Properties

Label 550.2.h.n.201.2
Level $550$
Weight $2$
Character 550.201
Analytic conductor $4.392$
Analytic rank $0$
Dimension $8$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [550,2,Mod(201,550)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(550, base_ring=CyclotomicField(10))
 
chi = DirichletCharacter(H, H._module([0, 8]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("550.201");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 550 = 2 \cdot 5^{2} \cdot 11 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 550.h (of order \(5\), degree \(4\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.39177211117\)
Analytic rank: \(0\)
Dimension: \(8\)
Relative dimension: \(2\) over \(\Q(\zeta_{5})\)
Coefficient field: 8.0.20164000000.8
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{8} + 6x^{6} + 76x^{4} + 781x^{2} + 5041 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{7}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 110)
Sato-Tate group: $\mathrm{SU}(2)[C_{5}]$

Embedding invariants

Embedding label 201.2
Root \(-0.839592 - 2.58400i\) of defining polynomial
Character \(\chi\) \(=\) 550.201
Dual form 550.2.h.n.301.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(0.809017 - 0.587785i) q^{2} +(0.500000 + 1.53884i) q^{3} +(0.309017 - 0.951057i) q^{4} +(1.30902 + 0.951057i) q^{6} +(1.16751 - 3.59321i) q^{7} +(-0.309017 - 0.951057i) q^{8} +(0.309017 - 0.224514i) q^{9} +(-2.64861 - 1.99621i) q^{11} +1.61803 q^{12} +(2.50710 - 1.82151i) q^{13} +(-1.16751 - 3.59321i) q^{14} +(-0.809017 - 0.587785i) q^{16} +(2.66751 + 1.93806i) q^{17} +(0.118034 - 0.363271i) q^{18} +(0.400863 + 1.23373i) q^{19} +6.11314 q^{21} +(-3.31611 - 0.0581575i) q^{22} +0.556884 q^{23} +(1.30902 - 0.951057i) q^{24} +(0.957626 - 2.94727i) q^{26} +(4.42705 + 3.21644i) q^{27} +(-3.05657 - 2.22073i) q^{28} +(-2.95763 + 9.10264i) q^{29} +(-4.32760 + 3.14419i) q^{31} -1.00000 q^{32} +(1.74755 - 5.07390i) q^{33} +3.29722 q^{34} +(-0.118034 - 0.363271i) q^{36} +(2.44595 - 7.52785i) q^{37} +(1.04947 + 0.762486i) q^{38} +(4.05657 + 2.94727i) q^{39} +(1.94312 + 5.98030i) q^{41} +(4.94563 - 3.59321i) q^{42} +3.61803 q^{43} +(-2.71698 + 1.90211i) q^{44} +(0.450528 - 0.327328i) q^{46} +(-1.65300 - 5.08740i) q^{47} +(0.500000 - 1.53884i) q^{48} +(-5.88499 - 4.27570i) q^{49} +(-1.64861 + 5.07390i) q^{51} +(-0.957626 - 2.94727i) q^{52} +(-8.91067 + 6.47398i) q^{53} +5.47214 q^{54} -3.77813 q^{56} +(-1.69808 + 1.23373i) q^{57} +(2.95763 + 9.10264i) q^{58} +(1.63693 - 5.03795i) q^{59} +(-1.98801 - 1.44437i) q^{61} +(-1.65300 + 5.08740i) q^{62} +(-0.445947 - 1.37249i) q^{63} +(-0.809017 + 0.587785i) q^{64} +(-1.56856 - 5.13205i) q^{66} +9.21247 q^{67} +(2.66751 - 1.93806i) q^{68} +(0.278442 + 0.856956i) q^{69} +(-8.81173 - 6.40210i) q^{71} +(-0.309017 - 0.224514i) q^{72} +(-1.04947 + 3.22994i) q^{73} +(-2.44595 - 7.52785i) q^{74} +1.29722 q^{76} +(-10.2651 + 7.18643i) q^{77} +5.01420 q^{78} +(-13.2383 + 9.61817i) q^{79} +(-2.38197 + 7.33094i) q^{81} +(5.08714 + 3.69603i) q^{82} +(-0.148923 - 0.108199i) q^{83} +(1.88906 - 5.81394i) q^{84} +(2.92705 - 2.12663i) q^{86} -15.4863 q^{87} +(-1.08005 + 3.13584i) q^{88} +6.09017 q^{89} +(-3.61803 - 11.1352i) q^{91} +(0.172087 - 0.529628i) q^{92} +(-7.00220 - 5.08740i) q^{93} +(-4.32760 - 3.14419i) q^{94} +(-0.500000 - 1.53884i) q^{96} +(-9.99782 + 7.26384i) q^{97} -7.27425 q^{98} +(-1.26664 - 0.0222142i) q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 8 q + 2 q^{2} + 4 q^{3} - 2 q^{4} + 6 q^{6} - 6 q^{7} + 2 q^{8} - 2 q^{9} - 10 q^{11} + 4 q^{12} - 2 q^{13} + 6 q^{14} - 2 q^{16} + 6 q^{17} - 8 q^{18} + 8 q^{19} - 8 q^{21} + 6 q^{24} - 8 q^{26} + 22 q^{27}+ \cdots + 10 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/550\mathbb{Z}\right)^\times\).

\(n\) \(101\) \(177\)
\(\chi(n)\) \(e\left(\frac{4}{5}\right)\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0.809017 0.587785i 0.572061 0.415627i
\(3\) 0.500000 + 1.53884i 0.288675 + 0.888451i 0.985273 + 0.170989i \(0.0546962\pi\)
−0.696598 + 0.717462i \(0.745304\pi\)
\(4\) 0.309017 0.951057i 0.154508 0.475528i
\(5\) 0 0
\(6\) 1.30902 + 0.951057i 0.534404 + 0.388267i
\(7\) 1.16751 3.59321i 0.441276 1.35811i −0.445241 0.895411i \(-0.646882\pi\)
0.886517 0.462696i \(-0.153118\pi\)
\(8\) −0.309017 0.951057i −0.109254 0.336249i
\(9\) 0.309017 0.224514i 0.103006 0.0748380i
\(10\) 0 0
\(11\) −2.64861 1.99621i −0.798586 0.601881i
\(12\) 1.61803 0.467086
\(13\) 2.50710 1.82151i 0.695344 0.505197i −0.183069 0.983100i \(-0.558603\pi\)
0.878412 + 0.477903i \(0.158603\pi\)
\(14\) −1.16751 3.59321i −0.312029 0.960327i
\(15\) 0 0
\(16\) −0.809017 0.587785i −0.202254 0.146946i
\(17\) 2.66751 + 1.93806i 0.646965 + 0.470048i 0.862236 0.506507i \(-0.169063\pi\)
−0.215271 + 0.976554i \(0.569063\pi\)
\(18\) 0.118034 0.363271i 0.0278209 0.0856239i
\(19\) 0.400863 + 1.23373i 0.0919642 + 0.283037i 0.986451 0.164058i \(-0.0524586\pi\)
−0.894486 + 0.447095i \(0.852459\pi\)
\(20\) 0 0
\(21\) 6.11314 1.33400
\(22\) −3.31611 0.0581575i −0.706998 0.0123992i
\(23\) 0.556884 0.116118 0.0580591 0.998313i \(-0.481509\pi\)
0.0580591 + 0.998313i \(0.481509\pi\)
\(24\) 1.30902 0.951057i 0.267202 0.194134i
\(25\) 0 0
\(26\) 0.957626 2.94727i 0.187806 0.578007i
\(27\) 4.42705 + 3.21644i 0.851986 + 0.619004i
\(28\) −3.05657 2.22073i −0.577637 0.419678i
\(29\) −2.95763 + 9.10264i −0.549217 + 1.69032i 0.161528 + 0.986868i \(0.448358\pi\)
−0.710746 + 0.703449i \(0.751642\pi\)
\(30\) 0 0
\(31\) −4.32760 + 3.14419i −0.777260 + 0.564712i −0.904155 0.427204i \(-0.859499\pi\)
0.126896 + 0.991916i \(0.459499\pi\)
\(32\) −1.00000 −0.176777
\(33\) 1.74755 5.07390i 0.304210 0.883252i
\(34\) 3.29722 0.565468
\(35\) 0 0
\(36\) −0.118034 0.363271i −0.0196723 0.0605452i
\(37\) 2.44595 7.52785i 0.402111 1.23757i −0.521172 0.853452i \(-0.674505\pi\)
0.923283 0.384120i \(-0.125495\pi\)
\(38\) 1.04947 + 0.762486i 0.170247 + 0.123692i
\(39\) 4.05657 + 2.94727i 0.649571 + 0.471941i
\(40\) 0 0
\(41\) 1.94312 + 5.98030i 0.303464 + 0.933966i 0.980246 + 0.197782i \(0.0633739\pi\)
−0.676782 + 0.736183i \(0.736626\pi\)
\(42\) 4.94563 3.59321i 0.763128 0.554445i
\(43\) 3.61803 0.551745 0.275873 0.961194i \(-0.411033\pi\)
0.275873 + 0.961194i \(0.411033\pi\)
\(44\) −2.71698 + 1.90211i −0.409600 + 0.286754i
\(45\) 0 0
\(46\) 0.450528 0.327328i 0.0664268 0.0482619i
\(47\) −1.65300 5.08740i −0.241114 0.742073i −0.996251 0.0865064i \(-0.972430\pi\)
0.755137 0.655567i \(-0.227570\pi\)
\(48\) 0.500000 1.53884i 0.0721688 0.222113i
\(49\) −5.88499 4.27570i −0.840713 0.610814i
\(50\) 0 0
\(51\) −1.64861 + 5.07390i −0.230851 + 0.710488i
\(52\) −0.957626 2.94727i −0.132799 0.408713i
\(53\) −8.91067 + 6.47398i −1.22397 + 0.889270i −0.996424 0.0844964i \(-0.973072\pi\)
−0.227551 + 0.973766i \(0.573072\pi\)
\(54\) 5.47214 0.744663
\(55\) 0 0
\(56\) −3.77813 −0.504874
\(57\) −1.69808 + 1.23373i −0.224916 + 0.163411i
\(58\) 2.95763 + 9.10264i 0.388355 + 1.19523i
\(59\) 1.63693 5.03795i 0.213110 0.655886i −0.786172 0.618008i \(-0.787940\pi\)
0.999282 0.0378782i \(-0.0120599\pi\)
\(60\) 0 0
\(61\) −1.98801 1.44437i −0.254538 0.184933i 0.453197 0.891410i \(-0.350283\pi\)
−0.707736 + 0.706477i \(0.750283\pi\)
\(62\) −1.65300 + 5.08740i −0.209931 + 0.646100i
\(63\) −0.445947 1.37249i −0.0561841 0.172917i
\(64\) −0.809017 + 0.587785i −0.101127 + 0.0734732i
\(65\) 0 0
\(66\) −1.56856 5.13205i −0.193077 0.631712i
\(67\) 9.21247 1.12548 0.562741 0.826633i \(-0.309747\pi\)
0.562741 + 0.826633i \(0.309747\pi\)
\(68\) 2.66751 1.93806i 0.323483 0.235024i
\(69\) 0.278442 + 0.856956i 0.0335205 + 0.103165i
\(70\) 0 0
\(71\) −8.81173 6.40210i −1.04576 0.759789i −0.0743582 0.997232i \(-0.523691\pi\)
−0.971402 + 0.237443i \(0.923691\pi\)
\(72\) −0.309017 0.224514i −0.0364180 0.0264592i
\(73\) −1.04947 + 3.22994i −0.122831 + 0.378036i −0.993500 0.113834i \(-0.963687\pi\)
0.870668 + 0.491871i \(0.163687\pi\)
\(74\) −2.44595 7.52785i −0.284336 0.875095i
\(75\) 0 0
\(76\) 1.29722 0.148801
\(77\) −10.2651 + 7.18643i −1.16982 + 0.818969i
\(78\) 5.01420 0.567746
\(79\) −13.2383 + 9.61817i −1.48942 + 1.08213i −0.515057 + 0.857156i \(0.672229\pi\)
−0.974365 + 0.224972i \(0.927771\pi\)
\(80\) 0 0
\(81\) −2.38197 + 7.33094i −0.264663 + 0.814549i
\(82\) 5.08714 + 3.69603i 0.561781 + 0.408158i
\(83\) −0.148923 0.108199i −0.0163464 0.0118764i 0.579582 0.814914i \(-0.303216\pi\)
−0.595928 + 0.803038i \(0.703216\pi\)
\(84\) 1.88906 5.81394i 0.206114 0.634353i
\(85\) 0 0
\(86\) 2.92705 2.12663i 0.315632 0.229320i
\(87\) −15.4863 −1.66031
\(88\) −1.08005 + 3.13584i −0.115133 + 0.334282i
\(89\) 6.09017 0.645557 0.322778 0.946475i \(-0.395383\pi\)
0.322778 + 0.946475i \(0.395383\pi\)
\(90\) 0 0
\(91\) −3.61803 11.1352i −0.379273 1.16728i
\(92\) 0.172087 0.529628i 0.0179413 0.0552175i
\(93\) −7.00220 5.08740i −0.726095 0.527539i
\(94\) −4.32760 3.14419i −0.446358 0.324298i
\(95\) 0 0
\(96\) −0.500000 1.53884i −0.0510310 0.157057i
\(97\) −9.99782 + 7.26384i −1.01512 + 0.737531i −0.965278 0.261226i \(-0.915873\pi\)
−0.0498467 + 0.998757i \(0.515873\pi\)
\(98\) −7.27425 −0.734810
\(99\) −1.26664 0.0222142i −0.127302 0.00223261i
\(100\) 0 0
\(101\) 7.29264 5.29841i 0.725645 0.527212i −0.162538 0.986702i \(-0.551968\pi\)
0.888183 + 0.459491i \(0.151968\pi\)
\(102\) 1.64861 + 5.07390i 0.163237 + 0.502391i
\(103\) 3.53329 10.8743i 0.348145 1.07148i −0.611733 0.791064i \(-0.709527\pi\)
0.959878 0.280416i \(-0.0904725\pi\)
\(104\) −2.50710 1.82151i −0.245841 0.178614i
\(105\) 0 0
\(106\) −3.40357 + 10.4751i −0.330584 + 1.01743i
\(107\) 4.74484 + 14.6031i 0.458701 + 1.41174i 0.866734 + 0.498770i \(0.166215\pi\)
−0.408033 + 0.912967i \(0.633785\pi\)
\(108\) 4.42705 3.21644i 0.425993 0.309502i
\(109\) 2.42892 0.232648 0.116324 0.993211i \(-0.462889\pi\)
0.116324 + 0.993211i \(0.462889\pi\)
\(110\) 0 0
\(111\) 12.8071 1.21560
\(112\) −3.05657 + 2.22073i −0.288819 + 0.209839i
\(113\) 2.58998 + 7.97113i 0.243644 + 0.749860i 0.995856 + 0.0909393i \(0.0289869\pi\)
−0.752212 + 0.658921i \(0.771013\pi\)
\(114\) −0.648609 + 1.99621i −0.0607478 + 0.186963i
\(115\) 0 0
\(116\) 7.74317 + 5.62574i 0.718935 + 0.522337i
\(117\) 0.365781 1.12576i 0.0338164 0.104076i
\(118\) −1.63693 5.03795i −0.150692 0.463781i
\(119\) 10.0782 7.32222i 0.923865 0.671227i
\(120\) 0 0
\(121\) 3.03026 + 10.5744i 0.275478 + 0.961307i
\(122\) −2.45731 −0.222475
\(123\) −8.23117 + 5.98030i −0.742180 + 0.539225i
\(124\) 1.65300 + 5.08740i 0.148443 + 0.456862i
\(125\) 0 0
\(126\) −1.16751 0.848243i −0.104010 0.0755675i
\(127\) −5.62545 4.08713i −0.499178 0.362674i 0.309525 0.950891i \(-0.399830\pi\)
−0.808703 + 0.588217i \(0.799830\pi\)
\(128\) −0.309017 + 0.951057i −0.0273135 + 0.0840623i
\(129\) 1.80902 + 5.56758i 0.159275 + 0.490198i
\(130\) 0 0
\(131\) −5.61741 −0.490795 −0.245398 0.969423i \(-0.578918\pi\)
−0.245398 + 0.969423i \(0.578918\pi\)
\(132\) −4.28554 3.22994i −0.373008 0.281130i
\(133\) 4.90106 0.424976
\(134\) 7.45305 5.41495i 0.643845 0.467781i
\(135\) 0 0
\(136\) 1.01890 3.13584i 0.0873697 0.268896i
\(137\) −6.21969 4.51887i −0.531384 0.386073i 0.289491 0.957181i \(-0.406514\pi\)
−0.820875 + 0.571108i \(0.806514\pi\)
\(138\) 0.728970 + 0.529628i 0.0620541 + 0.0450849i
\(139\) 0.297218 0.914744i 0.0252097 0.0775876i −0.937660 0.347554i \(-0.887012\pi\)
0.962870 + 0.269966i \(0.0870125\pi\)
\(140\) 0 0
\(141\) 7.00220 5.08740i 0.589692 0.428436i
\(142\) −10.8919 −0.914028
\(143\) −10.2765 0.180227i −0.859360 0.0150713i
\(144\) −0.381966 −0.0318305
\(145\) 0 0
\(146\) 1.04947 + 3.22994i 0.0868549 + 0.267312i
\(147\) 3.63712 11.1939i 0.299985 0.923259i
\(148\) −6.40357 4.65247i −0.526371 0.382431i
\(149\) 7.11314 + 5.16800i 0.582731 + 0.423379i 0.839708 0.543039i \(-0.182726\pi\)
−0.256977 + 0.966418i \(0.582726\pi\)
\(150\) 0 0
\(151\) −2.76194 8.50038i −0.224764 0.691751i −0.998316 0.0580184i \(-0.981522\pi\)
0.773552 0.633733i \(-0.218478\pi\)
\(152\) 1.04947 0.762486i 0.0851234 0.0618458i
\(153\) 1.25943 0.101819
\(154\) −4.08056 + 11.8476i −0.328820 + 0.954707i
\(155\) 0 0
\(156\) 4.05657 2.94727i 0.324785 0.235970i
\(157\) 5.45137 + 16.7776i 0.435067 + 1.33900i 0.893018 + 0.450020i \(0.148583\pi\)
−0.457952 + 0.888977i \(0.651417\pi\)
\(158\) −5.05657 + 15.5625i −0.402279 + 1.23809i
\(159\) −14.4178 10.4751i −1.14340 0.830731i
\(160\) 0 0
\(161\) 0.650165 2.00100i 0.0512402 0.157701i
\(162\) 2.38197 + 7.33094i 0.187145 + 0.575973i
\(163\) 0.141003 0.102445i 0.0110442 0.00802409i −0.582249 0.813010i \(-0.697827\pi\)
0.593294 + 0.804986i \(0.297827\pi\)
\(164\) 6.28806 0.491015
\(165\) 0 0
\(166\) −0.184079 −0.0142873
\(167\) 4.43854 3.22478i 0.343464 0.249541i −0.402658 0.915351i \(-0.631914\pi\)
0.746122 + 0.665809i \(0.231914\pi\)
\(168\) −1.88906 5.81394i −0.145744 0.448555i
\(169\) −1.04959 + 3.23031i −0.0807378 + 0.248485i
\(170\) 0 0
\(171\) 0.400863 + 0.291244i 0.0306547 + 0.0222720i
\(172\) 1.11803 3.44095i 0.0852493 0.262370i
\(173\) 7.41518 + 22.8216i 0.563766 + 1.73509i 0.671591 + 0.740922i \(0.265611\pi\)
−0.107825 + 0.994170i \(0.534389\pi\)
\(174\) −12.5287 + 9.10264i −0.949799 + 0.690069i
\(175\) 0 0
\(176\) 0.969425 + 3.17178i 0.0730731 + 0.239082i
\(177\) 8.57108 0.644242
\(178\) 4.92705 3.57971i 0.369298 0.268311i
\(179\) −0.0658512 0.202669i −0.00492195 0.0151482i 0.948565 0.316581i \(-0.102535\pi\)
−0.953487 + 0.301433i \(0.902535\pi\)
\(180\) 0 0
\(181\) −0.839906 0.610228i −0.0624297 0.0453579i 0.556133 0.831094i \(-0.312285\pi\)
−0.618562 + 0.785736i \(0.712285\pi\)
\(182\) −9.47214 6.88191i −0.702121 0.510121i
\(183\) 1.22866 3.78141i 0.0908249 0.279530i
\(184\) −0.172087 0.529628i −0.0126864 0.0390447i
\(185\) 0 0
\(186\) −8.65520 −0.634630
\(187\) −3.19641 10.4581i −0.233744 0.764769i
\(188\) −5.34921 −0.390131
\(189\) 16.7260 12.1521i 1.21663 0.883937i
\(190\) 0 0
\(191\) −5.54206 + 17.0567i −0.401009 + 1.23418i 0.523172 + 0.852227i \(0.324748\pi\)
−0.924182 + 0.381953i \(0.875252\pi\)
\(192\) −1.30902 0.951057i −0.0944702 0.0686366i
\(193\) −7.29722 5.30174i −0.525265 0.381628i 0.293318 0.956015i \(-0.405240\pi\)
−0.818584 + 0.574387i \(0.805240\pi\)
\(194\) −3.81883 + 11.7531i −0.274176 + 0.843826i
\(195\) 0 0
\(196\) −5.88499 + 4.27570i −0.420357 + 0.305407i
\(197\) 3.68422 0.262490 0.131245 0.991350i \(-0.458103\pi\)
0.131245 + 0.991350i \(0.458103\pi\)
\(198\) −1.03779 + 0.726543i −0.0737527 + 0.0516331i
\(199\) −4.23544 −0.300242 −0.150121 0.988668i \(-0.547966\pi\)
−0.150121 + 0.988668i \(0.547966\pi\)
\(200\) 0 0
\(201\) 4.60624 + 14.1765i 0.324899 + 0.999936i
\(202\) 2.78554 8.57301i 0.195990 0.603195i
\(203\) 29.2547 + 21.2548i 2.05328 + 1.49179i
\(204\) 4.31611 + 3.13584i 0.302188 + 0.219553i
\(205\) 0 0
\(206\) −3.53329 10.8743i −0.246176 0.757651i
\(207\) 0.172087 0.125028i 0.0119608 0.00869006i
\(208\) −3.09894 −0.214873
\(209\) 1.40106 4.06787i 0.0969131 0.281380i
\(210\) 0 0
\(211\) 11.0596 8.03527i 0.761374 0.553171i −0.137958 0.990438i \(-0.544054\pi\)
0.899331 + 0.437268i \(0.144054\pi\)
\(212\) 3.40357 + 10.4751i 0.233758 + 0.719434i
\(213\) 5.44595 16.7609i 0.373150 1.14844i
\(214\) 12.4222 + 9.02522i 0.849161 + 0.616952i
\(215\) 0 0
\(216\) 1.69098 5.20431i 0.115057 0.354108i
\(217\) 6.24523 + 19.2208i 0.423954 + 1.30480i
\(218\) 1.96504 1.42768i 0.133089 0.0966949i
\(219\) −5.49511 −0.371325
\(220\) 0 0
\(221\) 10.2179 0.687330
\(222\) 10.3612 7.52785i 0.695398 0.505236i
\(223\) −7.40777 22.7988i −0.496061 1.52672i −0.815297 0.579043i \(-0.803426\pi\)
0.319236 0.947675i \(-0.396574\pi\)
\(224\) −1.16751 + 3.59321i −0.0780073 + 0.240082i
\(225\) 0 0
\(226\) 6.78064 + 4.92643i 0.451042 + 0.327701i
\(227\) −6.39803 + 19.6911i −0.424652 + 1.30695i 0.478675 + 0.877992i \(0.341117\pi\)
−0.903327 + 0.428953i \(0.858883\pi\)
\(228\) 0.648609 + 1.99621i 0.0429552 + 0.132202i
\(229\) 13.2199 9.60481i 0.873594 0.634704i −0.0579546 0.998319i \(-0.518458\pi\)
0.931549 + 0.363616i \(0.118458\pi\)
\(230\) 0 0
\(231\) −16.1913 12.2031i −1.06531 0.802907i
\(232\) 9.57108 0.628372
\(233\) 0.388556 0.282302i 0.0254551 0.0184942i −0.574985 0.818164i \(-0.694992\pi\)
0.600440 + 0.799670i \(0.294992\pi\)
\(234\) −0.365781 1.12576i −0.0239118 0.0735930i
\(235\) 0 0
\(236\) −4.28554 3.11363i −0.278965 0.202680i
\(237\) −21.4200 15.5625i −1.39138 1.01089i
\(238\) 3.84952 11.8476i 0.249527 0.767966i
\(239\) 0.348754 + 1.07335i 0.0225590 + 0.0694295i 0.961702 0.274096i \(-0.0883787\pi\)
−0.939143 + 0.343526i \(0.888379\pi\)
\(240\) 0 0
\(241\) −12.7220 −0.819497 −0.409748 0.912199i \(-0.634384\pi\)
−0.409748 + 0.912199i \(0.634384\pi\)
\(242\) 8.66700 + 6.77371i 0.557136 + 0.435431i
\(243\) 3.94427 0.253025
\(244\) −1.98801 + 1.44437i −0.127269 + 0.0924664i
\(245\) 0 0
\(246\) −3.14403 + 9.67632i −0.200456 + 0.616940i
\(247\) 3.25225 + 2.36290i 0.206936 + 0.150348i
\(248\) 4.32760 + 3.14419i 0.274803 + 0.199656i
\(249\) 0.0920396 0.283269i 0.00583277 0.0179514i
\(250\) 0 0
\(251\) 2.29722 1.66903i 0.144999 0.105348i −0.512921 0.858436i \(-0.671437\pi\)
0.657920 + 0.753088i \(0.271437\pi\)
\(252\) −1.44312 −0.0909078
\(253\) −1.47497 1.11166i −0.0927304 0.0698894i
\(254\) −6.95343 −0.436297
\(255\) 0 0
\(256\) 0.309017 + 0.951057i 0.0193136 + 0.0594410i
\(257\) 9.53038 29.3315i 0.594489 1.82965i 0.0372347 0.999307i \(-0.488145\pi\)
0.557254 0.830342i \(-0.311855\pi\)
\(258\) 4.73607 + 3.44095i 0.294855 + 0.214224i
\(259\) −24.1935 17.5776i −1.50331 1.09222i
\(260\) 0 0
\(261\) 1.12971 + 3.47690i 0.0699275 + 0.215215i
\(262\) −4.54458 + 3.30183i −0.280765 + 0.203988i
\(263\) −27.7069 −1.70848 −0.854242 0.519876i \(-0.825978\pi\)
−0.854242 + 0.519876i \(0.825978\pi\)
\(264\) −5.36559 0.0941007i −0.330229 0.00579150i
\(265\) 0 0
\(266\) 3.96504 2.88077i 0.243112 0.176631i
\(267\) 3.04508 + 9.37181i 0.186356 + 0.573545i
\(268\) 2.84681 8.76158i 0.173897 0.535199i
\(269\) −10.3224 7.49966i −0.629367 0.457262i 0.226814 0.973938i \(-0.427169\pi\)
−0.856181 + 0.516676i \(0.827169\pi\)
\(270\) 0 0
\(271\) 1.76218 5.42344i 0.107045 0.329450i −0.883160 0.469072i \(-0.844589\pi\)
0.990205 + 0.139621i \(0.0445885\pi\)
\(272\) −1.01890 3.13584i −0.0617797 0.190138i
\(273\) 15.3262 11.1352i 0.927586 0.673931i
\(274\) −7.68796 −0.464447
\(275\) 0 0
\(276\) 0.901057 0.0542372
\(277\) 25.6680 18.6489i 1.54224 1.12050i 0.593333 0.804957i \(-0.297812\pi\)
0.948910 0.315548i \(-0.102188\pi\)
\(278\) −0.297218 0.914744i −0.0178260 0.0548627i
\(279\) −0.631388 + 1.94321i −0.0378002 + 0.116337i
\(280\) 0 0
\(281\) 1.56805 + 1.13926i 0.0935423 + 0.0679624i 0.633573 0.773683i \(-0.281588\pi\)
−0.540031 + 0.841645i \(0.681588\pi\)
\(282\) 2.67460 8.23158i 0.159270 0.490184i
\(283\) 1.51909 + 4.67528i 0.0903006 + 0.277917i 0.986000 0.166742i \(-0.0533249\pi\)
−0.895700 + 0.444659i \(0.853325\pi\)
\(284\) −8.81173 + 6.40210i −0.522880 + 0.379894i
\(285\) 0 0
\(286\) −8.41976 + 5.89454i −0.497871 + 0.348551i
\(287\) 23.7571 1.40234
\(288\) −0.309017 + 0.224514i −0.0182090 + 0.0132296i
\(289\) −1.89376 5.82841i −0.111398 0.342848i
\(290\) 0 0
\(291\) −16.1768 11.7531i −0.948301 0.688981i
\(292\) 2.74755 + 1.99621i 0.160788 + 0.116820i
\(293\) −0.0583193 + 0.179488i −0.00340705 + 0.0104858i −0.952746 0.303769i \(-0.901755\pi\)
0.949339 + 0.314255i \(0.101755\pi\)
\(294\) −3.63712 11.1939i −0.212121 0.652843i
\(295\) 0 0
\(296\) −7.91525 −0.460065
\(297\) −5.30482 17.3564i −0.307817 1.00712i
\(298\) 8.79232 0.509326
\(299\) 1.39616 1.01437i 0.0807421 0.0586626i
\(300\) 0 0
\(301\) 4.22408 13.0004i 0.243472 0.749329i
\(302\) −7.23086 5.25353i −0.416089 0.302306i
\(303\) 11.7997 + 8.57301i 0.677877 + 0.492507i
\(304\) 0.400863 1.23373i 0.0229910 0.0707592i
\(305\) 0 0
\(306\) 1.01890 0.740272i 0.0582464 0.0423185i
\(307\) −12.3820 −0.706676 −0.353338 0.935496i \(-0.614953\pi\)
−0.353338 + 0.935496i \(0.614953\pi\)
\(308\) 3.66261 + 11.9834i 0.208697 + 0.682818i
\(309\) 18.5005 1.05246
\(310\) 0 0
\(311\) −6.52587 20.0846i −0.370048 1.13889i −0.946759 0.321943i \(-0.895664\pi\)
0.576711 0.816949i \(-0.304336\pi\)
\(312\) 1.54947 4.76878i 0.0877216 0.269979i
\(313\) −13.4129 9.74502i −0.758140 0.550821i 0.140199 0.990123i \(-0.455226\pi\)
−0.898339 + 0.439302i \(0.855226\pi\)
\(314\) 14.2719 + 10.3691i 0.805408 + 0.585163i
\(315\) 0 0
\(316\) 5.05657 + 15.5625i 0.284454 + 0.875460i
\(317\) 15.8867 11.5424i 0.892285 0.648283i −0.0441877 0.999023i \(-0.514070\pi\)
0.936473 + 0.350740i \(0.114070\pi\)
\(318\) −17.8213 −0.999371
\(319\) 26.0044 18.2053i 1.45597 1.01930i
\(320\) 0 0
\(321\) −20.0995 + 14.6031i −1.12184 + 0.815067i
\(322\) −0.650165 2.00100i −0.0362323 0.111511i
\(323\) −1.32173 + 4.06787i −0.0735431 + 0.226342i
\(324\) 6.23607 + 4.53077i 0.346448 + 0.251709i
\(325\) 0 0
\(326\) 0.0538584 0.165759i 0.00298294 0.00918055i
\(327\) 1.21446 + 3.73772i 0.0671598 + 0.206697i
\(328\) 5.08714 3.69603i 0.280891 0.204079i
\(329\) −20.2100 −1.11421
\(330\) 0 0
\(331\) −23.4826 −1.29072 −0.645360 0.763879i \(-0.723293\pi\)
−0.645360 + 0.763879i \(0.723293\pi\)
\(332\) −0.148923 + 0.108199i −0.00817322 + 0.00593820i
\(333\) −0.934269 2.87538i −0.0511976 0.157570i
\(334\) 1.69537 5.21781i 0.0927665 0.285506i
\(335\) 0 0
\(336\) −4.94563 3.59321i −0.269806 0.196026i
\(337\) 3.96317 12.1974i 0.215888 0.664434i −0.783202 0.621768i \(-0.786415\pi\)
0.999089 0.0426660i \(-0.0135851\pi\)
\(338\) 1.04959 + 3.23031i 0.0570903 + 0.175706i
\(339\) −10.9713 + 7.97113i −0.595880 + 0.432932i
\(340\) 0 0
\(341\) 17.7386 + 0.311096i 0.960598 + 0.0168468i
\(342\) 0.495493 0.0267932
\(343\) −0.838262 + 0.609033i −0.0452619 + 0.0328847i
\(344\) −1.11803 3.44095i −0.0602804 0.185524i
\(345\) 0 0
\(346\) 19.4132 + 14.1045i 1.04366 + 0.758263i
\(347\) −16.7415 12.1634i −0.898730 0.652966i 0.0394093 0.999223i \(-0.487452\pi\)
−0.938140 + 0.346257i \(0.887452\pi\)
\(348\) −4.78554 + 14.7284i −0.256532 + 0.789524i
\(349\) 6.71104 + 20.6544i 0.359233 + 1.10561i 0.953514 + 0.301349i \(0.0974369\pi\)
−0.594280 + 0.804258i \(0.702563\pi\)
\(350\) 0 0
\(351\) 16.9578 0.905143
\(352\) 2.64861 + 1.99621i 0.141171 + 0.106399i
\(353\) −0.260293 −0.0138540 −0.00692701 0.999976i \(-0.502205\pi\)
−0.00692701 + 0.999976i \(0.502205\pi\)
\(354\) 6.93415 5.03795i 0.368546 0.267764i
\(355\) 0 0
\(356\) 1.88197 5.79210i 0.0997440 0.306980i
\(357\) 16.3068 + 11.8476i 0.863049 + 0.627042i
\(358\) −0.172401 0.125256i −0.00911165 0.00662000i
\(359\) 2.54070 7.81947i 0.134093 0.412696i −0.861355 0.508004i \(-0.830384\pi\)
0.995448 + 0.0953081i \(0.0303836\pi\)
\(360\) 0 0
\(361\) 14.0099 10.1788i 0.737365 0.535727i
\(362\) −1.03818 −0.0545656
\(363\) −14.7572 + 9.95028i −0.774550 + 0.522254i
\(364\) −11.7082 −0.613677
\(365\) 0 0
\(366\) −1.22866 3.78141i −0.0642229 0.197658i
\(367\) 2.22904 6.86029i 0.116355 0.358104i −0.875872 0.482543i \(-0.839713\pi\)
0.992227 + 0.124439i \(0.0397131\pi\)
\(368\) −0.450528 0.327328i −0.0234854 0.0170632i
\(369\) 1.94312 + 1.41176i 0.101155 + 0.0734931i
\(370\) 0 0
\(371\) 12.8591 + 39.5764i 0.667613 + 2.05470i
\(372\) −7.00220 + 5.08740i −0.363047 + 0.263769i
\(373\) 29.9629 1.55142 0.775709 0.631090i \(-0.217392\pi\)
0.775709 + 0.631090i \(0.217392\pi\)
\(374\) −8.73304 6.58195i −0.451575 0.340345i
\(375\) 0 0
\(376\) −4.32760 + 3.14419i −0.223179 + 0.162149i
\(377\) 9.16552 + 28.2086i 0.472048 + 1.45281i
\(378\) 6.38875 19.6626i 0.328602 1.01133i
\(379\) 29.6962 + 21.5756i 1.52539 + 1.10826i 0.958732 + 0.284312i \(0.0917651\pi\)
0.566661 + 0.823951i \(0.308235\pi\)
\(380\) 0 0
\(381\) 3.47672 10.7002i 0.178118 0.548190i
\(382\) 5.54206 + 17.0567i 0.283556 + 0.872697i
\(383\) 5.21666 3.79013i 0.266559 0.193666i −0.446475 0.894796i \(-0.647321\pi\)
0.713034 + 0.701130i \(0.247321\pi\)
\(384\) −1.61803 −0.0825700
\(385\) 0 0
\(386\) −9.01986 −0.459099
\(387\) 1.11803 0.812299i 0.0568329 0.0412915i
\(388\) 3.81883 + 11.7531i 0.193872 + 0.596675i
\(389\) −8.83792 + 27.2003i −0.448100 + 1.37911i 0.430948 + 0.902377i \(0.358179\pi\)
−0.879048 + 0.476734i \(0.841821\pi\)
\(390\) 0 0
\(391\) 1.48549 + 1.07927i 0.0751245 + 0.0545811i
\(392\) −2.24787 + 6.91822i −0.113534 + 0.349423i
\(393\) −2.80870 8.64430i −0.141680 0.436047i
\(394\) 2.98060 2.16553i 0.150160 0.109098i
\(395\) 0 0
\(396\) −0.412541 + 1.19778i −0.0207310 + 0.0601909i
\(397\) −24.5049 −1.22987 −0.614934 0.788579i \(-0.710817\pi\)
−0.614934 + 0.788579i \(0.710817\pi\)
\(398\) −3.42654 + 2.48953i −0.171757 + 0.124789i
\(399\) 2.45053 + 7.54195i 0.122680 + 0.377570i
\(400\) 0 0
\(401\) 24.8467 + 18.0522i 1.24079 + 0.901483i 0.997650 0.0685091i \(-0.0218242\pi\)
0.243135 + 0.969992i \(0.421824\pi\)
\(402\) 12.0593 + 8.76158i 0.601462 + 0.436988i
\(403\) −5.12254 + 15.7656i −0.255172 + 0.785338i
\(404\) −2.78554 8.57301i −0.138586 0.426523i
\(405\) 0 0
\(406\) 36.1608 1.79463
\(407\) −21.5056 + 15.0557i −1.06599 + 0.746284i
\(408\) 5.33501 0.264122
\(409\) −17.6836 + 12.8479i −0.874397 + 0.635287i −0.931763 0.363066i \(-0.881730\pi\)
0.0573660 + 0.998353i \(0.481730\pi\)
\(410\) 0 0
\(411\) 3.84398 11.8306i 0.189609 0.583558i
\(412\) −9.25026 6.72071i −0.455728 0.331106i
\(413\) −16.1913 11.7637i −0.796723 0.578853i
\(414\) 0.0657312 0.202300i 0.00323051 0.00994249i
\(415\) 0 0
\(416\) −2.50710 + 1.82151i −0.122921 + 0.0893070i
\(417\) 1.55626 0.0762102
\(418\) −1.25756 4.11450i −0.0615091 0.201247i
\(419\) 4.17764 0.204091 0.102046 0.994780i \(-0.467461\pi\)
0.102046 + 0.994780i \(0.467461\pi\)
\(420\) 0 0
\(421\) 3.92266 + 12.0727i 0.191179 + 0.588388i 1.00000 0.000333393i \(0.000106122\pi\)
−0.808821 + 0.588055i \(0.799894\pi\)
\(422\) 4.22439 13.0013i 0.205640 0.632895i
\(423\) −1.65300 1.20097i −0.0803714 0.0583932i
\(424\) 8.91067 + 6.47398i 0.432740 + 0.314404i
\(425\) 0 0
\(426\) −5.44595 16.7609i −0.263857 0.812068i
\(427\) −7.51095 + 5.45702i −0.363480 + 0.264084i
\(428\) 15.3546 0.742194
\(429\) −4.86089 15.9039i −0.234686 0.767850i
\(430\) 0 0
\(431\) 0.591217 0.429545i 0.0284779 0.0206904i −0.573455 0.819237i \(-0.694397\pi\)
0.601933 + 0.798546i \(0.294397\pi\)
\(432\) −1.69098 5.20431i −0.0813575 0.250393i
\(433\) −1.74465 + 5.36947i −0.0838424 + 0.258040i −0.984186 0.177140i \(-0.943315\pi\)
0.900343 + 0.435180i \(0.143315\pi\)
\(434\) 16.3502 + 11.8791i 0.784836 + 0.570217i
\(435\) 0 0
\(436\) 0.750578 2.31004i 0.0359462 0.110631i
\(437\) 0.223234 + 0.687043i 0.0106787 + 0.0328657i
\(438\) −4.44563 + 3.22994i −0.212421 + 0.154333i
\(439\) 13.7074 0.654220 0.327110 0.944986i \(-0.393925\pi\)
0.327110 + 0.944986i \(0.393925\pi\)
\(440\) 0 0
\(441\) −2.77852 −0.132310
\(442\) 8.26645 6.00593i 0.393195 0.285673i
\(443\) −4.33967 13.3561i −0.206184 0.634568i −0.999663 0.0259707i \(-0.991732\pi\)
0.793479 0.608598i \(-0.208268\pi\)
\(444\) 3.95763 12.1803i 0.187821 0.578052i
\(445\) 0 0
\(446\) −19.3938 14.0904i −0.918322 0.667200i
\(447\) −4.39616 + 13.5300i −0.207931 + 0.639947i
\(448\) 1.16751 + 3.59321i 0.0551595 + 0.169763i
\(449\) −7.81141 + 5.67532i −0.368643 + 0.267835i −0.756648 0.653822i \(-0.773164\pi\)
0.388005 + 0.921657i \(0.373164\pi\)
\(450\) 0 0
\(451\) 6.79140 19.7183i 0.319794 0.928501i
\(452\) 8.38134 0.394225
\(453\) 11.6998 8.50038i 0.549703 0.399383i
\(454\) 6.39803 + 19.6911i 0.300274 + 0.924150i
\(455\) 0 0
\(456\) 1.69808 + 1.23373i 0.0795199 + 0.0577746i
\(457\) −0.832300 0.604702i −0.0389334 0.0282867i 0.568148 0.822926i \(-0.307660\pi\)
−0.607082 + 0.794639i \(0.707660\pi\)
\(458\) 5.04955 15.5409i 0.235950 0.726179i
\(459\) 5.57554 + 17.1597i 0.260244 + 0.800948i
\(460\) 0 0
\(461\) −8.05882 −0.375336 −0.187668 0.982232i \(-0.560093\pi\)
−0.187668 + 0.982232i \(0.560093\pi\)
\(462\) −20.2719 0.355525i −0.943133 0.0165405i
\(463\) 7.46633 0.346990 0.173495 0.984835i \(-0.444494\pi\)
0.173495 + 0.984835i \(0.444494\pi\)
\(464\) 7.74317 5.62574i 0.359467 0.261168i
\(465\) 0 0
\(466\) 0.148415 0.456775i 0.00687520 0.0211597i
\(467\) 9.05238 + 6.57694i 0.418894 + 0.304344i 0.777193 0.629263i \(-0.216643\pi\)
−0.358299 + 0.933607i \(0.616643\pi\)
\(468\) −0.957626 0.695756i −0.0442663 0.0321613i
\(469\) 10.7556 33.1024i 0.496648 1.52853i
\(470\) 0 0
\(471\) −23.0924 + 16.7776i −1.06404 + 0.773071i
\(472\) −5.29722 −0.243824
\(473\) −9.58276 7.22237i −0.440616 0.332085i
\(474\) −26.4765 −1.21611
\(475\) 0 0
\(476\) −3.84952 11.8476i −0.176443 0.543034i
\(477\) −1.30005 + 4.00114i −0.0595252 + 0.183200i
\(478\) 0.913049 + 0.663369i 0.0417619 + 0.0303418i
\(479\) −21.6571 15.7348i −0.989536 0.718940i −0.0297167 0.999558i \(-0.509461\pi\)
−0.959819 + 0.280618i \(0.909461\pi\)
\(480\) 0 0
\(481\) −7.57985 23.3284i −0.345612 1.06368i
\(482\) −10.2923 + 7.47781i −0.468802 + 0.340605i
\(483\) 3.40431 0.154901
\(484\) 10.9932 + 0.385714i 0.499693 + 0.0175324i
\(485\) 0 0
\(486\) 3.19098 2.31838i 0.144746 0.105164i
\(487\) −5.67918 17.4787i −0.257348 0.792037i −0.993358 0.115066i \(-0.963292\pi\)
0.736009 0.676971i \(-0.236708\pi\)
\(488\) −0.759351 + 2.33704i −0.0343742 + 0.105793i
\(489\) 0.228148 + 0.165759i 0.0103172 + 0.00749589i
\(490\) 0 0
\(491\) −8.02923 + 24.7114i −0.362354 + 1.11521i 0.589268 + 0.807938i \(0.299416\pi\)
−0.951622 + 0.307273i \(0.900584\pi\)
\(492\) 3.14403 + 9.67632i 0.141744 + 0.436242i
\(493\) −25.5309 + 18.5493i −1.14985 + 0.835418i
\(494\) 4.02001 0.180869
\(495\) 0 0
\(496\) 5.34921 0.240186
\(497\) −33.2918 + 24.1879i −1.49334 + 1.08498i
\(498\) −0.0920396 0.283269i −0.00412439 0.0126936i
\(499\) 5.24736 16.1497i 0.234904 0.722960i −0.762230 0.647306i \(-0.775896\pi\)
0.997134 0.0756541i \(-0.0241045\pi\)
\(500\) 0 0
\(501\) 7.18170 + 5.21781i 0.320855 + 0.233115i
\(502\) 0.877459 2.70054i 0.0391629 0.120531i
\(503\) 4.13825 + 12.7362i 0.184515 + 0.567880i 0.999940 0.0109840i \(-0.00349637\pi\)
−0.815424 + 0.578864i \(0.803496\pi\)
\(504\) −1.16751 + 0.848243i −0.0520048 + 0.0377837i
\(505\) 0 0
\(506\) −1.84669 0.0323869i −0.0820954 0.00143977i
\(507\) −5.49573 −0.244074
\(508\) −5.62545 + 4.08713i −0.249589 + 0.181337i
\(509\) −6.18963 19.0497i −0.274351 0.844365i −0.989390 0.145281i \(-0.953591\pi\)
0.715040 0.699084i \(-0.246409\pi\)
\(510\) 0 0
\(511\) 10.3806 + 7.54195i 0.459211 + 0.333636i
\(512\) 0.809017 + 0.587785i 0.0357538 + 0.0259767i
\(513\) −2.19357 + 6.75113i −0.0968487 + 0.298070i
\(514\) −9.53038 29.3315i −0.420367 1.29376i
\(515\) 0 0
\(516\) 5.85410 0.257712
\(517\) −5.77739 + 16.7743i −0.254090 + 0.737731i
\(518\) −29.9048 −1.31394
\(519\) −31.4112 + 22.8216i −1.37880 + 1.00176i
\(520\) 0 0
\(521\) 0.718847 2.21238i 0.0314933 0.0969263i −0.934074 0.357079i \(-0.883773\pi\)
0.965568 + 0.260152i \(0.0837728\pi\)
\(522\) 2.95763 + 2.14884i 0.129452 + 0.0940522i
\(523\) −15.4672 11.2376i −0.676335 0.491386i 0.195805 0.980643i \(-0.437268\pi\)
−0.872140 + 0.489257i \(0.837268\pi\)
\(524\) −1.73587 + 5.34247i −0.0758320 + 0.233387i
\(525\) 0 0
\(526\) −22.4154 + 16.2857i −0.977358 + 0.710092i
\(527\) −17.6375 −0.768302
\(528\) −4.39616 + 3.07768i −0.191318 + 0.133939i
\(529\) −22.6899 −0.986517
\(530\) 0 0
\(531\) −0.625252 1.92433i −0.0271336 0.0835087i
\(532\) 1.51451 4.66118i 0.0656623 0.202088i
\(533\) 15.7648 + 11.4538i 0.682848 + 0.496118i
\(534\) 7.97214 + 5.79210i 0.344988 + 0.250648i
\(535\) 0 0
\(536\) −2.84681 8.76158i −0.122963 0.378443i
\(537\) 0.278950 0.202669i 0.0120376 0.00874581i
\(538\) −12.7592 −0.550087
\(539\) 7.05184 + 23.0723i 0.303744 + 0.993796i
\(540\) 0 0
\(541\) −24.1108 + 17.5175i −1.03660 + 0.753136i −0.969619 0.244618i \(-0.921337\pi\)
−0.0669831 + 0.997754i \(0.521337\pi\)
\(542\) −1.76218 5.42344i −0.0756922 0.232957i
\(543\) 0.519091 1.59760i 0.0222763 0.0685594i
\(544\) −2.66751 1.93806i −0.114368 0.0830935i
\(545\) 0 0
\(546\) 5.85410 18.0171i 0.250532 0.771060i
\(547\) −5.85573 18.0221i −0.250373 0.770569i −0.994706 0.102760i \(-0.967233\pi\)
0.744333 0.667808i \(-0.232767\pi\)
\(548\) −6.21969 + 4.51887i −0.265692 + 0.193036i
\(549\) −0.938610 −0.0400589
\(550\) 0 0
\(551\) −12.4158 −0.528930
\(552\) 0.728970 0.529628i 0.0310270 0.0225425i
\(553\) 19.1044 + 58.7972i 0.812400 + 2.50031i
\(554\) 9.80432 30.1746i 0.416545 1.28200i
\(555\) 0 0
\(556\) −0.778128 0.565343i −0.0330000 0.0239759i
\(557\) −2.06534 + 6.35647i −0.0875114 + 0.269332i −0.985230 0.171237i \(-0.945224\pi\)
0.897718 + 0.440570i \(0.145224\pi\)
\(558\) 0.631388 + 1.94321i 0.0267288 + 0.0822628i
\(559\) 9.07077 6.59030i 0.383652 0.278740i
\(560\) 0 0
\(561\) 14.4951 10.1478i 0.611984 0.428440i
\(562\) 1.93822 0.0817589
\(563\) 7.70518 5.59814i 0.324735 0.235933i −0.413459 0.910523i \(-0.635679\pi\)
0.738193 + 0.674589i \(0.235679\pi\)
\(564\) −2.67460 8.23158i −0.112621 0.346612i
\(565\) 0 0
\(566\) 3.97703 + 2.88948i 0.167167 + 0.121454i
\(567\) 23.5607 + 17.1178i 0.989455 + 0.718881i
\(568\) −3.36578 + 10.3588i −0.141225 + 0.434646i
\(569\) 8.67150 + 26.6881i 0.363528 + 1.11883i 0.950897 + 0.309506i \(0.100164\pi\)
−0.587369 + 0.809319i \(0.699836\pi\)
\(570\) 0 0
\(571\) −1.61429 −0.0675561 −0.0337781 0.999429i \(-0.510754\pi\)
−0.0337781 + 0.999429i \(0.510754\pi\)
\(572\) −3.34700 + 9.71779i −0.139945 + 0.406321i
\(573\) −29.0186 −1.21227
\(574\) 19.2199 13.9641i 0.802222 0.582849i
\(575\) 0 0
\(576\) −0.118034 + 0.363271i −0.00491808 + 0.0151363i
\(577\) −2.64516 1.92182i −0.110120 0.0800066i 0.531363 0.847145i \(-0.321680\pi\)
−0.641482 + 0.767138i \(0.721680\pi\)
\(578\) −4.95794 3.60215i −0.206223 0.149830i
\(579\) 4.50993 13.8801i 0.187426 0.576839i
\(580\) 0 0
\(581\) −0.562651 + 0.408790i −0.0233427 + 0.0169595i
\(582\) −19.9956 −0.828846
\(583\) 36.5243 + 0.640558i 1.51268 + 0.0265292i
\(584\) 3.39616 0.140534
\(585\) 0 0
\(586\) 0.0583193 + 0.179488i 0.00240915 + 0.00741459i
\(587\) 1.08288 3.33276i 0.0446952 0.137558i −0.926219 0.376987i \(-0.876960\pi\)
0.970914 + 0.239429i \(0.0769603\pi\)
\(588\) −9.52212 6.91822i −0.392685 0.285303i
\(589\) −5.61384 4.07869i −0.231314 0.168060i
\(590\) 0 0
\(591\) 1.84211 + 5.66943i 0.0757742 + 0.233209i
\(592\) −6.40357 + 4.65247i −0.263185 + 0.191215i
\(593\) −27.6283 −1.13456 −0.567278 0.823526i \(-0.692004\pi\)
−0.567278 + 0.823526i \(0.692004\pi\)
\(594\) −14.4935 10.9236i −0.594678 0.448199i
\(595\) 0 0
\(596\) 7.11314 5.16800i 0.291366 0.211689i
\(597\) −2.11772 6.51767i −0.0866725 0.266751i
\(598\) 0.533286 1.64129i 0.0218077 0.0671172i
\(599\) 6.43434 + 4.67482i 0.262900 + 0.191008i 0.711425 0.702762i \(-0.248050\pi\)
−0.448524 + 0.893771i \(0.648050\pi\)
\(600\) 0 0
\(601\) 2.01909 6.21412i 0.0823604 0.253479i −0.901394 0.433000i \(-0.857455\pi\)
0.983754 + 0.179521i \(0.0574548\pi\)
\(602\) −4.22408 13.0004i −0.172160 0.529855i
\(603\) 2.84681 2.06833i 0.115931 0.0842288i
\(604\) −8.93783 −0.363675
\(605\) 0 0
\(606\) 14.5853 0.592486
\(607\) 6.77813 4.92460i 0.275116 0.199883i −0.441668 0.897178i \(-0.645613\pi\)
0.716784 + 0.697295i \(0.245613\pi\)
\(608\) −0.400863 1.23373i −0.0162571 0.0500343i
\(609\) −18.0804 + 55.6457i −0.732654 + 2.25488i
\(610\) 0 0
\(611\) −13.4110 9.74365i −0.542550 0.394186i
\(612\) 0.389184 1.19778i 0.0157318 0.0484176i
\(613\) −5.53528 17.0358i −0.223568 0.688071i −0.998434 0.0559453i \(-0.982183\pi\)
0.774866 0.632125i \(-0.217817\pi\)
\(614\) −10.0172 + 7.27794i −0.404262 + 0.293714i
\(615\) 0 0
\(616\) 10.0068 + 7.54195i 0.403185 + 0.303874i
\(617\) 21.3999 0.861529 0.430765 0.902464i \(-0.358244\pi\)
0.430765 + 0.902464i \(0.358244\pi\)
\(618\) 14.9672 10.8743i 0.602071 0.437430i
\(619\) −1.82954 5.63076i −0.0735356 0.226319i 0.907533 0.419981i \(-0.137963\pi\)
−0.981068 + 0.193662i \(0.937963\pi\)
\(620\) 0 0
\(621\) 2.46535 + 1.79118i 0.0989312 + 0.0718777i
\(622\) −17.0850 12.4130i −0.685045 0.497714i
\(623\) 7.11031 21.8833i 0.284868 0.876735i
\(624\) −1.54947 4.76878i −0.0620285 0.190904i
\(625\) 0 0
\(626\) −16.5792 −0.662639
\(627\) 6.96034 + 0.122069i 0.277969 + 0.00487497i
\(628\) 17.6410 0.703953
\(629\) 21.1140 15.3402i 0.841870 0.611654i
\(630\) 0 0
\(631\) 5.62521 17.3126i 0.223936 0.689204i −0.774462 0.632620i \(-0.781979\pi\)
0.998398 0.0565834i \(-0.0180207\pi\)
\(632\) 13.2383 + 9.61817i 0.526590 + 0.382590i
\(633\) 17.8948 + 13.0013i 0.711254 + 0.516757i
\(634\) 6.06817 18.6759i 0.240998 0.741716i
\(635\) 0 0
\(636\) −14.4178 + 10.4751i −0.571702 + 0.415366i
\(637\) −22.5425 −0.893166
\(638\) 10.3372 30.0134i 0.409254 1.18824i
\(639\) −4.16033 −0.164580
\(640\) 0 0
\(641\) 5.44931 + 16.7712i 0.215235 + 0.662424i 0.999137 + 0.0415398i \(0.0132263\pi\)
−0.783902 + 0.620884i \(0.786774\pi\)
\(642\) −7.67731 + 23.6283i −0.302999 + 0.932536i
\(643\) −35.5559 25.8329i −1.40219 1.01875i −0.994401 0.105673i \(-0.966300\pi\)
−0.407788 0.913077i \(-0.633700\pi\)
\(644\) −1.70215 1.23669i −0.0670742 0.0487323i
\(645\) 0 0
\(646\) 1.32173 + 4.06787i 0.0520028 + 0.160048i
\(647\) 0.401371 0.291613i 0.0157795 0.0114645i −0.579868 0.814711i \(-0.696896\pi\)
0.595647 + 0.803246i \(0.296896\pi\)
\(648\) 7.70820 0.302807
\(649\) −14.3924 + 10.0759i −0.564952 + 0.395514i
\(650\) 0 0
\(651\) −26.4552 + 19.2208i −1.03686 + 0.753324i
\(652\) −0.0538584 0.165759i −0.00210926 0.00649163i
\(653\) −5.61086 + 17.2685i −0.219570 + 0.675767i 0.779228 + 0.626741i \(0.215612\pi\)
−0.998798 + 0.0490258i \(0.984388\pi\)
\(654\) 3.17950 + 2.31004i 0.124328 + 0.0903297i
\(655\) 0 0
\(656\) 1.94312 5.98030i 0.0758659 0.233491i
\(657\) 0.400863 + 1.23373i 0.0156391 + 0.0481323i
\(658\) −16.3502 + 11.8791i −0.637398 + 0.463097i
\(659\) −14.4974 −0.564739 −0.282370 0.959306i \(-0.591120\pi\)
−0.282370 + 0.959306i \(0.591120\pi\)
\(660\) 0 0
\(661\) −11.6178 −0.451880 −0.225940 0.974141i \(-0.572545\pi\)
−0.225940 + 0.974141i \(0.572545\pi\)
\(662\) −18.9978 + 13.8027i −0.738371 + 0.536458i
\(663\) 5.10895 + 15.7237i 0.198415 + 0.610659i
\(664\) −0.0568836 + 0.175070i −0.00220751 + 0.00679402i
\(665\) 0 0
\(666\) −2.44595 1.77708i −0.0947785 0.0688606i
\(667\) −1.64705 + 5.06911i −0.0637742 + 0.196277i
\(668\) −1.69537 5.21781i −0.0655958 0.201883i
\(669\) 31.3798 22.7988i 1.21321 0.881451i
\(670\) 0 0
\(671\) 2.38218 + 7.79406i 0.0919630 + 0.300886i
\(672\) −6.11314 −0.235819
\(673\) 28.8239 20.9418i 1.11108 0.807246i 0.128245 0.991743i \(-0.459066\pi\)
0.982833 + 0.184497i \(0.0590656\pi\)
\(674\) −3.96317 12.1974i −0.152656 0.469825i
\(675\) 0 0
\(676\) 2.74787 + 1.99644i 0.105687 + 0.0767862i
\(677\) 19.8288 + 14.4064i 0.762081 + 0.553684i 0.899548 0.436822i \(-0.143896\pi\)
−0.137467 + 0.990506i \(0.543896\pi\)
\(678\) −4.19067 + 12.8976i −0.160942 + 0.495328i
\(679\) 14.4280 + 44.4049i 0.553696 + 1.70410i
\(680\) 0 0
\(681\) −33.5005 −1.28374
\(682\) 14.5337 10.1748i 0.556523 0.389613i
\(683\) 25.5212 0.976540 0.488270 0.872693i \(-0.337628\pi\)
0.488270 + 0.872693i \(0.337628\pi\)
\(684\) 0.400863 0.291244i 0.0153274 0.0111360i
\(685\) 0 0
\(686\) −0.320187 + 0.985436i −0.0122248 + 0.0376241i
\(687\) 21.3902 + 15.5409i 0.816088 + 0.592922i
\(688\) −2.92705 2.12663i −0.111593 0.0810769i
\(689\) −10.5475 + 32.4618i −0.401827 + 1.23670i
\(690\) 0 0
\(691\) 36.7992 26.7362i 1.39991 1.01709i 0.405215 0.914222i \(-0.367197\pi\)
0.994695 0.102872i \(-0.0328032\pi\)
\(692\) 23.9960 0.912192
\(693\) −1.55863 + 4.52538i −0.0592076 + 0.171905i
\(694\) −20.6936 −0.785519
\(695\) 0 0
\(696\) 4.78554 + 14.7284i 0.181395 + 0.558278i
\(697\) −6.40688 + 19.7183i −0.242678 + 0.746886i
\(698\) 17.5697 + 12.7651i 0.665024 + 0.483168i
\(699\) 0.628696 + 0.456775i 0.0237795 + 0.0172768i
\(700\) 0 0
\(701\) −9.00678 27.7200i −0.340182 1.04697i −0.964113 0.265492i \(-0.914466\pi\)
0.623932 0.781479i \(-0.285534\pi\)
\(702\) 13.7192 9.96757i 0.517797 0.376202i
\(703\) 10.2678 0.387258
\(704\) 3.31611 + 0.0581575i 0.124981 + 0.00219189i
\(705\) 0 0
\(706\) −0.210582 + 0.152997i −0.00792535 + 0.00575810i
\(707\) −10.5241 32.3899i −0.395800 1.21815i
\(708\) 2.64861 8.15158i 0.0995408 0.306355i
\(709\) −25.0122 18.1724i −0.939353 0.682480i 0.00891175 0.999960i \(-0.497163\pi\)
−0.948265 + 0.317480i \(0.897163\pi\)
\(710\) 0 0
\(711\) −1.93144 + 5.94435i −0.0724346 + 0.222931i
\(712\) −1.88197 5.79210i −0.0705297 0.217068i
\(713\) −2.40997 + 1.75095i −0.0902541 + 0.0655734i
\(714\) 20.1564 0.754333
\(715\) 0 0
\(716\) −0.213099 −0.00796388
\(717\) −1.47734 + 1.07335i −0.0551725 + 0.0400851i
\(718\) −2.54070 7.81947i −0.0948180 0.291820i
\(719\) −5.42235 + 16.6883i −0.202220 + 0.622368i 0.797597 + 0.603191i \(0.206104\pi\)
−0.999816 + 0.0191765i \(0.993896\pi\)
\(720\) 0 0
\(721\) −34.9487 25.3917i −1.30156 0.945636i
\(722\) 5.35132 16.4697i 0.199155 0.612937i
\(723\) −6.36101 19.5772i −0.236568 0.728083i
\(724\) −0.839906 + 0.610228i −0.0312149 + 0.0226789i
\(725\) 0 0
\(726\) −6.09017 + 16.7240i −0.226027 + 0.620686i
\(727\) 16.7731 0.622080 0.311040 0.950397i \(-0.399323\pi\)
0.311040 + 0.950397i \(0.399323\pi\)
\(728\) −9.47214 + 6.88191i −0.351061 + 0.255061i
\(729\) 9.11803 + 28.0624i 0.337705 + 1.03935i
\(730\) 0 0
\(731\) 9.65113 + 7.01195i 0.356960 + 0.259346i
\(732\) −3.21666 2.33704i −0.118891 0.0863796i
\(733\) 2.85868 8.79812i 0.105588 0.324966i −0.884280 0.466957i \(-0.845350\pi\)
0.989868 + 0.141991i \(0.0453503\pi\)
\(734\) −2.22904 6.86029i −0.0822755 0.253218i
\(735\) 0 0
\(736\) −0.556884 −0.0205270
\(737\) −24.4002 18.3901i −0.898794 0.677407i
\(738\) 2.40182 0.0884124
\(739\) −6.06468 + 4.40625i −0.223093 + 0.162087i −0.693718 0.720247i \(-0.744029\pi\)
0.470625 + 0.882333i \(0.344029\pi\)
\(740\) 0 0
\(741\) −2.01000 + 6.18615i −0.0738393 + 0.227254i
\(742\) 33.6657 + 24.4595i 1.23591 + 0.897938i
\(743\) −5.26124 3.82251i −0.193016 0.140234i 0.487080 0.873357i \(-0.338062\pi\)
−0.680096 + 0.733123i \(0.738062\pi\)
\(744\) −2.67460 + 8.23158i −0.0980557 + 0.301784i
\(745\) 0 0
\(746\) 24.2405 17.6117i 0.887507 0.644811i
\(747\) −0.0703120 −0.00257258
\(748\) −10.9340 0.191758i −0.399785 0.00701136i
\(749\) 58.0118 2.11970
\(750\) 0 0
\(751\) 6.27064 + 19.2991i 0.228819 + 0.704232i 0.997881 + 0.0650587i \(0.0207235\pi\)
−0.769062 + 0.639174i \(0.779277\pi\)
\(752\) −1.65300 + 5.08740i −0.0602786 + 0.185518i
\(753\) 3.71698 + 2.70054i 0.135454 + 0.0984132i
\(754\) 23.9956 + 17.4338i 0.873869 + 0.634903i
\(755\) 0 0
\(756\) −6.38875 19.6626i −0.232357 0.715120i
\(757\) 14.9271 10.8452i 0.542534 0.394174i −0.282492 0.959270i \(-0.591161\pi\)
0.825025 + 0.565096i \(0.191161\pi\)
\(758\) 36.7066 1.33324
\(759\) 0.973183 2.82557i 0.0353243 0.102562i
\(760\) 0 0
\(761\) 11.0383 8.01981i 0.400139 0.290718i −0.369459 0.929247i \(-0.620457\pi\)
0.769598 + 0.638529i \(0.220457\pi\)
\(762\) −3.47672 10.7002i −0.125948 0.387629i
\(763\) 2.83578 8.72763i 0.102662 0.315961i
\(764\) 14.5093 + 10.5416i 0.524928 + 0.381383i
\(765\) 0 0
\(766\) 1.99259 6.13256i 0.0719951 0.221578i
\(767\) −5.07275 15.6123i −0.183167 0.563729i
\(768\) −1.30902 + 0.951057i −0.0472351 + 0.0343183i
\(769\) −6.77400 −0.244277 −0.122138 0.992513i \(-0.538975\pi\)
−0.122138 + 0.992513i \(0.538975\pi\)
\(770\) 0 0
\(771\) 49.9017 1.79717
\(772\) −7.29722 + 5.30174i −0.262633 + 0.190814i
\(773\) −5.80173 17.8559i −0.208674 0.642231i −0.999542 0.0302456i \(-0.990371\pi\)
0.790869 0.611986i \(-0.209629\pi\)
\(774\) 0.427051 1.31433i 0.0153500 0.0472425i
\(775\) 0 0
\(776\) 9.99782 + 7.26384i 0.358901 + 0.260757i
\(777\) 14.9524 46.0188i 0.536415 1.65092i
\(778\) 8.83792 + 27.2003i 0.316855 + 0.975178i
\(779\) −6.59914 + 4.79455i −0.236439 + 0.171783i
\(780\) 0 0
\(781\) 10.5589 + 34.5467i 0.377826 + 1.23618i
\(782\) 1.83617 0.0656612
\(783\) −42.3717 + 30.7848i −1.51424 + 1.10016i
\(784\) 2.24787 + 6.91822i 0.0802810 + 0.247079i
\(785\) 0 0
\(786\) −7.35328 5.34247i −0.262283 0.190560i
\(787\) 22.1990 + 16.1285i 0.791310 + 0.574921i 0.908352 0.418206i \(-0.137341\pi\)
−0.117042 + 0.993127i \(0.537341\pi\)
\(788\) 1.13849 3.50390i 0.0405569 0.124821i
\(789\) −13.8535 42.6366i −0.493197 1.51790i
\(790\) 0 0
\(791\) 31.6658 1.12590
\(792\) 0.370287 + 1.21151i 0.0131576 + 0.0430493i
\(793\) −7.61507 −0.270419
\(794\) −19.8249 + 14.4036i −0.703560 + 0.511166i
\(795\) 0 0
\(796\) −1.30882 + 4.02814i −0.0463900 + 0.142774i
\(797\) −43.5855 31.6667i −1.54388 1.12169i −0.947845 0.318732i \(-0.896743\pi\)
−0.596032 0.802960i \(-0.703257\pi\)
\(798\) 6.41557 + 4.66118i 0.227109 + 0.165004i
\(799\) 5.45029 16.7743i 0.192817 0.593431i
\(800\) 0 0
\(801\) 1.88197 1.36733i 0.0664960 0.0483122i
\(802\) 30.7122 1.08449
\(803\) 9.22729 6.45988i 0.325624 0.227964i
\(804\) 14.9061 0.525697
\(805\) 0 0
\(806\) 5.12254 + 15.7656i 0.180434 + 0.555318i
\(807\) 6.37959 19.6344i 0.224572 0.691162i
\(808\) −7.29264 5.29841i −0.256554 0.186397i
\(809\) −26.1612 19.0073i −0.919781 0.668260i 0.0236888 0.999719i \(-0.492459\pi\)
−0.943469 + 0.331460i \(0.892459\pi\)
\(810\) 0 0
\(811\) 14.1920 + 43.6785i 0.498349 + 1.53376i 0.811671 + 0.584114i \(0.198558\pi\)
−0.313322 + 0.949647i \(0.601442\pi\)
\(812\) 29.2547 21.2548i 1.02664 0.745896i
\(813\) 9.22691 0.323602
\(814\) −8.54884 + 24.8210i −0.299637 + 0.869975i
\(815\) 0 0
\(816\) 4.31611 3.13584i 0.151094 0.109776i
\(817\) 1.45033 + 4.46367i 0.0507408 + 0.156164i
\(818\) −6.75453 + 20.7883i −0.236167 + 0.726846i
\(819\) −3.61803 2.62866i −0.126424 0.0918527i
\(820\) 0 0
\(821\) 8.78690 27.0433i 0.306665 0.943818i −0.672386 0.740201i \(-0.734730\pi\)
0.979051 0.203617i \(-0.0652697\pi\)
\(822\) −3.84398 11.8306i −0.134074 0.412638i
\(823\) −8.38417 + 6.09146i −0.292254 + 0.212335i −0.724245 0.689543i \(-0.757811\pi\)
0.431991 + 0.901878i \(0.357811\pi\)
\(824\) −11.4340 −0.398321
\(825\) 0 0
\(826\) −20.0136 −0.696361
\(827\) 15.8634 11.5254i 0.551625 0.400779i −0.276760 0.960939i \(-0.589261\pi\)
0.828384 + 0.560161i \(0.189261\pi\)
\(828\) −0.0657312 0.202300i −0.00228432 0.00703040i
\(829\) 15.4118 47.4327i 0.535275 1.64741i −0.207780 0.978176i \(-0.566624\pi\)
0.743054 0.669231i \(-0.233376\pi\)
\(830\) 0 0
\(831\) 41.5317 + 30.1746i 1.44072 + 1.04674i
\(832\) −0.957626 + 2.94727i −0.0331997 + 0.102178i
\(833\) −7.41171 22.8109i −0.256800 0.790350i
\(834\) 1.25904 0.914744i 0.0435969 0.0316750i
\(835\) 0 0
\(836\) −3.43582 2.58953i −0.118830 0.0895606i
\(837\) −29.2716 −1.01177
\(838\) 3.37978 2.45556i 0.116753 0.0848258i
\(839\) −3.25249 10.0101i −0.112289 0.345589i 0.879083 0.476668i \(-0.158156\pi\)
−0.991372 + 0.131080i \(0.958156\pi\)
\(840\) 0 0
\(841\) −50.6490 36.7986i −1.74652 1.26892i
\(842\) 10.2697 + 7.46135i 0.353916 + 0.257135i
\(843\) −0.969111 + 2.98262i −0.0333779 + 0.102727i
\(844\) −4.22439 13.0013i −0.145409 0.447524i
\(845\) 0 0
\(846\) −2.04322 −0.0702472
\(847\) 41.5338 + 1.45728i 1.42712 + 0.0500726i
\(848\) 11.0142 0.378229
\(849\) −6.43497 + 4.67528i −0.220848 + 0.160455i
\(850\) 0 0
\(851\) 1.36211 4.19214i 0.0466925 0.143705i
\(852\) −14.2577 10.3588i −0.488460 0.354887i
\(853\) −12.7180 9.24016i −0.435456 0.316377i 0.348371 0.937357i \(-0.386735\pi\)
−0.783827 + 0.620980i \(0.786735\pi\)
\(854\) −2.86893 + 8.82965i −0.0981726 + 0.302144i
\(855\) 0 0
\(856\) 12.4222 9.02522i 0.424581 0.308476i
\(857\) 37.8967 1.29453 0.647263 0.762267i \(-0.275914\pi\)
0.647263 + 0.762267i \(0.275914\pi\)
\(858\) −13.2806 10.0094i −0.453394 0.341716i
\(859\) 20.5913 0.702567 0.351283 0.936269i \(-0.385745\pi\)
0.351283 + 0.936269i \(0.385745\pi\)
\(860\) 0 0
\(861\) 11.8785 + 36.5584i 0.404820 + 1.24591i
\(862\) 0.225825 0.695018i 0.00769163 0.0236724i
\(863\) −6.95203 5.05094i −0.236650 0.171936i 0.463140 0.886285i \(-0.346723\pi\)
−0.699789 + 0.714349i \(0.746723\pi\)
\(864\) −4.42705 3.21644i −0.150611 0.109426i
\(865\) 0 0
\(866\) 1.74465 + 5.36947i 0.0592855 + 0.182462i
\(867\) 8.02212 5.82841i 0.272445 0.197943i
\(868\) 20.2100 0.685972
\(869\) 54.2629 + 0.951654i 1.84074 + 0.0322826i
\(870\) 0 0
\(871\) 23.0966 16.7806i 0.782597 0.568590i
\(872\) −0.750578 2.31004i −0.0254178 0.0782279i
\(873\) −1.45866 + 4.48930i −0.0493682 + 0.151940i
\(874\) 0.584434 + 0.424616i 0.0197688 + 0.0143628i
\(875\) 0 0
\(876\) −1.69808 + 5.22616i −0.0573728 + 0.176575i
\(877\) 13.9519 + 42.9395i 0.471122 + 1.44996i 0.851117 + 0.524976i \(0.175926\pi\)
−0.379995 + 0.924989i \(0.624074\pi\)
\(878\) 11.0895 8.05702i 0.374254 0.271911i
\(879\) −0.305364 −0.0102997
\(880\) 0 0
\(881\) −38.4847 −1.29658 −0.648291 0.761393i \(-0.724516\pi\)
−0.648291 + 0.761393i \(0.724516\pi\)
\(882\) −2.24787 + 1.63317i −0.0756896 + 0.0549917i
\(883\) 12.1504 + 37.3951i 0.408894 + 1.25845i 0.917600 + 0.397505i \(0.130124\pi\)
−0.508706 + 0.860940i \(0.669876\pi\)
\(884\) 3.15750 9.71779i 0.106198 0.326845i
\(885\) 0 0
\(886\) −11.3614 8.25454i −0.381693 0.277317i
\(887\) 2.42395 7.46016i 0.0813883 0.250488i −0.902080 0.431570i \(-0.857960\pi\)
0.983468 + 0.181082i \(0.0579600\pi\)
\(888\) −3.95763 12.1803i −0.132809 0.408745i
\(889\) −21.2537 + 15.4417i −0.712825 + 0.517897i
\(890\) 0 0
\(891\) 20.9430 14.6619i 0.701617 0.491191i
\(892\) −23.9720 −0.802643
\(893\) 5.61384 4.07869i 0.187860 0.136488i
\(894\) 4.39616 + 13.5300i 0.147030 + 0.452511i
\(895\) 0 0
\(896\) 3.05657 + 2.22073i 0.102113 + 0.0741893i
\(897\) 2.25904 + 1.64129i 0.0754271 + 0.0548010i
\(898\) −2.98369 + 9.18287i −0.0995672 + 0.306436i
\(899\) −15.8210 48.6919i −0.527658 1.62397i
\(900\) 0 0
\(901\) −36.3162 −1.20987
\(902\) −6.09580 19.9444i −0.202968 0.664075i
\(903\) 22.1175 0.736026
\(904\) 6.78064 4.92643i 0.225521 0.163851i
\(905\) 0 0
\(906\) 4.46892 13.7539i 0.148470 0.456943i
\(907\) −35.8908 26.0762i −1.19173 0.865845i −0.198287 0.980144i \(-0.563538\pi\)
−0.993446 + 0.114299i \(0.963538\pi\)
\(908\) 16.7503 + 12.1698i 0.555877 + 0.403868i
\(909\) 1.06398 3.27460i 0.0352900 0.108612i
\(910\) 0 0
\(911\) −11.2063 + 8.14186i −0.371282 + 0.269752i −0.757742 0.652554i \(-0.773698\pi\)
0.386460 + 0.922306i \(0.373698\pi\)
\(912\) 2.09894 0.0695030
\(913\) 0.178451 + 0.583860i 0.00590587 + 0.0193229i
\(914\) −1.02878 −0.0340290
\(915\) 0 0
\(916\) −5.04955 15.5409i −0.166842 0.513486i
\(917\) −6.55835 + 20.1845i −0.216576 + 0.666552i
\(918\) 14.5970 + 10.6053i 0.481771 + 0.350027i
\(919\) 12.3286 + 8.95726i 0.406684 + 0.295473i 0.772258 0.635309i \(-0.219127\pi\)
−0.365574 + 0.930782i \(0.619127\pi\)
\(920\) 0 0
\(921\) −6.19098 19.0539i −0.204000 0.627847i
\(922\) −6.51972 + 4.73685i −0.214716 + 0.156000i
\(923\) −33.7534 −1.11101
\(924\) −16.6093 + 11.6279i −0.546405 + 0.382529i
\(925\) 0 0
\(926\) 6.04038 4.38860i 0.198499 0.144218i
\(927\) −1.34960 4.15363i −0.0443265 0.136423i
\(928\) 2.95763 9.10264i 0.0970888 0.298809i
\(929\) −30.6793 22.2898i −1.00656 0.731306i −0.0430721 0.999072i \(-0.513715\pi\)
−0.963484 + 0.267766i \(0.913715\pi\)
\(930\) 0 0
\(931\) 2.91597 8.97444i 0.0955672 0.294126i
\(932\) −0.148415 0.456775i −0.00486150 0.0149621i
\(933\) 27.6440 20.0846i 0.905025 0.657540i
\(934\) 11.1894 0.366127
\(935\) 0 0
\(936\) −1.18369 −0.0386902
\(937\) −4.43144 + 3.21963i −0.144769 + 0.105181i −0.657812 0.753182i \(-0.728518\pi\)
0.513043 + 0.858363i \(0.328518\pi\)
\(938\) −10.7556 33.1024i −0.351183 1.08083i
\(939\) 8.28961 25.5128i 0.270521 0.832579i
\(940\) 0 0
\(941\) −37.5713 27.2971i −1.22479 0.889861i −0.228301 0.973591i \(-0.573317\pi\)
−0.996489 + 0.0837293i \(0.973317\pi\)
\(942\) −8.82050 + 27.1467i −0.287387 + 0.884488i
\(943\) 1.08209 + 3.33033i 0.0352377 + 0.108450i
\(944\) −4.28554 + 3.11363i −0.139482 + 0.101340i
\(945\) 0 0
\(946\) −11.9978 0.210416i −0.390083 0.00684120i
\(947\) 22.7220 0.738366 0.369183 0.929357i \(-0.379638\pi\)
0.369183 + 0.929357i \(0.379638\pi\)
\(948\) −21.4200 + 15.5625i −0.695688 + 0.505447i
\(949\) 3.25225 + 10.0094i 0.105573 + 0.324919i
\(950\) 0 0
\(951\) 25.7052 + 18.6759i 0.833548 + 0.605608i
\(952\) −10.0782 7.32222i −0.326636 0.237315i
\(953\) 11.1302 34.2554i 0.360544 1.10964i −0.592181 0.805805i \(-0.701733\pi\)
0.952725 0.303835i \(-0.0982671\pi\)
\(954\) 1.30005 + 4.00114i 0.0420907 + 0.129542i
\(955\) 0 0
\(956\) 1.12859 0.0365012
\(957\) 41.0172 + 30.9140i 1.32590 + 0.999309i
\(958\) −26.7696 −0.864886
\(959\) −23.4988 + 17.0729i −0.758815 + 0.551311i
\(960\) 0 0
\(961\) −0.737310 + 2.26921i −0.0237842 + 0.0732002i
\(962\) −19.8443 14.4177i −0.639806 0.464846i
\(963\) 4.74484 + 3.44733i 0.152900 + 0.111089i
\(964\) −3.93132 + 12.0994i −0.126619 + 0.389694i
\(965\) 0 0
\(966\) 2.75414 2.00100i 0.0886131 0.0643812i
\(967\) 23.8349 0.766479 0.383240 0.923649i \(-0.374808\pi\)
0.383240 + 0.923649i \(0.374808\pi\)
\(968\) 9.12043 6.14961i 0.293142 0.197656i
\(969\) −6.92067 −0.222324
\(970\) 0 0
\(971\) −10.9297 33.6381i −0.350750 1.07950i −0.958433 0.285319i \(-0.907901\pi\)
0.607682 0.794180i \(-0.292099\pi\)
\(972\) 1.21885 3.75123i 0.0390945 0.120321i
\(973\) −2.93987 2.13594i −0.0942478 0.0684750i
\(974\) −14.8683 10.8025i −0.476411 0.346133i
\(975\) 0 0
\(976\) 0.759351 + 2.33704i 0.0243062 + 0.0748069i
\(977\) −9.12632 + 6.63066i −0.291977 + 0.212134i −0.724124 0.689669i \(-0.757756\pi\)
0.432148 + 0.901803i \(0.357756\pi\)
\(978\) 0.282006 0.00901757
\(979\) −16.1305 12.1573i −0.515532 0.388548i
\(980\) 0 0
\(981\) 0.750578 0.545327i 0.0239641 0.0174109i
\(982\) 8.02923 + 24.7114i 0.256223 + 0.788573i
\(983\) 2.64643 8.14486i 0.0844079 0.259781i −0.899941 0.436012i \(-0.856391\pi\)
0.984349 + 0.176231i \(0.0563906\pi\)
\(984\) 8.23117 + 5.98030i 0.262400 + 0.190645i
\(985\) 0 0
\(986\) −9.75194 + 30.0134i −0.310565 + 0.955821i
\(987\) −10.1050 31.1000i −0.321645 0.989923i
\(988\) 3.25225 2.36290i 0.103468 0.0751739i
\(989\) 2.01482 0.0640677
\(990\) 0 0
\(991\) −15.9978 −0.508185 −0.254093 0.967180i \(-0.581777\pi\)
−0.254093 + 0.967180i \(0.581777\pi\)
\(992\) 4.32760 3.14419i 0.137401 0.0998280i
\(993\) −11.7413 36.1360i −0.372599 1.14674i
\(994\) −12.7163 + 39.1369i −0.403338 + 1.24135i
\(995\) 0 0
\(996\) −0.240963 0.175070i −0.00763520 0.00554730i
\(997\) 8.77729 27.0137i 0.277979 0.855533i −0.710436 0.703762i \(-0.751502\pi\)
0.988416 0.151771i \(-0.0484977\pi\)
\(998\) −5.24736 16.1497i −0.166102 0.511210i
\(999\) 35.0412 25.4589i 1.10866 0.805485i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 550.2.h.n.201.2 8
5.2 odd 4 110.2.j.b.69.3 yes 16
5.3 odd 4 110.2.j.b.69.1 yes 16
5.4 even 2 550.2.h.j.201.1 8
11.2 odd 10 6050.2.a.dl.1.3 4
11.4 even 5 inner 550.2.h.n.301.2 8
11.9 even 5 6050.2.a.dd.1.4 4
15.2 even 4 990.2.ba.h.289.2 16
15.8 even 4 990.2.ba.h.289.4 16
20.3 even 4 880.2.cd.b.289.3 16
20.7 even 4 880.2.cd.b.289.1 16
55.2 even 20 1210.2.b.l.969.6 8
55.4 even 10 550.2.h.j.301.1 8
55.9 even 10 6050.2.a.di.1.1 4
55.13 even 20 1210.2.b.l.969.4 8
55.24 odd 10 6050.2.a.da.1.2 4
55.37 odd 20 110.2.j.b.59.1 16
55.42 odd 20 1210.2.b.k.969.2 8
55.48 odd 20 110.2.j.b.59.3 yes 16
55.53 odd 20 1210.2.b.k.969.8 8
165.92 even 20 990.2.ba.h.829.4 16
165.158 even 20 990.2.ba.h.829.2 16
220.103 even 20 880.2.cd.b.609.1 16
220.147 even 20 880.2.cd.b.609.3 16
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
110.2.j.b.59.1 16 55.37 odd 20
110.2.j.b.59.3 yes 16 55.48 odd 20
110.2.j.b.69.1 yes 16 5.3 odd 4
110.2.j.b.69.3 yes 16 5.2 odd 4
550.2.h.j.201.1 8 5.4 even 2
550.2.h.j.301.1 8 55.4 even 10
550.2.h.n.201.2 8 1.1 even 1 trivial
550.2.h.n.301.2 8 11.4 even 5 inner
880.2.cd.b.289.1 16 20.7 even 4
880.2.cd.b.289.3 16 20.3 even 4
880.2.cd.b.609.1 16 220.103 even 20
880.2.cd.b.609.3 16 220.147 even 20
990.2.ba.h.289.2 16 15.2 even 4
990.2.ba.h.289.4 16 15.8 even 4
990.2.ba.h.829.2 16 165.158 even 20
990.2.ba.h.829.4 16 165.92 even 20
1210.2.b.k.969.2 8 55.42 odd 20
1210.2.b.k.969.8 8 55.53 odd 20
1210.2.b.l.969.4 8 55.13 even 20
1210.2.b.l.969.6 8 55.2 even 20
6050.2.a.da.1.2 4 55.24 odd 10
6050.2.a.dd.1.4 4 11.9 even 5
6050.2.a.di.1.1 4 55.9 even 10
6050.2.a.dl.1.3 4 11.2 odd 10