Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [55,4,Mod(16,55)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(55, base_ring=CyclotomicField(10))
chi = DirichletCharacter(H, H._module([0, 4]))
N = Newforms(chi, 4, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("55.16");
S:= CuspForms(chi, 4);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 55 = 5 \cdot 11 \) |
Weight: | \( k \) | \(=\) | \( 4 \) |
Character orbit: | \([\chi]\) | \(=\) | 55.g (of order \(5\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(3.24510505032\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(6\) over \(\Q(\zeta_{5})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{5}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
16.1 | −1.43124 | − | 4.40490i | 6.70801 | + | 4.87365i | −10.8826 | + | 7.90666i | 1.54508 | − | 4.75528i | 11.8672 | − | 36.5235i | 24.3122 | − | 17.6639i | 20.4274 | + | 14.8414i | 12.9014 | + | 39.7065i | −23.1579 | ||
16.2 | −1.41210 | − | 4.34600i | −5.83785 | − | 4.24145i | −10.4216 | + | 7.57173i | 1.54508 | − | 4.75528i | −10.1897 | + | 31.3607i | 6.50661 | − | 4.72733i | 18.0477 | + | 13.1124i | 7.74716 | + | 23.8433i | −22.8483 | ||
16.3 | −0.513572 | − | 1.58061i | −1.60233 | − | 1.16416i | 4.23755 | − | 3.07876i | 1.54508 | − | 4.75528i | −1.01717 | + | 3.13054i | −7.13418 | + | 5.18329i | −17.7990 | − | 12.9317i | −7.13127 | − | 21.9478i | −8.30978 | ||
16.4 | 0.267133 | + | 0.822150i | 4.45886 | + | 3.23955i | 5.86756 | − | 4.26304i | 1.54508 | − | 4.75528i | −1.47229 | + | 4.53124i | −2.26519 | + | 1.64576i | 10.6672 | + | 7.75016i | 1.04327 | + | 3.21086i | 4.32230 | ||
16.5 | 0.849844 | + | 2.61555i | −5.86409 | − | 4.26051i | 0.353259 | − | 0.256657i | 1.54508 | − | 4.75528i | 6.16003 | − | 18.9586i | 24.9835 | − | 18.1516i | 18.7709 | + | 13.6378i | 7.89215 | + | 24.2895i | 13.7508 | ||
16.6 | 1.50387 | + | 4.62843i | 4.25544 | + | 3.09176i | −12.6886 | + | 9.21884i | 1.54508 | − | 4.75528i | −7.91037 | + | 24.3456i | 4.59294 | − | 3.33697i | −30.2534 | − | 21.9804i | 0.206327 | + | 0.635008i | 24.3331 | ||
26.1 | −2.96806 | − | 2.15642i | −0.538187 | + | 1.65637i | 1.68708 | + | 5.19231i | −4.04508 | + | 2.93893i | 5.16920 | − | 3.75564i | 2.95786 | + | 9.10335i | −2.88014 | + | 8.86415i | 19.3895 | + | 14.0873i | 18.3436 | ||
26.2 | −1.81555 | − | 1.31908i | 1.43526 | − | 4.41727i | −0.915867 | − | 2.81875i | −4.04508 | + | 2.93893i | −8.43250 | + | 6.12657i | −4.84499 | − | 14.9113i | −7.60317 | + | 23.4002i | 4.39116 | + | 3.19036i | 11.2207 | ||
26.3 | −0.542122 | − | 0.393874i | −3.01008 | + | 9.26408i | −2.33338 | − | 7.18140i | −4.04508 | + | 2.93893i | 5.28071 | − | 3.83666i | −6.58487 | − | 20.2662i | −3.22017 | + | 9.91067i | −54.9190 | − | 39.9010i | 3.35050 | ||
26.4 | 1.81396 | + | 1.31792i | 2.45444 | − | 7.55399i | −0.918588 | − | 2.82712i | −4.04508 | + | 2.93893i | 14.4078 | − | 10.4679i | −0.510862 | − | 1.57227i | 7.60263 | − | 23.3985i | −29.1951 | − | 21.2115i | −11.2109 | ||
26.5 | 2.85482 | + | 2.07415i | −1.54064 | + | 4.74160i | 1.37577 | + | 4.23419i | −4.04508 | + | 2.93893i | −14.2330 | + | 10.3409i | 6.81120 | + | 20.9627i | 3.86880 | − | 11.9069i | 1.73428 | + | 1.26003i | −17.6438 | ||
26.6 | 4.39302 | + | 3.19171i | 1.08117 | − | 3.32751i | 6.63942 | + | 20.4340i | −4.04508 | + | 2.93893i | 15.3701 | − | 11.1670i | −8.32426 | − | 25.6195i | −22.6286 | + | 69.6437i | 11.9401 | + | 8.67497i | −27.1503 | ||
31.1 | −1.43124 | + | 4.40490i | 6.70801 | − | 4.87365i | −10.8826 | − | 7.90666i | 1.54508 | + | 4.75528i | 11.8672 | + | 36.5235i | 24.3122 | + | 17.6639i | 20.4274 | − | 14.8414i | 12.9014 | − | 39.7065i | −23.1579 | ||
31.2 | −1.41210 | + | 4.34600i | −5.83785 | + | 4.24145i | −10.4216 | − | 7.57173i | 1.54508 | + | 4.75528i | −10.1897 | − | 31.3607i | 6.50661 | + | 4.72733i | 18.0477 | − | 13.1124i | 7.74716 | − | 23.8433i | −22.8483 | ||
31.3 | −0.513572 | + | 1.58061i | −1.60233 | + | 1.16416i | 4.23755 | + | 3.07876i | 1.54508 | + | 4.75528i | −1.01717 | − | 3.13054i | −7.13418 | − | 5.18329i | −17.7990 | + | 12.9317i | −7.13127 | + | 21.9478i | −8.30978 | ||
31.4 | 0.267133 | − | 0.822150i | 4.45886 | − | 3.23955i | 5.86756 | + | 4.26304i | 1.54508 | + | 4.75528i | −1.47229 | − | 4.53124i | −2.26519 | − | 1.64576i | 10.6672 | − | 7.75016i | 1.04327 | − | 3.21086i | 4.32230 | ||
31.5 | 0.849844 | − | 2.61555i | −5.86409 | + | 4.26051i | 0.353259 | + | 0.256657i | 1.54508 | + | 4.75528i | 6.16003 | + | 18.9586i | 24.9835 | + | 18.1516i | 18.7709 | − | 13.6378i | 7.89215 | − | 24.2895i | 13.7508 | ||
31.6 | 1.50387 | − | 4.62843i | 4.25544 | − | 3.09176i | −12.6886 | − | 9.21884i | 1.54508 | + | 4.75528i | −7.91037 | − | 24.3456i | 4.59294 | + | 3.33697i | −30.2534 | + | 21.9804i | 0.206327 | − | 0.635008i | 24.3331 | ||
36.1 | −2.96806 | + | 2.15642i | −0.538187 | − | 1.65637i | 1.68708 | − | 5.19231i | −4.04508 | − | 2.93893i | 5.16920 | + | 3.75564i | 2.95786 | − | 9.10335i | −2.88014 | − | 8.86415i | 19.3895 | − | 14.0873i | 18.3436 | ||
36.2 | −1.81555 | + | 1.31908i | 1.43526 | + | 4.41727i | −0.915867 | + | 2.81875i | −4.04508 | − | 2.93893i | −8.43250 | − | 6.12657i | −4.84499 | + | 14.9113i | −7.60317 | − | 23.4002i | 4.39116 | − | 3.19036i | 11.2207 | ||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
11.c | even | 5 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 55.4.g.b | ✓ | 24 |
11.c | even | 5 | 1 | inner | 55.4.g.b | ✓ | 24 |
11.c | even | 5 | 1 | 605.4.a.p | 12 | ||
11.d | odd | 10 | 1 | 605.4.a.t | 12 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
55.4.g.b | ✓ | 24 | 1.a | even | 1 | 1 | trivial |
55.4.g.b | ✓ | 24 | 11.c | even | 5 | 1 | inner |
605.4.a.p | 12 | 11.c | even | 5 | 1 | ||
605.4.a.t | 12 | 11.d | odd | 10 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{2}^{24} - 6 T_{2}^{23} + 60 T_{2}^{22} - 290 T_{2}^{21} + 1977 T_{2}^{20} - 6286 T_{2}^{19} + \cdots + 9305303296 \) acting on \(S_{4}^{\mathrm{new}}(55, [\chi])\).