Properties

Label 550.2.bh.b.57.1
Level $550$
Weight $2$
Character 550.57
Analytic conductor $4.392$
Analytic rank $0$
Dimension $48$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(7,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(20))
 
chi = DirichletCharacter(H, H._module([5, 14]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.7");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.bh (of order \(20\), degree \(8\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(48\)
Relative dimension: \(6\) over \(\Q(\zeta_{20})\)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{20}]$

Embedding invariants

Embedding label 57.1
Character \(\chi\) \(=\) 550.57
Dual form 550.2.bh.b.193.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.453990 - 0.891007i) q^{2} +(-0.256351 + 1.61854i) q^{3} +(-0.587785 + 0.809017i) q^{4} +(1.55851 - 0.506390i) q^{6} +(0.753160 - 0.119289i) q^{7} +(0.987688 + 0.156434i) q^{8} +(0.299227 + 0.0972249i) q^{9} +(-1.49880 + 2.95865i) q^{11} +(-1.15874 - 1.15874i) q^{12} +(0.760418 - 0.387452i) q^{13} +(-0.448214 - 0.616914i) q^{14} +(-0.309017 - 0.951057i) q^{16} +(1.29037 + 0.657479i) q^{17} +(-0.0492184 - 0.310753i) q^{18} +(-4.09783 + 2.97724i) q^{19} +1.24960i q^{21} +(3.31662 - 0.00776159i) q^{22} +(1.65567 - 1.65567i) q^{23} +(-0.506390 + 1.55851i) q^{24} +(-0.690445 - 0.501638i) q^{26} +(-2.46595 + 4.83969i) q^{27} +(-0.346189 + 0.679435i) q^{28} +(-0.552936 - 0.401731i) q^{29} +(-1.08804 + 3.34864i) q^{31} +(-0.707107 + 0.707107i) q^{32} +(-4.40446 - 3.18431i) q^{33} -1.44822i q^{34} +(-0.254538 + 0.184933i) q^{36} +(1.26983 + 8.01741i) q^{37} +(4.51312 + 2.29955i) q^{38} +(0.432172 + 1.33009i) q^{39} +(7.30492 + 10.0544i) q^{41} +(1.11340 - 0.567304i) q^{42} +(7.61267 + 7.61267i) q^{43} +(-1.51263 - 2.95160i) q^{44} +(-2.22687 - 0.723555i) q^{46} +(-12.5361 - 1.98553i) q^{47} +(1.61854 - 0.256351i) q^{48} +(-6.10438 + 1.98343i) q^{49} +(-1.39494 + 1.91997i) q^{51} +(-0.133507 + 0.842930i) q^{52} +(-3.72862 - 7.31784i) q^{53} +5.43171 q^{54} +0.762548 q^{56} +(-3.76830 - 7.39570i) q^{57} +(-0.106918 + 0.675052i) q^{58} +(0.254349 - 0.350081i) q^{59} +(12.0627 - 3.91939i) q^{61} +(3.47761 - 0.550800i) q^{62} +(0.236964 + 0.0375314i) q^{63} +(0.951057 + 0.309017i) q^{64} +(-0.837655 + 5.37005i) q^{66} +(3.82631 + 3.82631i) q^{67} +(-1.29037 + 0.657479i) q^{68} +(2.25533 + 3.10420i) q^{69} +(-2.45595 - 7.55864i) q^{71} +(0.280334 + 0.142837i) q^{72} +(0.179057 + 1.13052i) q^{73} +(6.56708 - 4.77126i) q^{74} -5.06519i q^{76} +(-0.775899 + 2.40712i) q^{77} +(0.988915 - 0.988915i) q^{78} +(3.11720 - 9.59376i) q^{79} +(-6.43745 - 4.67708i) q^{81} +(5.64213 - 11.0733i) q^{82} +(0.108440 - 0.212826i) q^{83} +(-1.01094 - 0.734494i) q^{84} +(3.32686 - 10.2390i) q^{86} +(0.791962 - 0.791962i) q^{87} +(-1.94318 + 2.68776i) q^{88} -11.2102i q^{89} +(0.526498 - 0.382523i) q^{91} +(0.366287 + 2.31265i) q^{92} +(-5.14097 - 2.61945i) q^{93} +(3.92217 + 12.0712i) q^{94} +(-0.963210 - 1.32575i) q^{96} +(12.6763 - 6.45889i) q^{97} +(4.53858 + 4.53858i) q^{98} +(-0.736135 + 0.739589i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 48 q + 4 q^{3} + 20 q^{7} + 12 q^{11} + 16 q^{12} + 12 q^{16} + 20 q^{17} + 4 q^{22} + 8 q^{23} + 8 q^{26} - 8 q^{27} + 20 q^{28} + 16 q^{31} + 104 q^{33} - 4 q^{36} - 20 q^{37} + 36 q^{38} - 20 q^{41}+ \cdots - 72 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{10}\right)\) \(e\left(\frac{1}{4}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.453990 0.891007i −0.321020 0.630037i
\(3\) −0.256351 + 1.61854i −0.148004 + 0.934462i 0.796184 + 0.605055i \(0.206849\pi\)
−0.944188 + 0.329407i \(0.893151\pi\)
\(4\) −0.587785 + 0.809017i −0.293893 + 0.404508i
\(5\) 0 0
\(6\) 1.55851 0.506390i 0.636258 0.206733i
\(7\) 0.753160 0.119289i 0.284668 0.0450869i −0.0124678 0.999922i \(-0.503969\pi\)
0.297135 + 0.954835i \(0.403969\pi\)
\(8\) 0.987688 + 0.156434i 0.349201 + 0.0553079i
\(9\) 0.299227 + 0.0972249i 0.0997424 + 0.0324083i
\(10\) 0 0
\(11\) −1.49880 + 2.95865i −0.451904 + 0.892067i
\(12\) −1.15874 1.15874i −0.334500 0.334500i
\(13\) 0.760418 0.387452i 0.210902 0.107460i −0.345349 0.938474i \(-0.612239\pi\)
0.556251 + 0.831014i \(0.312239\pi\)
\(14\) −0.448214 0.616914i −0.119790 0.164877i
\(15\) 0 0
\(16\) −0.309017 0.951057i −0.0772542 0.237764i
\(17\) 1.29037 + 0.657479i 0.312962 + 0.159462i 0.603415 0.797427i \(-0.293806\pi\)
−0.290453 + 0.956889i \(0.593806\pi\)
\(18\) −0.0492184 0.310753i −0.0116009 0.0732451i
\(19\) −4.09783 + 2.97724i −0.940106 + 0.683027i −0.948446 0.316939i \(-0.897345\pi\)
0.00834049 + 0.999965i \(0.497345\pi\)
\(20\) 0 0
\(21\) 1.24960i 0.272684i
\(22\) 3.31662 0.00776159i 0.707105 0.00165478i
\(23\) 1.65567 1.65567i 0.345231 0.345231i −0.513098 0.858330i \(-0.671502\pi\)
0.858330 + 0.513098i \(0.171502\pi\)
\(24\) −0.506390 + 1.55851i −0.103366 + 0.318129i
\(25\) 0 0
\(26\) −0.690445 0.501638i −0.135407 0.0983793i
\(27\) −2.46595 + 4.83969i −0.474572 + 0.931399i
\(28\) −0.346189 + 0.679435i −0.0654237 + 0.128401i
\(29\) −0.552936 0.401731i −0.102678 0.0745996i 0.535262 0.844686i \(-0.320213\pi\)
−0.637939 + 0.770087i \(0.720213\pi\)
\(30\) 0 0
\(31\) −1.08804 + 3.34864i −0.195417 + 0.601433i 0.804554 + 0.593879i \(0.202404\pi\)
−0.999971 + 0.00755335i \(0.997596\pi\)
\(32\) −0.707107 + 0.707107i −0.125000 + 0.125000i
\(33\) −4.40446 3.18431i −0.766719 0.554317i
\(34\) 1.44822i 0.248368i
\(35\) 0 0
\(36\) −0.254538 + 0.184933i −0.0424230 + 0.0308221i
\(37\) 1.26983 + 8.01741i 0.208759 + 1.31805i 0.840050 + 0.542509i \(0.182525\pi\)
−0.631291 + 0.775546i \(0.717475\pi\)
\(38\) 4.51312 + 2.29955i 0.732124 + 0.373036i
\(39\) 0.432172 + 1.33009i 0.0692029 + 0.212985i
\(40\) 0 0
\(41\) 7.30492 + 10.0544i 1.14084 + 1.57023i 0.765624 + 0.643288i \(0.222430\pi\)
0.375212 + 0.926939i \(0.377570\pi\)
\(42\) 1.11340 0.567304i 0.171801 0.0875370i
\(43\) 7.61267 + 7.61267i 1.16092 + 1.16092i 0.984274 + 0.176647i \(0.0565249\pi\)
0.176647 + 0.984274i \(0.443475\pi\)
\(44\) −1.51263 2.95160i −0.228037 0.444971i
\(45\) 0 0
\(46\) −2.22687 0.723555i −0.328335 0.106682i
\(47\) −12.5361 1.98553i −1.82858 0.289619i −0.855114 0.518440i \(-0.826513\pi\)
−0.973468 + 0.228821i \(0.926513\pi\)
\(48\) 1.61854 0.256351i 0.233616 0.0370011i
\(49\) −6.10438 + 1.98343i −0.872054 + 0.283347i
\(50\) 0 0
\(51\) −1.39494 + 1.91997i −0.195331 + 0.268850i
\(52\) −0.133507 + 0.842930i −0.0185141 + 0.116893i
\(53\) −3.72862 7.31784i −0.512166 1.00518i −0.991810 0.127719i \(-0.959234\pi\)
0.479644 0.877463i \(-0.340766\pi\)
\(54\) 5.43171 0.739163
\(55\) 0 0
\(56\) 0.762548 0.101900
\(57\) −3.76830 7.39570i −0.499123 0.979584i
\(58\) −0.106918 + 0.675052i −0.0140390 + 0.0886386i
\(59\) 0.254349 0.350081i 0.0331134 0.0455767i −0.792139 0.610340i \(-0.791033\pi\)
0.825253 + 0.564764i \(0.191033\pi\)
\(60\) 0 0
\(61\) 12.0627 3.91939i 1.54446 0.501827i 0.591860 0.806040i \(-0.298394\pi\)
0.952604 + 0.304214i \(0.0983937\pi\)
\(62\) 3.47761 0.550800i 0.441657 0.0699517i
\(63\) 0.236964 + 0.0375314i 0.0298546 + 0.00472851i
\(64\) 0.951057 + 0.309017i 0.118882 + 0.0386271i
\(65\) 0 0
\(66\) −0.837655 + 5.37005i −0.103108 + 0.661008i
\(67\) 3.82631 + 3.82631i 0.467458 + 0.467458i 0.901090 0.433632i \(-0.142768\pi\)
−0.433632 + 0.901090i \(0.642768\pi\)
\(68\) −1.29037 + 0.657479i −0.156481 + 0.0797310i
\(69\) 2.25533 + 3.10420i 0.271510 + 0.373701i
\(70\) 0 0
\(71\) −2.45595 7.55864i −0.291468 0.897045i −0.984385 0.176028i \(-0.943675\pi\)
0.692918 0.721017i \(-0.256325\pi\)
\(72\) 0.280334 + 0.142837i 0.0330377 + 0.0168335i
\(73\) 0.179057 + 1.13052i 0.0209571 + 0.132318i 0.995949 0.0899243i \(-0.0286625\pi\)
−0.974992 + 0.222242i \(0.928663\pi\)
\(74\) 6.56708 4.77126i 0.763407 0.554648i
\(75\) 0 0
\(76\) 5.06519i 0.581017i
\(77\) −0.775899 + 2.40712i −0.0884219 + 0.274317i
\(78\) 0.988915 0.988915i 0.111973 0.111973i
\(79\) 3.11720 9.59376i 0.350713 1.07938i −0.607741 0.794135i \(-0.707924\pi\)
0.958454 0.285247i \(-0.0920757\pi\)
\(80\) 0 0
\(81\) −6.43745 4.67708i −0.715273 0.519676i
\(82\) 5.64213 11.0733i 0.623070 1.22284i
\(83\) 0.108440 0.212826i 0.0119029 0.0233607i −0.884979 0.465632i \(-0.845827\pi\)
0.896881 + 0.442271i \(0.145827\pi\)
\(84\) −1.01094 0.734494i −0.110303 0.0801398i
\(85\) 0 0
\(86\) 3.32686 10.2390i 0.358744 1.10410i
\(87\) 0.791962 0.791962i 0.0849073 0.0849073i
\(88\) −1.94318 + 2.68776i −0.207144 + 0.286516i
\(89\) 11.2102i 1.18828i −0.804361 0.594141i \(-0.797492\pi\)
0.804361 0.594141i \(-0.202508\pi\)
\(90\) 0 0
\(91\) 0.526498 0.382523i 0.0551919 0.0400993i
\(92\) 0.366287 + 2.31265i 0.0381881 + 0.241110i
\(93\) −5.14097 2.61945i −0.533093 0.271625i
\(94\) 3.92217 + 12.0712i 0.404540 + 1.24505i
\(95\) 0 0
\(96\) −0.963210 1.32575i −0.0983072 0.135308i
\(97\) 12.6763 6.45889i 1.28708 0.655800i 0.329552 0.944137i \(-0.393102\pi\)
0.957529 + 0.288337i \(0.0931023\pi\)
\(98\) 4.53858 + 4.53858i 0.458466 + 0.458466i
\(99\) −0.736135 + 0.739589i −0.0739844 + 0.0743315i
\(100\) 0 0
\(101\) −8.91281 2.89595i −0.886858 0.288158i −0.170056 0.985434i \(-0.554395\pi\)
−0.716802 + 0.697277i \(0.754395\pi\)
\(102\) 2.34400 + 0.371253i 0.232090 + 0.0367595i
\(103\) −0.0976359 + 0.0154640i −0.00962035 + 0.00152371i −0.161243 0.986915i \(-0.551550\pi\)
0.151622 + 0.988438i \(0.451550\pi\)
\(104\) 0.811667 0.263727i 0.0795905 0.0258605i
\(105\) 0 0
\(106\) −4.82748 + 6.64446i −0.468886 + 0.645367i
\(107\) −1.02130 + 6.44826i −0.0987332 + 0.623377i 0.887852 + 0.460129i \(0.152197\pi\)
−0.986585 + 0.163248i \(0.947803\pi\)
\(108\) −2.46595 4.83969i −0.237286 0.465700i
\(109\) 11.8125 1.13143 0.565716 0.824600i \(-0.308600\pi\)
0.565716 + 0.824600i \(0.308600\pi\)
\(110\) 0 0
\(111\) −13.3020 −1.26257
\(112\) −0.346189 0.679435i −0.0327118 0.0642006i
\(113\) 1.80338 11.3861i 0.169647 1.07111i −0.745061 0.666997i \(-0.767580\pi\)
0.914708 0.404115i \(-0.132420\pi\)
\(114\) −4.87884 + 6.71515i −0.456946 + 0.628932i
\(115\) 0 0
\(116\) 0.650015 0.211203i 0.0603524 0.0196097i
\(117\) 0.265208 0.0420048i 0.0245185 0.00388335i
\(118\) −0.427397 0.0676930i −0.0393451 0.00623165i
\(119\) 1.05029 + 0.341259i 0.0962797 + 0.0312832i
\(120\) 0 0
\(121\) −6.50722 8.86883i −0.591565 0.806257i
\(122\) −8.96853 8.96853i −0.811973 0.811973i
\(123\) −18.1460 + 9.24583i −1.63617 + 0.833668i
\(124\) −2.06957 2.84852i −0.185853 0.255805i
\(125\) 0 0
\(126\) −0.0741386 0.228175i −0.00660479 0.0203275i
\(127\) 5.78299 + 2.94658i 0.513157 + 0.261467i 0.691339 0.722531i \(-0.257021\pi\)
−0.178181 + 0.983998i \(0.557021\pi\)
\(128\) −0.156434 0.987688i −0.0138270 0.0873001i
\(129\) −14.2729 + 10.3699i −1.25666 + 0.913015i
\(130\) 0 0
\(131\) 1.56355i 0.136608i 0.997665 + 0.0683040i \(0.0217588\pi\)
−0.997665 + 0.0683040i \(0.978241\pi\)
\(132\) 5.16504 1.69160i 0.449559 0.147235i
\(133\) −2.73116 + 2.73116i −0.236822 + 0.236822i
\(134\) 1.67216 5.14637i 0.144452 0.444579i
\(135\) 0 0
\(136\) 1.17164 + 0.851243i 0.100467 + 0.0729935i
\(137\) 0.766306 1.50396i 0.0654700 0.128492i −0.855952 0.517055i \(-0.827028\pi\)
0.921422 + 0.388563i \(0.127028\pi\)
\(138\) 1.74196 3.41879i 0.148286 0.291027i
\(139\) 7.01947 + 5.09995i 0.595384 + 0.432572i 0.844237 0.535969i \(-0.180054\pi\)
−0.248854 + 0.968541i \(0.580054\pi\)
\(140\) 0 0
\(141\) 6.42730 19.7812i 0.541276 1.66588i
\(142\) −5.61982 + 5.61982i −0.471605 + 0.471605i
\(143\) 0.00662403 + 2.83052i 0.000553929 + 0.236700i
\(144\) 0.314626i 0.0262189i
\(145\) 0 0
\(146\) 0.926013 0.672788i 0.0766374 0.0556803i
\(147\) −1.64539 10.3886i −0.135710 0.856838i
\(148\) −7.23261 3.68520i −0.594517 0.302922i
\(149\) −4.55529 14.0197i −0.373184 1.14854i −0.944696 0.327948i \(-0.893643\pi\)
0.571512 0.820594i \(-0.306357\pi\)
\(150\) 0 0
\(151\) 6.72937 + 9.26219i 0.547629 + 0.753746i 0.989688 0.143240i \(-0.0457519\pi\)
−0.442059 + 0.896986i \(0.645752\pi\)
\(152\) −4.51312 + 2.29955i −0.366062 + 0.186518i
\(153\) 0.322192 + 0.322192i 0.0260477 + 0.0260477i
\(154\) 2.49701 0.401481i 0.201215 0.0323522i
\(155\) 0 0
\(156\) −1.33009 0.432172i −0.106492 0.0346014i
\(157\) −0.814122 0.128944i −0.0649740 0.0102909i 0.123863 0.992299i \(-0.460472\pi\)
−0.188837 + 0.982008i \(0.560472\pi\)
\(158\) −9.96328 + 1.57803i −0.792636 + 0.125541i
\(159\) 12.8000 4.15898i 1.01511 0.329828i
\(160\) 0 0
\(161\) 1.04948 1.44449i 0.0827108 0.113842i
\(162\) −1.24477 + 7.85917i −0.0977983 + 0.617474i
\(163\) −4.05736 7.96301i −0.317797 0.623711i 0.675750 0.737131i \(-0.263820\pi\)
−0.993547 + 0.113419i \(0.963820\pi\)
\(164\) −12.4279 −0.970454
\(165\) 0 0
\(166\) −0.238860 −0.0185391
\(167\) −9.59049 18.8224i −0.742134 1.45652i −0.884418 0.466695i \(-0.845445\pi\)
0.142284 0.989826i \(-0.454555\pi\)
\(168\) −0.195480 + 1.23421i −0.0150816 + 0.0952214i
\(169\) −7.21309 + 9.92797i −0.554853 + 0.763690i
\(170\) 0 0
\(171\) −1.51564 + 0.492462i −0.115904 + 0.0376595i
\(172\) −10.6334 + 1.68416i −0.810788 + 0.128416i
\(173\) −2.42835 0.384613i −0.184624 0.0292416i 0.0634376 0.997986i \(-0.479794\pi\)
−0.248062 + 0.968744i \(0.579794\pi\)
\(174\) −1.06519 0.346100i −0.0807516 0.0262378i
\(175\) 0 0
\(176\) 3.27700 + 0.511167i 0.247013 + 0.0385307i
\(177\) 0.501417 + 0.501417i 0.0376888 + 0.0376888i
\(178\) −9.98839 + 5.08934i −0.748661 + 0.381462i
\(179\) 9.35481 + 12.8758i 0.699211 + 0.962382i 0.999962 + 0.00867926i \(0.00276273\pi\)
−0.300751 + 0.953703i \(0.597237\pi\)
\(180\) 0 0
\(181\) −1.59094 4.89640i −0.118253 0.363947i 0.874358 0.485281i \(-0.161283\pi\)
−0.992612 + 0.121334i \(0.961283\pi\)
\(182\) −0.579855 0.295451i −0.0429817 0.0219003i
\(183\) 3.25141 + 20.5286i 0.240351 + 1.51752i
\(184\) 1.89429 1.37628i 0.139649 0.101461i
\(185\) 0 0
\(186\) 5.76984i 0.423065i
\(187\) −3.87926 + 2.83234i −0.283679 + 0.207121i
\(188\) 8.97488 8.97488i 0.654560 0.654560i
\(189\) −1.27993 + 3.93922i −0.0931012 + 0.286536i
\(190\) 0 0
\(191\) 21.7592 + 15.8090i 1.57444 + 1.14390i 0.922744 + 0.385413i \(0.125941\pi\)
0.651693 + 0.758482i \(0.274059\pi\)
\(192\) −0.743959 + 1.46010i −0.0536906 + 0.105374i
\(193\) 4.39692 8.62943i 0.316497 0.621160i −0.676876 0.736097i \(-0.736667\pi\)
0.993373 + 0.114937i \(0.0366666\pi\)
\(194\) −11.5098 8.36237i −0.826357 0.600383i
\(195\) 0 0
\(196\) 1.98343 6.10438i 0.141674 0.436027i
\(197\) 5.96449 5.96449i 0.424952 0.424952i −0.461952 0.886905i \(-0.652851\pi\)
0.886905 + 0.461952i \(0.152851\pi\)
\(198\) 0.993177 + 0.320135i 0.0705820 + 0.0227510i
\(199\) 0.826885i 0.0586163i −0.999570 0.0293082i \(-0.990670\pi\)
0.999570 0.0293082i \(-0.00933042\pi\)
\(200\) 0 0
\(201\) −7.17389 + 5.21214i −0.506007 + 0.367636i
\(202\) 1.46602 + 9.25610i 0.103149 + 0.651257i
\(203\) −0.464371 0.236609i −0.0325924 0.0166067i
\(204\) −0.733364 2.25706i −0.0513458 0.158026i
\(205\) 0 0
\(206\) 0.0581043 + 0.0799737i 0.00404832 + 0.00557203i
\(207\) 0.656395 0.334450i 0.0456226 0.0232459i
\(208\) −0.603471 0.603471i −0.0418432 0.0418432i
\(209\) −2.66682 16.5863i −0.184468 1.14730i
\(210\) 0 0
\(211\) −13.8523 4.50087i −0.953629 0.309853i −0.209440 0.977822i \(-0.567164\pi\)
−0.744190 + 0.667969i \(0.767164\pi\)
\(212\) 8.11188 + 1.28480i 0.557126 + 0.0882402i
\(213\) 12.8635 2.03738i 0.881393 0.139599i
\(214\) 6.20910 2.01746i 0.424446 0.137911i
\(215\) 0 0
\(216\) −3.19268 + 4.39435i −0.217234 + 0.298998i
\(217\) −0.420011 + 2.65185i −0.0285122 + 0.180019i
\(218\) −5.36276 10.5250i −0.363212 0.712844i
\(219\) −1.87569 −0.126748
\(220\) 0 0
\(221\) 1.23597 0.0831401
\(222\) 6.03898 + 11.8522i 0.405310 + 0.795465i
\(223\) 0.210549 1.32935i 0.0140994 0.0890201i −0.979635 0.200786i \(-0.935651\pi\)
0.993735 + 0.111766i \(0.0356506\pi\)
\(224\) −0.448214 + 0.616914i −0.0299476 + 0.0412193i
\(225\) 0 0
\(226\) −10.9638 + 3.56235i −0.729300 + 0.236964i
\(227\) −2.02684 + 0.321020i −0.134526 + 0.0213068i −0.223334 0.974742i \(-0.571694\pi\)
0.0888083 + 0.996049i \(0.471694\pi\)
\(228\) 8.19819 + 1.29847i 0.542939 + 0.0859930i
\(229\) 17.0466 + 5.53877i 1.12647 + 0.366012i 0.812234 0.583332i \(-0.198251\pi\)
0.314237 + 0.949345i \(0.398251\pi\)
\(230\) 0 0
\(231\) −3.69712 1.87289i −0.243252 0.123227i
\(232\) −0.483284 0.483284i −0.0317291 0.0317291i
\(233\) 21.9042 11.1608i 1.43499 0.731166i 0.448320 0.893873i \(-0.352023\pi\)
0.986674 + 0.162707i \(0.0520226\pi\)
\(234\) −0.157828 0.217232i −0.0103176 0.0142009i
\(235\) 0 0
\(236\) 0.133719 + 0.411545i 0.00870438 + 0.0267893i
\(237\) 14.7287 + 7.50467i 0.956735 + 0.487481i
\(238\) −0.172757 1.09074i −0.0111981 0.0707023i
\(239\) 2.40071 1.74422i 0.155289 0.112824i −0.507427 0.861695i \(-0.669403\pi\)
0.662717 + 0.748870i \(0.269403\pi\)
\(240\) 0 0
\(241\) 21.2858i 1.37114i 0.728007 + 0.685570i \(0.240447\pi\)
−0.728007 + 0.685570i \(0.759553\pi\)
\(242\) −4.94797 + 9.82434i −0.318067 + 0.631532i
\(243\) −2.30213 + 2.30213i −0.147682 + 0.147682i
\(244\) −3.91939 + 12.0627i −0.250913 + 0.772232i
\(245\) 0 0
\(246\) 16.4762 + 11.9707i 1.05048 + 0.763221i
\(247\) −1.96252 + 3.85166i −0.124872 + 0.245075i
\(248\) −1.59848 + 3.13720i −0.101504 + 0.199212i
\(249\) 0.316667 + 0.230072i 0.0200680 + 0.0145802i
\(250\) 0 0
\(251\) 4.10394 12.6306i 0.259038 0.797238i −0.733969 0.679183i \(-0.762334\pi\)
0.993007 0.118055i \(-0.0376658\pi\)
\(252\) −0.169647 + 0.169647i −0.0106868 + 0.0106868i
\(253\) 2.41704 + 7.38007i 0.151958 + 0.463981i
\(254\) 6.49040i 0.407244i
\(255\) 0 0
\(256\) −0.809017 + 0.587785i −0.0505636 + 0.0367366i
\(257\) −2.89548 18.2813i −0.180615 1.14036i −0.896796 0.442444i \(-0.854112\pi\)
0.716181 0.697914i \(-0.245888\pi\)
\(258\) 15.7194 + 8.00942i 0.978645 + 0.498645i
\(259\) 1.91277 + 5.88692i 0.118854 + 0.365795i
\(260\) 0 0
\(261\) −0.126395 0.173968i −0.00782367 0.0107684i
\(262\) 1.39313 0.709837i 0.0860681 0.0438539i
\(263\) 17.4405 + 17.4405i 1.07543 + 1.07543i 0.996913 + 0.0785172i \(0.0250185\pi\)
0.0785172 + 0.996913i \(0.474981\pi\)
\(264\) −3.85210 3.83411i −0.237080 0.235973i
\(265\) 0 0
\(266\) 3.67341 + 1.19356i 0.225231 + 0.0731820i
\(267\) 18.1442 + 2.87375i 1.11040 + 0.175871i
\(268\) −5.34459 + 0.846501i −0.326473 + 0.0517083i
\(269\) −19.3677 + 6.29294i −1.18087 + 0.383687i −0.832689 0.553741i \(-0.813200\pi\)
−0.348179 + 0.937428i \(0.613200\pi\)
\(270\) 0 0
\(271\) 4.38344 6.03328i 0.266275 0.366496i −0.654853 0.755756i \(-0.727269\pi\)
0.921128 + 0.389261i \(0.127269\pi\)
\(272\) 0.226552 1.43039i 0.0137367 0.0867302i
\(273\) 0.484159 + 0.950215i 0.0293026 + 0.0575096i
\(274\) −1.68793 −0.101972
\(275\) 0 0
\(276\) −3.83700 −0.230960
\(277\) 7.43406 + 14.5902i 0.446669 + 0.876638i 0.999072 + 0.0430609i \(0.0137110\pi\)
−0.552403 + 0.833577i \(0.686289\pi\)
\(278\) 1.35731 8.56972i 0.0814061 0.513978i
\(279\) −0.651141 + 0.896219i −0.0389828 + 0.0536552i
\(280\) 0 0
\(281\) 3.98244 1.29397i 0.237572 0.0771919i −0.187811 0.982205i \(-0.560139\pi\)
0.425383 + 0.905013i \(0.360139\pi\)
\(282\) −20.5431 + 3.25371i −1.22332 + 0.193755i
\(283\) 27.3003 + 4.32395i 1.62284 + 0.257032i 0.900611 0.434626i \(-0.143119\pi\)
0.722225 + 0.691658i \(0.243119\pi\)
\(284\) 7.55864 + 2.45595i 0.448523 + 0.145734i
\(285\) 0 0
\(286\) 2.51901 1.29093i 0.148952 0.0763345i
\(287\) 6.70114 + 6.70114i 0.395556 + 0.395556i
\(288\) −0.280334 + 0.142837i −0.0165188 + 0.00841677i
\(289\) −8.75956 12.0565i −0.515268 0.709206i
\(290\) 0 0
\(291\) 7.20436 + 22.1727i 0.422327 + 1.29979i
\(292\) −1.01986 0.519644i −0.0596827 0.0304099i
\(293\) 2.92476 + 18.4662i 0.170866 + 1.07881i 0.912822 + 0.408357i \(0.133898\pi\)
−0.741956 + 0.670448i \(0.766102\pi\)
\(294\) −8.50932 + 6.18238i −0.496274 + 0.360564i
\(295\) 0 0
\(296\) 8.11735i 0.471812i
\(297\) −10.6230 14.5496i −0.616409 0.844253i
\(298\) −10.4236 + 10.4236i −0.603824 + 0.603824i
\(299\) 0.617509 1.90050i 0.0357115 0.109909i
\(300\) 0 0
\(301\) 6.64166 + 4.82545i 0.382819 + 0.278134i
\(302\) 5.19760 10.2009i 0.299088 0.586994i
\(303\) 6.97200 13.6833i 0.400531 0.786086i
\(304\) 4.09783 + 2.97724i 0.235026 + 0.170757i
\(305\) 0 0
\(306\) 0.140803 0.433347i 0.00804918 0.0247728i
\(307\) −7.13262 + 7.13262i −0.407080 + 0.407080i −0.880719 0.473639i \(-0.842940\pi\)
0.473639 + 0.880719i \(0.342940\pi\)
\(308\) −1.49134 2.04259i −0.0849771 0.116387i
\(309\) 0.161991i 0.00921537i
\(310\) 0 0
\(311\) 18.5344 13.4660i 1.05099 0.763589i 0.0785899 0.996907i \(-0.474958\pi\)
0.972401 + 0.233318i \(0.0749582\pi\)
\(312\) 0.218779 + 1.38132i 0.0123859 + 0.0782018i
\(313\) −12.9044 6.57514i −0.729402 0.371649i 0.0495173 0.998773i \(-0.484232\pi\)
−0.778919 + 0.627125i \(0.784232\pi\)
\(314\) 0.254714 + 0.783928i 0.0143743 + 0.0442396i
\(315\) 0 0
\(316\) 5.92927 + 8.16094i 0.333547 + 0.459089i
\(317\) 1.99314 1.01556i 0.111946 0.0570393i −0.397121 0.917766i \(-0.629991\pi\)
0.509067 + 0.860727i \(0.329991\pi\)
\(318\) −9.51676 9.51676i −0.533673 0.533673i
\(319\) 2.01732 1.03383i 0.112948 0.0578834i
\(320\) 0 0
\(321\) −10.1749 3.30603i −0.567909 0.184525i
\(322\) −1.76350 0.279311i −0.0982762 0.0155654i
\(323\) −7.24520 + 1.14753i −0.403134 + 0.0638501i
\(324\) 7.56768 2.45889i 0.420427 0.136605i
\(325\) 0 0
\(326\) −5.25310 + 7.23027i −0.290942 + 0.400447i
\(327\) −3.02815 + 19.1190i −0.167457 + 1.05728i
\(328\) 5.64213 + 11.0733i 0.311535 + 0.611421i
\(329\) −9.67856 −0.533596
\(330\) 0 0
\(331\) 1.96672 0.108101 0.0540503 0.998538i \(-0.482787\pi\)
0.0540503 + 0.998538i \(0.482787\pi\)
\(332\) 0.108440 + 0.212826i 0.00595143 + 0.0116803i
\(333\) −0.399523 + 2.52249i −0.0218937 + 0.138232i
\(334\) −12.4169 + 17.0904i −0.679422 + 0.935144i
\(335\) 0 0
\(336\) 1.18844 0.386146i 0.0648345 0.0210660i
\(337\) 0.400422 0.0634205i 0.0218123 0.00345474i −0.145519 0.989355i \(-0.546485\pi\)
0.167331 + 0.985901i \(0.446485\pi\)
\(338\) 12.1206 + 1.91971i 0.659272 + 0.104418i
\(339\) 17.9665 + 5.83766i 0.975805 + 0.317058i
\(340\) 0 0
\(341\) −8.27669 8.23804i −0.448208 0.446115i
\(342\) 1.12687 + 1.12687i 0.0609344 + 0.0609344i
\(343\) −9.11701 + 4.64535i −0.492272 + 0.250825i
\(344\) 6.32806 + 8.70983i 0.341186 + 0.469602i
\(345\) 0 0
\(346\) 0.759756 + 2.33829i 0.0408447 + 0.125707i
\(347\) −9.52619 4.85384i −0.511393 0.260568i 0.179198 0.983813i \(-0.442650\pi\)
−0.690591 + 0.723245i \(0.742650\pi\)
\(348\) 0.175207 + 1.10621i 0.00939209 + 0.0592993i
\(349\) −6.50852 + 4.72872i −0.348393 + 0.253123i −0.748195 0.663479i \(-0.769079\pi\)
0.399801 + 0.916602i \(0.369079\pi\)
\(350\) 0 0
\(351\) 4.63563i 0.247432i
\(352\) −1.03227 3.15189i −0.0550203 0.167996i
\(353\) −17.8934 + 17.8934i −0.952372 + 0.952372i −0.998916 0.0465446i \(-0.985179\pi\)
0.0465446 + 0.998916i \(0.485179\pi\)
\(354\) 0.219127 0.674404i 0.0116465 0.0358442i
\(355\) 0 0
\(356\) 9.06926 + 6.58921i 0.480670 + 0.349227i
\(357\) −0.821582 + 1.61245i −0.0434828 + 0.0853397i
\(358\) 7.22542 14.1807i 0.381875 0.749473i
\(359\) −13.1469 9.55175i −0.693864 0.504122i 0.184064 0.982914i \(-0.441075\pi\)
−0.877928 + 0.478792i \(0.841075\pi\)
\(360\) 0 0
\(361\) 2.05687 6.33038i 0.108256 0.333178i
\(362\) −3.64046 + 3.64046i −0.191338 + 0.191338i
\(363\) 16.0226 8.25863i 0.840971 0.433466i
\(364\) 0.650787i 0.0341105i
\(365\) 0 0
\(366\) 16.8150 12.2168i 0.878933 0.638582i
\(367\) −1.34090 8.46611i −0.0699944 0.441927i −0.997652 0.0684942i \(-0.978181\pi\)
0.927657 0.373433i \(-0.121819\pi\)
\(368\) −2.08627 1.06301i −0.108754 0.0554131i
\(369\) 1.20830 + 3.71876i 0.0629015 + 0.193591i
\(370\) 0 0
\(371\) −3.68118 5.06672i −0.191118 0.263051i
\(372\) 5.14097 2.61945i 0.266547 0.135812i
\(373\) −23.2440 23.2440i −1.20353 1.20353i −0.973085 0.230446i \(-0.925982\pi\)
−0.230446 0.973085i \(-0.574018\pi\)
\(374\) 4.28478 + 2.17059i 0.221561 + 0.112238i
\(375\) 0 0
\(376\) −12.0712 3.92217i −0.622524 0.202270i
\(377\) −0.576114 0.0912475i −0.0296714 0.00469949i
\(378\) 4.09095 0.647942i 0.210416 0.0333266i
\(379\) −12.1822 + 3.95823i −0.625757 + 0.203321i −0.604695 0.796457i \(-0.706705\pi\)
−0.0210622 + 0.999778i \(0.506705\pi\)
\(380\) 0 0
\(381\) −6.25162 + 8.60462i −0.320280 + 0.440828i
\(382\) 4.20743 26.5647i 0.215271 1.35917i
\(383\) −10.1184 19.8586i −0.517028 1.01473i −0.990959 0.134163i \(-0.957165\pi\)
0.473931 0.880562i \(-0.342835\pi\)
\(384\) 1.63871 0.0836251
\(385\) 0 0
\(386\) −9.68504 −0.492955
\(387\) 1.53778 + 3.01806i 0.0781696 + 0.153417i
\(388\) −2.22558 + 14.0518i −0.112987 + 0.713370i
\(389\) 8.06422 11.0995i 0.408872 0.562765i −0.554071 0.832470i \(-0.686926\pi\)
0.962943 + 0.269705i \(0.0869262\pi\)
\(390\) 0 0
\(391\) 3.22501 1.04787i 0.163096 0.0529930i
\(392\) −6.33950 + 1.00408i −0.320193 + 0.0507136i
\(393\) −2.53066 0.400817i −0.127655 0.0202186i
\(394\) −8.02222 2.60658i −0.404154 0.131318i
\(395\) 0 0
\(396\) −0.165650 1.03027i −0.00832425 0.0517728i
\(397\) 0.807418 + 0.807418i 0.0405232 + 0.0405232i 0.727078 0.686555i \(-0.240878\pi\)
−0.686555 + 0.727078i \(0.740878\pi\)
\(398\) −0.736760 + 0.375398i −0.0369304 + 0.0188170i
\(399\) −3.72035 5.12062i −0.186251 0.256352i
\(400\) 0 0
\(401\) 4.25930 + 13.1088i 0.212700 + 0.654622i 0.999309 + 0.0371709i \(0.0118346\pi\)
−0.786609 + 0.617451i \(0.788165\pi\)
\(402\) 7.90093 + 4.02572i 0.394062 + 0.200785i
\(403\) 0.470073 + 2.96793i 0.0234160 + 0.147843i
\(404\) 7.58169 5.50842i 0.377203 0.274054i
\(405\) 0 0
\(406\) 0.521176i 0.0258655i
\(407\) −25.6239 8.25948i −1.27013 0.409407i
\(408\) −1.67812 + 1.67812i −0.0830792 + 0.0830792i
\(409\) 6.24805 19.2295i 0.308946 0.950839i −0.669229 0.743056i \(-0.733375\pi\)
0.978175 0.207782i \(-0.0666246\pi\)
\(410\) 0 0
\(411\) 2.23777 + 1.62584i 0.110381 + 0.0801966i
\(412\) 0.0448783 0.0880786i 0.00221099 0.00433932i
\(413\) 0.149805 0.294008i 0.00737140 0.0144672i
\(414\) −0.595994 0.433015i −0.0292915 0.0212815i
\(415\) 0 0
\(416\) −0.263727 + 0.811667i −0.0129303 + 0.0397953i
\(417\) −10.0539 + 10.0539i −0.492341 + 0.492341i
\(418\) −13.5678 + 9.90618i −0.663623 + 0.484527i
\(419\) 19.4960i 0.952442i 0.879326 + 0.476221i \(0.157994\pi\)
−0.879326 + 0.476221i \(0.842006\pi\)
\(420\) 0 0
\(421\) −2.31295 + 1.68045i −0.112726 + 0.0819003i −0.642720 0.766101i \(-0.722194\pi\)
0.529994 + 0.848001i \(0.322194\pi\)
\(422\) 2.27849 + 14.3858i 0.110915 + 0.700290i
\(423\) −3.55811 1.81295i −0.173001 0.0881485i
\(424\) −2.53796 7.81103i −0.123254 0.379337i
\(425\) 0 0
\(426\) −7.65523 10.5365i −0.370897 0.510496i
\(427\) 8.61756 4.39087i 0.417033 0.212489i
\(428\) −4.61644 4.61644i −0.223144 0.223144i
\(429\) −4.58300 0.714886i −0.221269 0.0345150i
\(430\) 0 0
\(431\) −15.3238 4.97899i −0.738120 0.239830i −0.0842582 0.996444i \(-0.526852\pi\)
−0.653861 + 0.756614i \(0.726852\pi\)
\(432\) 5.36484 + 0.849707i 0.258116 + 0.0408816i
\(433\) 24.1225 3.82063i 1.15925 0.183608i 0.452963 0.891529i \(-0.350367\pi\)
0.706291 + 0.707922i \(0.250367\pi\)
\(434\) 2.55349 0.829681i 0.122572 0.0398259i
\(435\) 0 0
\(436\) −6.94322 + 9.55652i −0.332520 + 0.457674i
\(437\) −1.85531 + 11.7140i −0.0887517 + 0.560356i
\(438\) 0.851547 + 1.67125i 0.0406885 + 0.0798556i
\(439\) −13.2566 −0.632702 −0.316351 0.948642i \(-0.602458\pi\)
−0.316351 + 0.948642i \(0.602458\pi\)
\(440\) 0 0
\(441\) −2.01944 −0.0961636
\(442\) −0.561117 1.10125i −0.0266896 0.0523813i
\(443\) 0.340637 2.15069i 0.0161841 0.102183i −0.978274 0.207316i \(-0.933527\pi\)
0.994458 + 0.105134i \(0.0335271\pi\)
\(444\) 7.81872 10.7615i 0.371060 0.510720i
\(445\) 0 0
\(446\) −1.28005 + 0.415913i −0.0606121 + 0.0196941i
\(447\) 23.8592 3.77893i 1.12850 0.178737i
\(448\) 0.753160 + 0.119289i 0.0355834 + 0.00563586i
\(449\) −4.58948 1.49121i −0.216591 0.0703747i 0.198712 0.980058i \(-0.436324\pi\)
−0.415303 + 0.909683i \(0.636324\pi\)
\(450\) 0 0
\(451\) −40.6959 + 6.54326i −1.91630 + 0.308110i
\(452\) 8.15153 + 8.15153i 0.383416 + 0.383416i
\(453\) −16.7163 + 8.51736i −0.785399 + 0.400181i
\(454\) 1.20620 + 1.66019i 0.0566096 + 0.0779164i
\(455\) 0 0
\(456\) −2.56496 7.89413i −0.120115 0.369677i
\(457\) −18.2443 9.29594i −0.853433 0.434846i −0.0281758 0.999603i \(-0.508970\pi\)
−0.825257 + 0.564757i \(0.808970\pi\)
\(458\) −2.80391 17.7032i −0.131018 0.827215i
\(459\) −6.36399 + 4.62371i −0.297046 + 0.215816i
\(460\) 0 0
\(461\) 0.616244i 0.0287013i 0.999897 + 0.0143507i \(0.00456812\pi\)
−0.999897 + 0.0143507i \(0.995432\pi\)
\(462\) 0.00969884 + 4.14443i 0.000451231 + 0.192816i
\(463\) 13.5983 13.5983i 0.631968 0.631968i −0.316593 0.948561i \(-0.602539\pi\)
0.948561 + 0.316593i \(0.102539\pi\)
\(464\) −0.211203 + 0.650015i −0.00980484 + 0.0301762i
\(465\) 0 0
\(466\) −19.8886 14.4499i −0.921323 0.669380i
\(467\) −0.705649 + 1.38491i −0.0326535 + 0.0640862i −0.906757 0.421654i \(-0.861450\pi\)
0.874103 + 0.485740i \(0.161450\pi\)
\(468\) −0.121903 + 0.239248i −0.00563495 + 0.0110592i
\(469\) 3.33825 + 2.42538i 0.154146 + 0.111994i
\(470\) 0 0
\(471\) 0.417402 1.28463i 0.0192329 0.0591927i
\(472\) 0.305982 0.305982i 0.0140840 0.0140840i
\(473\) −33.9331 + 11.1134i −1.56024 + 0.510994i
\(474\) 16.5305i 0.759269i
\(475\) 0 0
\(476\) −0.893428 + 0.649114i −0.0409502 + 0.0297521i
\(477\) −0.404231 2.55221i −0.0185084 0.116858i
\(478\) −2.64401 1.34719i −0.120934 0.0616191i
\(479\) 7.47583 + 23.0082i 0.341579 + 1.05127i 0.963390 + 0.268105i \(0.0863975\pi\)
−0.621810 + 0.783168i \(0.713603\pi\)
\(480\) 0 0
\(481\) 4.07197 + 5.60459i 0.185666 + 0.255547i
\(482\) 18.9658 9.66356i 0.863869 0.440163i
\(483\) 2.06892 + 2.06892i 0.0941391 + 0.0941391i
\(484\) 10.9999 0.0514844i 0.499995 0.00234020i
\(485\) 0 0
\(486\) 3.09636 + 1.00607i 0.140454 + 0.0456362i
\(487\) 18.5340 + 2.93550i 0.839857 + 0.133020i 0.561520 0.827463i \(-0.310217\pi\)
0.278337 + 0.960483i \(0.410217\pi\)
\(488\) 12.5273 1.98412i 0.567083 0.0898171i
\(489\) 13.9285 4.52565i 0.629870 0.204657i
\(490\) 0 0
\(491\) 14.9190 20.5343i 0.673285 0.926698i −0.326544 0.945182i \(-0.605884\pi\)
0.999829 + 0.0184843i \(0.00588406\pi\)
\(492\) 3.18590 20.1150i 0.143631 0.906852i
\(493\) −0.449365 0.881928i −0.0202384 0.0397200i
\(494\) 4.32282 0.194493
\(495\) 0 0
\(496\) 3.52096 0.158096
\(497\) −2.75138 5.39989i −0.123416 0.242218i
\(498\) 0.0612320 0.386603i 0.00274387 0.0173241i
\(499\) 5.36524 7.38462i 0.240181 0.330581i −0.671861 0.740677i \(-0.734505\pi\)
0.912042 + 0.410096i \(0.134505\pi\)
\(500\) 0 0
\(501\) 32.9232 10.6974i 1.47090 0.477925i
\(502\) −13.1171 + 2.07755i −0.585446 + 0.0927255i
\(503\) −22.1939 3.51517i −0.989577 0.156734i −0.359399 0.933184i \(-0.617018\pi\)
−0.630178 + 0.776451i \(0.717018\pi\)
\(504\) 0.228175 + 0.0741386i 0.0101637 + 0.00330240i
\(505\) 0 0
\(506\) 5.47838 5.50408i 0.243544 0.244686i
\(507\) −14.2197 14.2197i −0.631519 0.631519i
\(508\) −5.78299 + 2.94658i −0.256579 + 0.130733i
\(509\) 16.8593 + 23.2049i 0.747276 + 1.02854i 0.998167 + 0.0605220i \(0.0192765\pi\)
−0.250891 + 0.968015i \(0.580723\pi\)
\(510\) 0 0
\(511\) 0.269717 + 0.830104i 0.0119316 + 0.0367217i
\(512\) 0.891007 + 0.453990i 0.0393773 + 0.0200637i
\(513\) −4.30393 27.1739i −0.190023 1.19976i
\(514\) −14.9743 + 10.8794i −0.660486 + 0.479871i
\(515\) 0 0
\(516\) 17.6423i 0.776657i
\(517\) 24.6636 34.1141i 1.08470 1.50034i
\(518\) 4.37690 4.37690i 0.192310 0.192310i
\(519\) 1.24502 3.83178i 0.0546503 0.168196i
\(520\) 0 0
\(521\) −27.5311 20.0025i −1.20616 0.876325i −0.211282 0.977425i \(-0.567764\pi\)
−0.994876 + 0.101100i \(0.967764\pi\)
\(522\) −0.0976245 + 0.191599i −0.00427291 + 0.00838605i
\(523\) −12.9583 + 25.4321i −0.566628 + 1.11207i 0.412903 + 0.910775i \(0.364515\pi\)
−0.979531 + 0.201295i \(0.935485\pi\)
\(524\) −1.26494 0.919032i −0.0552591 0.0401481i
\(525\) 0 0
\(526\) 7.62180 23.4575i 0.332326 1.02279i
\(527\) −3.60563 + 3.60563i −0.157064 + 0.157064i
\(528\) −1.66740 + 5.17290i −0.0725644 + 0.225122i
\(529\) 17.5175i 0.761630i
\(530\) 0 0
\(531\) 0.110145 0.0800249i 0.00477988 0.00347278i
\(532\) −0.604220 3.81490i −0.0261963 0.165397i
\(533\) 9.45038 + 4.81521i 0.409341 + 0.208570i
\(534\) −5.67674 17.4712i −0.245657 0.756053i
\(535\) 0 0
\(536\) 3.18063 + 4.37777i 0.137382 + 0.189091i
\(537\) −23.2380 + 11.8404i −1.00280 + 0.510950i
\(538\) 14.3998 + 14.3998i 0.620819 + 0.620819i
\(539\) 3.28094 21.0335i 0.141320 0.905976i
\(540\) 0 0
\(541\) 29.0892 + 9.45165i 1.25064 + 0.406358i 0.858151 0.513398i \(-0.171613\pi\)
0.392491 + 0.919756i \(0.371613\pi\)
\(542\) −7.36573 1.16662i −0.316385 0.0501105i
\(543\) 8.33284 1.31979i 0.357596 0.0566377i
\(544\) −1.37734 + 0.447525i −0.0590530 + 0.0191875i
\(545\) 0 0
\(546\) 0.626844 0.862777i 0.0268265 0.0369235i
\(547\) −0.0192582 + 0.121591i −0.000823420 + 0.00519887i −0.988097 0.153834i \(-0.950838\pi\)
0.987273 + 0.159033i \(0.0508377\pi\)
\(548\) 0.766306 + 1.50396i 0.0327350 + 0.0642460i
\(549\) 3.99054 0.170312
\(550\) 0 0
\(551\) 3.46189 0.147481
\(552\) 1.74196 + 3.41879i 0.0741428 + 0.145513i
\(553\) 1.20332 7.59748i 0.0511705 0.323078i
\(554\) 9.62494 13.2476i 0.408924 0.562836i
\(555\) 0 0
\(556\) −8.25188 + 2.68120i −0.349958 + 0.113708i
\(557\) 35.5695 5.63365i 1.50713 0.238705i 0.652436 0.757844i \(-0.273747\pi\)
0.854690 + 0.519138i \(0.173747\pi\)
\(558\) 1.09415 + 0.173296i 0.0463190 + 0.00733621i
\(559\) 8.73836 + 2.83926i 0.369593 + 0.120088i
\(560\) 0 0
\(561\) −3.58979 7.00479i −0.151561 0.295743i
\(562\) −2.96093 2.96093i −0.124899 0.124899i
\(563\) −10.5592 + 5.38016i −0.445015 + 0.226747i −0.662114 0.749403i \(-0.730341\pi\)
0.217099 + 0.976150i \(0.430341\pi\)
\(564\) 12.2254 + 16.8269i 0.514784 + 0.708539i
\(565\) 0 0
\(566\) −8.54143 26.2878i −0.359023 1.10496i
\(567\) −5.40635 2.75467i −0.227046 0.115685i
\(568\) −1.24328 7.84977i −0.0521669 0.329369i
\(569\) 28.8735 20.9778i 1.21044 0.879435i 0.215168 0.976577i \(-0.430970\pi\)
0.995270 + 0.0971424i \(0.0309702\pi\)
\(570\) 0 0
\(571\) 31.2536i 1.30792i −0.756528 0.653961i \(-0.773106\pi\)
0.756528 0.653961i \(-0.226894\pi\)
\(572\) −2.29384 1.65838i −0.0959101 0.0693404i
\(573\) −31.1653 + 31.1653i −1.30195 + 1.30195i
\(574\) 2.92851 9.01301i 0.122233 0.376196i
\(575\) 0 0
\(576\) 0.254538 + 0.184933i 0.0106057 + 0.00770553i
\(577\) −20.9695 + 41.1550i −0.872972 + 1.71330i −0.191454 + 0.981502i \(0.561320\pi\)
−0.681518 + 0.731801i \(0.738680\pi\)
\(578\) −6.76566 + 13.2784i −0.281415 + 0.552307i
\(579\) 12.8399 + 9.32873i 0.533608 + 0.387689i
\(580\) 0 0
\(581\) 0.0562850 0.173227i 0.00233510 0.00718668i
\(582\) 16.4854 16.4854i 0.683340 0.683340i
\(583\) 27.2394 0.0637459i 1.12814 0.00264009i
\(584\) 1.14461i 0.0473645i
\(585\) 0 0
\(586\) 15.1257 10.9894i 0.624836 0.453970i
\(587\) 4.82637 + 30.4725i 0.199205 + 1.25773i 0.861216 + 0.508239i \(0.169703\pi\)
−0.662011 + 0.749494i \(0.730297\pi\)
\(588\) 9.37170 + 4.77512i 0.386482 + 0.196923i
\(589\) −5.51112 16.9615i −0.227082 0.698885i
\(590\) 0 0
\(591\) 8.12474 + 11.1827i 0.334207 + 0.459997i
\(592\) 7.23261 3.68520i 0.297259 0.151461i
\(593\) −3.14365 3.14365i −0.129094 0.129094i 0.639607 0.768702i \(-0.279097\pi\)
−0.768702 + 0.639607i \(0.779097\pi\)
\(594\) −8.14103 + 16.0705i −0.334031 + 0.659382i
\(595\) 0 0
\(596\) 14.0197 + 4.55529i 0.574271 + 0.186592i
\(597\) 1.33834 + 0.211973i 0.0547747 + 0.00867547i
\(598\) −1.97370 + 0.312603i −0.0807105 + 0.0127833i
\(599\) 8.63991 2.80728i 0.353017 0.114702i −0.127140 0.991885i \(-0.540580\pi\)
0.480157 + 0.877183i \(0.340580\pi\)
\(600\) 0 0
\(601\) −17.5277 + 24.1249i −0.714971 + 0.984074i 0.284705 + 0.958615i \(0.408105\pi\)
−0.999676 + 0.0254583i \(0.991895\pi\)
\(602\) 1.28426 8.10847i 0.0523423 0.330476i
\(603\) 0.772923 + 1.51695i 0.0314759 + 0.0617749i
\(604\) −11.4487 −0.465841
\(605\) 0 0
\(606\) −15.3572 −0.623842
\(607\) −9.38932 18.4276i −0.381101 0.747952i 0.618174 0.786041i \(-0.287873\pi\)
−0.999274 + 0.0380895i \(0.987873\pi\)
\(608\) 0.792370 5.00283i 0.0321349 0.202892i
\(609\) 0.502002 0.690946i 0.0203421 0.0279985i
\(610\) 0 0
\(611\) −10.3020 + 3.34732i −0.416774 + 0.135418i
\(612\) −0.450039 + 0.0712791i −0.0181917 + 0.00288129i
\(613\) 12.4538 + 1.97249i 0.503005 + 0.0796682i 0.402780 0.915297i \(-0.368044\pi\)
0.100225 + 0.994965i \(0.468044\pi\)
\(614\) 9.59336 + 3.11707i 0.387156 + 0.125795i
\(615\) 0 0
\(616\) −1.14290 + 2.25611i −0.0460489 + 0.0909013i
\(617\) −6.47501 6.47501i −0.260674 0.260674i 0.564654 0.825328i \(-0.309010\pi\)
−0.825328 + 0.564654i \(0.809010\pi\)
\(618\) −0.144335 + 0.0735426i −0.00580602 + 0.00295832i
\(619\) −23.3769 32.1756i −0.939598 1.29325i −0.955996 0.293380i \(-0.905220\pi\)
0.0163985 0.999866i \(-0.494780\pi\)
\(620\) 0 0
\(621\) 3.93015 + 12.0957i 0.157711 + 0.485385i
\(622\) −20.4128 10.4008i −0.818478 0.417035i
\(623\) −1.33725 8.44309i −0.0535759 0.338265i
\(624\) 1.13144 0.822040i 0.0452939 0.0329079i
\(625\) 0 0
\(626\) 14.4830i 0.578857i
\(627\) 27.5292 0.0644241i 1.09941 0.00257285i
\(628\) 0.582847 0.582847i 0.0232581 0.0232581i
\(629\) −3.63272 + 11.1804i −0.144846 + 0.445790i
\(630\) 0 0
\(631\) −21.6416 15.7235i −0.861537 0.625943i 0.0667657 0.997769i \(-0.478732\pi\)
−0.928303 + 0.371825i \(0.878732\pi\)
\(632\) 4.57962 8.98801i 0.182167 0.357524i
\(633\) 10.8359 21.2666i 0.430687 0.845271i
\(634\) −1.80973 1.31485i −0.0718737 0.0522193i
\(635\) 0 0
\(636\) −4.15898 + 12.8000i −0.164914 + 0.507554i
\(637\) −3.87339 + 3.87339i −0.153469 + 0.153469i
\(638\) −1.83699 1.32810i −0.0727273 0.0525799i
\(639\) 2.50053i 0.0989194i
\(640\) 0 0
\(641\) −10.9993 + 7.99147i −0.434447 + 0.315644i −0.783425 0.621487i \(-0.786529\pi\)
0.348978 + 0.937131i \(0.386529\pi\)
\(642\) 1.67362 + 10.5668i 0.0660526 + 0.417040i
\(643\) −16.4511 8.38228i −0.648770 0.330565i 0.0984497 0.995142i \(-0.468612\pi\)
−0.747220 + 0.664577i \(0.768612\pi\)
\(644\) 0.551745 + 1.69810i 0.0217418 + 0.0669144i
\(645\) 0 0
\(646\) 4.31171 + 5.93456i 0.169642 + 0.233492i
\(647\) −16.0422 + 8.17393i −0.630686 + 0.321350i −0.739950 0.672662i \(-0.765151\pi\)
0.109264 + 0.994013i \(0.465151\pi\)
\(648\) −5.62654 5.62654i −0.221031 0.221031i
\(649\) 0.654551 + 1.27723i 0.0256934 + 0.0501357i
\(650\) 0 0
\(651\) −4.18444 1.35961i −0.164001 0.0532872i
\(652\) 8.82707 + 1.39807i 0.345695 + 0.0547527i
\(653\) 26.2280 4.15411i 1.02638 0.162563i 0.379531 0.925179i \(-0.376086\pi\)
0.646851 + 0.762616i \(0.276086\pi\)
\(654\) 18.4099 5.98173i 0.719883 0.233904i
\(655\) 0 0
\(656\) 7.30492 10.0544i 0.285209 0.392557i
\(657\) −0.0563361 + 0.355692i −0.00219788 + 0.0138769i
\(658\) 4.39397 + 8.62366i 0.171295 + 0.336185i
\(659\) −36.6251 −1.42671 −0.713356 0.700802i \(-0.752826\pi\)
−0.713356 + 0.700802i \(0.752826\pi\)
\(660\) 0 0
\(661\) 7.39959 0.287811 0.143905 0.989591i \(-0.454034\pi\)
0.143905 + 0.989591i \(0.454034\pi\)
\(662\) −0.892871 1.75236i −0.0347024 0.0681073i
\(663\) −0.316841 + 2.00046i −0.0123051 + 0.0776912i
\(664\) 0.140398 0.193242i 0.00544851 0.00749923i
\(665\) 0 0
\(666\) 2.42893 0.789208i 0.0941193 0.0305812i
\(667\) −1.58062 + 0.250345i −0.0612017 + 0.00969339i
\(668\) 20.8648 + 3.30466i 0.807283 + 0.127861i
\(669\) 2.09763 + 0.681562i 0.0810991 + 0.0263507i
\(670\) 0 0
\(671\) −6.48335 + 41.5635i −0.250287 + 1.60454i
\(672\) −0.883597 0.883597i −0.0340855 0.0340855i
\(673\) 27.1875 13.8527i 1.04800 0.533983i 0.156818 0.987627i \(-0.449876\pi\)
0.891183 + 0.453644i \(0.149876\pi\)
\(674\) −0.238296 0.327986i −0.00917881 0.0126335i
\(675\) 0 0
\(676\) −3.79215 11.6710i −0.145852 0.448886i
\(677\) 26.6676 + 13.5878i 1.02492 + 0.522223i 0.883847 0.467776i \(-0.154945\pi\)
0.141074 + 0.989999i \(0.454945\pi\)
\(678\) −2.95521 18.6585i −0.113494 0.716575i
\(679\) 8.77679 6.37671i 0.336822 0.244716i
\(680\) 0 0
\(681\) 3.36280i 0.128863i
\(682\) −3.58261 + 11.1146i −0.137185 + 0.425599i
\(683\) 13.9351 13.9351i 0.533214 0.533214i −0.388314 0.921527i \(-0.626942\pi\)
0.921527 + 0.388314i \(0.126942\pi\)
\(684\) 0.492462 1.51564i 0.0188298 0.0579521i
\(685\) 0 0
\(686\) 8.27807 + 6.01437i 0.316058 + 0.229630i
\(687\) −13.3346 + 26.1706i −0.508747 + 0.998472i
\(688\) 4.88763 9.59252i 0.186339 0.365711i
\(689\) −5.67063 4.11995i −0.216034 0.156958i
\(690\) 0 0
\(691\) −9.06481 + 27.8986i −0.344841 + 1.06131i 0.616827 + 0.787099i \(0.288418\pi\)
−0.961669 + 0.274214i \(0.911582\pi\)
\(692\) 1.73851 1.73851i 0.0660882 0.0660882i
\(693\) −0.466203 + 0.644841i −0.0177096 + 0.0244955i
\(694\) 10.6915i 0.405844i
\(695\) 0 0
\(696\) 0.906102 0.658322i 0.0343457 0.0249536i
\(697\) 2.81556 + 17.7767i 0.106647 + 0.673341i
\(698\) 7.16813 + 3.65234i 0.271318 + 0.138243i
\(699\) 12.4489 + 38.3139i 0.470862 + 1.44916i
\(700\) 0 0
\(701\) 4.36586 + 6.00910i 0.164896 + 0.226960i 0.883467 0.468494i \(-0.155203\pi\)
−0.718570 + 0.695454i \(0.755203\pi\)
\(702\) 4.13037 2.10453i 0.155891 0.0794304i
\(703\) −29.0734 29.0734i −1.09652 1.09652i
\(704\) −2.33971 + 2.35069i −0.0881813 + 0.0885950i
\(705\) 0 0
\(706\) 24.0666 + 7.81972i 0.905759 + 0.294299i
\(707\) −7.05822 1.11791i −0.265452 0.0420434i
\(708\) −0.700380 + 0.110929i −0.0263219 + 0.00416898i
\(709\) −25.9291 + 8.42488i −0.973788 + 0.316403i −0.752344 0.658770i \(-0.771077\pi\)
−0.221444 + 0.975173i \(0.571077\pi\)
\(710\) 0 0
\(711\) 1.86550 2.56765i 0.0699619 0.0962942i
\(712\) 1.75367 11.0722i 0.0657214 0.414949i
\(713\) 3.74281 + 7.34567i 0.140169 + 0.275098i
\(714\) 1.80969 0.0677260
\(715\) 0 0
\(716\) −15.9154 −0.594785
\(717\) 2.20766 + 4.33277i 0.0824464 + 0.161810i
\(718\) −2.54212 + 16.0503i −0.0948712 + 0.598993i
\(719\) −1.00656 + 1.38541i −0.0375383 + 0.0516670i −0.827374 0.561652i \(-0.810166\pi\)
0.789835 + 0.613319i \(0.210166\pi\)
\(720\) 0 0
\(721\) −0.0716907 + 0.0232937i −0.00266990 + 0.000867504i
\(722\) −6.57421 + 1.04125i −0.244667 + 0.0387514i
\(723\) −34.4519 5.45664i −1.28128 0.202935i
\(724\) 4.89640 + 1.59094i 0.181973 + 0.0591267i
\(725\) 0 0
\(726\) −14.6326 10.5269i −0.543068 0.390691i
\(727\) 13.9556 + 13.9556i 0.517583 + 0.517583i 0.916839 0.399256i \(-0.130732\pi\)
−0.399256 + 0.916839i \(0.630732\pi\)
\(728\) 0.579855 0.295451i 0.0214909 0.0109501i
\(729\) −17.1672 23.6286i −0.635822 0.875133i
\(730\) 0 0
\(731\) 4.81803 + 14.8284i 0.178201 + 0.548447i
\(732\) −18.5191 9.43595i −0.684485 0.348763i
\(733\) 0.923038 + 5.82783i 0.0340932 + 0.215256i 0.998853 0.0478750i \(-0.0152449\pi\)
−0.964760 + 0.263131i \(0.915245\pi\)
\(734\) −6.93460 + 5.03828i −0.255961 + 0.185966i
\(735\) 0 0
\(736\) 2.34147i 0.0863079i
\(737\) −17.0556 + 5.58585i −0.628250 + 0.205757i
\(738\) 2.76488 2.76488i 0.101777 0.101777i
\(739\) 10.0720 30.9985i 0.370505 1.14030i −0.575956 0.817480i \(-0.695370\pi\)
0.946461 0.322817i \(-0.104630\pi\)
\(740\) 0 0
\(741\) −5.73096 4.16379i −0.210532 0.152961i
\(742\) −2.84325 + 5.58020i −0.104379 + 0.204856i
\(743\) −19.3261 + 37.9296i −0.709007 + 1.39150i 0.202113 + 0.979362i \(0.435219\pi\)
−0.911120 + 0.412142i \(0.864781\pi\)
\(744\) −4.66790 3.39143i −0.171134 0.124336i
\(745\) 0 0
\(746\) −10.1580 + 31.2632i −0.371911 + 1.14463i
\(747\) 0.0531402 0.0531402i 0.00194430 0.00194430i
\(748\) −0.0112405 4.80319i −0.000410993 0.175622i
\(749\) 4.97840i 0.181907i
\(750\) 0 0
\(751\) 22.4102 16.2819i 0.817758 0.594136i −0.0983111 0.995156i \(-0.531344\pi\)
0.916070 + 0.401019i \(0.131344\pi\)
\(752\) 1.98553 + 12.5361i 0.0724047 + 0.457146i
\(753\) 19.3911 + 9.88024i 0.706650 + 0.360056i
\(754\) 0.180248 + 0.554747i 0.00656425 + 0.0202027i
\(755\) 0 0
\(756\) −2.43457 3.35090i −0.0885445 0.121871i
\(757\) −14.2535 + 7.26251i −0.518051 + 0.263960i −0.693409 0.720544i \(-0.743892\pi\)
0.175357 + 0.984505i \(0.443892\pi\)
\(758\) 9.05740 + 9.05740i 0.328980 + 0.328980i
\(759\) −12.5645 + 2.02018i −0.456063 + 0.0733277i
\(760\) 0 0
\(761\) 6.47967 + 2.10537i 0.234888 + 0.0763197i 0.424096 0.905617i \(-0.360592\pi\)
−0.189208 + 0.981937i \(0.560592\pi\)
\(762\) 10.5049 + 1.66382i 0.380554 + 0.0602738i
\(763\) 8.89670 1.40910i 0.322082 0.0510128i
\(764\) −25.5794 + 8.31126i −0.925431 + 0.300691i
\(765\) 0 0
\(766\) −13.1004 + 18.0312i −0.473338 + 0.651494i
\(767\) 0.0577717 0.364756i 0.00208602 0.0131706i
\(768\) −0.743959 1.46010i −0.0268453 0.0526869i
\(769\) 48.7563 1.75820 0.879098 0.476640i \(-0.158146\pi\)
0.879098 + 0.476640i \(0.158146\pi\)
\(770\) 0 0
\(771\) 30.3312 1.09235
\(772\) 4.39692 + 8.62943i 0.158248 + 0.310580i
\(773\) −4.09258 + 25.8396i −0.147200 + 0.929384i 0.797944 + 0.602731i \(0.205921\pi\)
−0.945144 + 0.326653i \(0.894079\pi\)
\(774\) 1.99097 2.74034i 0.0715641 0.0984995i
\(775\) 0 0
\(776\) 13.5306 4.39636i 0.485720 0.157820i
\(777\) −10.0185 + 1.58678i −0.359413 + 0.0569254i
\(778\) −13.5508 2.14623i −0.485818 0.0769461i
\(779\) −59.8686 19.4525i −2.14501 0.696957i
\(780\) 0 0
\(781\) 26.0443 + 4.06256i 0.931939 + 0.145370i
\(782\) −2.39778 2.39778i −0.0857444 0.0857444i
\(783\) 3.30777 1.68539i 0.118210 0.0602310i
\(784\) 3.77271 + 5.19269i 0.134740 + 0.185453i
\(785\) 0 0
\(786\) 0.791765 + 2.43680i 0.0282413 + 0.0869179i
\(787\) −20.7757 10.5858i −0.740574 0.377341i 0.0426425 0.999090i \(-0.486422\pi\)
−0.783217 + 0.621749i \(0.786422\pi\)
\(788\) 1.31953 + 8.33122i 0.0470065 + 0.296787i
\(789\) −32.6990 + 23.7572i −1.16412 + 0.845780i
\(790\) 0 0
\(791\) 8.79065i 0.312560i
\(792\) −0.842769 + 0.615326i −0.0299465 + 0.0218647i
\(793\) 7.65408 7.65408i 0.271804 0.271804i
\(794\) 0.352855 1.08598i 0.0125223 0.0385398i
\(795\) 0 0
\(796\) 0.668964 + 0.486031i 0.0237108 + 0.0172269i
\(797\) 16.0427 31.4855i 0.568261 1.11527i −0.410804 0.911724i \(-0.634752\pi\)
0.979064 0.203551i \(-0.0652482\pi\)
\(798\) −2.87351 + 5.63957i −0.101721 + 0.199639i
\(799\) −14.8709 10.8043i −0.526093 0.382229i
\(800\) 0 0
\(801\) 1.08991 3.35441i 0.0385102 0.118522i
\(802\) 9.74633 9.74633i 0.344155 0.344155i
\(803\) −3.61319 1.16466i −0.127507 0.0410998i
\(804\) 8.86742i 0.312730i
\(805\) 0 0
\(806\) 2.43103 1.76625i 0.0856295 0.0622135i
\(807\) −5.22043 32.9605i −0.183768 1.16026i
\(808\) −8.35005 4.25456i −0.293754 0.149675i
\(809\) 11.3255 + 34.8562i 0.398182 + 1.22548i 0.926455 + 0.376405i \(0.122840\pi\)
−0.528273 + 0.849075i \(0.677160\pi\)
\(810\) 0 0
\(811\) 14.6687 + 20.1898i 0.515089 + 0.708960i 0.984767 0.173878i \(-0.0556299\pi\)
−0.469678 + 0.882838i \(0.655630\pi\)
\(812\) 0.464371 0.236609i 0.0162962 0.00830334i
\(813\) 8.64138 + 8.64138i 0.303067 + 0.303067i
\(814\) 4.27378 + 26.5808i 0.149796 + 0.931657i
\(815\) 0 0
\(816\) 2.25706 + 0.733364i 0.0790130 + 0.0256729i
\(817\) −53.8602 8.53061i −1.88433 0.298448i
\(818\) −19.9702 + 3.16297i −0.698241 + 0.110591i
\(819\) 0.194733 0.0632726i 0.00680453 0.00221093i
\(820\) 0 0
\(821\) 7.96168 10.9583i 0.277865 0.382448i −0.647160 0.762354i \(-0.724044\pi\)
0.925025 + 0.379906i \(0.124044\pi\)
\(822\) 0.432704 2.73198i 0.0150923 0.0952888i
\(823\) −3.90905 7.67193i −0.136261 0.267427i 0.812786 0.582563i \(-0.197950\pi\)
−0.949047 + 0.315136i \(0.897950\pi\)
\(824\) −0.0988529 −0.00344371
\(825\) 0 0
\(826\) −0.329973 −0.0114812
\(827\) 4.53336 + 8.89722i 0.157640 + 0.309387i 0.956295 0.292403i \(-0.0944547\pi\)
−0.798655 + 0.601789i \(0.794455\pi\)
\(828\) −0.115244 + 0.727619i −0.00400499 + 0.0252865i
\(829\) −12.4310 + 17.1098i −0.431746 + 0.594247i −0.968353 0.249585i \(-0.919706\pi\)
0.536607 + 0.843832i \(0.319706\pi\)
\(830\) 0 0
\(831\) −25.5204 + 8.29209i −0.885294 + 0.287649i
\(832\) 0.842930 0.133507i 0.0292233 0.00462852i
\(833\) −9.18100 1.45413i −0.318103 0.0503825i
\(834\) 13.5225 + 4.39371i 0.468244 + 0.152142i
\(835\) 0 0
\(836\) 14.9861 + 7.59169i 0.518306 + 0.262564i
\(837\) −13.5233 13.5233i −0.467434 0.467434i
\(838\) 17.3711 8.85100i 0.600073 0.305753i
\(839\) 23.3328 + 32.1148i 0.805537 + 1.10873i 0.991997 + 0.126264i \(0.0402986\pi\)
−0.186460 + 0.982463i \(0.559701\pi\)
\(840\) 0 0
\(841\) −8.81714 27.1364i −0.304039 0.935737i
\(842\) 2.54735 + 1.29794i 0.0877875 + 0.0447300i
\(843\) 1.07344 + 6.77743i 0.0369712 + 0.233427i
\(844\) 11.7834 8.56117i 0.405603 0.294688i
\(845\) 0 0
\(846\) 3.99336i 0.137295i
\(847\) −5.95893 5.90340i −0.204751 0.202843i
\(848\) −5.80747 + 5.80747i −0.199429 + 0.199429i
\(849\) −13.9969 + 43.0781i −0.480373 + 1.47844i
\(850\) 0 0
\(851\) 15.3766 + 11.1718i 0.527104 + 0.382964i
\(852\) −5.91271 + 11.6043i −0.202566 + 0.397558i
\(853\) −16.5238 + 32.4298i −0.565764 + 1.11037i 0.414012 + 0.910272i \(0.364127\pi\)
−0.979775 + 0.200102i \(0.935873\pi\)
\(854\) −7.82458 5.68489i −0.267752 0.194533i
\(855\) 0 0
\(856\) −2.01746 + 6.20910i −0.0689554 + 0.212223i
\(857\) 10.3508 10.3508i 0.353576 0.353576i −0.507862 0.861438i \(-0.669564\pi\)
0.861438 + 0.507862i \(0.169564\pi\)
\(858\) 1.44367 + 4.40804i 0.0492861 + 0.150488i
\(859\) 21.8229i 0.744588i −0.928115 0.372294i \(-0.878571\pi\)
0.928115 0.372294i \(-0.121429\pi\)
\(860\) 0 0
\(861\) −12.5639 + 9.12819i −0.428176 + 0.311088i
\(862\) 2.52053 + 15.9140i 0.0858495 + 0.542032i
\(863\) 5.34286 + 2.72232i 0.181873 + 0.0926690i 0.542556 0.840019i \(-0.317456\pi\)
−0.360683 + 0.932688i \(0.617456\pi\)
\(864\) −1.67849 5.16587i −0.0571035 0.175746i
\(865\) 0 0
\(866\) −14.3556 19.7588i −0.487823 0.671431i
\(867\) 21.7594 11.0870i 0.738988 0.376533i
\(868\) −1.89851 1.89851i −0.0644397 0.0644397i
\(869\) 23.7125 + 23.6018i 0.804392 + 0.800636i
\(870\) 0 0
\(871\) 4.39211 + 1.42708i 0.148821 + 0.0483548i
\(872\) 11.6671 + 1.84788i 0.395097 + 0.0625772i
\(873\) 4.42105 0.700226i 0.149630 0.0236991i
\(874\) 11.2795 3.66494i 0.381536 0.123969i
\(875\) 0 0
\(876\) 1.10250 1.51747i 0.0372502 0.0512705i
\(877\) −4.44076 + 28.0379i −0.149954 + 0.946771i 0.791876 + 0.610682i \(0.209105\pi\)
−0.941830 + 0.336090i \(0.890895\pi\)
\(878\) 6.01836 + 11.8117i 0.203110 + 0.398625i
\(879\) −30.6379 −1.03339
\(880\) 0 0
\(881\) −9.63291 −0.324541 −0.162270 0.986746i \(-0.551882\pi\)
−0.162270 + 0.986746i \(0.551882\pi\)
\(882\) 0.916804 + 1.79933i 0.0308704 + 0.0605866i
\(883\) 7.79859 49.2384i 0.262443 1.65700i −0.406471 0.913663i \(-0.633241\pi\)
0.668915 0.743339i \(-0.266759\pi\)
\(884\) −0.726483 + 0.999918i −0.0244343 + 0.0336309i
\(885\) 0 0
\(886\) −2.07093 + 0.672885i −0.0695742 + 0.0226060i
\(887\) 33.0342 5.23210i 1.10918 0.175677i 0.425144 0.905126i \(-0.360223\pi\)
0.684035 + 0.729449i \(0.260223\pi\)
\(888\) −13.1382 2.08089i −0.440890 0.0698301i
\(889\) 4.70701 + 1.52940i 0.157868 + 0.0512944i
\(890\) 0 0
\(891\) 23.4863 12.0362i 0.786820 0.403227i
\(892\) 0.951712 + 0.951712i 0.0318657 + 0.0318657i
\(893\) 57.2823 29.1868i 1.91688 0.976698i
\(894\) −14.1989 19.5431i −0.474882 0.653619i
\(895\) 0 0
\(896\) −0.235640 0.725226i −0.00787219 0.0242281i
\(897\) 2.91772 + 1.48665i 0.0974200 + 0.0496380i
\(898\) 0.754900 + 4.76625i 0.0251913 + 0.159052i
\(899\) 1.94687 1.41448i 0.0649316 0.0471756i
\(900\) 0 0
\(901\) 11.8942i 0.396255i
\(902\) 24.3056 + 33.2897i 0.809289 + 1.10843i
\(903\) −9.51275 + 9.51275i −0.316565 + 0.316565i
\(904\) 3.56235 10.9638i 0.118482 0.364650i
\(905\) 0 0
\(906\) 15.1781 + 11.0275i 0.504257 + 0.366364i
\(907\) 19.2581 37.7962i 0.639456 1.25500i −0.312833 0.949808i \(-0.601278\pi\)
0.952290 0.305196i \(-0.0987218\pi\)
\(908\) 0.931635 1.82844i 0.0309174 0.0606788i
\(909\) −2.38540 1.73309i −0.0791187 0.0574831i
\(910\) 0 0
\(911\) −4.93516 + 15.1889i −0.163509 + 0.503229i −0.998923 0.0463915i \(-0.985228\pi\)
0.835414 + 0.549621i \(0.185228\pi\)
\(912\) −5.86926 + 5.86926i −0.194351 + 0.194351i
\(913\) 0.467147 + 0.639819i 0.0154603 + 0.0211749i
\(914\) 20.4761i 0.677288i
\(915\) 0 0
\(916\) −14.5007 + 10.5354i −0.479116 + 0.348098i
\(917\) 0.186514 + 1.17760i 0.00615923 + 0.0388879i
\(918\) 7.00895 + 3.57124i 0.231330 + 0.117868i
\(919\) −7.78224 23.9513i −0.256713 0.790080i −0.993487 0.113942i \(-0.963652\pi\)
0.736775 0.676138i \(-0.236348\pi\)
\(920\) 0 0
\(921\) −9.71595 13.3729i −0.320151 0.440651i
\(922\) 0.549077 0.279769i 0.0180829 0.00921369i
\(923\) −4.79616 4.79616i −0.157868 0.157868i
\(924\) 3.68831 1.89017i 0.121336 0.0621821i
\(925\) 0 0
\(926\) −18.2897 5.94269i −0.601037 0.195289i
\(927\) −0.0307188 0.00486538i −0.00100894 0.000159800i
\(928\) 0.675052 0.106918i 0.0221597 0.00350974i
\(929\) −8.61430 + 2.79896i −0.282626 + 0.0918308i −0.446900 0.894584i \(-0.647472\pi\)
0.164274 + 0.986415i \(0.447472\pi\)
\(930\) 0 0
\(931\) 19.1095 26.3020i 0.626289 0.862012i
\(932\) −3.84574 + 24.2810i −0.125971 + 0.795352i
\(933\) 17.0440 + 33.4507i 0.557994 + 1.09513i
\(934\) 1.55432 0.0508591
\(935\) 0 0
\(936\) 0.268514 0.00877665
\(937\) 10.0962 + 19.8149i 0.329829 + 0.647326i 0.995056 0.0993152i \(-0.0316652\pi\)
−0.665227 + 0.746641i \(0.731665\pi\)
\(938\) 0.645497 4.07551i 0.0210762 0.133070i
\(939\) 13.9502 19.2007i 0.455246 0.626593i
\(940\) 0 0
\(941\) −20.9430 + 6.80478i −0.682721 + 0.221829i −0.629786 0.776769i \(-0.716857\pi\)
−0.0529346 + 0.998598i \(0.516857\pi\)
\(942\) −1.33411 + 0.211302i −0.0434677 + 0.00688461i
\(943\) 28.7413 + 4.55217i 0.935944 + 0.148239i
\(944\) −0.411545 0.133719i −0.0133947 0.00435219i
\(945\) 0 0
\(946\) 25.3074 + 25.1892i 0.822814 + 0.818972i
\(947\) 2.70333 + 2.70333i 0.0878464 + 0.0878464i 0.749664 0.661818i \(-0.230215\pi\)
−0.661818 + 0.749664i \(0.730215\pi\)
\(948\) −14.7287 + 7.50467i −0.478367 + 0.243740i
\(949\) 0.574182 + 0.790294i 0.0186387 + 0.0256540i
\(950\) 0 0
\(951\) 1.13277 + 3.48631i 0.0367326 + 0.113051i
\(952\) 0.983972 + 0.501359i 0.0318907 + 0.0162491i
\(953\) 5.80899 + 36.6765i 0.188172 + 1.18807i 0.883168 + 0.469056i \(0.155406\pi\)
−0.694997 + 0.719013i \(0.744594\pi\)
\(954\) −2.09052 + 1.51885i −0.0676831 + 0.0491746i
\(955\) 0 0
\(956\) 2.96744i 0.0959740i
\(957\) 1.15615 + 3.53013i 0.0373730 + 0.114113i
\(958\) 17.1065 17.1065i 0.552687 0.552687i
\(959\) 0.397745 1.22413i 0.0128439 0.0395294i
\(960\) 0 0
\(961\) 15.0500 + 10.9345i 0.485484 + 0.352725i
\(962\) 3.14509 6.17258i 0.101402 0.199012i
\(963\) −0.932533 + 1.83020i −0.0300505 + 0.0589773i
\(964\) −17.2206 12.5115i −0.554638 0.402968i
\(965\) 0 0
\(966\) 0.904151 2.78269i 0.0290906 0.0895316i
\(967\) 16.6994 16.6994i 0.537017 0.537017i −0.385634 0.922652i \(-0.626017\pi\)
0.922652 + 0.385634i \(0.126017\pi\)
\(968\) −5.03971 9.77759i −0.161983 0.314264i
\(969\) 12.0208i 0.386163i
\(970\) 0 0
\(971\) −21.9153 + 15.9224i −0.703294 + 0.510973i −0.881003 0.473110i \(-0.843131\pi\)
0.177709 + 0.984083i \(0.443131\pi\)
\(972\) −0.509304 3.21562i −0.0163359 0.103141i
\(973\) 5.89515 + 3.00373i 0.188990 + 0.0962951i
\(974\) −5.79872 17.8466i −0.185803 0.571843i
\(975\) 0 0
\(976\) −7.45513 10.2611i −0.238633 0.328450i
\(977\) −36.0042 + 18.3451i −1.15188 + 0.586911i −0.922336 0.386388i \(-0.873722\pi\)
−0.229541 + 0.973299i \(0.573722\pi\)
\(978\) −10.3558 10.3558i −0.331142 0.331142i
\(979\) 33.1671 + 16.8018i 1.06003 + 0.536989i
\(980\) 0 0
\(981\) 3.53462 + 1.14847i 0.112852 + 0.0366678i
\(982\) −25.0692 3.97058i −0.799992 0.126706i
\(983\) −23.7573 + 3.76279i −0.757740 + 0.120014i −0.523338 0.852125i \(-0.675313\pi\)
−0.234402 + 0.972140i \(0.575313\pi\)
\(984\) −19.3689 + 6.29334i −0.617459 + 0.200624i
\(985\) 0 0
\(986\) −0.581796 + 0.800773i −0.0185282 + 0.0255018i
\(987\) 2.48111 15.6651i 0.0789745 0.498625i
\(988\) −1.96252 3.85166i −0.0624361 0.122538i
\(989\) 25.2082 0.801573
\(990\) 0 0
\(991\) −4.81752 −0.153034 −0.0765169 0.997068i \(-0.524380\pi\)
−0.0765169 + 0.997068i \(0.524380\pi\)
\(992\) −1.59848 3.13720i −0.0507519 0.0996062i
\(993\) −0.504170 + 3.18320i −0.0159993 + 0.101016i
\(994\) −3.56224 + 4.90300i −0.112987 + 0.155514i
\(995\) 0 0
\(996\) −0.372265 + 0.120956i −0.0117957 + 0.00383264i
\(997\) 36.3270 5.75364i 1.15049 0.182219i 0.448080 0.893993i \(-0.352108\pi\)
0.702409 + 0.711774i \(0.252108\pi\)
\(998\) −9.01551 1.42792i −0.285381 0.0451999i
\(999\) −41.9332 13.6249i −1.32671 0.431073i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.bh.b.57.1 48
5.2 odd 4 110.2.k.a.13.6 48
5.3 odd 4 inner 550.2.bh.b.343.1 48
5.4 even 2 110.2.k.a.57.6 yes 48
11.6 odd 10 inner 550.2.bh.b.457.1 48
15.2 even 4 990.2.bh.c.343.3 48
15.14 odd 2 990.2.bh.c.937.1 48
20.7 even 4 880.2.cm.c.673.2 48
20.19 odd 2 880.2.cm.c.497.2 48
55.17 even 20 110.2.k.a.83.6 yes 48
55.28 even 20 inner 550.2.bh.b.193.1 48
55.39 odd 10 110.2.k.a.17.6 yes 48
165.17 odd 20 990.2.bh.c.523.1 48
165.149 even 10 990.2.bh.c.127.3 48
220.39 even 10 880.2.cm.c.17.2 48
220.127 odd 20 880.2.cm.c.193.2 48
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.k.a.13.6 48 5.2 odd 4
110.2.k.a.17.6 yes 48 55.39 odd 10
110.2.k.a.57.6 yes 48 5.4 even 2
110.2.k.a.83.6 yes 48 55.17 even 20
550.2.bh.b.57.1 48 1.1 even 1 trivial
550.2.bh.b.193.1 48 55.28 even 20 inner
550.2.bh.b.343.1 48 5.3 odd 4 inner
550.2.bh.b.457.1 48 11.6 odd 10 inner
880.2.cm.c.17.2 48 220.39 even 10
880.2.cm.c.193.2 48 220.127 odd 20
880.2.cm.c.497.2 48 20.19 odd 2
880.2.cm.c.673.2 48 20.7 even 4
990.2.bh.c.127.3 48 165.149 even 10
990.2.bh.c.343.3 48 15.2 even 4
990.2.bh.c.523.1 48 165.17 odd 20
990.2.bh.c.937.1 48 15.14 odd 2