Properties

Label 555.2.e.a
Level $555$
Weight $2$
Character orbit 555.e
Analytic conductor $4.432$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [555,2,Mod(406,555)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(555, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 1]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("555.406");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 555 = 3 \cdot 5 \cdot 37 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 555.e (of order \(2\), degree \(1\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.43169731218\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\sqrt{-1}) \)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{2}]$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 

Coefficients of the \(q\)-expansion are expressed in terms of \(i = \sqrt{-1}\). We also show the integral \(q\)-expansion of the trace form.

\(f(q)\) \(=\) \( q - q^{3} + 2 q^{4} + i q^{5} - 4 q^{7} + q^{9} + 2 q^{11} - 2 q^{12} + 5 i q^{13} - i q^{15} + 4 q^{16} + 4 i q^{17} + 6 i q^{19} + 2 i q^{20} + 4 q^{21} - 6 i q^{23} - q^{25} - q^{27} - 8 q^{28} + \cdots + 2 q^{99} +O(q^{100}) \) Copy content Toggle raw display
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q - 2 q^{3} + 4 q^{4} - 8 q^{7} + 2 q^{9} + 4 q^{11} - 4 q^{12} + 8 q^{16} + 8 q^{21} - 2 q^{25} - 2 q^{27} - 16 q^{28} - 4 q^{33} + 4 q^{36} + 12 q^{37} - 16 q^{41} + 8 q^{44} - 6 q^{47} - 8 q^{48} + 18 q^{49}+ \cdots + 4 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/555\mathbb{Z}\right)^\times\).

\(n\) \(76\) \(112\) \(371\)
\(\chi(n)\) \(-1\) \(1\) \(1\)

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
406.1
1.00000i
1.00000i
0 −1.00000 2.00000 1.00000i 0 −4.00000 0 1.00000 0
406.2 0 −1.00000 2.00000 1.00000i 0 −4.00000 0 1.00000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
37.b even 2 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 555.2.e.a 2
3.b odd 2 1 1665.2.e.a 2
37.b even 2 1 inner 555.2.e.a 2
111.d odd 2 1 1665.2.e.a 2
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
555.2.e.a 2 1.a even 1 1 trivial
555.2.e.a 2 37.b even 2 1 inner
1665.2.e.a 2 3.b odd 2 1
1665.2.e.a 2 111.d odd 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{2} \) acting on \(S_{2}^{\mathrm{new}}(555, [\chi])\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T^{2} \) Copy content Toggle raw display
$3$ \( (T + 1)^{2} \) Copy content Toggle raw display
$5$ \( T^{2} + 1 \) Copy content Toggle raw display
$7$ \( (T + 4)^{2} \) Copy content Toggle raw display
$11$ \( (T - 2)^{2} \) Copy content Toggle raw display
$13$ \( T^{2} + 25 \) Copy content Toggle raw display
$17$ \( T^{2} + 16 \) Copy content Toggle raw display
$19$ \( T^{2} + 36 \) Copy content Toggle raw display
$23$ \( T^{2} + 36 \) Copy content Toggle raw display
$29$ \( T^{2} + 1 \) Copy content Toggle raw display
$31$ \( T^{2} + 16 \) Copy content Toggle raw display
$37$ \( T^{2} - 12T + 37 \) Copy content Toggle raw display
$41$ \( (T + 8)^{2} \) Copy content Toggle raw display
$43$ \( T^{2} + 81 \) Copy content Toggle raw display
$47$ \( (T + 3)^{2} \) Copy content Toggle raw display
$53$ \( (T - 11)^{2} \) Copy content Toggle raw display
$59$ \( T^{2} + 169 \) Copy content Toggle raw display
$61$ \( T^{2} + 16 \) Copy content Toggle raw display
$67$ \( (T + 6)^{2} \) Copy content Toggle raw display
$71$ \( (T + 6)^{2} \) Copy content Toggle raw display
$73$ \( (T - 2)^{2} \) Copy content Toggle raw display
$79$ \( T^{2} + 64 \) Copy content Toggle raw display
$83$ \( (T - 15)^{2} \) Copy content Toggle raw display
$89$ \( T^{2} + 225 \) Copy content Toggle raw display
$97$ \( T^{2} + 36 \) Copy content Toggle raw display
show more
show less