237116 0.0770437i 0.188049 0.982160i \(-0.439784\pi\)
−0.425165 + 0.905116i \(0.639784\pi\)
\(938\) 1752.31 1273.13i 1.86814 1.35728i
\(939\) 343.722 + 249.728i 0.366051 + 0.265951i
\(940\) −221.711 682.355i −0.235862 0.725909i
\(941\) 123.774 40.2166i 0.131535 0.0427382i −0.242510 0.970149i \(-0.577971\pi\)
0.374045 + 0.927411i \(0.377971\pi\)
\(942\) 2044.13 2813.50i 2.16999 2.98673i
\(943\) 528.949 + 728.035i 0.560921 + 0.772042i
\(944\) −314.579 + 968.176i −0.333241 + 1.02561i
\(945\) 618.047i 0.654018i
\(946\) 4.11186 24.5832i 0.00434658 0.0259865i
\(947\) −494.426 −0.522097 −0.261049 0.965326i \(-0.584068\pi\)
−0.261049 + 0.965326i \(0.584068\pi\)
\(948\) −1961.15 637.216i −2.06872 0.672168i
\(949\) 33.3728 24.2468i 0.0351663 0.0255498i
\(950\) 382.727 + 278.067i 0.402870 + 0.292702i
\(951\) 52.2453 + 160.795i 0.0549372 + 0.169079i
\(952\) 905.200 294.117i 0.950841 0.308947i
\(953\) 118.233 162.733i 0.124064 0.170759i −0.742467 0.669882i \(-0.766345\pi\)
0.866531 + 0.499123i \(0.166345\pi\)
\(954\) 796.621 + 1096.46i 0.835033 + 1.14932i
\(955\) −231.071 + 711.165i −0.241960 + 0.744675i
\(956\) 600.678i 0.628324i
\(957\) 110.148 + 736.629i 0.115098 + 0.769727i
\(958\) −651.561 −0.680127
\(959\) 306.878 + 99.7108i 0.319998 + 0.103974i
\(960\) 382.759 278.090i 0.398707 0.289678i
\(961\) −795.200 577.746i −0.827471 0.601193i
\(962\) −66.0474 203.273i −0.0686563 0.211302i
\(963\) 639.494 207.784i 0.664064 0.215768i
\(964\) −1860.27 + 2560.44i −1.92974 + 2.65606i
\(965\) 107.042 + 147.331i 0.110924 + 0.152674i
\(966\) −749.040 + 2305.31i −0.775404 + 2.38645i
\(967\) 1141.38i 1.18034i 0.807281 + 0.590168i \(0.200938\pi\)
−0.807281 + 0.590168i \(0.799062\pi\)
\(968\) −1500.57 1130.40i −1.55018 1.16776i
\(969\) −1188.87 −1.22690
\(970\) −321.205 104.366i −0.331139 0.107594i
\(971\) −104.856 + 76.1826i −0.107988 + 0.0784578i −0.640469 0.767984i \(-0.721260\pi\)
0.532481 + 0.846442i \(0.321260\pi\)
\(972\) 722.625 + 525.018i 0.743442 + 0.540142i
\(973\) 410.519 + 1263.45i 0.421911 + 1.29851i
\(974\) −1500.17 + 487.434i −1.54021 + 0.500446i
\(975\) 20.6367 28.4039i 0.0211658 0.0291322i
\(976\) 294.823 + 405.790i 0.302073 + 0.415768i
\(977\) −293.806 + 904.243i −0.300723 + 0.925530i 0.680516 + 0.732734i \(0.261756\pi\)
−0.981239 + 0.192797i \(0.938244\pi\)
\(978\) 3572.14i 3.65250i
\(979\) −106.390 + 15.9085i −0.108672 + 0.0162498i
\(980\) 7.40891 0.00756011
\(981\) −2516.43 817.639i −2.56517 0.833475i
\(982\) 1272.95 924.855i 1.29629 0.941807i
\(983\) 578.345 + 420.192i 0.588347 + 0.427459i 0.841724 0.539908i \(-0.181541\pi\)
−0.253377 + 0.967368i \(0.581541\pi\)
\(984\) −1135.51 3494.73i −1.15397 3.55156i
\(985\) 385.522 125.264i 0.391393 0.127171i
\(986\) 240.970 331.667i 0.244392 0.336377i
\(987\) 799.984 + 1101.08i 0.810521 + 1.11559i
\(988\) 96.5696 297.211i 0.0977425 0.300821i
\(989\) 12.4119i 0.0125500i
\(990\) 1431.37 + 239.415i 1.44583 + 0.241833i
\(991\) −143.520 −0.144823 −0.0724117 0.997375i \(-0.523070\pi\)
−0.0724117 + 0.997375i \(0.523070\pi\)
\(992\) 506.458 + 164.558i 0.510543 + 0.165885i
\(993\) 648.946 471.487i 0.653521 0.474811i
\(994\) 1596.55 + 1159.96i 1.60619 + 1.16697i
\(995\) 224.287 + 690.286i 0.225414 + 0.693754i
\(996\) −14.7231 + 4.78381i −0.0147822 + 0.00480302i
\(997\) −748.896 + 1030.77i −0.751149 + 1.03387i 0.246750 + 0.969079i \(0.420637\pi\)
−0.997899 + 0.0647888i \(0.979363\pi\)
\(998\) −622.530 856.839i −0.623777 0.858556i
\(999\) −532.899 + 1640.10i −0.533433 + 1.64174i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 55.3.i.c.46.1 yes 12
5.2 odd 4 275.3.q.e.24.6 24
5.3 odd 4 275.3.q.e.24.1 24
5.4 even 2 275.3.x.g.101.3 12
11.4 even 5 605.3.c.c.241.1 12
11.6 odd 10 inner 55.3.i.c.6.1 12
11.7 odd 10 605.3.c.c.241.12 12
55.17 even 20 275.3.q.e.149.1 24
55.28 even 20 275.3.q.e.149.6 24
55.39 odd 10 275.3.x.g.226.3 12
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
55.3.i.c.6.1 12 11.6 odd 10 inner
55.3.i.c.46.1 yes 12 1.1 even 1 trivial
275.3.q.e.24.1 24 5.3 odd 4
275.3.q.e.24.6 24 5.2 odd 4
275.3.q.e.149.1 24 55.17 even 20
275.3.q.e.149.6 24 55.28 even 20
275.3.x.g.101.3 12 5.4 even 2
275.3.x.g.226.3 12 55.39 odd 10
605.3.c.c.241.1 12 11.4 even 5
605.3.c.c.241.12 12 11.7 odd 10