Properties

Label 555.2.a.c
Level 555555
Weight 22
Character orbit 555.a
Self dual yes
Analytic conductor 4.4324.432
Analytic rank 11
Dimension 22
CM no
Inner twists 11

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [555,2,Mod(1,555)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(555, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("555.1");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: N N == 555=3537 555 = 3 \cdot 5 \cdot 37
Weight: k k == 2 2
Character orbit: [χ][\chi] == 555.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: 4.431697312184.43169731218
Analytic rank: 11
Dimension: 22
Coefficient field: Q(5)\Q(\sqrt{5})
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: x2x1 x^{2} - x - 1 Copy content Toggle raw display
Coefficient ring: Z[a1,a2]\Z[a_1, a_2]
Coefficient ring index: 1 1
Twist minimal: yes
Fricke sign: +1+1
Sato-Tate group: SU(2)\mathrm{SU}(2)

qq-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the qq-expansion are expressed in terms of β=12(1+5)\beta = \frac{1}{2}(1 + \sqrt{5}). We also show the integral qq-expansion of the trace form.

f(q)f(q) == q+(β1)q2+q3+3βq4+q5+(β1)q6+(2β3)q7+(4β1)q8+q9+(β1)q103βq11+3βq125q13+3βq99+O(q100) q + ( - \beta - 1) q^{2} + q^{3} + 3 \beta q^{4} + q^{5} + ( - \beta - 1) q^{6} + (2 \beta - 3) q^{7} + ( - 4 \beta - 1) q^{8} + q^{9} + ( - \beta - 1) q^{10} - 3 \beta q^{11} + 3 \beta q^{12} - 5 q^{13} + \cdots - 3 \beta q^{99} +O(q^{100}) Copy content Toggle raw display
Tr(f)(q)\operatorname{Tr}(f)(q) == 2q3q2+2q3+3q4+2q53q64q76q8+2q93q103q11+3q1210q13+q14+2q15+13q1611q173q187q19+3q20+3q99+O(q100) 2 q - 3 q^{2} + 2 q^{3} + 3 q^{4} + 2 q^{5} - 3 q^{6} - 4 q^{7} - 6 q^{8} + 2 q^{9} - 3 q^{10} - 3 q^{11} + 3 q^{12} - 10 q^{13} + q^{14} + 2 q^{15} + 13 q^{16} - 11 q^{17} - 3 q^{18} - 7 q^{19} + 3 q^{20}+ \cdots - 3 q^{99}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   ιm(ν)\iota_m(\nu) a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
1.1
1.61803
−0.618034
−2.61803 1.00000 4.85410 1.00000 −2.61803 0.236068 −7.47214 1.00000 −2.61803
1.2 −0.381966 1.00000 −1.85410 1.00000 −0.381966 −4.23607 1.47214 1.00000 −0.381966
nn: e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

p p Sign
33 1 -1
55 1 -1
3737 +1 +1

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 555.2.a.c 2
3.b odd 2 1 1665.2.a.l 2
4.b odd 2 1 8880.2.a.bj 2
5.b even 2 1 2775.2.a.q 2
15.d odd 2 1 8325.2.a.bf 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
555.2.a.c 2 1.a even 1 1 trivial
1665.2.a.l 2 3.b odd 2 1
2775.2.a.q 2 5.b even 2 1
8325.2.a.bf 2 15.d odd 2 1
8880.2.a.bj 2 4.b odd 2 1

Hecke kernels

This newform subspace can be constructed as the intersection of the kernels of the following linear operators acting on S2new(Γ0(555))S_{2}^{\mathrm{new}}(\Gamma_0(555)):

T22+3T2+1 T_{2}^{2} + 3T_{2} + 1 Copy content Toggle raw display
T72+4T71 T_{7}^{2} + 4T_{7} - 1 Copy content Toggle raw display

Hecke characteristic polynomials

pp Fp(T)F_p(T)
22 T2+3T+1 T^{2} + 3T + 1 Copy content Toggle raw display
33 (T1)2 (T - 1)^{2} Copy content Toggle raw display
55 (T1)2 (T - 1)^{2} Copy content Toggle raw display
77 T2+4T1 T^{2} + 4T - 1 Copy content Toggle raw display
1111 T2+3T9 T^{2} + 3T - 9 Copy content Toggle raw display
1313 (T+5)2 (T + 5)^{2} Copy content Toggle raw display
1717 T2+11T+29 T^{2} + 11T + 29 Copy content Toggle raw display
1919 T2+7T+11 T^{2} + 7T + 11 Copy content Toggle raw display
2323 T2+8T+11 T^{2} + 8T + 11 Copy content Toggle raw display
2929 T2+9T11 T^{2} + 9T - 11 Copy content Toggle raw display
3131 T24T41 T^{2} - 4T - 41 Copy content Toggle raw display
3737 (T+1)2 (T + 1)^{2} Copy content Toggle raw display
4141 T210T+5 T^{2} - 10T + 5 Copy content Toggle raw display
4343 T25T25 T^{2} - 5T - 25 Copy content Toggle raw display
4747 T2+4T121 T^{2} + 4T - 121 Copy content Toggle raw display
5353 T2+4T16 T^{2} + 4T - 16 Copy content Toggle raw display
5959 T213T+11 T^{2} - 13T + 11 Copy content Toggle raw display
6161 T2+12T9 T^{2} + 12T - 9 Copy content Toggle raw display
6767 T2+T151 T^{2} + T - 151 Copy content Toggle raw display
7171 T23T9 T^{2} - 3T - 9 Copy content Toggle raw display
7373 T2T101 T^{2} - T - 101 Copy content Toggle raw display
7979 T23T99 T^{2} - 3T - 99 Copy content Toggle raw display
8383 T23T59 T^{2} - 3T - 59 Copy content Toggle raw display
8989 T212T9 T^{2} - 12T - 9 Copy content Toggle raw display
9797 T2+16T+19 T^{2} + 16T + 19 Copy content Toggle raw display
show more
show less