Properties

Label 550.2.h.a.301.1
Level $550$
Weight $2$
Character 550.301
Analytic conductor $4.392$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(4\)
Coefficient field: \(\Q(\zeta_{10})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} + x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(0.809017 - 0.587785i\) of defining polynomial
Character \(\chi\) \(=\) 550.301
Dual form 550.2.h.a.201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(-0.809017 - 0.587785i) q^{2} +(0.118034 - 0.363271i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-0.309017 + 0.224514i) q^{6} +(0.927051 + 2.85317i) q^{7} +(0.309017 - 0.951057i) q^{8} +(2.30902 + 1.67760i) q^{9} +(-1.23607 + 3.07768i) q^{11} +0.381966 q^{12} +(-5.04508 - 3.66547i) q^{13} +(0.927051 - 2.85317i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(-3.54508 + 2.57565i) q^{17} +(-0.881966 - 2.71441i) q^{18} +(-1.80902 + 5.56758i) q^{19} +1.14590 q^{21} +(2.80902 - 1.76336i) q^{22} -1.85410 q^{23} +(-0.309017 - 0.224514i) q^{24} +(1.92705 + 5.93085i) q^{26} +(1.80902 - 1.31433i) q^{27} +(-2.42705 + 1.76336i) q^{28} +(-0.163119 - 0.502029i) q^{29} +(2.42705 + 1.76336i) q^{31} +1.00000 q^{32} +(0.972136 + 0.812299i) q^{33} +4.38197 q^{34} +(-0.881966 + 2.71441i) q^{36} +(3.26393 + 10.0453i) q^{37} +(4.73607 - 3.44095i) q^{38} +(-1.92705 + 1.40008i) q^{39} +(1.14590 - 3.52671i) q^{41} +(-0.927051 - 0.673542i) q^{42} +10.7082 q^{43} +(-3.30902 - 0.224514i) q^{44} +(1.50000 + 1.08981i) q^{46} +(-0.454915 + 1.40008i) q^{47} +(0.118034 + 0.363271i) q^{48} +(-1.61803 + 1.17557i) q^{49} +(0.517221 + 1.59184i) q^{51} +(1.92705 - 5.93085i) q^{52} +(-4.35410 - 3.16344i) q^{53} -2.23607 q^{54} +3.00000 q^{56} +(1.80902 + 1.31433i) q^{57} +(-0.163119 + 0.502029i) q^{58} +(-2.07295 - 6.37988i) q^{59} +(-7.04508 + 5.11855i) q^{61} +(-0.927051 - 2.85317i) q^{62} +(-2.64590 + 8.14324i) q^{63} +(-0.809017 - 0.587785i) q^{64} +(-0.309017 - 1.22857i) q^{66} -0.0901699 q^{67} +(-3.54508 - 2.57565i) q^{68} +(-0.218847 + 0.673542i) q^{69} +(10.7812 - 7.83297i) q^{71} +(2.30902 - 1.67760i) q^{72} +(3.57295 + 10.9964i) q^{73} +(3.26393 - 10.0453i) q^{74} -5.85410 q^{76} +(-9.92705 - 0.673542i) q^{77} +2.38197 q^{78} +(6.28115 + 4.56352i) q^{79} +(2.38197 + 7.33094i) q^{81} +(-3.00000 + 2.17963i) q^{82} +(3.04508 - 2.21238i) q^{83} +(0.354102 + 1.08981i) q^{84} +(-8.66312 - 6.29412i) q^{86} -0.201626 q^{87} +(2.54508 + 2.12663i) q^{88} +11.1803 q^{89} +(5.78115 - 17.7926i) q^{91} +(-0.572949 - 1.76336i) q^{92} +(0.927051 - 0.673542i) q^{93} +(1.19098 - 0.865300i) q^{94} +(0.118034 - 0.363271i) q^{96} +(0.763932 + 0.555029i) q^{97} +2.00000 q^{98} +(-8.01722 + 5.03280i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q - q^{2} - 4 q^{3} - q^{4} + q^{6} - 3 q^{7} - q^{8} + 7 q^{9} + 4 q^{11} + 6 q^{12} - 9 q^{13} - 3 q^{14} - q^{16} - 3 q^{17} - 8 q^{18} - 5 q^{19} + 18 q^{21} + 9 q^{22} + 6 q^{23} + q^{24} + q^{26}+ \cdots - 3 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) −0.809017 0.587785i −0.572061 0.415627i
\(3\) 0.118034 0.363271i 0.0681470 0.209735i −0.911184 0.412000i \(-0.864830\pi\)
0.979331 + 0.202265i \(0.0648303\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0
\(6\) −0.309017 + 0.224514i −0.126156 + 0.0916575i
\(7\) 0.927051 + 2.85317i 0.350392 + 1.07840i 0.958633 + 0.284644i \(0.0918755\pi\)
−0.608241 + 0.793752i \(0.708125\pi\)
\(8\) 0.309017 0.951057i 0.109254 0.336249i
\(9\) 2.30902 + 1.67760i 0.769672 + 0.559200i
\(10\) 0 0
\(11\) −1.23607 + 3.07768i −0.372689 + 0.927957i
\(12\) 0.381966 0.110264
\(13\) −5.04508 3.66547i −1.39925 1.01662i −0.994777 0.102070i \(-0.967453\pi\)
−0.404478 0.914548i \(-0.632547\pi\)
\(14\) 0.927051 2.85317i 0.247765 0.762542i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) −3.54508 + 2.57565i −0.859809 + 0.624688i −0.927833 0.372996i \(-0.878331\pi\)
0.0680237 + 0.997684i \(0.478331\pi\)
\(18\) −0.881966 2.71441i −0.207881 0.639793i
\(19\) −1.80902 + 5.56758i −0.415017 + 1.27729i 0.497219 + 0.867625i \(0.334355\pi\)
−0.912236 + 0.409666i \(0.865645\pi\)
\(20\) 0 0
\(21\) 1.14590 0.250055
\(22\) 2.80902 1.76336i 0.598884 0.375949i
\(23\) −1.85410 −0.386607 −0.193303 0.981139i \(-0.561920\pi\)
−0.193303 + 0.981139i \(0.561920\pi\)
\(24\) −0.309017 0.224514i −0.0630778 0.0458287i
\(25\) 0 0
\(26\) 1.92705 + 5.93085i 0.377926 + 1.16314i
\(27\) 1.80902 1.31433i 0.348145 0.252942i
\(28\) −2.42705 + 1.76336i −0.458670 + 0.333243i
\(29\) −0.163119 0.502029i −0.0302904 0.0932244i 0.934768 0.355258i \(-0.115607\pi\)
−0.965059 + 0.262033i \(0.915607\pi\)
\(30\) 0 0
\(31\) 2.42705 + 1.76336i 0.435911 + 0.316708i 0.784008 0.620750i \(-0.213172\pi\)
−0.348097 + 0.937459i \(0.613172\pi\)
\(32\) 1.00000 0.176777
\(33\) 0.972136 + 0.812299i 0.169227 + 0.141403i
\(34\) 4.38197 0.751501
\(35\) 0 0
\(36\) −0.881966 + 2.71441i −0.146994 + 0.452402i
\(37\) 3.26393 + 10.0453i 0.536587 + 1.65145i 0.740195 + 0.672393i \(0.234733\pi\)
−0.203607 + 0.979053i \(0.565267\pi\)
\(38\) 4.73607 3.44095i 0.768292 0.558197i
\(39\) −1.92705 + 1.40008i −0.308575 + 0.224193i
\(40\) 0 0
\(41\) 1.14590 3.52671i 0.178959 0.550780i −0.820833 0.571168i \(-0.806490\pi\)
0.999792 + 0.0203886i \(0.00649033\pi\)
\(42\) −0.927051 0.673542i −0.143047 0.103930i
\(43\) 10.7082 1.63299 0.816493 0.577355i \(-0.195915\pi\)
0.816493 + 0.577355i \(0.195915\pi\)
\(44\) −3.30902 0.224514i −0.498853 0.0338468i
\(45\) 0 0
\(46\) 1.50000 + 1.08981i 0.221163 + 0.160684i
\(47\) −0.454915 + 1.40008i −0.0663562 + 0.204223i −0.978737 0.205119i \(-0.934242\pi\)
0.912381 + 0.409342i \(0.134242\pi\)
\(48\) 0.118034 + 0.363271i 0.0170367 + 0.0524337i
\(49\) −1.61803 + 1.17557i −0.231148 + 0.167939i
\(50\) 0 0
\(51\) 0.517221 + 1.59184i 0.0724254 + 0.222903i
\(52\) 1.92705 5.93085i 0.267234 0.822461i
\(53\) −4.35410 3.16344i −0.598082 0.434532i 0.247116 0.968986i \(-0.420517\pi\)
−0.845198 + 0.534454i \(0.820517\pi\)
\(54\) −2.23607 −0.304290
\(55\) 0 0
\(56\) 3.00000 0.400892
\(57\) 1.80902 + 1.31433i 0.239610 + 0.174087i
\(58\) −0.163119 + 0.502029i −0.0214186 + 0.0659196i
\(59\) −2.07295 6.37988i −0.269875 0.830590i −0.990530 0.137296i \(-0.956159\pi\)
0.720655 0.693294i \(-0.243841\pi\)
\(60\) 0 0
\(61\) −7.04508 + 5.11855i −0.902031 + 0.655364i −0.938987 0.343953i \(-0.888234\pi\)
0.0369561 + 0.999317i \(0.488234\pi\)
\(62\) −0.927051 2.85317i −0.117736 0.362353i
\(63\) −2.64590 + 8.14324i −0.333352 + 1.02595i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) −0.309017 1.22857i −0.0380374 0.151227i
\(67\) −0.0901699 −0.0110160 −0.00550801 0.999985i \(-0.501753\pi\)
−0.00550801 + 0.999985i \(0.501753\pi\)
\(68\) −3.54508 2.57565i −0.429905 0.312344i
\(69\) −0.218847 + 0.673542i −0.0263461 + 0.0810849i
\(70\) 0 0
\(71\) 10.7812 7.83297i 1.27949 0.929602i 0.279950 0.960015i \(-0.409682\pi\)
0.999537 + 0.0304125i \(0.00968210\pi\)
\(72\) 2.30902 1.67760i 0.272120 0.197707i
\(73\) 3.57295 + 10.9964i 0.418182 + 1.28703i 0.909374 + 0.415980i \(0.136562\pi\)
−0.491192 + 0.871052i \(0.663438\pi\)
\(74\) 3.26393 10.0453i 0.379424 1.16775i
\(75\) 0 0
\(76\) −5.85410 −0.671512
\(77\) −9.92705 0.673542i −1.13129 0.0767572i
\(78\) 2.38197 0.269705
\(79\) 6.28115 + 4.56352i 0.706685 + 0.513437i 0.882103 0.471057i \(-0.156128\pi\)
−0.175418 + 0.984494i \(0.556128\pi\)
\(80\) 0 0
\(81\) 2.38197 + 7.33094i 0.264663 + 0.814549i
\(82\) −3.00000 + 2.17963i −0.331295 + 0.240700i
\(83\) 3.04508 2.21238i 0.334241 0.242841i −0.407987 0.912988i \(-0.633769\pi\)
0.742228 + 0.670147i \(0.233769\pi\)
\(84\) 0.354102 + 1.08981i 0.0386357 + 0.118908i
\(85\) 0 0
\(86\) −8.66312 6.29412i −0.934168 0.678713i
\(87\) −0.201626 −0.0216166
\(88\) 2.54508 + 2.12663i 0.271307 + 0.226699i
\(89\) 11.1803 1.18511 0.592557 0.805529i \(-0.298119\pi\)
0.592557 + 0.805529i \(0.298119\pi\)
\(90\) 0 0
\(91\) 5.78115 17.7926i 0.606029 1.86517i
\(92\) −0.572949 1.76336i −0.0597341 0.183843i
\(93\) 0.927051 0.673542i 0.0961307 0.0698430i
\(94\) 1.19098 0.865300i 0.122841 0.0892489i
\(95\) 0 0
\(96\) 0.118034 0.363271i 0.0120468 0.0370762i
\(97\) 0.763932 + 0.555029i 0.0775655 + 0.0563547i 0.625892 0.779910i \(-0.284735\pi\)
−0.548327 + 0.836264i \(0.684735\pi\)
\(98\) 2.00000 0.202031
\(99\) −8.01722 + 5.03280i −0.805761 + 0.505815i
\(100\) 0 0
\(101\) −10.6631 7.74721i −1.06102 0.770876i −0.0867432 0.996231i \(-0.527646\pi\)
−0.974277 + 0.225355i \(0.927646\pi\)
\(102\) 0.517221 1.59184i 0.0512125 0.157616i
\(103\) 0.218847 + 0.673542i 0.0215636 + 0.0663661i 0.961259 0.275646i \(-0.0888917\pi\)
−0.939696 + 0.342012i \(0.888892\pi\)
\(104\) −5.04508 + 3.66547i −0.494711 + 0.359429i
\(105\) 0 0
\(106\) 1.66312 + 5.11855i 0.161536 + 0.497158i
\(107\) 0.236068 0.726543i 0.0228216 0.0702375i −0.938997 0.343925i \(-0.888243\pi\)
0.961819 + 0.273687i \(0.0882434\pi\)
\(108\) 1.80902 + 1.31433i 0.174073 + 0.126471i
\(109\) −9.14590 −0.876018 −0.438009 0.898971i \(-0.644316\pi\)
−0.438009 + 0.898971i \(0.644316\pi\)
\(110\) 0 0
\(111\) 4.03444 0.382932
\(112\) −2.42705 1.76336i −0.229335 0.166621i
\(113\) −1.16312 + 3.57971i −0.109417 + 0.336751i −0.990742 0.135760i \(-0.956652\pi\)
0.881325 + 0.472511i \(0.156652\pi\)
\(114\) −0.690983 2.12663i −0.0647165 0.199177i
\(115\) 0 0
\(116\) 0.427051 0.310271i 0.0396507 0.0288079i
\(117\) −5.50000 16.9273i −0.508475 1.56493i
\(118\) −2.07295 + 6.37988i −0.190830 + 0.587316i
\(119\) −10.6353 7.72696i −0.974932 0.708330i
\(120\) 0 0
\(121\) −7.94427 7.60845i −0.722207 0.691677i
\(122\) 8.70820 0.788404
\(123\) −1.14590 0.832544i −0.103322 0.0750679i
\(124\) −0.927051 + 2.85317i −0.0832516 + 0.256222i
\(125\) 0 0
\(126\) 6.92705 5.03280i 0.617111 0.448357i
\(127\) −1.73607 + 1.26133i −0.154051 + 0.111925i −0.662141 0.749380i \(-0.730352\pi\)
0.508090 + 0.861304i \(0.330352\pi\)
\(128\) 0.309017 + 0.951057i 0.0273135 + 0.0840623i
\(129\) 1.26393 3.88998i 0.111283 0.342494i
\(130\) 0 0
\(131\) −20.5623 −1.79654 −0.898269 0.439447i \(-0.855174\pi\)
−0.898269 + 0.439447i \(0.855174\pi\)
\(132\) −0.472136 + 1.17557i −0.0410942 + 0.102320i
\(133\) −17.5623 −1.52285
\(134\) 0.0729490 + 0.0530006i 0.00630184 + 0.00457855i
\(135\) 0 0
\(136\) 1.35410 + 4.16750i 0.116113 + 0.357360i
\(137\) 2.57295 1.86936i 0.219822 0.159710i −0.472425 0.881371i \(-0.656621\pi\)
0.692246 + 0.721661i \(0.256621\pi\)
\(138\) 0.572949 0.416272i 0.0487727 0.0354354i
\(139\) −2.50000 7.69421i −0.212047 0.652614i −0.999350 0.0360478i \(-0.988523\pi\)
0.787303 0.616566i \(-0.211477\pi\)
\(140\) 0 0
\(141\) 0.454915 + 0.330515i 0.0383108 + 0.0278344i
\(142\) −13.3262 −1.11831
\(143\) 17.5172 10.9964i 1.46486 0.919566i
\(144\) −2.85410 −0.237842
\(145\) 0 0
\(146\) 3.57295 10.9964i 0.295699 0.910069i
\(147\) 0.236068 + 0.726543i 0.0194706 + 0.0599242i
\(148\) −8.54508 + 6.20837i −0.702402 + 0.510325i
\(149\) 17.1353 12.4495i 1.40377 1.01990i 0.409584 0.912273i \(-0.365674\pi\)
0.994191 0.107630i \(-0.0343260\pi\)
\(150\) 0 0
\(151\) 6.20820 19.1069i 0.505216 1.55490i −0.295190 0.955439i \(-0.595383\pi\)
0.800406 0.599458i \(-0.204617\pi\)
\(152\) 4.73607 + 3.44095i 0.384146 + 0.279098i
\(153\) −12.5066 −1.01110
\(154\) 7.63525 + 6.37988i 0.615266 + 0.514105i
\(155\) 0 0
\(156\) −1.92705 1.40008i −0.154288 0.112096i
\(157\) 6.09017 18.7436i 0.486048 1.49590i −0.344408 0.938820i \(-0.611920\pi\)
0.830457 0.557083i \(-0.188080\pi\)
\(158\) −2.39919 7.38394i −0.190869 0.587435i
\(159\) −1.66312 + 1.20833i −0.131894 + 0.0958265i
\(160\) 0 0
\(161\) −1.71885 5.29007i −0.135464 0.416916i
\(162\) 2.38197 7.33094i 0.187145 0.575973i
\(163\) 9.85410 + 7.15942i 0.771833 + 0.560769i 0.902517 0.430655i \(-0.141717\pi\)
−0.130684 + 0.991424i \(0.541717\pi\)
\(164\) 3.70820 0.289562
\(165\) 0 0
\(166\) −3.76393 −0.292138
\(167\) 4.80902 + 3.49396i 0.372133 + 0.270370i 0.758095 0.652144i \(-0.226130\pi\)
−0.385962 + 0.922515i \(0.626130\pi\)
\(168\) 0.354102 1.08981i 0.0273196 0.0840810i
\(169\) 8.00000 + 24.6215i 0.615385 + 1.89396i
\(170\) 0 0
\(171\) −13.5172 + 9.82084i −1.03369 + 0.751018i
\(172\) 3.30902 + 10.1841i 0.252310 + 0.776531i
\(173\) −2.64590 + 8.14324i −0.201164 + 0.619119i 0.798685 + 0.601749i \(0.205529\pi\)
−0.999849 + 0.0173698i \(0.994471\pi\)
\(174\) 0.163119 + 0.118513i 0.0123660 + 0.00898444i
\(175\) 0 0
\(176\) −0.809017 3.21644i −0.0609820 0.242448i
\(177\) −2.56231 −0.192595
\(178\) −9.04508 6.57164i −0.677958 0.492565i
\(179\) 3.29180 10.1311i 0.246040 0.757234i −0.749423 0.662091i \(-0.769669\pi\)
0.995464 0.0951432i \(-0.0303309\pi\)
\(180\) 0 0
\(181\) −9.70820 + 7.05342i −0.721605 + 0.524277i −0.886897 0.461968i \(-0.847144\pi\)
0.165292 + 0.986245i \(0.447144\pi\)
\(182\) −15.1353 + 10.9964i −1.12190 + 0.815108i
\(183\) 1.02786 + 3.16344i 0.0759819 + 0.233848i
\(184\) −0.572949 + 1.76336i −0.0422384 + 0.129996i
\(185\) 0 0
\(186\) −1.14590 −0.0840213
\(187\) −3.54508 14.0943i −0.259242 1.03068i
\(188\) −1.47214 −0.107367
\(189\) 5.42705 + 3.94298i 0.394760 + 0.286810i
\(190\) 0 0
\(191\) 7.42705 + 22.8581i 0.537403 + 1.65395i 0.738400 + 0.674363i \(0.235582\pi\)
−0.200997 + 0.979592i \(0.564418\pi\)
\(192\) −0.309017 + 0.224514i −0.0223014 + 0.0162029i
\(193\) 1.50000 1.08981i 0.107972 0.0784465i −0.532489 0.846437i \(-0.678743\pi\)
0.640461 + 0.767990i \(0.278743\pi\)
\(194\) −0.291796 0.898056i −0.0209497 0.0644767i
\(195\) 0 0
\(196\) −1.61803 1.17557i −0.115574 0.0839693i
\(197\) −4.76393 −0.339416 −0.169708 0.985494i \(-0.554282\pi\)
−0.169708 + 0.985494i \(0.554282\pi\)
\(198\) 9.44427 + 0.640786i 0.671175 + 0.0455387i
\(199\) −3.94427 −0.279602 −0.139801 0.990180i \(-0.544646\pi\)
−0.139801 + 0.990180i \(0.544646\pi\)
\(200\) 0 0
\(201\) −0.0106431 + 0.0327561i −0.000750708 + 0.00231044i
\(202\) 4.07295 + 12.5352i 0.286572 + 0.881977i
\(203\) 1.28115 0.930812i 0.0899193 0.0653302i
\(204\) −1.35410 + 0.983813i −0.0948061 + 0.0688807i
\(205\) 0 0
\(206\) 0.218847 0.673542i 0.0152478 0.0469279i
\(207\) −4.28115 3.11044i −0.297561 0.216191i
\(208\) 6.23607 0.432394
\(209\) −14.8992 12.4495i −1.03060 0.861149i
\(210\) 0 0
\(211\) 22.0623 + 16.0292i 1.51883 + 1.10350i 0.962063 + 0.272829i \(0.0879592\pi\)
0.556769 + 0.830667i \(0.312041\pi\)
\(212\) 1.66312 5.11855i 0.114223 0.351544i
\(213\) −1.57295 4.84104i −0.107777 0.331703i
\(214\) −0.618034 + 0.449028i −0.0422479 + 0.0306949i
\(215\) 0 0
\(216\) −0.690983 2.12663i −0.0470154 0.144699i
\(217\) −2.78115 + 8.55951i −0.188797 + 0.581057i
\(218\) 7.39919 + 5.37582i 0.501136 + 0.364097i
\(219\) 4.41641 0.298433
\(220\) 0 0
\(221\) 27.3262 1.83816
\(222\) −3.26393 2.37139i −0.219061 0.159157i
\(223\) 6.39919 19.6947i 0.428521 1.31885i −0.471061 0.882101i \(-0.656129\pi\)
0.899582 0.436752i \(-0.143871\pi\)
\(224\) 0.927051 + 2.85317i 0.0619412 + 0.190635i
\(225\) 0 0
\(226\) 3.04508 2.21238i 0.202556 0.147166i
\(227\) 5.66312 + 17.4293i 0.375874 + 1.15682i 0.942887 + 0.333113i \(0.108099\pi\)
−0.567012 + 0.823709i \(0.691901\pi\)
\(228\) −0.690983 + 2.12663i −0.0457615 + 0.140839i
\(229\) −0.427051 0.310271i −0.0282203 0.0205033i 0.573586 0.819146i \(-0.305552\pi\)
−0.601806 + 0.798642i \(0.705552\pi\)
\(230\) 0 0
\(231\) −1.41641 + 3.52671i −0.0931928 + 0.232041i
\(232\) −0.527864 −0.0346560
\(233\) −12.4443 9.04129i −0.815251 0.592315i 0.100097 0.994978i \(-0.468085\pi\)
−0.915348 + 0.402663i \(0.868085\pi\)
\(234\) −5.50000 + 16.9273i −0.359546 + 1.10657i
\(235\) 0 0
\(236\) 5.42705 3.94298i 0.353271 0.256666i
\(237\) 2.39919 1.74311i 0.155844 0.113227i
\(238\) 4.06231 + 12.5025i 0.263320 + 0.810416i
\(239\) 4.83688 14.8864i 0.312872 0.962920i −0.663750 0.747955i \(-0.731036\pi\)
0.976622 0.214966i \(-0.0689640\pi\)
\(240\) 0 0
\(241\) −18.0000 −1.15948 −0.579741 0.814801i \(-0.696846\pi\)
−0.579741 + 0.814801i \(0.696846\pi\)
\(242\) 1.95492 + 10.8249i 0.125667 + 0.695850i
\(243\) 9.65248 0.619207
\(244\) −7.04508 5.11855i −0.451015 0.327682i
\(245\) 0 0
\(246\) 0.437694 + 1.34708i 0.0279064 + 0.0858869i
\(247\) 29.5344 21.4580i 1.87923 1.36534i
\(248\) 2.42705 1.76336i 0.154118 0.111973i
\(249\) −0.444272 1.36733i −0.0281546 0.0866509i
\(250\) 0 0
\(251\) 11.7361 + 8.52675i 0.740774 + 0.538204i 0.892953 0.450149i \(-0.148629\pi\)
−0.152179 + 0.988353i \(0.548629\pi\)
\(252\) −8.56231 −0.539375
\(253\) 2.29180 5.70634i 0.144084 0.358754i
\(254\) 2.14590 0.134646
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 9.80902 + 30.1891i 0.611870 + 1.88314i 0.439925 + 0.898035i \(0.355005\pi\)
0.171945 + 0.985107i \(0.444995\pi\)
\(258\) −3.30902 + 2.40414i −0.206010 + 0.149675i
\(259\) −25.6353 + 18.6251i −1.59290 + 1.15731i
\(260\) 0 0
\(261\) 0.465558 1.43284i 0.0288173 0.0886906i
\(262\) 16.6353 + 12.0862i 1.02773 + 0.746689i
\(263\) 11.0344 0.680413 0.340206 0.940351i \(-0.389503\pi\)
0.340206 + 0.940351i \(0.389503\pi\)
\(264\) 1.07295 0.673542i 0.0660354 0.0414536i
\(265\) 0 0
\(266\) 14.2082 + 10.3229i 0.871161 + 0.632935i
\(267\) 1.31966 4.06150i 0.0807619 0.248560i
\(268\) −0.0278640 0.0857567i −0.00170207 0.00523842i
\(269\) 14.6353 10.6331i 0.892327 0.648314i −0.0441565 0.999025i \(-0.514060\pi\)
0.936484 + 0.350711i \(0.114060\pi\)
\(270\) 0 0
\(271\) 5.02786 + 15.4742i 0.305421 + 0.939989i 0.979520 + 0.201348i \(0.0645322\pi\)
−0.674099 + 0.738641i \(0.735468\pi\)
\(272\) 1.35410 4.16750i 0.0821045 0.252692i
\(273\) −5.78115 4.20025i −0.349891 0.254211i
\(274\) −3.18034 −0.192131
\(275\) 0 0
\(276\) −0.708204 −0.0426289
\(277\) −5.09017 3.69822i −0.305839 0.222205i 0.424270 0.905536i \(-0.360531\pi\)
−0.730109 + 0.683331i \(0.760531\pi\)
\(278\) −2.50000 + 7.69421i −0.149940 + 0.461468i
\(279\) 2.64590 + 8.14324i 0.158406 + 0.487523i
\(280\) 0 0
\(281\) −14.7082 + 10.6861i −0.877418 + 0.637481i −0.932567 0.360997i \(-0.882437\pi\)
0.0551492 + 0.998478i \(0.482437\pi\)
\(282\) −0.173762 0.534785i −0.0103474 0.0318460i
\(283\) −5.67376 + 17.4620i −0.337270 + 1.03801i 0.628323 + 0.777953i \(0.283742\pi\)
−0.965593 + 0.260058i \(0.916258\pi\)
\(284\) 10.7812 + 7.83297i 0.639744 + 0.464801i
\(285\) 0 0
\(286\) −20.6353 1.40008i −1.22019 0.0827887i
\(287\) 11.1246 0.656665
\(288\) 2.30902 + 1.67760i 0.136060 + 0.0988535i
\(289\) 0.680340 2.09387i 0.0400200 0.123169i
\(290\) 0 0
\(291\) 0.291796 0.212002i 0.0171054 0.0124278i
\(292\) −9.35410 + 6.79615i −0.547407 + 0.397715i
\(293\) −5.89919 18.1558i −0.344634 1.06067i −0.961779 0.273826i \(-0.911711\pi\)
0.617145 0.786849i \(-0.288289\pi\)
\(294\) 0.236068 0.726543i 0.0137678 0.0423728i
\(295\) 0 0
\(296\) 10.5623 0.613922
\(297\) 1.80902 + 7.19218i 0.104970 + 0.417333i
\(298\) −21.1803 −1.22694
\(299\) 9.35410 + 6.79615i 0.540962 + 0.393032i
\(300\) 0 0
\(301\) 9.92705 + 30.5523i 0.572186 + 1.76101i
\(302\) −16.2533 + 11.8087i −0.935272 + 0.679515i
\(303\) −4.07295 + 2.95917i −0.233985 + 0.170000i
\(304\) −1.80902 5.56758i −0.103754 0.319323i
\(305\) 0 0
\(306\) 10.1180 + 7.35118i 0.578410 + 0.420239i
\(307\) −9.56231 −0.545750 −0.272875 0.962050i \(-0.587974\pi\)
−0.272875 + 0.962050i \(0.587974\pi\)
\(308\) −2.42705 9.64932i −0.138294 0.549821i
\(309\) 0.270510 0.0153888
\(310\) 0 0
\(311\) 0.781153 2.40414i 0.0442951 0.136326i −0.926463 0.376385i \(-0.877167\pi\)
0.970758 + 0.240059i \(0.0771668\pi\)
\(312\) 0.736068 + 2.26538i 0.0416716 + 0.128252i
\(313\) 16.1353 11.7229i 0.912019 0.662620i −0.0295060 0.999565i \(-0.509393\pi\)
0.941525 + 0.336944i \(0.109393\pi\)
\(314\) −15.9443 + 11.5842i −0.899787 + 0.653734i
\(315\) 0 0
\(316\) −2.39919 + 7.38394i −0.134965 + 0.415379i
\(317\) −25.6803 18.6579i −1.44235 1.04793i −0.987545 0.157340i \(-0.949708\pi\)
−0.454807 0.890590i \(-0.650292\pi\)
\(318\) 2.05573 0.115280
\(319\) 1.74671 + 0.118513i 0.0977970 + 0.00663545i
\(320\) 0 0
\(321\) −0.236068 0.171513i −0.0131760 0.00957295i
\(322\) −1.71885 + 5.29007i −0.0957876 + 0.294804i
\(323\) −7.92705 24.3970i −0.441073 1.35748i
\(324\) −6.23607 + 4.53077i −0.346448 + 0.251709i
\(325\) 0 0
\(326\) −3.76393 11.5842i −0.208465 0.641589i
\(327\) −1.07953 + 3.32244i −0.0596980 + 0.183731i
\(328\) −3.00000 2.17963i −0.165647 0.120350i
\(329\) −4.41641 −0.243484
\(330\) 0 0
\(331\) 12.0000 0.659580 0.329790 0.944054i \(-0.393022\pi\)
0.329790 + 0.944054i \(0.393022\pi\)
\(332\) 3.04508 + 2.21238i 0.167121 + 0.121420i
\(333\) −9.31559 + 28.6705i −0.510491 + 1.57113i
\(334\) −1.83688 5.65334i −0.100510 0.309337i
\(335\) 0 0
\(336\) −0.927051 + 0.673542i −0.0505748 + 0.0367447i
\(337\) 0.399187 + 1.22857i 0.0217451 + 0.0669245i 0.961340 0.275363i \(-0.0887982\pi\)
−0.939595 + 0.342288i \(0.888798\pi\)
\(338\) 8.00000 24.6215i 0.435143 1.33923i
\(339\) 1.16312 + 0.845055i 0.0631720 + 0.0458971i
\(340\) 0 0
\(341\) −8.42705 + 5.29007i −0.456350 + 0.286473i
\(342\) 16.7082 0.903476
\(343\) 12.1353 + 8.81678i 0.655242 + 0.476061i
\(344\) 3.30902 10.1841i 0.178410 0.549090i
\(345\) 0 0
\(346\) 6.92705 5.03280i 0.372401 0.270565i
\(347\) 11.7812 8.55951i 0.632445 0.459498i −0.224801 0.974405i \(-0.572173\pi\)
0.857247 + 0.514906i \(0.172173\pi\)
\(348\) −0.0623059 0.191758i −0.00333995 0.0102793i
\(349\) −2.23607 + 6.88191i −0.119694 + 0.368380i −0.992897 0.118976i \(-0.962039\pi\)
0.873203 + 0.487356i \(0.162039\pi\)
\(350\) 0 0
\(351\) −13.9443 −0.744290
\(352\) −1.23607 + 3.07768i −0.0658826 + 0.164041i
\(353\) −23.5623 −1.25410 −0.627048 0.778981i \(-0.715737\pi\)
−0.627048 + 0.778981i \(0.715737\pi\)
\(354\) 2.07295 + 1.50609i 0.110176 + 0.0800475i
\(355\) 0 0
\(356\) 3.45492 + 10.6331i 0.183110 + 0.563555i
\(357\) −4.06231 + 2.95144i −0.215000 + 0.156207i
\(358\) −8.61803 + 6.26137i −0.455477 + 0.330924i
\(359\) 2.76393 + 8.50651i 0.145875 + 0.448956i 0.997122 0.0758078i \(-0.0241535\pi\)
−0.851248 + 0.524764i \(0.824154\pi\)
\(360\) 0 0
\(361\) −12.3541 8.97578i −0.650216 0.472409i
\(362\) 12.0000 0.630706
\(363\) −3.70163 + 1.98787i −0.194285 + 0.104336i
\(364\) 18.7082 0.980576
\(365\) 0 0
\(366\) 1.02786 3.16344i 0.0537273 0.165356i
\(367\) 3.00000 + 9.23305i 0.156599 + 0.481961i 0.998319 0.0579520i \(-0.0184570\pi\)
−0.841721 + 0.539913i \(0.818457\pi\)
\(368\) 1.50000 1.08981i 0.0781929 0.0568105i
\(369\) 8.56231 6.22088i 0.445736 0.323846i
\(370\) 0 0
\(371\) 4.98936 15.3557i 0.259035 0.797226i
\(372\) 0.927051 + 0.673542i 0.0480654 + 0.0349215i
\(373\) 29.9787 1.55224 0.776119 0.630586i \(-0.217185\pi\)
0.776119 + 0.630586i \(0.217185\pi\)
\(374\) −5.41641 + 13.4863i −0.280076 + 0.697360i
\(375\) 0 0
\(376\) 1.19098 + 0.865300i 0.0614203 + 0.0446244i
\(377\) −1.01722 + 3.13068i −0.0523895 + 0.161238i
\(378\) −2.07295 6.37988i −0.106621 0.328146i
\(379\) 6.54508 4.75528i 0.336198 0.244262i −0.406858 0.913492i \(-0.633376\pi\)
0.743056 + 0.669229i \(0.233376\pi\)
\(380\) 0 0
\(381\) 0.253289 + 0.779543i 0.0129764 + 0.0399372i
\(382\) 7.42705 22.8581i 0.380001 1.16952i
\(383\) −5.14590 3.73871i −0.262943 0.191039i 0.448500 0.893783i \(-0.351958\pi\)
−0.711444 + 0.702743i \(0.751958\pi\)
\(384\) 0.381966 0.0194921
\(385\) 0 0
\(386\) −1.85410 −0.0943713
\(387\) 24.7254 + 17.9641i 1.25686 + 0.913165i
\(388\) −0.291796 + 0.898056i −0.0148137 + 0.0455919i
\(389\) −7.92705 24.3970i −0.401917 1.23697i −0.923442 0.383738i \(-0.874636\pi\)
0.521524 0.853236i \(-0.325364\pi\)
\(390\) 0 0
\(391\) 6.57295 4.77553i 0.332408 0.241509i
\(392\) 0.618034 + 1.90211i 0.0312154 + 0.0960712i
\(393\) −2.42705 + 7.46969i −0.122429 + 0.376796i
\(394\) 3.85410 + 2.80017i 0.194167 + 0.141070i
\(395\) 0 0
\(396\) −7.26393 6.06961i −0.365026 0.305009i
\(397\) 6.41641 0.322030 0.161015 0.986952i \(-0.448523\pi\)
0.161015 + 0.986952i \(0.448523\pi\)
\(398\) 3.19098 + 2.31838i 0.159950 + 0.116210i
\(399\) −2.07295 + 6.37988i −0.103777 + 0.319394i
\(400\) 0 0
\(401\) 12.4894 9.07405i 0.623689 0.453136i −0.230519 0.973068i \(-0.574042\pi\)
0.854208 + 0.519931i \(0.174042\pi\)
\(402\) 0.0278640 0.0202444i 0.00138973 0.00100970i
\(403\) −5.78115 17.7926i −0.287980 0.886311i
\(404\) 4.07295 12.5352i 0.202637 0.623652i
\(405\) 0 0
\(406\) −1.58359 −0.0785924
\(407\) −34.9508 2.37139i −1.73245 0.117545i
\(408\) 1.67376 0.0828636
\(409\) 16.4443 + 11.9475i 0.813117 + 0.590764i 0.914733 0.404060i \(-0.132401\pi\)
−0.101616 + 0.994824i \(0.532401\pi\)
\(410\) 0 0
\(411\) −0.375388 1.15533i −0.0185165 0.0569880i
\(412\) −0.572949 + 0.416272i −0.0282272 + 0.0205082i
\(413\) 16.2812 11.8290i 0.801143 0.582065i
\(414\) 1.63525 + 5.03280i 0.0803684 + 0.247348i
\(415\) 0 0
\(416\) −5.04508 3.66547i −0.247356 0.179714i
\(417\) −3.09017 −0.151326
\(418\) 4.73607 + 18.8294i 0.231649 + 0.920975i
\(419\) −23.9443 −1.16975 −0.584877 0.811122i \(-0.698857\pi\)
−0.584877 + 0.811122i \(0.698857\pi\)
\(420\) 0 0
\(421\) −1.39261 + 4.28601i −0.0678716 + 0.208887i −0.979240 0.202704i \(-0.935027\pi\)
0.911368 + 0.411592i \(0.135027\pi\)
\(422\) −8.42705 25.9358i −0.410222 1.26253i
\(423\) −3.39919 + 2.46965i −0.165274 + 0.120079i
\(424\) −4.35410 + 3.16344i −0.211454 + 0.153630i
\(425\) 0 0
\(426\) −1.57295 + 4.84104i −0.0762096 + 0.234549i
\(427\) −21.1353 15.3557i −1.02281 0.743113i
\(428\) 0.763932 0.0369260
\(429\) −1.92705 7.66145i −0.0930389 0.369898i
\(430\) 0 0
\(431\) −19.6074 14.2456i −0.944455 0.686187i 0.00503407 0.999987i \(-0.498398\pi\)
−0.949489 + 0.313801i \(0.898398\pi\)
\(432\) −0.690983 + 2.12663i −0.0332449 + 0.102317i
\(433\) −3.56231 10.9637i −0.171193 0.526879i 0.828246 0.560365i \(-0.189339\pi\)
−0.999439 + 0.0334857i \(0.989339\pi\)
\(434\) 7.28115 5.29007i 0.349507 0.253931i
\(435\) 0 0
\(436\) −2.82624 8.69827i −0.135352 0.416571i
\(437\) 3.35410 10.3229i 0.160448 0.493810i
\(438\) −3.57295 2.59590i −0.170722 0.124037i
\(439\) −3.94427 −0.188250 −0.0941249 0.995560i \(-0.530005\pi\)
−0.0941249 + 0.995560i \(0.530005\pi\)
\(440\) 0 0
\(441\) −5.70820 −0.271819
\(442\) −22.1074 16.0620i −1.05154 0.763990i
\(443\) −5.37132 + 16.5312i −0.255199 + 0.785423i 0.738591 + 0.674154i \(0.235491\pi\)
−0.993790 + 0.111269i \(0.964509\pi\)
\(444\) 1.24671 + 3.83698i 0.0591663 + 0.182095i
\(445\) 0 0
\(446\) −16.7533 + 12.1720i −0.793291 + 0.576360i
\(447\) −2.50000 7.69421i −0.118246 0.363924i
\(448\) 0.927051 2.85317i 0.0437990 0.134800i
\(449\) 21.1803 + 15.3884i 0.999562 + 0.726224i 0.961994 0.273070i \(-0.0880390\pi\)
0.0375678 + 0.999294i \(0.488039\pi\)
\(450\) 0 0
\(451\) 9.43769 + 7.88597i 0.444404 + 0.371336i
\(452\) −3.76393 −0.177040
\(453\) −6.20820 4.51052i −0.291687 0.211923i
\(454\) 5.66312 17.4293i 0.265783 0.817997i
\(455\) 0 0
\(456\) 1.80902 1.31433i 0.0847150 0.0615490i
\(457\) 5.13525 3.73098i 0.240217 0.174528i −0.461163 0.887315i \(-0.652568\pi\)
0.701380 + 0.712788i \(0.252568\pi\)
\(458\) 0.163119 + 0.502029i 0.00762205 + 0.0234583i
\(459\) −3.02786 + 9.31881i −0.141329 + 0.434965i
\(460\) 0 0
\(461\) −7.47214 −0.348012 −0.174006 0.984745i \(-0.555671\pi\)
−0.174006 + 0.984745i \(0.555671\pi\)
\(462\) 3.21885 2.02063i 0.149754 0.0940080i
\(463\) −4.41641 −0.205248 −0.102624 0.994720i \(-0.532724\pi\)
−0.102624 + 0.994720i \(0.532724\pi\)
\(464\) 0.427051 + 0.310271i 0.0198253 + 0.0144040i
\(465\) 0 0
\(466\) 4.75329 + 14.6291i 0.220192 + 0.677681i
\(467\) −12.3262 + 8.95554i −0.570390 + 0.414413i −0.835247 0.549875i \(-0.814675\pi\)
0.264857 + 0.964288i \(0.414675\pi\)
\(468\) 14.3992 10.4616i 0.665603 0.483589i
\(469\) −0.0835921 0.257270i −0.00385993 0.0118796i
\(470\) 0 0
\(471\) −6.09017 4.42477i −0.280620 0.203883i
\(472\) −6.70820 −0.308770
\(473\) −13.2361 + 32.9565i −0.608595 + 1.51534i
\(474\) −2.96556 −0.136213
\(475\) 0 0
\(476\) 4.06231 12.5025i 0.186195 0.573051i
\(477\) −4.74671 14.6089i −0.217337 0.668894i
\(478\) −12.6631 + 9.20029i −0.579198 + 0.420812i
\(479\) 20.7533 15.0781i 0.948242 0.688938i −0.00214844 0.999998i \(-0.500684\pi\)
0.950390 + 0.311060i \(0.100684\pi\)
\(480\) 0 0
\(481\) 20.3541 62.6435i 0.928067 2.85630i
\(482\) 14.5623 + 10.5801i 0.663295 + 0.481912i
\(483\) −2.12461 −0.0966732
\(484\) 4.78115 9.90659i 0.217325 0.450300i
\(485\) 0 0
\(486\) −7.80902 5.67358i −0.354224 0.257359i
\(487\) −2.69098 + 8.28199i −0.121940 + 0.375293i −0.993331 0.115296i \(-0.963218\pi\)
0.871391 + 0.490589i \(0.163218\pi\)
\(488\) 2.69098 + 8.28199i 0.121815 + 0.374908i
\(489\) 3.76393 2.73466i 0.170211 0.123665i
\(490\) 0 0
\(491\) −8.52786 26.2461i −0.384857 1.18447i −0.936584 0.350443i \(-0.886031\pi\)
0.551727 0.834025i \(-0.313969\pi\)
\(492\) 0.437694 1.34708i 0.0197328 0.0607312i
\(493\) 1.87132 + 1.35960i 0.0842801 + 0.0612331i
\(494\) −36.5066 −1.64251
\(495\) 0 0
\(496\) −3.00000 −0.134704
\(497\) 32.3435 + 23.4989i 1.45080 + 1.05407i
\(498\) −0.444272 + 1.36733i −0.0199083 + 0.0612714i
\(499\) 7.46149 + 22.9641i 0.334022 + 1.02801i 0.967202 + 0.254010i \(0.0817496\pi\)
−0.633179 + 0.774005i \(0.718250\pi\)
\(500\) 0 0
\(501\) 1.83688 1.33457i 0.0820658 0.0596243i
\(502\) −4.48278 13.7966i −0.200076 0.615771i
\(503\) −2.77051 + 8.52675i −0.123531 + 0.380189i −0.993631 0.112687i \(-0.964054\pi\)
0.870100 + 0.492876i \(0.164054\pi\)
\(504\) 6.92705 + 5.03280i 0.308555 + 0.224179i
\(505\) 0 0
\(506\) −5.20820 + 3.26944i −0.231533 + 0.145344i
\(507\) 9.88854 0.439166
\(508\) −1.73607 1.26133i −0.0770256 0.0559623i
\(509\) −0.0623059 + 0.191758i −0.00276166 + 0.00849952i −0.952428 0.304764i \(-0.901422\pi\)
0.949666 + 0.313264i \(0.101422\pi\)
\(510\) 0 0
\(511\) −28.0623 + 20.3885i −1.24140 + 0.901932i
\(512\) −0.809017 + 0.587785i −0.0357538 + 0.0259767i
\(513\) 4.04508 + 12.4495i 0.178595 + 0.549658i
\(514\) 9.80902 30.1891i 0.432657 1.33158i
\(515\) 0 0
\(516\) 4.09017 0.180060
\(517\) −3.74671 3.13068i −0.164780 0.137687i
\(518\) 31.6869 1.39224
\(519\) 2.64590 + 1.92236i 0.116142 + 0.0843821i
\(520\) 0 0
\(521\) −5.46149 16.8087i −0.239272 0.736405i −0.996526 0.0832835i \(-0.973459\pi\)
0.757254 0.653121i \(-0.226541\pi\)
\(522\) −1.21885 + 0.885544i −0.0533475 + 0.0387592i
\(523\) 2.78115 2.02063i 0.121611 0.0883558i −0.525317 0.850907i \(-0.676053\pi\)
0.646928 + 0.762551i \(0.276053\pi\)
\(524\) −6.35410 19.5559i −0.277580 0.854304i
\(525\) 0 0
\(526\) −8.92705 6.48588i −0.389238 0.282798i
\(527\) −13.1459 −0.572644
\(528\) −1.26393 0.0857567i −0.0550056 0.00373208i
\(529\) −19.5623 −0.850535
\(530\) 0 0
\(531\) 5.91641 18.2088i 0.256750 0.790196i
\(532\) −5.42705 16.7027i −0.235293 0.724156i
\(533\) −18.7082 + 13.5923i −0.810342 + 0.588748i
\(534\) −3.45492 + 2.51014i −0.149509 + 0.108624i
\(535\) 0 0
\(536\) −0.0278640 + 0.0857567i −0.00120354 + 0.00370413i
\(537\) −3.29180 2.39163i −0.142051 0.103206i
\(538\) −18.0902 −0.779923
\(539\) −1.61803 6.43288i −0.0696937 0.277084i
\(540\) 0 0
\(541\) 3.11803 + 2.26538i 0.134055 + 0.0973965i 0.652792 0.757537i \(-0.273598\pi\)
−0.518737 + 0.854934i \(0.673598\pi\)
\(542\) 5.02786 15.4742i 0.215965 0.664673i
\(543\) 1.41641 + 4.35926i 0.0607839 + 0.187074i
\(544\) −3.54508 + 2.57565i −0.151994 + 0.110430i
\(545\) 0 0
\(546\) 2.20820 + 6.79615i 0.0945024 + 0.290848i
\(547\) −0.656541 + 2.02063i −0.0280717 + 0.0863957i −0.964111 0.265500i \(-0.914463\pi\)
0.936039 + 0.351896i \(0.114463\pi\)
\(548\) 2.57295 + 1.86936i 0.109911 + 0.0798550i
\(549\) −24.8541 −1.06075
\(550\) 0 0
\(551\) 3.09017 0.131646
\(552\) 0.572949 + 0.416272i 0.0243863 + 0.0177177i
\(553\) −7.19756 + 22.1518i −0.306071 + 0.941991i
\(554\) 1.94427 + 5.98385i 0.0826042 + 0.254230i
\(555\) 0 0
\(556\) 6.54508 4.75528i 0.277573 0.201669i
\(557\) −0.291796 0.898056i −0.0123638 0.0380519i 0.944684 0.327981i \(-0.106368\pi\)
−0.957048 + 0.289929i \(0.906368\pi\)
\(558\) 2.64590 8.14324i 0.112010 0.344731i
\(559\) −54.0238 39.2506i −2.28496 1.66012i
\(560\) 0 0
\(561\) −5.53851 0.375783i −0.233836 0.0158656i
\(562\) 18.1803 0.766891
\(563\) 28.9615 + 21.0418i 1.22058 + 0.886804i 0.996148 0.0876852i \(-0.0279470\pi\)
0.224433 + 0.974489i \(0.427947\pi\)
\(564\) −0.173762 + 0.534785i −0.00731670 + 0.0225185i
\(565\) 0 0
\(566\) 14.8541 10.7921i 0.624364 0.453627i
\(567\) −18.7082 + 13.5923i −0.785671 + 0.570823i
\(568\) −4.11803 12.6740i −0.172789 0.531789i
\(569\) −12.8262 + 39.4751i −0.537704 + 1.65488i 0.200029 + 0.979790i \(0.435896\pi\)
−0.737733 + 0.675092i \(0.764104\pi\)
\(570\) 0 0
\(571\) 18.7082 0.782914 0.391457 0.920196i \(-0.371971\pi\)
0.391457 + 0.920196i \(0.371971\pi\)
\(572\) 15.8713 + 13.2618i 0.663613 + 0.554503i
\(573\) 9.18034 0.383514
\(574\) −9.00000 6.53888i −0.375653 0.272928i
\(575\) 0 0
\(576\) −0.881966 2.71441i −0.0367486 0.113101i
\(577\) 23.2254 16.8743i 0.966887 0.702485i 0.0121471 0.999926i \(-0.496133\pi\)
0.954740 + 0.297442i \(0.0961334\pi\)
\(578\) −1.78115 + 1.29408i −0.0740862 + 0.0538268i
\(579\) −0.218847 0.673542i −0.00909497 0.0279914i
\(580\) 0 0
\(581\) 9.13525 + 6.63715i 0.378994 + 0.275355i
\(582\) −0.360680 −0.0149507
\(583\) 15.1180 9.49032i 0.626125 0.393049i
\(584\) 11.5623 0.478452
\(585\) 0 0
\(586\) −5.89919 + 18.1558i −0.243693 + 0.750010i
\(587\) 6.84346 + 21.0620i 0.282460 + 0.869322i 0.987149 + 0.159805i \(0.0510866\pi\)
−0.704689 + 0.709517i \(0.748913\pi\)
\(588\) −0.618034 + 0.449028i −0.0254873 + 0.0185176i
\(589\) −14.2082 + 10.3229i −0.585439 + 0.425346i
\(590\) 0 0
\(591\) −0.562306 + 1.73060i −0.0231302 + 0.0711874i
\(592\) −8.54508 6.20837i −0.351201 0.255162i
\(593\) 38.3951 1.57670 0.788349 0.615228i \(-0.210936\pi\)
0.788349 + 0.615228i \(0.210936\pi\)
\(594\) 2.76393 6.88191i 0.113406 0.282368i
\(595\) 0 0
\(596\) 17.1353 + 12.4495i 0.701887 + 0.509951i
\(597\) −0.465558 + 1.43284i −0.0190540 + 0.0586423i
\(598\) −3.57295 10.9964i −0.146109 0.449676i
\(599\) −7.23607 + 5.25731i −0.295658 + 0.214808i −0.725718 0.687992i \(-0.758492\pi\)
0.430060 + 0.902800i \(0.358492\pi\)
\(600\) 0 0
\(601\) −6.02786 18.5519i −0.245882 0.756746i −0.995490 0.0948646i \(-0.969758\pi\)
0.749608 0.661881i \(-0.230242\pi\)
\(602\) 9.92705 30.5523i 0.404596 1.24522i
\(603\) −0.208204 0.151269i −0.00847872 0.00616015i
\(604\) 20.0902 0.817457
\(605\) 0 0
\(606\) 5.03444 0.204510
\(607\) −16.2082 11.7759i −0.657871 0.477971i 0.208072 0.978113i \(-0.433281\pi\)
−0.865943 + 0.500142i \(0.833281\pi\)
\(608\) −1.80902 + 5.56758i −0.0733653 + 0.225795i
\(609\) −0.186918 0.575274i −0.00757429 0.0233113i
\(610\) 0 0
\(611\) 7.42705 5.39607i 0.300466 0.218302i
\(612\) −3.86475 11.8945i −0.156223 0.480805i
\(613\) 6.39919 19.6947i 0.258461 0.795460i −0.734667 0.678428i \(-0.762662\pi\)
0.993128 0.117033i \(-0.0373383\pi\)
\(614\) 7.73607 + 5.62058i 0.312202 + 0.226828i
\(615\) 0 0
\(616\) −3.70820 + 9.23305i −0.149408 + 0.372010i
\(617\) −48.6312 −1.95782 −0.978909 0.204297i \(-0.934509\pi\)
−0.978909 + 0.204297i \(0.934509\pi\)
\(618\) −0.218847 0.159002i −0.00880332 0.00639599i
\(619\) 9.83688 30.2748i 0.395378 1.21685i −0.533289 0.845933i \(-0.679044\pi\)
0.928667 0.370914i \(-0.120956\pi\)
\(620\) 0 0
\(621\) −3.35410 + 2.43690i −0.134595 + 0.0977893i
\(622\) −2.04508 + 1.48584i −0.0820004 + 0.0595768i
\(623\) 10.3647 + 31.8994i 0.415255 + 1.27802i
\(624\) 0.736068 2.26538i 0.0294663 0.0906880i
\(625\) 0 0
\(626\) −19.9443 −0.797133
\(627\) −6.28115 + 3.94298i −0.250845 + 0.157468i
\(628\) 19.7082 0.786443
\(629\) −37.4443 27.2049i −1.49300 1.08473i
\(630\) 0 0
\(631\) −6.12868 18.8621i −0.243979 0.750889i −0.995803 0.0915256i \(-0.970826\pi\)
0.751824 0.659364i \(-0.229174\pi\)
\(632\) 6.28115 4.56352i 0.249851 0.181527i
\(633\) 8.42705 6.12261i 0.334945 0.243352i
\(634\) 9.80902 + 30.1891i 0.389566 + 1.19896i
\(635\) 0 0
\(636\) −1.66312 1.20833i −0.0659470 0.0479133i
\(637\) 12.4721 0.494164
\(638\) −1.34346 1.12257i −0.0531880 0.0444430i
\(639\) 38.0344 1.50462
\(640\) 0 0
\(641\) −8.52786 + 26.2461i −0.336830 + 1.03666i 0.628983 + 0.777419i \(0.283471\pi\)
−0.965813 + 0.259238i \(0.916529\pi\)
\(642\) 0.0901699 + 0.277515i 0.00355872 + 0.0109526i
\(643\) −11.7533 + 8.53926i −0.463504 + 0.336756i −0.794904 0.606735i \(-0.792479\pi\)
0.331400 + 0.943490i \(0.392479\pi\)
\(644\) 4.50000 3.26944i 0.177325 0.128834i
\(645\) 0 0
\(646\) −7.92705 + 24.3970i −0.311886 + 0.959885i
\(647\) 35.0344 + 25.4540i 1.37735 + 1.00070i 0.997123 + 0.0758058i \(0.0241529\pi\)
0.380223 + 0.924895i \(0.375847\pi\)
\(648\) 7.70820 0.302807
\(649\) 22.1976 + 1.50609i 0.871330 + 0.0591190i
\(650\) 0 0
\(651\) 2.78115 + 2.02063i 0.109002 + 0.0791946i
\(652\) −3.76393 + 11.5842i −0.147407 + 0.453672i
\(653\) 5.70820 + 17.5680i 0.223379 + 0.687491i 0.998452 + 0.0556188i \(0.0177132\pi\)
−0.775073 + 0.631872i \(0.782287\pi\)
\(654\) 2.82624 2.05338i 0.110515 0.0802936i
\(655\) 0 0
\(656\) 1.14590 + 3.52671i 0.0447398 + 0.137695i
\(657\) −10.1976 + 31.3849i −0.397845 + 1.22444i
\(658\) 3.57295 + 2.59590i 0.139288 + 0.101199i
\(659\) 45.4508 1.77051 0.885257 0.465102i \(-0.153983\pi\)
0.885257 + 0.465102i \(0.153983\pi\)
\(660\) 0 0
\(661\) 30.2918 1.17821 0.589107 0.808055i \(-0.299480\pi\)
0.589107 + 0.808055i \(0.299480\pi\)
\(662\) −9.70820 7.05342i −0.377320 0.274139i
\(663\) 3.22542 9.92684i 0.125265 0.385526i
\(664\) −1.16312 3.57971i −0.0451378 0.138920i
\(665\) 0 0
\(666\) 24.3885 17.7193i 0.945037 0.686609i
\(667\) 0.302439 + 0.930812i 0.0117105 + 0.0360412i
\(668\) −1.83688 + 5.65334i −0.0710711 + 0.218734i
\(669\) −6.39919 4.64928i −0.247407 0.179752i
\(670\) 0 0
\(671\) −7.04508 28.0094i −0.271972 1.08129i
\(672\) 1.14590 0.0442040
\(673\) 19.7533 + 14.3516i 0.761433 + 0.553214i 0.899350 0.437230i \(-0.144040\pi\)
−0.137916 + 0.990444i \(0.544040\pi\)
\(674\) 0.399187 1.22857i 0.0153761 0.0473228i
\(675\) 0 0
\(676\) −20.9443 + 15.2169i −0.805549 + 0.585266i
\(677\) 9.70820 7.05342i 0.373117 0.271085i −0.385386 0.922756i \(-0.625932\pi\)
0.758502 + 0.651671i \(0.225932\pi\)
\(678\) −0.444272 1.36733i −0.0170622 0.0525119i
\(679\) −0.875388 + 2.69417i −0.0335943 + 0.103393i
\(680\) 0 0
\(681\) 7.00000 0.268241
\(682\) 9.92705 + 0.673542i 0.380126 + 0.0257913i
\(683\) −33.8885 −1.29671 −0.648355 0.761339i \(-0.724543\pi\)
−0.648355 + 0.761339i \(0.724543\pi\)
\(684\) −13.5172 9.82084i −0.516844 0.375509i
\(685\) 0 0
\(686\) −4.63525 14.2658i −0.176975 0.544673i
\(687\) −0.163119 + 0.118513i −0.00622338 + 0.00452155i
\(688\) −8.66312 + 6.29412i −0.330278 + 0.239961i
\(689\) 10.3713 + 31.9196i 0.395116 + 1.21604i
\(690\) 0 0
\(691\) 0.0278640 + 0.0202444i 0.00106000 + 0.000770134i 0.588315 0.808632i \(-0.299791\pi\)
−0.587255 + 0.809402i \(0.699791\pi\)
\(692\) −8.56231 −0.325490
\(693\) −21.7918 18.2088i −0.827802 0.691696i
\(694\) −14.5623 −0.552778
\(695\) 0 0
\(696\) −0.0623059 + 0.191758i −0.00236170 + 0.00726856i
\(697\) 5.02129 + 15.4539i 0.190195 + 0.585359i
\(698\) 5.85410 4.25325i 0.221581 0.160988i
\(699\) −4.75329 + 3.45347i −0.179786 + 0.130622i
\(700\) 0 0
\(701\) −4.07953 + 12.5555i −0.154082 + 0.474214i −0.998067 0.0621522i \(-0.980204\pi\)
0.843985 + 0.536367i \(0.180204\pi\)
\(702\) 11.2812 + 8.19624i 0.425780 + 0.309347i
\(703\) −61.8328 −2.33207
\(704\) 2.80902 1.76336i 0.105869 0.0664590i
\(705\) 0 0
\(706\) 19.0623 + 13.8496i 0.717419 + 0.521236i
\(707\) 12.2188 37.6057i 0.459537 1.41431i
\(708\) −0.791796 2.43690i −0.0297575 0.0915842i
\(709\) 5.42705 3.94298i 0.203817 0.148082i −0.481195 0.876614i \(-0.659797\pi\)
0.685012 + 0.728532i \(0.259797\pi\)
\(710\) 0 0
\(711\) 6.84752 + 21.0745i 0.256802 + 0.790356i
\(712\) 3.45492 10.6331i 0.129478 0.398494i
\(713\) −4.50000 3.26944i −0.168526 0.122442i
\(714\) 5.02129 0.187917
\(715\) 0 0
\(716\) 10.6525 0.398102
\(717\) −4.83688 3.51420i −0.180637 0.131240i
\(718\) 2.76393 8.50651i 0.103149 0.317460i
\(719\) 14.1074 + 43.4181i 0.526117 + 1.61922i 0.762097 + 0.647463i \(0.224170\pi\)
−0.235980 + 0.971758i \(0.575830\pi\)
\(720\) 0 0
\(721\) −1.71885 + 1.24882i −0.0640132 + 0.0465083i
\(722\) 4.71885 + 14.5231i 0.175617 + 0.540494i
\(723\) −2.12461 + 6.53888i −0.0790152 + 0.243184i
\(724\) −9.70820 7.05342i −0.360803 0.262138i
\(725\) 0 0
\(726\) 4.16312 + 0.567541i 0.154508 + 0.0210634i
\(727\) −14.7639 −0.547564 −0.273782 0.961792i \(-0.588275\pi\)
−0.273782 + 0.961792i \(0.588275\pi\)
\(728\) −15.1353 10.9964i −0.560950 0.407554i
\(729\) −6.00658 + 18.4863i −0.222466 + 0.684679i
\(730\) 0 0
\(731\) −37.9615 + 27.5806i −1.40406 + 1.02011i
\(732\) −2.69098 + 1.95511i −0.0994616 + 0.0722631i
\(733\) −11.3647 34.9771i −0.419766 1.29191i −0.907917 0.419149i \(-0.862328\pi\)
0.488151 0.872759i \(-0.337672\pi\)
\(734\) 3.00000 9.23305i 0.110732 0.340798i
\(735\) 0 0
\(736\) −1.85410 −0.0683431
\(737\) 0.111456 0.277515i 0.00410554 0.0102224i
\(738\) −10.5836 −0.389587
\(739\) −17.5623 12.7598i −0.646040 0.469375i 0.215880 0.976420i \(-0.430738\pi\)
−0.861920 + 0.507044i \(0.830738\pi\)
\(740\) 0 0
\(741\) −4.30902 13.2618i −0.158296 0.487184i
\(742\) −13.0623 + 9.49032i −0.479532 + 0.348401i
\(743\) 27.3156 19.8459i 1.00211 0.728077i 0.0395720 0.999217i \(-0.487401\pi\)
0.962540 + 0.271140i \(0.0874006\pi\)
\(744\) −0.354102 1.08981i −0.0129820 0.0399545i
\(745\) 0 0
\(746\) −24.2533 17.6210i −0.887976 0.645152i
\(747\) 10.7426 0.393053
\(748\) 12.3090 7.72696i 0.450062 0.282526i
\(749\) 2.29180 0.0837404
\(750\) 0 0
\(751\) 3.15654 9.71483i 0.115184 0.354499i −0.876802 0.480853i \(-0.840327\pi\)
0.991985 + 0.126353i \(0.0403272\pi\)
\(752\) −0.454915 1.40008i −0.0165890 0.0510558i
\(753\) 4.48278 3.25693i 0.163362 0.118689i
\(754\) 2.66312 1.93487i 0.0969851 0.0704638i
\(755\) 0 0
\(756\) −2.07295 + 6.37988i −0.0753924 + 0.232034i
\(757\) −12.4894 9.07405i −0.453933 0.329802i 0.337213 0.941428i \(-0.390516\pi\)
−0.791147 + 0.611626i \(0.790516\pi\)
\(758\) −8.09017 −0.293848
\(759\) −1.80244 1.50609i −0.0654244 0.0546674i
\(760\) 0 0
\(761\) 19.9894 + 14.5231i 0.724614 + 0.526463i 0.887855 0.460124i \(-0.152195\pi\)
−0.163241 + 0.986586i \(0.552195\pi\)
\(762\) 0.253289 0.779543i 0.00917569 0.0282399i
\(763\) −8.47871 26.0948i −0.306950 0.944695i
\(764\) −19.4443 + 14.1271i −0.703469 + 0.511100i
\(765\) 0 0
\(766\) 1.96556 + 6.04937i 0.0710185 + 0.218572i
\(767\) −12.9271 + 39.7854i −0.466769 + 1.43657i
\(768\) −0.309017 0.224514i −0.0111507 0.00810145i
\(769\) 12.2361 0.441244 0.220622 0.975359i \(-0.429191\pi\)
0.220622 + 0.975359i \(0.429191\pi\)
\(770\) 0 0
\(771\) 12.1246 0.436657
\(772\) 1.50000 + 1.08981i 0.0539862 + 0.0392233i
\(773\) 8.79837 27.0786i 0.316456 0.973950i −0.658696 0.752409i \(-0.728892\pi\)
0.975151 0.221540i \(-0.0711085\pi\)
\(774\) −9.44427 29.0665i −0.339467 1.04477i
\(775\) 0 0
\(776\) 0.763932 0.555029i 0.0274236 0.0199244i
\(777\) 3.74013 + 11.5109i 0.134177 + 0.412953i
\(778\) −7.92705 + 24.3970i −0.284199 + 0.874673i
\(779\) 17.5623 + 12.7598i 0.629235 + 0.457166i
\(780\) 0 0
\(781\) 10.7812 + 42.8631i 0.385780 + 1.53376i
\(782\) −8.12461 −0.290536
\(783\) −0.954915 0.693786i −0.0341259 0.0247939i
\(784\) 0.618034 1.90211i 0.0220726 0.0679326i
\(785\) 0 0
\(786\) 6.35410 4.61653i 0.226643 0.164666i
\(787\) 20.5623 14.9394i 0.732967 0.532532i −0.157534 0.987514i \(-0.550354\pi\)
0.890501 + 0.454982i \(0.150354\pi\)
\(788\) −1.47214 4.53077i −0.0524427 0.161402i
\(789\) 1.30244 4.00850i 0.0463681 0.142706i
\(790\) 0 0
\(791\) −11.2918 −0.401490
\(792\) 2.30902 + 9.18005i 0.0820473 + 0.326199i
\(793\) 54.3050 1.92843
\(794\) −5.19098 3.77147i −0.184221 0.133844i
\(795\) 0 0
\(796\) −1.21885 3.75123i −0.0432009 0.132959i
\(797\) 15.9894 11.6169i 0.566372 0.411493i −0.267413 0.963582i \(-0.586169\pi\)
0.833786 + 0.552088i \(0.186169\pi\)
\(798\) 5.42705 3.94298i 0.192116 0.139580i
\(799\) −1.99342 6.13512i −0.0705222 0.217045i
\(800\) 0 0
\(801\) 25.8156 + 18.7561i 0.912149 + 0.662715i
\(802\) −15.4377 −0.545124
\(803\) −38.2599 2.59590i −1.35016 0.0916073i
\(804\) −0.0344419 −0.00121467
\(805\) 0 0
\(806\) −5.78115 + 17.7926i −0.203632 + 0.626716i
\(807\) −2.13525 6.57164i −0.0751645 0.231333i
\(808\) −10.6631 + 7.74721i −0.375127 + 0.272546i
\(809\) −15.2254 + 11.0619i −0.535297 + 0.388916i −0.822336 0.569003i \(-0.807329\pi\)
0.287038 + 0.957919i \(0.407329\pi\)
\(810\) 0 0
\(811\) −13.3647 + 41.1325i −0.469300 + 1.44436i 0.384194 + 0.923252i \(0.374479\pi\)
−0.853494 + 0.521103i \(0.825521\pi\)
\(812\) 1.28115 + 0.930812i 0.0449597 + 0.0326651i
\(813\) 6.21478 0.217962
\(814\) 26.8820 + 22.4621i 0.942212 + 0.787296i
\(815\) 0 0
\(816\) −1.35410 0.983813i −0.0474031 0.0344403i
\(817\) −19.3713 + 59.6188i −0.677717 + 2.08580i
\(818\) −6.28115 19.3314i −0.219615 0.675907i
\(819\) 43.1976 31.3849i 1.50944 1.09668i
\(820\) 0 0
\(821\) 9.07295 + 27.9237i 0.316648 + 0.974543i 0.975071 + 0.221894i \(0.0712240\pi\)
−0.658423 + 0.752648i \(0.728776\pi\)
\(822\) −0.375388 + 1.15533i −0.0130932 + 0.0402966i
\(823\) −32.7705 23.8092i −1.14231 0.829935i −0.154869 0.987935i \(-0.549496\pi\)
−0.987439 + 0.158000i \(0.949496\pi\)
\(824\) 0.708204 0.0246715
\(825\) 0 0
\(826\) −20.1246 −0.700225
\(827\) 12.0451 + 8.75127i 0.418849 + 0.304311i 0.777174 0.629285i \(-0.216652\pi\)
−0.358326 + 0.933597i \(0.616652\pi\)
\(828\) 1.63525 5.03280i 0.0568290 0.174902i
\(829\) 1.50658 + 4.63677i 0.0523256 + 0.161042i 0.973805 0.227387i \(-0.0730181\pi\)
−0.921479 + 0.388428i \(0.873018\pi\)
\(830\) 0 0
\(831\) −1.94427 + 1.41260i −0.0674460 + 0.0490024i
\(832\) 1.92705 + 5.93085i 0.0668085 + 0.205615i
\(833\) 2.70820 8.33499i 0.0938337 0.288790i
\(834\) 2.50000 + 1.81636i 0.0865679 + 0.0628953i
\(835\) 0 0
\(836\) 7.23607 18.0171i 0.250265 0.623134i
\(837\) 6.70820 0.231869
\(838\) 19.3713 + 14.0741i 0.669171 + 0.486181i
\(839\) −15.1631 + 46.6673i −0.523489 + 1.61113i 0.243796 + 0.969827i \(0.421607\pi\)
−0.767285 + 0.641307i \(0.778393\pi\)
\(840\) 0 0
\(841\) 23.2361 16.8820i 0.801244 0.582138i
\(842\) 3.64590 2.64890i 0.125646 0.0912871i
\(843\) 2.14590 + 6.60440i 0.0739087 + 0.227467i
\(844\) −8.42705 + 25.9358i −0.290071 + 0.892747i
\(845\) 0 0
\(846\) 4.20163 0.144455
\(847\) 14.3435 29.7198i 0.492847 1.02118i
\(848\) 5.38197 0.184817
\(849\) 5.67376 + 4.12223i 0.194723 + 0.141475i
\(850\) 0 0
\(851\) −6.05166 18.6251i −0.207448 0.638460i
\(852\) 4.11803 2.99193i 0.141082 0.102502i
\(853\) −12.7082 + 9.23305i −0.435121 + 0.316134i −0.783693 0.621148i \(-0.786667\pi\)
0.348573 + 0.937282i \(0.386667\pi\)
\(854\) 8.07295 + 24.8460i 0.276251 + 0.850212i
\(855\) 0 0
\(856\) −0.618034 0.449028i −0.0211240 0.0153475i
\(857\) 41.3394 1.41213 0.706063 0.708149i \(-0.250469\pi\)
0.706063 + 0.708149i \(0.250469\pi\)
\(858\) −2.94427 + 7.33094i −0.100516 + 0.250274i
\(859\) −6.30495 −0.215122 −0.107561 0.994198i \(-0.534304\pi\)
−0.107561 + 0.994198i \(0.534304\pi\)
\(860\) 0 0
\(861\) 1.31308 4.04125i 0.0447497 0.137725i
\(862\) 7.48936 + 23.0499i 0.255089 + 0.785082i
\(863\) −11.4271 + 8.30224i −0.388981 + 0.282611i −0.765038 0.643985i \(-0.777280\pi\)
0.376057 + 0.926597i \(0.377280\pi\)
\(864\) 1.80902 1.31433i 0.0615440 0.0447143i
\(865\) 0 0
\(866\) −3.56231 + 10.9637i −0.121052 + 0.372560i
\(867\) −0.680340 0.494296i −0.0231056 0.0167872i
\(868\) −9.00000 −0.305480
\(869\) −21.8090 + 13.6906i −0.739820 + 0.464421i
\(870\) 0 0
\(871\) 0.454915 + 0.330515i 0.0154142 + 0.0111991i
\(872\) −2.82624 + 8.69827i −0.0957085 + 0.294560i
\(873\) 0.832816 + 2.56314i 0.0281865 + 0.0867493i
\(874\) −8.78115 + 6.37988i −0.297027 + 0.215803i
\(875\) 0 0
\(876\) 1.36475 + 4.20025i 0.0461105 + 0.141913i
\(877\) −6.79837 + 20.9232i −0.229565 + 0.706528i 0.768231 + 0.640172i \(0.221137\pi\)
−0.997796 + 0.0663553i \(0.978863\pi\)
\(878\) 3.19098 + 2.31838i 0.107690 + 0.0782417i
\(879\) −7.29180 −0.245946
\(880\) 0 0
\(881\) −42.7984 −1.44191 −0.720957 0.692980i \(-0.756297\pi\)
−0.720957 + 0.692980i \(0.756297\pi\)
\(882\) 4.61803 + 3.35520i 0.155497 + 0.112975i
\(883\) 14.9787 46.0997i 0.504074 1.55138i −0.298248 0.954488i \(-0.596402\pi\)
0.802322 0.596891i \(-0.203598\pi\)
\(884\) 8.44427 + 25.9888i 0.284012 + 0.874098i
\(885\) 0 0
\(886\) 14.0623 10.2169i 0.472432 0.343242i
\(887\) −11.5344 35.4994i −0.387289 1.19195i −0.934806 0.355158i \(-0.884427\pi\)
0.547518 0.836794i \(-0.315573\pi\)
\(888\) 1.24671 3.83698i 0.0418369 0.128761i
\(889\) −5.20820 3.78398i −0.174678 0.126911i
\(890\) 0 0
\(891\) −25.5066 1.73060i −0.854503 0.0579773i
\(892\) 20.7082 0.693362
\(893\) −6.97214 5.06555i −0.233314 0.169512i
\(894\) −2.50000 + 7.69421i −0.0836125 + 0.257333i
\(895\) 0 0
\(896\) −2.42705 + 1.76336i −0.0810821 + 0.0589096i
\(897\) 3.57295 2.59590i 0.119297 0.0866746i
\(898\) −8.09017 24.8990i −0.269972 0.830890i
\(899\) 0.489357 1.50609i 0.0163210 0.0502308i
\(900\) 0 0
\(901\) 23.5836 0.785683
\(902\) −3.00000 11.9272i −0.0998891 0.397133i
\(903\) 12.2705 0.408337
\(904\) 3.04508 + 2.21238i 0.101278 + 0.0735828i
\(905\) 0 0
\(906\) 2.37132 + 7.29818i 0.0787819 + 0.242466i
\(907\) −34.0344 + 24.7275i −1.13010 + 0.821062i −0.985709 0.168459i \(-0.946121\pi\)
−0.144386 + 0.989521i \(0.546121\pi\)
\(908\) −14.8262 + 10.7719i −0.492026 + 0.357478i
\(909\) −11.6246 35.7769i −0.385564 1.18664i
\(910\) 0 0
\(911\) 43.8328 + 31.8464i 1.45225 + 1.05512i 0.985300 + 0.170833i \(0.0546457\pi\)
0.466946 + 0.884286i \(0.345354\pi\)
\(912\) −2.23607 −0.0740436
\(913\) 3.04508 + 12.1065i 0.100778 + 0.400665i
\(914\) −6.34752 −0.209957
\(915\) 0 0
\(916\) 0.163119 0.502029i 0.00538960 0.0165875i
\(917\) −19.0623 58.6677i −0.629493 1.93738i
\(918\) 7.92705 5.75934i 0.261632 0.190087i
\(919\) 29.0066 21.0745i 0.956839 0.695184i 0.00442432 0.999990i \(-0.498592\pi\)
0.952414 + 0.304806i \(0.0985917\pi\)
\(920\) 0 0
\(921\) −1.12868 + 3.47371i −0.0371912 + 0.114463i
\(922\) 6.04508 + 4.39201i 0.199084 + 0.144643i
\(923\) −83.1033 −2.73538
\(924\) −3.79180 0.257270i −0.124741 0.00846357i
\(925\) 0 0
\(926\) 3.57295 + 2.59590i 0.117414 + 0.0853065i
\(927\) −0.624612 + 1.92236i −0.0205149 + 0.0631385i
\(928\) −0.163119 0.502029i −0.00535464 0.0164799i
\(929\) 4.47214 3.24920i 0.146726 0.106603i −0.512001 0.858985i \(-0.671095\pi\)
0.658727 + 0.752382i \(0.271095\pi\)
\(930\) 0 0
\(931\) −3.61803 11.1352i −0.118576 0.364940i
\(932\) 4.75329 14.6291i 0.155699 0.479193i
\(933\) −0.781153 0.567541i −0.0255738 0.0185805i
\(934\) 15.2361 0.498539
\(935\) 0 0
\(936\) −17.7984 −0.581758
\(937\) 34.0795 + 24.7602i 1.11333 + 0.808881i 0.983185 0.182614i \(-0.0584558\pi\)
0.130145 + 0.991495i \(0.458456\pi\)
\(938\) −0.0835921 + 0.257270i −0.00272938 + 0.00840017i
\(939\) −2.35410 7.24518i −0.0768232 0.236438i
\(940\) 0 0
\(941\) 8.60739 6.25364i 0.280593 0.203863i −0.438583 0.898691i \(-0.644519\pi\)
0.719176 + 0.694828i \(0.244519\pi\)
\(942\) 2.32624 + 7.15942i 0.0757929 + 0.233267i
\(943\) −2.12461 + 6.53888i −0.0691869 + 0.212935i
\(944\) 5.42705 + 3.94298i 0.176635 + 0.128333i
\(945\) 0 0
\(946\) 30.0795 18.8824i 0.977970 0.613919i
\(947\) −43.3050 −1.40722 −0.703611 0.710585i \(-0.748430\pi\)
−0.703611 + 0.710585i \(0.748430\pi\)
\(948\) 2.39919 + 1.74311i 0.0779220 + 0.0566136i
\(949\) 22.2812 68.5743i 0.723277 2.22602i
\(950\) 0 0
\(951\) −9.80902 + 7.12667i −0.318079 + 0.231098i
\(952\) −10.6353 + 7.72696i −0.344691 + 0.250432i
\(953\) 5.18034 + 15.9434i 0.167808 + 0.516459i 0.999232 0.0391788i \(-0.0124742\pi\)
−0.831425 + 0.555638i \(0.812474\pi\)
\(954\) −4.74671 + 14.6089i −0.153680 + 0.472980i
\(955\) 0 0
\(956\) 15.6525 0.506237
\(957\) 0.249224 0.620541i 0.00805625 0.0200593i
\(958\) −25.6525 −0.828794
\(959\) 7.71885 + 5.60807i 0.249255 + 0.181094i
\(960\) 0 0
\(961\) −6.79837 20.9232i −0.219302 0.674943i
\(962\) −53.2877 + 38.7158i −1.71807 + 1.24825i
\(963\) 1.76393 1.28157i 0.0568419 0.0412981i
\(964\) −5.56231 17.1190i −0.179150 0.551366i
\(965\) 0 0
\(966\) 1.71885 + 1.24882i 0.0553030 + 0.0401800i
\(967\) −13.1803 −0.423851 −0.211926 0.977286i \(-0.567973\pi\)
−0.211926 + 0.977286i \(0.567973\pi\)
\(968\) −9.69098 + 5.20431i −0.311480 + 0.167273i
\(969\) −9.79837 −0.314769
\(970\) 0 0
\(971\) −12.7599 + 39.2708i −0.409484 + 1.26026i 0.507609 + 0.861587i \(0.330529\pi\)
−0.917093 + 0.398674i \(0.869471\pi\)
\(972\) 2.98278 + 9.18005i 0.0956727 + 0.294450i
\(973\) 19.6353 14.2658i 0.629477 0.457342i
\(974\) 7.04508 5.11855i 0.225739 0.164009i
\(975\) 0 0
\(976\) 2.69098 8.28199i 0.0861363 0.265100i
\(977\) 7.30902 + 5.31031i 0.233836 + 0.169892i 0.698533 0.715578i \(-0.253837\pi\)
−0.464697 + 0.885470i \(0.653837\pi\)
\(978\) −4.65248 −0.148770
\(979\) −13.8197 + 34.4095i −0.441678 + 1.09973i
\(980\) 0 0
\(981\) −21.1180 15.3431i −0.674247 0.489869i
\(982\) −8.52786 + 26.2461i −0.272135 + 0.837546i
\(983\) 6.23607 + 19.1926i 0.198900 + 0.612150i 0.999909 + 0.0134983i \(0.00429676\pi\)
−0.801009 + 0.598652i \(0.795703\pi\)
\(984\) −1.14590 + 0.832544i −0.0365299 + 0.0265405i
\(985\) 0 0
\(986\) −0.714782 2.19987i −0.0227633 0.0700582i
\(987\) −0.521286 + 1.60435i −0.0165927 + 0.0510672i
\(988\) 29.5344 + 21.4580i 0.939616 + 0.682671i
\(989\) −19.8541 −0.631324
\(990\) 0 0
\(991\) −28.0000 −0.889449 −0.444725 0.895667i \(-0.646698\pi\)
−0.444725 + 0.895667i \(0.646698\pi\)
\(992\) 2.42705 + 1.76336i 0.0770589 + 0.0559866i
\(993\) 1.41641 4.35926i 0.0449483 0.138337i
\(994\) −12.3541 38.0220i −0.391848 1.20599i
\(995\) 0 0
\(996\) 1.16312 0.845055i 0.0368548 0.0267766i
\(997\) −0.190983 0.587785i −0.00604849 0.0186153i 0.947987 0.318310i \(-0.103115\pi\)
−0.954035 + 0.299695i \(0.903115\pi\)
\(998\) 7.46149 22.9641i 0.236189 0.726916i
\(999\) 19.1074 + 13.8823i 0.604531 + 0.439218i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.a.301.1 yes 4
5.2 odd 4 550.2.ba.d.499.2 8
5.3 odd 4 550.2.ba.d.499.1 8
5.4 even 2 550.2.h.i.301.1 yes 4
11.3 even 5 inner 550.2.h.a.201.1 4
11.5 even 5 6050.2.a.cx.1.1 2
11.6 odd 10 6050.2.a.cg.1.1 2
55.3 odd 20 550.2.ba.d.399.2 8
55.14 even 10 550.2.h.i.201.1 yes 4
55.39 odd 10 6050.2.a.cj.1.2 2
55.47 odd 20 550.2.ba.d.399.1 8
55.49 even 10 6050.2.a.br.1.2 2
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.a.201.1 4 11.3 even 5 inner
550.2.h.a.301.1 yes 4 1.1 even 1 trivial
550.2.h.i.201.1 yes 4 55.14 even 10
550.2.h.i.301.1 yes 4 5.4 even 2
550.2.ba.d.399.1 8 55.47 odd 20
550.2.ba.d.399.2 8 55.3 odd 20
550.2.ba.d.499.1 8 5.3 odd 4
550.2.ba.d.499.2 8 5.2 odd 4
6050.2.a.br.1.2 2 55.49 even 10
6050.2.a.cg.1.1 2 11.6 odd 10
6050.2.a.cj.1.2 2 55.39 odd 10
6050.2.a.cx.1.1 2 11.5 even 5