Properties

Label 550.2.h.m.301.1
Level $550$
Weight $2$
Character 550.301
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.159390625.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} - x^{7} + 6x^{6} - 11x^{5} + 21x^{4} - 5x^{3} + 10x^{2} + 25x + 25 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 301.1
Root \(-0.762262 - 2.34600i\) of defining polynomial
Character \(\chi\) \(=\) 550.301
Dual form 550.2.h.m.201.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 + 0.587785i) q^{2} +(-0.924349 + 2.84485i) q^{3} +(0.309017 + 0.951057i) q^{4} +(-2.41998 + 1.75822i) q^{6} +(1.56024 + 4.80193i) q^{7} +(-0.309017 + 0.951057i) q^{8} +(-4.81172 - 3.49592i) q^{9} +(3.28679 + 0.443888i) q^{11} -2.99126 q^{12} +(-1.46673 - 1.06564i) q^{13} +(-1.56024 + 4.80193i) q^{14} +(-0.809017 + 0.587785i) q^{16} +(4.35140 - 3.16148i) q^{17} +(-1.83791 - 5.65652i) q^{18} +(0.910862 - 2.80335i) q^{19} -15.1030 q^{21} +(2.39815 + 2.29104i) q^{22} -3.12048 q^{23} +(-2.41998 - 1.75822i) q^{24} +(-0.560242 - 1.72425i) q^{26} +(7.13315 - 5.18254i) q^{27} +(-4.08477 + 2.96776i) q^{28} +(0.711544 + 2.18991i) q^{29} +(0.137154 + 0.0996482i) q^{31} -1.00000 q^{32} +(-4.30093 + 8.94012i) q^{33} +5.37863 q^{34} +(1.83791 - 5.65652i) q^{36} +(-1.84870 - 5.68971i) q^{37} +(2.38467 - 1.73256i) q^{38} +(4.38737 - 3.18761i) q^{39} +(2.94887 - 9.07570i) q^{41} +(-12.2186 - 8.87732i) q^{42} +7.13922 q^{43} +(0.593510 + 3.26309i) q^{44} +(-2.52452 - 1.83417i) q^{46} +(-1.03572 + 3.18761i) q^{47} +(-0.924349 - 2.84485i) q^{48} +(-14.9611 + 10.8698i) q^{49} +(4.97173 + 15.3014i) q^{51} +(0.560242 - 1.72425i) q^{52} +(-2.27971 - 1.65631i) q^{53} +8.81706 q^{54} -5.04905 q^{56} +(7.13315 + 5.18254i) q^{57} +(-0.711544 + 2.18991i) q^{58} +(1.95158 + 6.00633i) q^{59} +(-3.14256 + 2.28320i) q^{61} +(0.0523881 + 0.161234i) q^{62} +(9.27971 - 28.5600i) q^{63} +(-0.809017 - 0.587785i) q^{64} +(-8.73440 + 4.70468i) q^{66} -6.12507 q^{67} +(4.35140 + 3.16148i) q^{68} +(2.88442 - 8.87732i) q^{69} +(4.46673 - 3.24527i) q^{71} +(4.81172 - 3.49592i) q^{72} +(2.74852 + 8.45908i) q^{73} +(1.84870 - 5.68971i) q^{74} +2.94761 q^{76} +(2.99666 + 16.4755i) q^{77} +5.42309 q^{78} +(-2.83995 - 2.06335i) q^{79} +(2.63630 + 8.11370i) q^{81} +(7.72025 - 5.60909i) q^{82} +(1.35577 - 0.985026i) q^{83} +(-4.66708 - 14.3638i) q^{84} +(5.77575 + 4.19633i) q^{86} -6.88768 q^{87} +(-1.43784 + 2.98875i) q^{88} +17.2589 q^{89} +(2.82869 - 8.70580i) q^{91} +(-0.964282 - 2.96776i) q^{92} +(-0.410263 + 0.298073i) q^{93} +(-2.71154 + 1.97005i) q^{94} +(0.924349 - 2.84485i) q^{96} +(7.16312 + 5.20431i) q^{97} -18.4929 q^{98} +(-14.2633 - 13.6262i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} - 4 q^{3} - 2 q^{4} - q^{6} + 2 q^{7} + 2 q^{8} - 24 q^{9} + 5 q^{11} + 6 q^{12} + 4 q^{13} - 2 q^{14} - 2 q^{16} + 18 q^{17} - 11 q^{18} + 17 q^{19} - 40 q^{21} + 5 q^{22} - 4 q^{23} - q^{24}+ \cdots - 72 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{1}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 + 0.587785i 0.572061 + 0.415627i
\(3\) −0.924349 + 2.84485i −0.533673 + 1.64248i 0.212826 + 0.977090i \(0.431733\pi\)
−0.746499 + 0.665387i \(0.768267\pi\)
\(4\) 0.309017 + 0.951057i 0.154508 + 0.475528i
\(5\) 0 0
\(6\) −2.41998 + 1.75822i −0.987951 + 0.717789i
\(7\) 1.56024 + 4.80193i 0.589716 + 1.81496i 0.579444 + 0.815012i \(0.303270\pi\)
0.0102715 + 0.999947i \(0.496730\pi\)
\(8\) −0.309017 + 0.951057i −0.109254 + 0.336249i
\(9\) −4.81172 3.49592i −1.60391 1.16531i
\(10\) 0 0
\(11\) 3.28679 + 0.443888i 0.991003 + 0.133837i
\(12\) −2.99126 −0.863501
\(13\) −1.46673 1.06564i −0.406798 0.295556i 0.365506 0.930809i \(-0.380896\pi\)
−0.772304 + 0.635253i \(0.780896\pi\)
\(14\) −1.56024 + 4.80193i −0.416992 + 1.28337i
\(15\) 0 0
\(16\) −0.809017 + 0.587785i −0.202254 + 0.146946i
\(17\) 4.35140 3.16148i 1.05537 0.766771i 0.0821434 0.996621i \(-0.473823\pi\)
0.973226 + 0.229850i \(0.0738235\pi\)
\(18\) −1.83791 5.65652i −0.433200 1.33325i
\(19\) 0.910862 2.80335i 0.208966 0.643132i −0.790561 0.612383i \(-0.790211\pi\)
0.999527 0.0307483i \(-0.00978904\pi\)
\(20\) 0 0
\(21\) −15.1030 −3.29574
\(22\) 2.39815 + 2.29104i 0.511288 + 0.488451i
\(23\) −3.12048 −0.650666 −0.325333 0.945600i \(-0.605476\pi\)
−0.325333 + 0.945600i \(0.605476\pi\)
\(24\) −2.41998 1.75822i −0.493976 0.358894i
\(25\) 0 0
\(26\) −0.560242 1.72425i −0.109872 0.338153i
\(27\) 7.13315 5.18254i 1.37278 0.997380i
\(28\) −4.08477 + 2.96776i −0.771948 + 0.560853i
\(29\) 0.711544 + 2.18991i 0.132130 + 0.406656i 0.995133 0.0985446i \(-0.0314187\pi\)
−0.863002 + 0.505200i \(0.831419\pi\)
\(30\) 0 0
\(31\) 0.137154 + 0.0996482i 0.0246336 + 0.0178973i 0.600034 0.799975i \(-0.295154\pi\)
−0.575400 + 0.817872i \(0.695154\pi\)
\(32\) −1.00000 −0.176777
\(33\) −4.30093 + 8.94012i −0.748697 + 1.55627i
\(34\) 5.37863 0.922427
\(35\) 0 0
\(36\) 1.83791 5.65652i 0.306319 0.942753i
\(37\) −1.84870 5.68971i −0.303924 0.935382i −0.980077 0.198620i \(-0.936354\pi\)
0.676152 0.736762i \(-0.263646\pi\)
\(38\) 2.38467 1.73256i 0.386844 0.281059i
\(39\) 4.38737 3.18761i 0.702541 0.510426i
\(40\) 0 0
\(41\) 2.94887 9.07570i 0.460537 1.41739i −0.403974 0.914771i \(-0.632371\pi\)
0.864510 0.502615i \(-0.167629\pi\)
\(42\) −12.2186 8.87732i −1.88537 1.36980i
\(43\) 7.13922 1.08872 0.544360 0.838852i \(-0.316772\pi\)
0.544360 + 0.838852i \(0.316772\pi\)
\(44\) 0.593510 + 3.26309i 0.0894750 + 0.491929i
\(45\) 0 0
\(46\) −2.52452 1.83417i −0.372221 0.270434i
\(47\) −1.03572 + 3.18761i −0.151075 + 0.464961i −0.997742 0.0671620i \(-0.978606\pi\)
0.846667 + 0.532123i \(0.178606\pi\)
\(48\) −0.924349 2.84485i −0.133418 0.410619i
\(49\) −14.9611 + 10.8698i −2.13729 + 1.55284i
\(50\) 0 0
\(51\) 4.97173 + 15.3014i 0.696181 + 2.14262i
\(52\) 0.560242 1.72425i 0.0776915 0.239110i
\(53\) −2.27971 1.65631i −0.313143 0.227511i 0.420101 0.907477i \(-0.361995\pi\)
−0.733244 + 0.679966i \(0.761995\pi\)
\(54\) 8.81706 1.19985
\(55\) 0 0
\(56\) −5.04905 −0.674707
\(57\) 7.13315 + 5.18254i 0.944809 + 0.686444i
\(58\) −0.711544 + 2.18991i −0.0934303 + 0.287549i
\(59\) 1.95158 + 6.00633i 0.254073 + 0.781958i 0.994011 + 0.109282i \(0.0348551\pi\)
−0.739937 + 0.672676i \(0.765145\pi\)
\(60\) 0 0
\(61\) −3.14256 + 2.28320i −0.402363 + 0.292334i −0.770503 0.637436i \(-0.779995\pi\)
0.368140 + 0.929771i \(0.379995\pi\)
\(62\) 0.0523881 + 0.161234i 0.00665330 + 0.0204768i
\(63\) 9.27971 28.5600i 1.16913 3.59822i
\(64\) −0.809017 0.587785i −0.101127 0.0734732i
\(65\) 0 0
\(66\) −8.73440 + 4.70468i −1.07513 + 0.579106i
\(67\) −6.12507 −0.748296 −0.374148 0.927369i \(-0.622065\pi\)
−0.374148 + 0.927369i \(0.622065\pi\)
\(68\) 4.35140 + 3.16148i 0.527685 + 0.383385i
\(69\) 2.88442 8.87732i 0.347243 1.06870i
\(70\) 0 0
\(71\) 4.46673 3.24527i 0.530104 0.385143i −0.290293 0.956938i \(-0.593753\pi\)
0.820396 + 0.571795i \(0.193753\pi\)
\(72\) 4.81172 3.49592i 0.567067 0.411998i
\(73\) 2.74852 + 8.45908i 0.321690 + 0.990061i 0.972912 + 0.231174i \(0.0742566\pi\)
−0.651222 + 0.758887i \(0.725743\pi\)
\(74\) 1.84870 5.68971i 0.214907 0.661415i
\(75\) 0 0
\(76\) 2.94761 0.338114
\(77\) 2.99666 + 16.4755i 0.341501 + 1.87756i
\(78\) 5.42309 0.614044
\(79\) −2.83995 2.06335i −0.319520 0.232145i 0.416451 0.909158i \(-0.363274\pi\)
−0.735971 + 0.677014i \(0.763274\pi\)
\(80\) 0 0
\(81\) 2.63630 + 8.11370i 0.292922 + 0.901522i
\(82\) 7.72025 5.60909i 0.852559 0.619420i
\(83\) 1.35577 0.985026i 0.148815 0.108121i −0.510886 0.859648i \(-0.670683\pi\)
0.659702 + 0.751528i \(0.270683\pi\)
\(84\) −4.66708 14.3638i −0.509220 1.56722i
\(85\) 0 0
\(86\) 5.77575 + 4.19633i 0.622815 + 0.452502i
\(87\) −6.88768 −0.738437
\(88\) −1.43784 + 2.98875i −0.153274 + 0.318602i
\(89\) 17.2589 1.82944 0.914719 0.404090i \(-0.132412\pi\)
0.914719 + 0.404090i \(0.132412\pi\)
\(90\) 0 0
\(91\) 2.82869 8.70580i 0.296527 0.912616i
\(92\) −0.964282 2.96776i −0.100533 0.309410i
\(93\) −0.410263 + 0.298073i −0.0425422 + 0.0309087i
\(94\) −2.71154 + 1.97005i −0.279674 + 0.203195i
\(95\) 0 0
\(96\) 0.924349 2.84485i 0.0943410 0.290352i
\(97\) 7.16312 + 5.20431i 0.727305 + 0.528418i 0.888710 0.458471i \(-0.151603\pi\)
−0.161405 + 0.986888i \(0.551603\pi\)
\(98\) −18.4929 −1.86806
\(99\) −14.2633 13.6262i −1.43351 1.36948i
\(100\) 0 0
\(101\) 8.11967 + 5.89928i 0.807937 + 0.587001i 0.913232 0.407441i \(-0.133579\pi\)
−0.105295 + 0.994441i \(0.533579\pi\)
\(102\) −4.97173 + 15.3014i −0.492274 + 1.51506i
\(103\) 1.27179 + 3.91415i 0.125313 + 0.385673i 0.993958 0.109762i \(-0.0350088\pi\)
−0.868645 + 0.495435i \(0.835009\pi\)
\(104\) 1.46673 1.06564i 0.143825 0.104495i
\(105\) 0 0
\(106\) −0.870773 2.67996i −0.0845769 0.260301i
\(107\) −0.995784 + 3.06471i −0.0962661 + 0.296277i −0.987582 0.157107i \(-0.949783\pi\)
0.891315 + 0.453384i \(0.149783\pi\)
\(108\) 7.13315 + 5.18254i 0.686388 + 0.498690i
\(109\) −6.55942 −0.628279 −0.314139 0.949377i \(-0.601716\pi\)
−0.314139 + 0.949377i \(0.601716\pi\)
\(110\) 0 0
\(111\) 17.8952 1.69854
\(112\) −4.08477 2.96776i −0.385974 0.280427i
\(113\) −1.67876 + 5.16668i −0.157924 + 0.486041i −0.998445 0.0557379i \(-0.982249\pi\)
0.840521 + 0.541779i \(0.182249\pi\)
\(114\) 2.72462 + 8.38552i 0.255184 + 0.785376i
\(115\) 0 0
\(116\) −1.86285 + 1.35344i −0.172961 + 0.125663i
\(117\) 3.33210 + 10.2551i 0.308053 + 0.948089i
\(118\) −1.95158 + 6.00633i −0.179657 + 0.552928i
\(119\) 21.9704 + 15.9625i 2.01403 + 1.46328i
\(120\) 0 0
\(121\) 10.6059 + 2.91793i 0.964175 + 0.265267i
\(122\) −3.88442 −0.351678
\(123\) 23.0932 + 16.7782i 2.08225 + 1.51284i
\(124\) −0.0523881 + 0.161234i −0.00470459 + 0.0144793i
\(125\) 0 0
\(126\) 24.2946 17.6511i 2.16434 1.57248i
\(127\) −13.6995 + 9.95324i −1.21563 + 0.883207i −0.995730 0.0923150i \(-0.970573\pi\)
−0.219901 + 0.975522i \(0.570573\pi\)
\(128\) −0.309017 0.951057i −0.0273135 0.0840623i
\(129\) −6.59913 + 20.3100i −0.581021 + 1.78820i
\(130\) 0 0
\(131\) −7.78267 −0.679975 −0.339987 0.940430i \(-0.610423\pi\)
−0.339987 + 0.940430i \(0.610423\pi\)
\(132\) −9.83162 1.32778i −0.855733 0.115569i
\(133\) 14.8826 1.29049
\(134\) −4.95529 3.60023i −0.428071 0.311012i
\(135\) 0 0
\(136\) 1.66209 + 5.11538i 0.142523 + 0.438640i
\(137\) −6.97381 + 5.06677i −0.595812 + 0.432883i −0.844390 0.535729i \(-0.820037\pi\)
0.248578 + 0.968612i \(0.420037\pi\)
\(138\) 7.55150 5.48648i 0.642826 0.467041i
\(139\) −4.94069 15.2059i −0.419064 1.28975i −0.908565 0.417744i \(-0.862821\pi\)
0.489501 0.872003i \(-0.337179\pi\)
\(140\) 0 0
\(141\) −8.11092 5.89293i −0.683063 0.496274i
\(142\) 5.52118 0.463327
\(143\) −4.34781 4.15361i −0.363582 0.347342i
\(144\) 5.94761 0.495634
\(145\) 0 0
\(146\) −2.74852 + 8.45908i −0.227469 + 0.700079i
\(147\) −17.0939 52.6096i −1.40988 4.33916i
\(148\) 4.83995 3.51643i 0.397842 0.289049i
\(149\) −3.22324 + 2.34182i −0.264058 + 0.191850i −0.711934 0.702246i \(-0.752181\pi\)
0.447876 + 0.894096i \(0.352181\pi\)
\(150\) 0 0
\(151\) 2.79965 8.61644i 0.227832 0.701196i −0.770159 0.637851i \(-0.779823\pi\)
0.997992 0.0633442i \(-0.0201766\pi\)
\(152\) 2.38467 + 1.73256i 0.193422 + 0.140529i
\(153\) −31.9900 −2.58624
\(154\) −7.25970 + 15.0903i −0.585003 + 1.21601i
\(155\) 0 0
\(156\) 4.38737 + 3.18761i 0.351271 + 0.255213i
\(157\) 6.93346 21.3390i 0.553351 1.70304i −0.146909 0.989150i \(-0.546932\pi\)
0.700260 0.713888i \(-0.253068\pi\)
\(158\) −1.08477 3.33857i −0.0862993 0.265602i
\(159\) 6.81920 4.95444i 0.540798 0.392913i
\(160\) 0 0
\(161\) −4.86871 14.9843i −0.383708 1.18093i
\(162\) −2.63630 + 8.11370i −0.207127 + 0.637473i
\(163\) −15.9544 11.5915i −1.24964 0.907920i −0.251443 0.967872i \(-0.580905\pi\)
−0.998201 + 0.0599520i \(0.980905\pi\)
\(164\) 9.54275 0.745164
\(165\) 0 0
\(166\) 1.67583 0.130069
\(167\) 3.31543 + 2.40880i 0.256556 + 0.186399i 0.708627 0.705583i \(-0.249315\pi\)
−0.452072 + 0.891982i \(0.649315\pi\)
\(168\) 4.66708 14.3638i 0.360073 1.10819i
\(169\) −3.00151 9.23771i −0.230886 0.710593i
\(170\) 0 0
\(171\) −14.1831 + 10.3046i −1.08461 + 0.788013i
\(172\) 2.20614 + 6.78980i 0.168217 + 0.517717i
\(173\) −3.98792 + 12.2735i −0.303196 + 0.933140i 0.677149 + 0.735846i \(0.263215\pi\)
−0.980344 + 0.197294i \(0.936785\pi\)
\(174\) −5.57225 4.04848i −0.422431 0.306914i
\(175\) 0 0
\(176\) −2.91998 + 1.57281i −0.220102 + 0.118555i
\(177\) −18.8911 −1.41994
\(178\) 13.9627 + 10.1445i 1.04655 + 0.760364i
\(179\) 4.17787 12.8582i 0.312268 0.961063i −0.664596 0.747203i \(-0.731396\pi\)
0.976864 0.213860i \(-0.0686038\pi\)
\(180\) 0 0
\(181\) 18.1957 13.2199i 1.35247 0.982630i 0.353591 0.935400i \(-0.384961\pi\)
0.998884 0.0472302i \(-0.0150394\pi\)
\(182\) 7.40560 5.38048i 0.548940 0.398828i
\(183\) −3.59056 11.0506i −0.265421 0.816883i
\(184\) 0.964282 2.96776i 0.0710878 0.218786i
\(185\) 0 0
\(186\) −0.507112 −0.0371833
\(187\) 15.7055 8.45956i 1.14850 0.618625i
\(188\) −3.35165 −0.244444
\(189\) 36.0156 + 26.1669i 2.61975 + 1.90336i
\(190\) 0 0
\(191\) 5.13715 + 15.8105i 0.371711 + 1.14401i 0.945671 + 0.325126i \(0.105407\pi\)
−0.573959 + 0.818884i \(0.694593\pi\)
\(192\) 2.41998 1.75822i 0.174647 0.126888i
\(193\) 6.42705 4.66953i 0.462629 0.336120i −0.331933 0.943303i \(-0.607701\pi\)
0.794562 + 0.607183i \(0.207701\pi\)
\(194\) 2.73607 + 8.42075i 0.196438 + 0.604575i
\(195\) 0 0
\(196\) −14.9611 10.8698i −1.06865 0.776418i
\(197\) −21.2833 −1.51637 −0.758187 0.652037i \(-0.773915\pi\)
−0.758187 + 0.652037i \(0.773915\pi\)
\(198\) −3.52997 19.4076i −0.250864 1.37924i
\(199\) −7.26273 −0.514841 −0.257421 0.966299i \(-0.582873\pi\)
−0.257421 + 0.966299i \(0.582873\pi\)
\(200\) 0 0
\(201\) 5.66170 17.4249i 0.399346 1.22906i
\(202\) 3.10144 + 9.54524i 0.218216 + 0.671601i
\(203\) −9.40560 + 6.83357i −0.660144 + 0.479622i
\(204\) −13.0162 + 9.45679i −0.911313 + 0.662108i
\(205\) 0 0
\(206\) −1.27179 + 3.91415i −0.0886095 + 0.272712i
\(207\) 15.0149 + 10.9090i 1.04361 + 0.758225i
\(208\) 1.81298 0.125708
\(209\) 4.23818 8.80968i 0.293161 0.609378i
\(210\) 0 0
\(211\) −7.11636 5.17034i −0.489911 0.355941i 0.315239 0.949012i \(-0.397915\pi\)
−0.805150 + 0.593071i \(0.797915\pi\)
\(212\) 0.870773 2.67996i 0.0598049 0.184061i
\(213\) 5.10350 + 15.7070i 0.349686 + 1.07622i
\(214\) −2.60700 + 1.89409i −0.178211 + 0.129478i
\(215\) 0 0
\(216\) 2.72462 + 8.38552i 0.185387 + 0.570563i
\(217\) −0.264510 + 0.814079i −0.0179561 + 0.0552633i
\(218\) −5.30669 3.85553i −0.359414 0.261130i
\(219\) −26.6054 −1.79783
\(220\) 0 0
\(221\) −9.75134 −0.655946
\(222\) 14.4775 + 10.5185i 0.971669 + 0.705959i
\(223\) 6.13047 18.8677i 0.410527 1.26347i −0.505664 0.862730i \(-0.668753\pi\)
0.916191 0.400742i \(-0.131247\pi\)
\(224\) −1.56024 4.80193i −0.104248 0.320842i
\(225\) 0 0
\(226\) −4.39504 + 3.19319i −0.292354 + 0.212408i
\(227\) −1.83599 5.65060i −0.121859 0.375043i 0.871457 0.490472i \(-0.163176\pi\)
−0.993316 + 0.115429i \(0.963176\pi\)
\(228\) −2.72462 + 8.38552i −0.180442 + 0.555345i
\(229\) −8.15671 5.92619i −0.539010 0.391614i 0.284707 0.958615i \(-0.408104\pi\)
−0.823717 + 0.567001i \(0.808104\pi\)
\(230\) 0 0
\(231\) −49.6403 6.70404i −3.26609 0.441094i
\(232\) −2.30260 −0.151173
\(233\) −0.503963 0.366151i −0.0330157 0.0239873i 0.571155 0.820842i \(-0.306496\pi\)
−0.604171 + 0.796855i \(0.706496\pi\)
\(234\) −3.33210 + 10.2551i −0.217826 + 0.670400i
\(235\) 0 0
\(236\) −5.10929 + 3.71212i −0.332586 + 0.241638i
\(237\) 8.49503 6.17200i 0.551811 0.400914i
\(238\) 8.39196 + 25.8278i 0.543970 + 1.67417i
\(239\) −3.24097 + 9.97467i −0.209641 + 0.645208i 0.789850 + 0.613300i \(0.210158\pi\)
−0.999491 + 0.0319078i \(0.989842\pi\)
\(240\) 0 0
\(241\) −13.4865 −0.868743 −0.434372 0.900734i \(-0.643030\pi\)
−0.434372 + 0.900734i \(0.643030\pi\)
\(242\) 6.86526 + 8.59466i 0.441315 + 0.552486i
\(243\) 0.932028 0.0597897
\(244\) −3.14256 2.28320i −0.201182 0.146167i
\(245\) 0 0
\(246\) 8.82083 + 27.1477i 0.562396 + 1.73088i
\(247\) −4.32336 + 3.14110i −0.275089 + 0.199864i
\(248\) −0.137154 + 0.0996482i −0.00870928 + 0.00632766i
\(249\) 1.54905 + 4.76748i 0.0981669 + 0.302127i
\(250\) 0 0
\(251\) 10.6402 + 7.73058i 0.671605 + 0.487950i 0.870562 0.492059i \(-0.163755\pi\)
−0.198957 + 0.980008i \(0.563755\pi\)
\(252\) 30.0298 1.89170
\(253\) −10.2564 1.38515i −0.644812 0.0870834i
\(254\) −16.9335 −1.06250
\(255\) 0 0
\(256\) 0.309017 0.951057i 0.0193136 0.0594410i
\(257\) 1.09930 + 3.38330i 0.0685724 + 0.211044i 0.979471 0.201587i \(-0.0646099\pi\)
−0.910898 + 0.412631i \(0.864610\pi\)
\(258\) −17.2767 + 12.5523i −1.07560 + 0.781471i
\(259\) 24.4372 17.7546i 1.51845 1.10322i
\(260\) 0 0
\(261\) 4.23199 13.0247i 0.261953 0.806210i
\(262\) −6.29631 4.57454i −0.388987 0.282616i
\(263\) 12.4264 0.766242 0.383121 0.923698i \(-0.374849\pi\)
0.383121 + 0.923698i \(0.374849\pi\)
\(264\) −7.17349 6.85308i −0.441498 0.421778i
\(265\) 0 0
\(266\) 12.0403 + 8.74779i 0.738238 + 0.536362i
\(267\) −15.9532 + 49.0990i −0.976322 + 3.00481i
\(268\) −1.89275 5.82529i −0.115618 0.355836i
\(269\) 6.35033 4.61378i 0.387186 0.281307i −0.377115 0.926166i \(-0.623084\pi\)
0.764302 + 0.644859i \(0.223084\pi\)
\(270\) 0 0
\(271\) 7.97125 + 24.5330i 0.484219 + 1.49027i 0.833109 + 0.553108i \(0.186558\pi\)
−0.348891 + 0.937163i \(0.613442\pi\)
\(272\) −1.66209 + 5.11538i −0.100779 + 0.310165i
\(273\) 22.1520 + 16.0944i 1.34070 + 0.974077i
\(274\) −8.62010 −0.520759
\(275\) 0 0
\(276\) 9.33416 0.561851
\(277\) −25.4230 18.4709i −1.52752 1.10981i −0.957597 0.288111i \(-0.906973\pi\)
−0.569924 0.821698i \(-0.693027\pi\)
\(278\) 4.94069 15.2059i 0.296323 0.911989i
\(279\) −0.311584 0.958958i −0.0186541 0.0574113i
\(280\) 0 0
\(281\) −7.41994 + 5.39090i −0.442636 + 0.321594i −0.786682 0.617359i \(-0.788203\pi\)
0.344045 + 0.938953i \(0.388203\pi\)
\(282\) −3.09810 9.53496i −0.184489 0.567799i
\(283\) 0.112007 0.344721i 0.00665810 0.0204915i −0.947672 0.319245i \(-0.896571\pi\)
0.954330 + 0.298753i \(0.0965708\pi\)
\(284\) 4.46673 + 3.24527i 0.265052 + 0.192571i
\(285\) 0 0
\(286\) −1.07602 5.91591i −0.0636265 0.349815i
\(287\) 48.1818 2.84408
\(288\) 4.81172 + 3.49592i 0.283533 + 0.205999i
\(289\) 3.68645 11.3457i 0.216850 0.667397i
\(290\) 0 0
\(291\) −21.4267 + 15.5674i −1.25606 + 0.912579i
\(292\) −7.19573 + 5.22800i −0.421098 + 0.305946i
\(293\) −9.41434 28.9744i −0.549992 1.69270i −0.708816 0.705394i \(-0.750770\pi\)
0.158824 0.987307i \(-0.449230\pi\)
\(294\) 17.0939 52.6096i 0.996935 3.06825i
\(295\) 0 0
\(296\) 5.98251 0.347726
\(297\) 25.7456 13.8676i 1.49391 0.804678i
\(298\) −3.98415 −0.230795
\(299\) 4.57691 + 3.32532i 0.264690 + 0.192308i
\(300\) 0 0
\(301\) 11.1389 + 34.2820i 0.642036 + 1.97598i
\(302\) 7.32958 5.32525i 0.421770 0.306434i
\(303\) −24.2880 + 17.6463i −1.39531 + 1.01375i
\(304\) 0.910862 + 2.80335i 0.0522415 + 0.160783i
\(305\) 0 0
\(306\) −25.8804 18.8032i −1.47949 1.07491i
\(307\) 13.0087 0.742448 0.371224 0.928543i \(-0.378938\pi\)
0.371224 + 0.928543i \(0.378938\pi\)
\(308\) −14.7431 + 7.94120i −0.840066 + 0.452492i
\(309\) −12.3108 −0.700335
\(310\) 0 0
\(311\) 1.89981 5.84701i 0.107728 0.331554i −0.882633 0.470063i \(-0.844231\pi\)
0.990361 + 0.138509i \(0.0442311\pi\)
\(312\) 1.67583 + 5.15766i 0.0948750 + 0.291995i
\(313\) 17.4443 12.6740i 0.986009 0.716377i 0.0269652 0.999636i \(-0.491416\pi\)
0.959043 + 0.283259i \(0.0914157\pi\)
\(314\) 18.1520 13.1882i 1.02438 0.744255i
\(315\) 0 0
\(316\) 1.08477 3.33857i 0.0610228 0.187809i
\(317\) 6.44050 + 4.67930i 0.361734 + 0.262815i 0.753775 0.657132i \(-0.228231\pi\)
−0.392041 + 0.919948i \(0.628231\pi\)
\(318\) 8.42900 0.472675
\(319\) 1.36662 + 7.51360i 0.0765159 + 0.420681i
\(320\) 0 0
\(321\) −7.79819 5.66572i −0.435253 0.316230i
\(322\) 4.86871 14.9843i 0.271323 0.835045i
\(323\) −4.89919 15.0781i −0.272598 0.838971i
\(324\) −6.90193 + 5.01454i −0.383440 + 0.278586i
\(325\) 0 0
\(326\) −6.09404 18.7555i −0.337517 1.03877i
\(327\) 6.06320 18.6606i 0.335296 1.03193i
\(328\) 7.72025 + 5.60909i 0.426279 + 0.309710i
\(329\) −16.9227 −0.932976
\(330\) 0 0
\(331\) −22.9563 −1.26179 −0.630896 0.775868i \(-0.717312\pi\)
−0.630896 + 0.775868i \(0.717312\pi\)
\(332\) 1.35577 + 0.985026i 0.0744077 + 0.0540603i
\(333\) −10.9953 + 33.8402i −0.602541 + 1.85443i
\(334\) 1.26638 + 3.89752i 0.0692933 + 0.213263i
\(335\) 0 0
\(336\) 12.2186 8.87732i 0.666578 0.484297i
\(337\) −3.78163 11.6387i −0.205999 0.633999i −0.999671 0.0256533i \(-0.991833\pi\)
0.793672 0.608346i \(-0.208167\pi\)
\(338\) 3.00151 9.23771i 0.163261 0.502465i
\(339\) −13.1467 9.55164i −0.714031 0.518774i
\(340\) 0 0
\(341\) 0.406563 + 0.388403i 0.0220166 + 0.0210332i
\(342\) −17.5313 −0.947981
\(343\) −46.9458 34.1081i −2.53483 1.84166i
\(344\) −2.20614 + 6.78980i −0.118947 + 0.366081i
\(345\) 0 0
\(346\) −10.4405 + 7.58547i −0.561285 + 0.407797i
\(347\) 23.5629 17.1194i 1.26492 0.919019i 0.265933 0.963992i \(-0.414320\pi\)
0.998988 + 0.0449727i \(0.0143201\pi\)
\(348\) −2.12841 6.55057i −0.114095 0.351148i
\(349\) −0.486742 + 1.49804i −0.0260547 + 0.0801882i −0.963238 0.268648i \(-0.913423\pi\)
0.937184 + 0.348836i \(0.113423\pi\)
\(350\) 0 0
\(351\) −15.9852 −0.853225
\(352\) −3.28679 0.443888i −0.175186 0.0236593i
\(353\) 34.7890 1.85163 0.925817 0.377972i \(-0.123378\pi\)
0.925817 + 0.377972i \(0.123378\pi\)
\(354\) −15.2832 11.1039i −0.812293 0.590165i
\(355\) 0 0
\(356\) 5.33329 + 16.4142i 0.282664 + 0.869949i
\(357\) −65.7192 + 47.7478i −3.47823 + 2.52708i
\(358\) 10.9378 7.94677i 0.578081 0.420000i
\(359\) 8.88597 + 27.3482i 0.468984 + 1.44338i 0.853902 + 0.520433i \(0.174230\pi\)
−0.384919 + 0.922951i \(0.625770\pi\)
\(360\) 0 0
\(361\) 8.34225 + 6.06100i 0.439066 + 0.319000i
\(362\) 22.4911 1.18211
\(363\) −18.1047 + 27.4751i −0.950248 + 1.44207i
\(364\) 9.15382 0.479791
\(365\) 0 0
\(366\) 3.59056 11.0506i 0.187681 0.577624i
\(367\) 10.2676 + 31.6005i 0.535966 + 1.64953i 0.741553 + 0.670894i \(0.234090\pi\)
−0.205587 + 0.978639i \(0.565910\pi\)
\(368\) 2.52452 1.83417i 0.131600 0.0956129i
\(369\) −45.9170 + 33.3607i −2.39035 + 1.73669i
\(370\) 0 0
\(371\) 4.39657 13.5313i 0.228259 0.702508i
\(372\) −0.410263 0.298073i −0.0212711 0.0154544i
\(373\) −14.9618 −0.774691 −0.387345 0.921935i \(-0.626608\pi\)
−0.387345 + 0.921935i \(0.626608\pi\)
\(374\) 17.6784 + 2.38751i 0.914128 + 0.123455i
\(375\) 0 0
\(376\) −2.71154 1.97005i −0.139837 0.101598i
\(377\) 1.29001 3.97026i 0.0664392 0.204479i
\(378\) 13.7567 + 42.3389i 0.707571 + 2.17768i
\(379\) 6.56354 4.76869i 0.337147 0.244951i −0.406310 0.913735i \(-0.633185\pi\)
0.743457 + 0.668784i \(0.233185\pi\)
\(380\) 0 0
\(381\) −15.6524 48.1732i −0.801898 2.46799i
\(382\) −5.13715 + 15.8105i −0.262840 + 0.808937i
\(383\) −12.5648 9.12888i −0.642033 0.466464i 0.218515 0.975834i \(-0.429879\pi\)
−0.860548 + 0.509369i \(0.829879\pi\)
\(384\) 2.99126 0.152647
\(385\) 0 0
\(386\) 7.94427 0.404353
\(387\) −34.3519 24.9581i −1.74621 1.26869i
\(388\) −2.73607 + 8.42075i −0.138903 + 0.427499i
\(389\) 11.2743 + 34.6988i 0.571630 + 1.75930i 0.647378 + 0.762170i \(0.275866\pi\)
−0.0757474 + 0.997127i \(0.524134\pi\)
\(390\) 0 0
\(391\) −13.5785 + 9.86534i −0.686693 + 0.498912i
\(392\) −5.71462 17.5878i −0.288632 0.888317i
\(393\) 7.19390 22.1405i 0.362884 1.11684i
\(394\) −17.2186 12.5100i −0.867460 0.630246i
\(395\) 0 0
\(396\) 8.55169 17.7759i 0.429739 0.893274i
\(397\) −30.3772 −1.52459 −0.762293 0.647232i \(-0.775926\pi\)
−0.762293 + 0.647232i \(0.775926\pi\)
\(398\) −5.87567 4.26893i −0.294521 0.213982i
\(399\) −13.7567 + 42.3389i −0.688699 + 2.11960i
\(400\) 0 0
\(401\) −1.90727 + 1.38571i −0.0952445 + 0.0691992i −0.634388 0.773015i \(-0.718748\pi\)
0.539144 + 0.842214i \(0.318748\pi\)
\(402\) 14.8225 10.7692i 0.739280 0.537119i
\(403\) −0.0949787 0.292314i −0.00473122 0.0145612i
\(404\) −3.10144 + 9.54524i −0.154302 + 0.474893i
\(405\) 0 0
\(406\) −11.6260 −0.576987
\(407\) −3.55068 19.5215i −0.176001 0.967643i
\(408\) −16.0888 −0.796517
\(409\) 16.3223 + 11.8588i 0.807085 + 0.586381i 0.912984 0.407996i \(-0.133772\pi\)
−0.105899 + 0.994377i \(0.533772\pi\)
\(410\) 0 0
\(411\) −7.96798 24.5229i −0.393031 1.20963i
\(412\) −3.32958 + 2.41908i −0.164037 + 0.119180i
\(413\) −25.7971 + 18.7427i −1.26939 + 0.922266i
\(414\) 5.73518 + 17.6511i 0.281869 + 0.867502i
\(415\) 0 0
\(416\) 1.46673 + 1.06564i 0.0719124 + 0.0522474i
\(417\) 47.8255 2.34202
\(418\) 8.60696 4.63604i 0.420980 0.226756i
\(419\) 7.54275 0.368488 0.184244 0.982881i \(-0.441016\pi\)
0.184244 + 0.982881i \(0.441016\pi\)
\(420\) 0 0
\(421\) 0.516598 1.58992i 0.0251774 0.0774882i −0.937678 0.347505i \(-0.887029\pi\)
0.962856 + 0.270016i \(0.0870291\pi\)
\(422\) −2.71821 8.36579i −0.132320 0.407240i
\(423\) 16.1272 11.7171i 0.784132 0.569705i
\(424\) 2.27971 1.65631i 0.110713 0.0804374i
\(425\) 0 0
\(426\) −5.10350 + 15.7070i −0.247265 + 0.761005i
\(427\) −15.8669 11.5280i −0.767854 0.557879i
\(428\) −3.22243 −0.155762
\(429\) 15.8353 8.52949i 0.764535 0.411808i
\(430\) 0 0
\(431\) 17.1367 + 12.4505i 0.825446 + 0.599721i 0.918267 0.395961i \(-0.129589\pi\)
−0.0928215 + 0.995683i \(0.529589\pi\)
\(432\) −2.72462 + 8.38552i −0.131088 + 0.403449i
\(433\) 6.97355 + 21.4624i 0.335128 + 1.03142i 0.966659 + 0.256066i \(0.0824266\pi\)
−0.631532 + 0.775350i \(0.717573\pi\)
\(434\) −0.692497 + 0.503128i −0.0332409 + 0.0241509i
\(435\) 0 0
\(436\) −2.02697 6.23838i −0.0970744 0.298764i
\(437\) −2.84233 + 8.74779i −0.135967 + 0.418464i
\(438\) −21.5243 15.6383i −1.02847 0.747226i
\(439\) 7.11544 0.339601 0.169801 0.985478i \(-0.445688\pi\)
0.169801 + 0.985478i \(0.445688\pi\)
\(440\) 0 0
\(441\) 109.989 5.23755
\(442\) −7.88900 5.73170i −0.375242 0.272629i
\(443\) 7.20620 22.1784i 0.342377 1.05373i −0.620596 0.784130i \(-0.713109\pi\)
0.962973 0.269597i \(-0.0868906\pi\)
\(444\) 5.52993 + 17.0194i 0.262439 + 0.807704i
\(445\) 0 0
\(446\) 16.0498 11.6609i 0.759980 0.552157i
\(447\) −3.68274 11.3343i −0.174188 0.536095i
\(448\) 1.56024 4.80193i 0.0737145 0.226870i
\(449\) −17.2062 12.5011i −0.812013 0.589962i 0.102401 0.994743i \(-0.467348\pi\)
−0.914413 + 0.404781i \(0.867348\pi\)
\(450\) 0 0
\(451\) 13.7209 28.5209i 0.646092 1.34300i
\(452\) −5.43257 −0.255527
\(453\) 21.9246 + 15.9292i 1.03011 + 0.748418i
\(454\) 1.83599 5.65060i 0.0861673 0.265196i
\(455\) 0 0
\(456\) −7.13315 + 5.18254i −0.334040 + 0.242695i
\(457\) −3.44287 + 2.50139i −0.161051 + 0.117010i −0.665392 0.746494i \(-0.731735\pi\)
0.504341 + 0.863505i \(0.331735\pi\)
\(458\) −3.11558 9.58878i −0.145582 0.448054i
\(459\) 14.6547 45.1026i 0.684024 2.10521i
\(460\) 0 0
\(461\) −5.57201 −0.259515 −0.129757 0.991546i \(-0.541420\pi\)
−0.129757 + 0.991546i \(0.541420\pi\)
\(462\) −36.2193 34.6015i −1.68508 1.60981i
\(463\) 22.6292 1.05167 0.525835 0.850587i \(-0.323753\pi\)
0.525835 + 0.850587i \(0.323753\pi\)
\(464\) −1.86285 1.35344i −0.0864805 0.0628317i
\(465\) 0 0
\(466\) −0.192497 0.592444i −0.00891724 0.0274445i
\(467\) −17.1903 + 12.4895i −0.795471 + 0.577944i −0.909582 0.415524i \(-0.863598\pi\)
0.114111 + 0.993468i \(0.463598\pi\)
\(468\) −8.72355 + 6.33803i −0.403246 + 0.292976i
\(469\) −9.55659 29.4122i −0.441282 1.35813i
\(470\) 0 0
\(471\) 54.2974 + 39.4494i 2.50189 + 1.81773i
\(472\) −6.31543 −0.290691
\(473\) 23.4651 + 3.16902i 1.07893 + 0.145711i
\(474\) 10.5004 0.482301
\(475\) 0 0
\(476\) −8.39196 + 25.8278i −0.384645 + 1.18381i
\(477\) 5.17902 + 15.9394i 0.237131 + 0.729814i
\(478\) −8.48496 + 6.16469i −0.388093 + 0.281966i
\(479\) 14.8803 10.8111i 0.679896 0.493974i −0.193427 0.981115i \(-0.561960\pi\)
0.873323 + 0.487141i \(0.161960\pi\)
\(480\) 0 0
\(481\) −3.35165 + 10.3153i −0.152822 + 0.470338i
\(482\) −10.9108 7.92718i −0.496974 0.361073i
\(483\) 47.1286 2.14443
\(484\) 0.502293 + 10.9885i 0.0228315 + 0.499478i
\(485\) 0 0
\(486\) 0.754027 + 0.547833i 0.0342034 + 0.0248502i
\(487\) 5.64345 17.3687i 0.255729 0.787053i −0.737956 0.674849i \(-0.764209\pi\)
0.993685 0.112204i \(-0.0357911\pi\)
\(488\) −1.20035 3.69430i −0.0543373 0.167233i
\(489\) 47.7237 34.6733i 2.15814 1.56798i
\(490\) 0 0
\(491\) 0.0905551 + 0.278700i 0.00408670 + 0.0125776i 0.953079 0.302721i \(-0.0978952\pi\)
−0.948992 + 0.315299i \(0.897895\pi\)
\(492\) −8.82083 + 27.1477i −0.397674 + 1.22391i
\(493\) 10.0196 + 7.27963i 0.451258 + 0.327858i
\(494\) −5.34396 −0.240436
\(495\) 0 0
\(496\) −0.169532 −0.00761219
\(497\) 22.5527 + 16.3855i 1.01163 + 0.734991i
\(498\) −1.54905 + 4.76748i −0.0694145 + 0.213636i
\(499\) −1.84291 5.67189i −0.0824999 0.253909i 0.901295 0.433206i \(-0.142618\pi\)
−0.983795 + 0.179297i \(0.942618\pi\)
\(500\) 0 0
\(501\) −9.91730 + 7.20534i −0.443072 + 0.321911i
\(502\) 4.06420 + 12.5083i 0.181394 + 0.558274i
\(503\) 0.974585 2.99947i 0.0434546 0.133740i −0.926975 0.375122i \(-0.877601\pi\)
0.970430 + 0.241382i \(0.0776008\pi\)
\(504\) 24.2946 + 17.6511i 1.08217 + 0.786241i
\(505\) 0 0
\(506\) −7.48340 7.14914i −0.332678 0.317818i
\(507\) 29.0544 1.29035
\(508\) −13.6995 9.95324i −0.607815 0.441604i
\(509\) 6.85900 21.1098i 0.304020 0.935677i −0.676021 0.736882i \(-0.736297\pi\)
0.980041 0.198795i \(-0.0637027\pi\)
\(510\) 0 0
\(511\) −36.3316 + 26.3964i −1.60721 + 1.16771i
\(512\) 0.809017 0.587785i 0.0357538 0.0259767i
\(513\) −8.03113 24.7173i −0.354583 1.09129i
\(514\) −1.09930 + 3.38330i −0.0484880 + 0.149231i
\(515\) 0 0
\(516\) −21.3552 −0.940112
\(517\) −4.81913 + 10.0173i −0.211945 + 0.440558i
\(518\) 30.2060 1.32718
\(519\) −31.2302 22.6901i −1.37085 0.995984i
\(520\) 0 0
\(521\) −1.99803 6.14931i −0.0875354 0.269406i 0.897701 0.440605i \(-0.145236\pi\)
−0.985237 + 0.171199i \(0.945236\pi\)
\(522\) 11.0795 8.04972i 0.484936 0.352327i
\(523\) 2.40756 1.74920i 0.105275 0.0764870i −0.533902 0.845546i \(-0.679275\pi\)
0.639177 + 0.769059i \(0.279275\pi\)
\(524\) −2.40498 7.40176i −0.105062 0.323347i
\(525\) 0 0
\(526\) 10.0531 + 7.30403i 0.438337 + 0.318471i
\(527\) 0.911847 0.0397207
\(528\) −1.77534 9.76073i −0.0772618 0.424781i
\(529\) −13.2626 −0.576634
\(530\) 0 0
\(531\) 11.6072 35.7233i 0.503710 1.55026i
\(532\) 4.59899 + 14.1542i 0.199391 + 0.613664i
\(533\) −13.9967 + 10.1692i −0.606263 + 0.440476i
\(534\) −41.7661 + 30.3448i −1.80740 + 1.31315i
\(535\) 0 0
\(536\) 1.89275 5.82529i 0.0817544 0.251614i
\(537\) 32.7178 + 23.7708i 1.41188 + 1.02579i
\(538\) 7.84944 0.338413
\(539\) −53.9988 + 29.0858i −2.32589 + 1.25282i
\(540\) 0 0
\(541\) −2.29794 1.66955i −0.0987962 0.0717797i 0.537290 0.843397i \(-0.319448\pi\)
−0.636087 + 0.771618i \(0.719448\pi\)
\(542\) −7.97125 + 24.5330i −0.342394 + 1.05378i
\(543\) 20.7896 + 63.9839i 0.892168 + 2.74581i
\(544\) −4.35140 + 3.16148i −0.186565 + 0.135547i
\(545\) 0 0
\(546\) 8.46133 + 26.0413i 0.362111 + 1.11446i
\(547\) −8.25516 + 25.4068i −0.352965 + 1.08632i 0.604215 + 0.796822i \(0.293487\pi\)
−0.957180 + 0.289494i \(0.906513\pi\)
\(548\) −6.97381 5.06677i −0.297906 0.216442i
\(549\) 23.1030 0.986012
\(550\) 0 0
\(551\) 6.78718 0.289144
\(552\) 7.55150 + 5.48648i 0.321413 + 0.233520i
\(553\) 5.47703 16.8566i 0.232907 0.716815i
\(554\) −9.71073 29.8865i −0.412569 1.26976i
\(555\) 0 0
\(556\) 12.9349 9.39776i 0.548562 0.398554i
\(557\) −5.76393 17.7396i −0.244226 0.751649i −0.995763 0.0919585i \(-0.970687\pi\)
0.751537 0.659691i \(-0.229313\pi\)
\(558\) 0.311584 0.958958i 0.0131904 0.0405959i
\(559\) −10.4713 7.60786i −0.442890 0.321778i
\(560\) 0 0
\(561\) 9.54889 + 52.4993i 0.403154 + 2.21652i
\(562\) −9.17155 −0.386878
\(563\) −10.7790 7.83141i −0.454281 0.330055i 0.337003 0.941504i \(-0.390587\pi\)
−0.791284 + 0.611449i \(0.790587\pi\)
\(564\) 3.09810 9.53496i 0.130453 0.401494i
\(565\) 0 0
\(566\) 0.293237 0.213049i 0.0123257 0.00895512i
\(567\) −34.8482 + 25.3187i −1.46349 + 1.06328i
\(568\) 1.70614 + 5.25096i 0.0715880 + 0.220325i
\(569\) 2.42330 7.45816i 0.101590 0.312662i −0.887325 0.461145i \(-0.847439\pi\)
0.988915 + 0.148483i \(0.0474389\pi\)
\(570\) 0 0
\(571\) 36.4787 1.52658 0.763292 0.646053i \(-0.223582\pi\)
0.763292 + 0.646053i \(0.223582\pi\)
\(572\) 2.60677 5.41855i 0.108994 0.226561i
\(573\) −49.7272 −2.07738
\(574\) 38.9799 + 28.3206i 1.62699 + 1.18208i
\(575\) 0 0
\(576\) 1.83791 + 5.65652i 0.0765797 + 0.235688i
\(577\) 16.2570 11.8114i 0.676788 0.491715i −0.195503 0.980703i \(-0.562634\pi\)
0.872290 + 0.488988i \(0.162634\pi\)
\(578\) 9.65126 7.01205i 0.401440 0.291663i
\(579\) 7.34328 + 22.6003i 0.305176 + 0.939236i
\(580\) 0 0
\(581\) 6.84536 + 4.97344i 0.283993 + 0.206333i
\(582\) −26.4849 −1.09783
\(583\) −6.75771 6.45587i −0.279876 0.267375i
\(584\) −8.89441 −0.368053
\(585\) 0 0
\(586\) 9.41434 28.9744i 0.388903 1.19692i
\(587\) 4.38156 + 13.4850i 0.180846 + 0.556587i 0.999852 0.0171977i \(-0.00547446\pi\)
−0.819006 + 0.573785i \(0.805474\pi\)
\(588\) 44.7524 32.5145i 1.84556 1.34088i
\(589\) 0.404277 0.293724i 0.0166579 0.0121027i
\(590\) 0 0
\(591\) 19.6732 60.5480i 0.809248 2.49061i
\(592\) 4.83995 + 3.51643i 0.198921 + 0.144524i
\(593\) 5.31185 0.218132 0.109066 0.994035i \(-0.465214\pi\)
0.109066 + 0.994035i \(0.465214\pi\)
\(594\) 28.9798 + 3.91379i 1.18906 + 0.160585i
\(595\) 0 0
\(596\) −3.22324 2.34182i −0.132029 0.0959248i
\(597\) 6.71330 20.6614i 0.274757 0.845615i
\(598\) 1.74822 + 5.38048i 0.0714902 + 0.220024i
\(599\) 36.1271 26.2479i 1.47611 1.07246i 0.497332 0.867560i \(-0.334313\pi\)
0.978783 0.204900i \(-0.0656868\pi\)
\(600\) 0 0
\(601\) −5.04697 15.5330i −0.205870 0.633603i −0.999677 0.0254327i \(-0.991904\pi\)
0.793806 0.608171i \(-0.208096\pi\)
\(602\) −11.1389 + 34.2820i −0.453988 + 1.39723i
\(603\) 29.4721 + 21.4127i 1.20020 + 0.871994i
\(604\) 9.05986 0.368640
\(605\) 0 0
\(606\) −30.0216 −1.21954
\(607\) −15.0814 10.9573i −0.612136 0.444743i 0.238030 0.971258i \(-0.423498\pi\)
−0.850166 + 0.526515i \(0.823498\pi\)
\(608\) −0.910862 + 2.80335i −0.0369403 + 0.113691i
\(609\) −10.7464 33.0742i −0.435468 1.34023i
\(610\) 0 0
\(611\) 4.91598 3.57167i 0.198879 0.144494i
\(612\) −9.88545 30.4243i −0.399596 1.22983i
\(613\) 3.12639 9.62205i 0.126274 0.388631i −0.867857 0.496814i \(-0.834503\pi\)
0.994131 + 0.108183i \(0.0345032\pi\)
\(614\) 10.5243 + 7.64635i 0.424726 + 0.308581i
\(615\) 0 0
\(616\) −16.5951 2.24121i −0.668637 0.0903011i
\(617\) 13.3311 0.536691 0.268346 0.963323i \(-0.413523\pi\)
0.268346 + 0.963323i \(0.413523\pi\)
\(618\) −9.95962 7.23609i −0.400635 0.291078i
\(619\) 7.71248 23.7366i 0.309991 0.954053i −0.667777 0.744362i \(-0.732754\pi\)
0.977768 0.209692i \(-0.0672461\pi\)
\(620\) 0 0
\(621\) −22.2589 + 16.1720i −0.893218 + 0.648961i
\(622\) 4.97377 3.61365i 0.199430 0.144894i
\(623\) 26.9280 + 82.8760i 1.07885 + 3.32036i
\(624\) −1.67583 + 5.15766i −0.0670867 + 0.206472i
\(625\) 0 0
\(626\) 21.5623 0.861803
\(627\) 21.1447 + 20.2002i 0.844437 + 0.806719i
\(628\) 22.4372 0.895340
\(629\) −26.0323 18.9136i −1.03798 0.754134i
\(630\) 0 0
\(631\) 6.26429 + 19.2795i 0.249377 + 0.767505i 0.994886 + 0.101008i \(0.0322068\pi\)
−0.745508 + 0.666496i \(0.767793\pi\)
\(632\) 2.83995 2.06335i 0.112967 0.0820755i
\(633\) 21.2869 15.4658i 0.846077 0.614711i
\(634\) 2.46005 + 7.57126i 0.0977011 + 0.300693i
\(635\) 0 0
\(636\) 6.81920 + 4.95444i 0.270399 + 0.196456i
\(637\) 33.5272 1.32840
\(638\) −3.31077 + 6.88191i −0.131075 + 0.272457i
\(639\) −32.8379 −1.29905
\(640\) 0 0
\(641\) −10.4170 + 32.0602i −0.411446 + 1.26630i 0.503945 + 0.863736i \(0.331881\pi\)
−0.915391 + 0.402565i \(0.868119\pi\)
\(642\) −2.97865 9.16733i −0.117558 0.361806i
\(643\) −36.3871 + 26.4368i −1.43497 + 1.04256i −0.445903 + 0.895081i \(0.647117\pi\)
−0.989065 + 0.147483i \(0.952883\pi\)
\(644\) 12.7464 9.26083i 0.502280 0.364928i
\(645\) 0 0
\(646\) 4.89919 15.0781i 0.192756 0.593242i
\(647\) −15.9920 11.6189i −0.628710 0.456785i 0.227243 0.973838i \(-0.427029\pi\)
−0.855953 + 0.517053i \(0.827029\pi\)
\(648\) −8.53125 −0.335139
\(649\) 3.74827 + 20.6078i 0.147132 + 0.808927i
\(650\) 0 0
\(651\) −2.07144 1.50499i −0.0811859 0.0589850i
\(652\) 6.09404 18.7555i 0.238661 0.734523i
\(653\) −9.46495 29.1301i −0.370392 1.13995i −0.946535 0.322601i \(-0.895443\pi\)
0.576143 0.817349i \(-0.304557\pi\)
\(654\) 15.8737 11.5329i 0.620709 0.450971i
\(655\) 0 0
\(656\) 2.94887 + 9.07570i 0.115134 + 0.354346i
\(657\) 16.3471 50.3113i 0.637763 1.96283i
\(658\) −13.6907 9.94689i −0.533720 0.387770i
\(659\) 14.0711 0.548133 0.274067 0.961711i \(-0.411631\pi\)
0.274067 + 0.961711i \(0.411631\pi\)
\(660\) 0 0
\(661\) −30.9905 −1.20539 −0.602696 0.797971i \(-0.705907\pi\)
−0.602696 + 0.797971i \(0.705907\pi\)
\(662\) −18.5720 13.4934i −0.721822 0.524434i
\(663\) 9.01364 27.7411i 0.350061 1.07738i
\(664\) 0.517859 + 1.59381i 0.0200968 + 0.0618516i
\(665\) 0 0
\(666\) −28.7862 + 20.9144i −1.11544 + 0.810416i
\(667\) −2.22036 6.83357i −0.0859727 0.264597i
\(668\) −1.26638 + 3.89752i −0.0489978 + 0.150800i
\(669\) 48.0090 + 34.8806i 1.85614 + 1.34856i
\(670\) 0 0
\(671\) −11.3424 + 6.10945i −0.437869 + 0.235853i
\(672\) 15.1030 0.582611
\(673\) −34.1765 24.8307i −1.31741 0.957152i −0.999961 0.00887590i \(-0.997175\pi\)
−0.317446 0.948276i \(-0.602825\pi\)
\(674\) 3.78163 11.6387i 0.145663 0.448305i
\(675\) 0 0
\(676\) 7.85807 5.70922i 0.302233 0.219585i
\(677\) −18.7311 + 13.6089i −0.719895 + 0.523034i −0.886350 0.463015i \(-0.846768\pi\)
0.166456 + 0.986049i \(0.446768\pi\)
\(678\) −5.02159 15.4549i −0.192853 0.593541i
\(679\) −13.8145 + 42.5168i −0.530153 + 1.63164i
\(680\) 0 0
\(681\) 17.7722 0.681033
\(682\) 0.100619 + 0.553197i 0.00385289 + 0.0211830i
\(683\) 7.03233 0.269085 0.134542 0.990908i \(-0.457044\pi\)
0.134542 + 0.990908i \(0.457044\pi\)
\(684\) −14.1831 10.3046i −0.542304 0.394007i
\(685\) 0 0
\(686\) −17.9317 55.1880i −0.684635 2.10709i
\(687\) 24.3988 17.7268i 0.930872 0.676318i
\(688\) −5.77575 + 4.19633i −0.220198 + 0.159983i
\(689\) 1.57869 + 4.85872i 0.0601434 + 0.185102i
\(690\) 0 0
\(691\) −9.92334 7.20973i −0.377502 0.274271i 0.382813 0.923826i \(-0.374955\pi\)
−0.760315 + 0.649555i \(0.774955\pi\)
\(692\) −12.9052 −0.490581
\(693\) 43.1779 89.7515i 1.64019 3.40938i
\(694\) 29.1253 1.10558
\(695\) 0 0
\(696\) 2.12841 6.55057i 0.0806772 0.248299i
\(697\) −15.8609 48.8148i −0.600774 1.84899i
\(698\) −1.27431 + 0.925839i −0.0482333 + 0.0350435i
\(699\) 1.50748 1.09525i 0.0570182 0.0414262i
\(700\) 0 0
\(701\) −6.23273 + 19.1824i −0.235407 + 0.724508i 0.761660 + 0.647977i \(0.224385\pi\)
−0.997067 + 0.0765314i \(0.975615\pi\)
\(702\) −12.9323 9.39584i −0.488097 0.354623i
\(703\) −17.6341 −0.665084
\(704\) −2.39815 2.29104i −0.0903839 0.0863467i
\(705\) 0 0
\(706\) 28.1449 + 20.4485i 1.05925 + 0.769589i
\(707\) −15.6593 + 48.1944i −0.588929 + 1.81254i
\(708\) −5.83766 17.9665i −0.219393 0.675221i
\(709\) −18.1795 + 13.2082i −0.682746 + 0.496044i −0.874268 0.485444i \(-0.838658\pi\)
0.191521 + 0.981488i \(0.438658\pi\)
\(710\) 0 0
\(711\) 6.45177 + 19.8565i 0.241960 + 0.744677i
\(712\) −5.33329 + 16.4142i −0.199873 + 0.615147i
\(713\) −0.427987 0.310950i −0.0160282 0.0116452i
\(714\) −81.2334 −3.04008
\(715\) 0 0
\(716\) 13.5199 0.505261
\(717\) −25.3807 18.4402i −0.947859 0.688660i
\(718\) −8.88597 + 27.3482i −0.331622 + 1.02063i
\(719\) 8.80373 + 27.0951i 0.328324 + 1.01048i 0.969918 + 0.243432i \(0.0782734\pi\)
−0.641594 + 0.767044i \(0.721727\pi\)
\(720\) 0 0
\(721\) −16.8112 + 12.2141i −0.626082 + 0.454875i
\(722\) 3.18645 + 9.80690i 0.118588 + 0.364975i
\(723\) 12.4663 38.3672i 0.463625 1.42689i
\(724\) 18.1957 + 13.2199i 0.676237 + 0.491315i
\(725\) 0 0
\(726\) −30.7965 + 11.5862i −1.14296 + 0.430004i
\(727\) −16.1547 −0.599144 −0.299572 0.954074i \(-0.596844\pi\)
−0.299572 + 0.954074i \(0.596844\pi\)
\(728\) 7.40560 + 5.38048i 0.274470 + 0.199414i
\(729\) −8.77042 + 26.9926i −0.324831 + 0.999726i
\(730\) 0 0
\(731\) 31.0656 22.5705i 1.14900 0.834799i
\(732\) 9.40020 6.82964i 0.347441 0.252431i
\(733\) 10.7200 + 32.9927i 0.395951 + 1.21861i 0.928218 + 0.372036i \(0.121340\pi\)
−0.532267 + 0.846577i \(0.678660\pi\)
\(734\) −10.2676 + 31.6005i −0.378985 + 1.16640i
\(735\) 0 0
\(736\) 3.12048 0.115023
\(737\) −20.1318 2.71885i −0.741564 0.100150i
\(738\) −56.7566 −2.08924
\(739\) 9.86328 + 7.16609i 0.362827 + 0.263609i 0.754230 0.656610i \(-0.228010\pi\)
−0.391404 + 0.920219i \(0.628010\pi\)
\(740\) 0 0
\(741\) −4.93969 15.2028i −0.181464 0.558488i
\(742\) 11.5104 8.36278i 0.422559 0.307007i
\(743\) −8.00132 + 5.81330i −0.293540 + 0.213269i −0.724802 0.688958i \(-0.758069\pi\)
0.431262 + 0.902227i \(0.358069\pi\)
\(744\) −0.156706 0.482293i −0.00574513 0.0176817i
\(745\) 0 0
\(746\) −12.1043 8.79430i −0.443171 0.321982i
\(747\) −9.96716 −0.364679
\(748\) 12.8988 + 12.3226i 0.471626 + 0.450560i
\(749\) −16.2702 −0.594499
\(750\) 0 0
\(751\) −4.49402 + 13.8312i −0.163989 + 0.504706i −0.998960 0.0455871i \(-0.985484\pi\)
0.834971 + 0.550293i \(0.185484\pi\)
\(752\) −1.03572 3.18761i −0.0377687 0.116240i
\(753\) −31.8276 + 23.1241i −1.15986 + 0.842690i
\(754\) 3.37730 2.45375i 0.122994 0.0893605i
\(755\) 0 0
\(756\) −13.7567 + 42.3389i −0.500328 + 1.53985i
\(757\) 25.4983 + 18.5256i 0.926751 + 0.673324i 0.945195 0.326506i \(-0.105871\pi\)
−0.0184440 + 0.999830i \(0.505871\pi\)
\(758\) 8.11299 0.294677
\(759\) 13.4210 27.8975i 0.487151 1.01261i
\(760\) 0 0
\(761\) −41.9810 30.5010i −1.52181 1.10566i −0.960582 0.277998i \(-0.910329\pi\)
−0.561228 0.827661i \(-0.689671\pi\)
\(762\) 15.6524 48.1732i 0.567028 1.74513i
\(763\) −10.2343 31.4979i −0.370506 1.14030i
\(764\) −13.4492 + 9.77145i −0.486577 + 0.353519i
\(765\) 0 0
\(766\) −4.79934 14.7708i −0.173407 0.533692i
\(767\) 3.53817 10.8894i 0.127756 0.393192i
\(768\) 2.41998 + 1.75822i 0.0873234 + 0.0634442i
\(769\) −12.8352 −0.462850 −0.231425 0.972853i \(-0.574339\pi\)
−0.231425 + 0.972853i \(0.574339\pi\)
\(770\) 0 0
\(771\) −10.6411 −0.383230
\(772\) 6.42705 + 4.66953i 0.231315 + 0.168060i
\(773\) 3.60929 11.1083i 0.129817 0.399536i −0.864931 0.501891i \(-0.832638\pi\)
0.994748 + 0.102355i \(0.0326378\pi\)
\(774\) −13.1213 40.3831i −0.471634 1.45154i
\(775\) 0 0
\(776\) −7.16312 + 5.20431i −0.257141 + 0.186824i
\(777\) 27.9209 + 85.9316i 1.00166 + 3.08278i
\(778\) −11.2743 + 34.6988i −0.404204 + 1.24401i
\(779\) −22.7563 16.5334i −0.815329 0.592371i
\(780\) 0 0
\(781\) 16.1217 8.68378i 0.576881 0.310730i
\(782\) −16.7839 −0.600192
\(783\) 16.4248 + 11.9333i 0.586975 + 0.426463i
\(784\) 5.71462 17.5878i 0.204093 0.628135i
\(785\) 0 0
\(786\) 18.8339 13.6836i 0.671782 0.488078i
\(787\) 10.4833 7.61658i 0.373690 0.271502i −0.385049 0.922896i \(-0.625816\pi\)
0.758740 + 0.651394i \(0.225816\pi\)
\(788\) −6.57691 20.2417i −0.234293 0.721079i
\(789\) −11.4863 + 35.3511i −0.408923 + 1.25853i
\(790\) 0 0
\(791\) −27.4293 −0.975274
\(792\) 17.3669 9.35447i 0.617106 0.332397i
\(793\) 7.04237 0.250082
\(794\) −24.5756 17.8552i −0.872157 0.633659i
\(795\) 0 0
\(796\) −2.24431 6.90727i −0.0795473 0.244822i
\(797\) 33.0257 23.9946i 1.16983 0.849931i 0.178842 0.983878i \(-0.442765\pi\)
0.990989 + 0.133946i \(0.0427650\pi\)
\(798\) −36.0156 + 26.1669i −1.27494 + 0.926298i
\(799\) 5.57074 + 17.1450i 0.197079 + 0.606545i
\(800\) 0 0
\(801\) −83.0449 60.3357i −2.93425 2.13186i
\(802\) −2.35751 −0.0832467
\(803\) 5.27892 + 29.0232i 0.186289 + 1.02421i
\(804\) 18.3217 0.646155
\(805\) 0 0
\(806\) 0.0949787 0.292314i 0.00334548 0.0102963i
\(807\) 7.25562 + 22.3305i 0.255410 + 0.786071i
\(808\) −8.11967 + 5.89928i −0.285649 + 0.207536i
\(809\) 1.71042 1.24269i 0.0601351 0.0436907i −0.557312 0.830303i \(-0.688167\pi\)
0.617447 + 0.786613i \(0.288167\pi\)
\(810\) 0 0
\(811\) −1.79386 + 5.52093i −0.0629910 + 0.193866i −0.977599 0.210475i \(-0.932499\pi\)
0.914608 + 0.404341i \(0.132499\pi\)
\(812\) −9.40560 6.83357i −0.330072 0.239811i
\(813\) −77.1609 −2.70615
\(814\) 8.60187 17.8802i 0.301495 0.626702i
\(815\) 0 0
\(816\) −13.0162 9.45679i −0.455656 0.331054i
\(817\) 6.50284 20.0137i 0.227506 0.700191i
\(818\) 6.23455 + 19.1880i 0.217986 + 0.670892i
\(819\) −44.0456 + 32.0010i −1.53908 + 1.11821i
\(820\) 0 0
\(821\) −16.0997 49.5496i −0.561882 1.72929i −0.677039 0.735947i \(-0.736737\pi\)
0.115157 0.993347i \(-0.463263\pi\)
\(822\) 7.96798 24.5229i 0.277915 0.855335i
\(823\) 12.4971 + 9.07967i 0.435621 + 0.316497i 0.783893 0.620896i \(-0.213231\pi\)
−0.348271 + 0.937394i \(0.613231\pi\)
\(824\) −4.11558 −0.143373
\(825\) 0 0
\(826\) −31.8869 −1.10949
\(827\) −5.68513 4.13049i −0.197691 0.143631i 0.484536 0.874771i \(-0.338989\pi\)
−0.682227 + 0.731140i \(0.738989\pi\)
\(828\) −5.73518 + 17.6511i −0.199311 + 0.613417i
\(829\) 3.58438 + 11.0316i 0.124491 + 0.383143i 0.993808 0.111112i \(-0.0354411\pi\)
−0.869317 + 0.494254i \(0.835441\pi\)
\(830\) 0 0
\(831\) 76.0467 55.2512i 2.63803 1.91664i
\(832\) 0.560242 + 1.72425i 0.0194229 + 0.0597775i
\(833\) −30.7368 + 94.5981i −1.06497 + 3.27763i
\(834\) 38.6916 + 28.1111i 1.33978 + 0.973408i
\(835\) 0 0
\(836\) 9.68817 + 1.30841i 0.335072 + 0.0452523i
\(837\) 1.49477 0.0516668
\(838\) 6.10222 + 4.43352i 0.210798 + 0.153153i
\(839\) 7.26350 22.3548i 0.250764 0.771772i −0.743871 0.668323i \(-0.767012\pi\)
0.994635 0.103449i \(-0.0329877\pi\)
\(840\) 0 0
\(841\) 19.1721 13.9293i 0.661107 0.480322i
\(842\) 1.35247 0.982627i 0.0466092 0.0338636i
\(843\) −8.47771 26.0917i −0.291988 0.898646i
\(844\) 2.71821 8.36579i 0.0935646 0.287962i
\(845\) 0 0
\(846\) 19.9343 0.685356
\(847\) 2.53610 + 55.4816i 0.0871415 + 1.90637i
\(848\) 2.81788 0.0967664
\(849\) 0.877147 + 0.637285i 0.0301036 + 0.0218715i
\(850\) 0 0
\(851\) 5.76883 + 17.7546i 0.197753 + 0.608621i
\(852\) −13.3611 + 9.70743i −0.457745 + 0.332571i
\(853\) −9.24726 + 6.71853i −0.316620 + 0.230038i −0.734732 0.678358i \(-0.762692\pi\)
0.418112 + 0.908396i \(0.362692\pi\)
\(854\) −6.06063 18.6527i −0.207390 0.638282i
\(855\) 0 0
\(856\) −2.60700 1.89409i −0.0891053 0.0647388i
\(857\) −24.1717 −0.825691 −0.412845 0.910801i \(-0.635465\pi\)
−0.412845 + 0.910801i \(0.635465\pi\)
\(858\) 17.8245 + 2.40725i 0.608519 + 0.0821820i
\(859\) 11.9935 0.409214 0.204607 0.978844i \(-0.434408\pi\)
0.204607 + 0.978844i \(0.434408\pi\)
\(860\) 0 0
\(861\) −44.5368 + 137.070i −1.51781 + 4.67134i
\(862\) 6.54564 + 20.1454i 0.222945 + 0.686155i
\(863\) 26.3458 19.1413i 0.896821 0.651579i −0.0408264 0.999166i \(-0.512999\pi\)
0.937648 + 0.347588i \(0.112999\pi\)
\(864\) −7.13315 + 5.18254i −0.242675 + 0.176314i
\(865\) 0 0
\(866\) −6.97355 + 21.4624i −0.236971 + 0.729322i
\(867\) 28.8694 + 20.9748i 0.980456 + 0.712343i
\(868\) −0.855973 −0.0290536
\(869\) −8.41842 8.04240i −0.285576 0.272820i
\(870\) 0 0
\(871\) 8.98383 + 6.52714i 0.304406 + 0.221164i
\(872\) 2.02697 6.23838i 0.0686420 0.211258i
\(873\) −16.2731 50.0834i −0.550760 1.69506i
\(874\) −7.44132 + 5.40643i −0.251706 + 0.182875i
\(875\) 0 0
\(876\) −8.22153 25.3033i −0.277780 0.854919i
\(877\) 3.68041 11.3271i 0.124279 0.382491i −0.869490 0.493950i \(-0.835553\pi\)
0.993769 + 0.111460i \(0.0355525\pi\)
\(878\) 5.75651 + 4.18235i 0.194273 + 0.141147i
\(879\) 91.1300 3.07374
\(880\) 0 0
\(881\) 27.1618 0.915103 0.457551 0.889183i \(-0.348727\pi\)
0.457551 + 0.889183i \(0.348727\pi\)
\(882\) 88.9826 + 64.6496i 2.99620 + 2.17687i
\(883\) −9.52629 + 29.3189i −0.320585 + 0.986660i 0.652809 + 0.757523i \(0.273590\pi\)
−0.973394 + 0.229137i \(0.926410\pi\)
\(884\) −3.01333 9.27408i −0.101349 0.311921i
\(885\) 0 0
\(886\) 18.8661 13.7070i 0.633818 0.460496i
\(887\) −2.13766 6.57904i −0.0717756 0.220903i 0.908733 0.417377i \(-0.137051\pi\)
−0.980509 + 0.196475i \(0.937051\pi\)
\(888\) −5.52993 + 17.0194i −0.185572 + 0.571133i
\(889\) −69.1692 50.2544i −2.31986 1.68548i
\(890\) 0 0
\(891\) 5.06338 + 27.8382i 0.169630 + 0.932616i
\(892\) 19.8386 0.664246
\(893\) 7.99258 + 5.80695i 0.267461 + 0.194322i
\(894\) 3.68274 11.3343i 0.123169 0.379076i
\(895\) 0 0
\(896\) 4.08477 2.96776i 0.136462 0.0991458i
\(897\) −13.6907 + 9.94689i −0.457120 + 0.332117i
\(898\) −6.57220 20.2272i −0.219317 0.674989i
\(899\) −0.120629 + 0.371258i −0.00402321 + 0.0123822i
\(900\) 0 0
\(901\) −15.1563 −0.504930
\(902\) 27.8646 15.0089i 0.927790 0.499743i
\(903\) −107.824 −3.58814
\(904\) −4.39504 3.19319i −0.146177 0.106204i
\(905\) 0 0
\(906\) 8.37447 + 25.7740i 0.278223 + 0.856283i
\(907\) −22.2689 + 16.1793i −0.739426 + 0.537224i −0.892531 0.450985i \(-0.851073\pi\)
0.153105 + 0.988210i \(0.451073\pi\)
\(908\) 4.80669 3.49226i 0.159515 0.115895i
\(909\) −18.4461 56.7714i −0.611820 1.88299i
\(910\) 0 0
\(911\) −36.0148 26.1663i −1.19322 0.866928i −0.199623 0.979873i \(-0.563972\pi\)
−0.993601 + 0.112945i \(0.963972\pi\)
\(912\) −8.81706 −0.291962
\(913\) 4.89337 2.63576i 0.161947 0.0872309i
\(914\) −4.25562 −0.140763
\(915\) 0 0
\(916\) 3.11558 9.58878i 0.102942 0.316822i
\(917\) −12.1428 37.3718i −0.400992 1.23413i
\(918\) 38.3666 27.8749i 1.26629 0.920010i
\(919\) −33.7701 + 24.5354i −1.11397 + 0.809348i −0.983285 0.182076i \(-0.941718\pi\)
−0.130688 + 0.991424i \(0.541718\pi\)
\(920\) 0 0
\(921\) −12.0246 + 37.0080i −0.396225 + 1.21945i
\(922\) −4.50785 3.27515i −0.148458 0.107861i
\(923\) −10.0098 −0.329477
\(924\) −8.96378 49.2824i −0.294887 1.62127i
\(925\) 0 0
\(926\) 18.3074 + 13.3011i 0.601619 + 0.437102i
\(927\) 7.56409 23.2799i 0.248437 0.764611i
\(928\) −0.711544 2.18991i −0.0233576 0.0718872i
\(929\) −38.2654 + 27.8015i −1.25545 + 0.912136i −0.998525 0.0542960i \(-0.982709\pi\)
−0.256923 + 0.966432i \(0.582709\pi\)
\(930\) 0 0
\(931\) 16.8445 + 51.8420i 0.552055 + 1.69905i
\(932\) 0.192497 0.592444i 0.00630544 0.0194062i
\(933\) 14.8778 + 10.8094i 0.487078 + 0.353883i
\(934\) −21.2484 −0.695268
\(935\) 0 0
\(936\) −10.7829 −0.352450
\(937\) 9.98269 + 7.25285i 0.326120 + 0.236940i 0.738783 0.673944i \(-0.235401\pi\)
−0.412662 + 0.910884i \(0.635401\pi\)
\(938\) 9.55659 29.4122i 0.312034 0.960341i
\(939\) 19.9311 + 61.3416i 0.650427 + 2.00181i
\(940\) 0 0
\(941\) −28.9491 + 21.0327i −0.943714 + 0.685648i −0.949312 0.314336i \(-0.898218\pi\)
0.00559818 + 0.999984i \(0.498218\pi\)
\(942\) 20.7398 + 63.8304i 0.675738 + 2.07971i
\(943\) −9.20191 + 28.3206i −0.299655 + 0.922244i
\(944\) −5.10929 3.71212i −0.166293 0.120819i
\(945\) 0 0
\(946\) 17.1210 + 16.3562i 0.556650 + 0.531786i
\(947\) 16.7403 0.543987 0.271993 0.962299i \(-0.412317\pi\)
0.271993 + 0.962299i \(0.412317\pi\)
\(948\) 8.49503 + 6.17200i 0.275906 + 0.200457i
\(949\) 4.98302 15.3361i 0.161756 0.497832i
\(950\) 0 0
\(951\) −19.2652 + 13.9970i −0.624716 + 0.453883i
\(952\) −21.9704 + 15.9625i −0.712066 + 0.517346i
\(953\) 7.74615 + 23.8402i 0.250922 + 0.772259i 0.994606 + 0.103727i \(0.0330770\pi\)
−0.743683 + 0.668532i \(0.766923\pi\)
\(954\) −5.17902 + 15.9394i −0.167677 + 0.516056i
\(955\) 0 0
\(956\) −10.4880 −0.339206
\(957\) −22.6383 3.05736i −0.731793 0.0988304i
\(958\) 18.3930 0.594251
\(959\) −35.2111 25.5823i −1.13703 0.826097i
\(960\) 0 0
\(961\) −9.57065 29.4554i −0.308730 0.950175i
\(962\) −8.77474 + 6.37522i −0.282909 + 0.205545i
\(963\) 15.5054 11.2653i 0.499655 0.363020i
\(964\) −4.16756 12.8264i −0.134228 0.413112i
\(965\) 0 0
\(966\) 38.1279 + 27.7015i 1.22674 + 0.891282i
\(967\) −43.9526 −1.41342 −0.706710 0.707503i \(-0.749821\pi\)
−0.706710 + 0.707503i \(0.749821\pi\)
\(968\) −6.05253 + 9.18514i −0.194536 + 0.295222i
\(969\) 47.4237 1.52347
\(970\) 0 0
\(971\) 7.97024 24.5299i 0.255777 0.787201i −0.737898 0.674912i \(-0.764182\pi\)
0.993676 0.112289i \(-0.0358183\pi\)
\(972\) 0.288013 + 0.886412i 0.00923801 + 0.0284317i
\(973\) 65.3090 47.4497i 2.09371 1.52117i
\(974\) 14.7747 10.7345i 0.473413 0.343955i
\(975\) 0 0
\(976\) 1.20035 3.69430i 0.0384223 0.118252i
\(977\) −19.9845 14.5196i −0.639359 0.464522i 0.220271 0.975439i \(-0.429306\pi\)
−0.859630 + 0.510917i \(0.829306\pi\)
\(978\) 58.9897 1.88628
\(979\) 56.7263 + 7.66102i 1.81298 + 0.244847i
\(980\) 0 0
\(981\) 31.5621 + 22.9312i 1.00770 + 0.732137i
\(982\) −0.0905551 + 0.278700i −0.00288973 + 0.00889368i
\(983\) −1.59867 4.92021i −0.0509898 0.156930i 0.922319 0.386429i \(-0.126291\pi\)
−0.973309 + 0.229498i \(0.926291\pi\)
\(984\) −23.0932 + 16.7782i −0.736186 + 0.534870i
\(985\) 0 0
\(986\) 3.82713 + 11.7787i 0.121881 + 0.375110i
\(987\) 15.6424 48.1425i 0.497904 1.53239i
\(988\) −4.32336 3.14110i −0.137544 0.0999318i
\(989\) −22.2778 −0.708393
\(990\) 0 0
\(991\) −54.0929 −1.71832 −0.859159 0.511709i \(-0.829013\pi\)
−0.859159 + 0.511709i \(0.829013\pi\)
\(992\) −0.137154 0.0996482i −0.00435464 0.00316383i
\(993\) 21.2196 65.3073i 0.673384 2.07246i
\(994\) 8.61438 + 26.5123i 0.273232 + 0.840920i
\(995\) 0 0
\(996\) −4.05546 + 2.94646i −0.128502 + 0.0933623i
\(997\) 9.01050 + 27.7315i 0.285365 + 0.878264i 0.986289 + 0.165028i \(0.0527714\pi\)
−0.700924 + 0.713236i \(0.747229\pi\)
\(998\) 1.84291 5.67189i 0.0583362 0.179541i
\(999\) −42.6742 31.0046i −1.35015 0.980942i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.m.301.1 yes 8
5.2 odd 4 550.2.ba.g.499.2 16
5.3 odd 4 550.2.ba.g.499.3 16
5.4 even 2 550.2.h.k.301.2 yes 8
11.3 even 5 inner 550.2.h.m.201.1 yes 8
11.5 even 5 6050.2.a.df.1.1 4
11.6 odd 10 6050.2.a.dn.1.1 4
55.3 odd 20 550.2.ba.g.399.2 16
55.14 even 10 550.2.h.k.201.2 8
55.39 odd 10 6050.2.a.cz.1.4 4
55.47 odd 20 550.2.ba.g.399.3 16
55.49 even 10 6050.2.a.dg.1.4 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
550.2.h.k.201.2 8 55.14 even 10
550.2.h.k.301.2 yes 8 5.4 even 2
550.2.h.m.201.1 yes 8 11.3 even 5 inner
550.2.h.m.301.1 yes 8 1.1 even 1 trivial
550.2.ba.g.399.2 16 55.3 odd 20
550.2.ba.g.399.3 16 55.47 odd 20
550.2.ba.g.499.2 16 5.2 odd 4
550.2.ba.g.499.3 16 5.3 odd 4
6050.2.a.cz.1.4 4 55.39 odd 10
6050.2.a.df.1.1 4 11.5 even 5
6050.2.a.dg.1.4 4 55.49 even 10
6050.2.a.dn.1.1 4 11.6 odd 10