Properties

Label 56.3.k.c.11.5
Level $56$
Weight $3$
Character 56.11
Analytic conductor $1.526$
Analytic rank $0$
Dimension $12$
Inner twists $4$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [56,3,Mod(11,56)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(56, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 3, 4]))
 
N = Newforms(chi, 3, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("56.11");
 
S:= CuspForms(chi, 3);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 56 = 2^{3} \cdot 7 \)
Weight: \( k \) \(=\) \( 3 \)
Character orbit: \([\chi]\) \(=\) 56.k (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(1.52588948042\)
Analytic rank: \(0\)
Dimension: \(12\)
Relative dimension: \(6\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\mathbb{Q}[x]/(x^{12} + \cdots)\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{12} + 2x^{10} - 12x^{9} + 12x^{8} - 12x^{7} + 148x^{6} - 48x^{5} + 192x^{4} - 768x^{3} + 512x^{2} + 4096 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, a_2, a_3]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 11.5
Root \(0.0421483 - 1.99956i\) of defining polynomial
Character \(\chi\) \(=\) 56.11
Dual form 56.3.k.c.51.5

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.71059 + 1.03628i) q^{2} +(2.25274 - 3.90186i) q^{3} +(1.85225 + 3.54530i) q^{4} +(-6.07099 + 3.50509i) q^{5} +(7.89694 - 4.34002i) q^{6} +(2.51181 - 6.53382i) q^{7} +(-0.505481 + 7.98401i) q^{8} +(-5.64968 - 9.78553i) q^{9} +(-14.0172 - 0.295467i) q^{10} +(-7.90242 + 13.6874i) q^{11} +(18.0059 + 0.759426i) q^{12} -2.90039i q^{13} +(11.0675 - 8.57376i) q^{14} +31.5842i q^{15} +(-9.13834 + 13.1336i) q^{16} +(1.65516 - 2.86682i) q^{17} +(0.476249 - 22.5937i) q^{18} +(-8.10854 - 14.0444i) q^{19} +(-23.6716 - 15.0312i) q^{20} +(-19.8356 - 24.5197i) q^{21} +(-27.7018 + 15.2244i) q^{22} +(16.4804 - 9.51498i) q^{23} +(30.0138 + 19.9582i) q^{24} +(12.0713 - 20.9081i) q^{25} +(3.00561 - 4.96138i) q^{26} -10.3597 q^{27} +(27.8169 - 3.19714i) q^{28} -21.1392i q^{29} +(-32.7301 + 54.0277i) q^{30} +(23.6995 + 13.6829i) q^{31} +(-29.2420 + 12.9963i) q^{32} +(35.6042 + 61.6683i) q^{33} +(5.80213 - 3.18875i) q^{34} +(7.65245 + 48.4709i) q^{35} +(24.2280 - 38.1551i) q^{36} +(-15.2932 + 8.82951i) q^{37} +(0.683523 - 32.4270i) q^{38} +(-11.3169 - 6.53382i) q^{39} +(-24.9159 - 50.2427i) q^{40} +1.13482 q^{41} +(-8.52133 - 62.4985i) q^{42} +50.2084 q^{43} +(-63.1632 - 2.66400i) q^{44} +(68.5983 + 39.6053i) q^{45} +(38.0515 + 0.802081i) q^{46} +(-0.657646 + 0.379692i) q^{47} +(30.6591 + 65.2431i) q^{48} +(-36.3816 - 32.8234i) q^{49} +(42.3157 - 23.2560i) q^{50} +(-7.45728 - 12.9164i) q^{51} +(10.2828 - 5.37224i) q^{52} +(38.9677 + 22.4980i) q^{53} +(-17.7212 - 10.7355i) q^{54} -110.795i q^{55} +(50.8964 + 23.3570i) q^{56} -73.0658 q^{57} +(21.9061 - 36.1605i) q^{58} +(-1.19239 + 2.06529i) q^{59} +(-111.976 + 58.5019i) q^{60} +(-86.1653 + 49.7476i) q^{61} +(26.3608 + 47.9651i) q^{62} +(-78.1278 + 12.3346i) q^{63} +(-63.4890 - 8.07153i) q^{64} +(10.1661 + 17.6082i) q^{65} +(-3.00132 + 142.385i) q^{66} +(33.2440 - 57.5804i) q^{67} +(13.2295 + 0.557974i) q^{68} -85.7391i q^{69} +(-37.1392 + 90.8440i) q^{70} +44.4376i q^{71} +(80.9836 - 40.1607i) q^{72} +(-0.859703 + 1.48905i) q^{73} +(-35.3102 - 0.744298i) q^{74} +(-54.3870 - 94.2011i) q^{75} +(34.7726 - 54.7610i) q^{76} +(69.5816 + 86.0131i) q^{77} +(-12.5878 - 22.9042i) q^{78} +(-62.9171 + 36.3252i) q^{79} +(9.44446 - 111.765i) q^{80} +(27.5094 - 47.6476i) q^{81} +(1.94121 + 1.17599i) q^{82} -102.081 q^{83} +(50.1894 - 115.740i) q^{84} +23.2059i q^{85} +(85.8861 + 52.0299i) q^{86} +(-82.4821 - 47.6211i) q^{87} +(-105.286 - 70.0117i) q^{88} +(30.6865 + 53.1505i) q^{89} +(76.3016 + 138.835i) q^{90} +(-18.9506 - 7.28522i) q^{91} +(64.2594 + 40.8040i) q^{92} +(106.778 - 61.6480i) q^{93} +(-1.51843 - 0.0320068i) q^{94} +(98.4538 + 56.8423i) q^{95} +(-15.1649 + 143.376i) q^{96} -102.826 q^{97} +(-28.2199 - 93.8490i) q^{98} +178.584 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 12 q + 6 q^{3} - 4 q^{4} + 56 q^{6} + 36 q^{8} - 8 q^{9} - 30 q^{10} - 14 q^{11} - 14 q^{12} - 32 q^{14} - 40 q^{16} - 82 q^{17} + 38 q^{18} - 94 q^{19} - 56 q^{20} - 132 q^{22} - 38 q^{24} + 116 q^{25}+ \cdots + 872 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/56\mathbb{Z}\right)^\times\).

\(n\) \(15\) \(17\) \(29\)
\(\chi(n)\) \(-1\) \(e\left(\frac{2}{3}\right)\) \(-1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.71059 + 1.03628i 0.855296 + 0.518140i
\(3\) 2.25274 3.90186i 0.750913 1.30062i −0.196467 0.980510i \(-0.562947\pi\)
0.947380 0.320110i \(-0.103720\pi\)
\(4\) 1.85225 + 3.54530i 0.463062 + 0.886326i
\(5\) −6.07099 + 3.50509i −1.21420 + 0.701018i −0.963671 0.267092i \(-0.913937\pi\)
−0.250528 + 0.968109i \(0.580604\pi\)
\(6\) 7.89694 4.34002i 1.31616 0.723337i
\(7\) 2.51181 6.53382i 0.358830 0.933403i
\(8\) −0.505481 + 7.98401i −0.0631851 + 0.998002i
\(9\) −5.64968 9.78553i −0.627742 1.08728i
\(10\) −14.0172 0.295467i −1.40172 0.0295467i
\(11\) −7.90242 + 13.6874i −0.718402 + 1.24431i 0.243231 + 0.969968i \(0.421793\pi\)
−0.961633 + 0.274340i \(0.911541\pi\)
\(12\) 18.0059 + 0.759426i 1.50049 + 0.0632855i
\(13\) 2.90039i 0.223107i −0.993758 0.111553i \(-0.964417\pi\)
0.993758 0.111553i \(-0.0355826\pi\)
\(14\) 11.0675 8.57376i 0.790539 0.612412i
\(15\) 31.5842i 2.10562i
\(16\) −9.13834 + 13.1336i −0.571146 + 0.820848i
\(17\) 1.65516 2.86682i 0.0973623 0.168636i −0.813230 0.581943i \(-0.802293\pi\)
0.910592 + 0.413306i \(0.135626\pi\)
\(18\) 0.476249 22.5937i 0.0264583 1.25521i
\(19\) −8.10854 14.0444i −0.426765 0.739179i 0.569818 0.821771i \(-0.307014\pi\)
−0.996583 + 0.0825915i \(0.973680\pi\)
\(20\) −23.6716 15.0312i −1.18358 0.751560i
\(21\) −19.8356 24.5197i −0.944553 1.16761i
\(22\) −27.7018 + 15.2244i −1.25917 + 0.692019i
\(23\) 16.4804 9.51498i 0.716540 0.413695i −0.0969377 0.995290i \(-0.530905\pi\)
0.813478 + 0.581596i \(0.197571\pi\)
\(24\) 30.0138 + 19.9582i 1.25057 + 0.831593i
\(25\) 12.0713 20.9081i 0.482852 0.836325i
\(26\) 3.00561 4.96138i 0.115600 0.190822i
\(27\) −10.3597 −0.383693
\(28\) 27.8169 3.19714i 0.993460 0.114184i
\(29\) 21.1392i 0.728937i −0.931216 0.364468i \(-0.881251\pi\)
0.931216 0.364468i \(-0.118749\pi\)
\(30\) −32.7301 + 54.0277i −1.09100 + 1.80092i
\(31\) 23.6995 + 13.6829i 0.764499 + 0.441384i 0.830909 0.556409i \(-0.187821\pi\)
−0.0664095 + 0.997792i \(0.521154\pi\)
\(32\) −29.2420 + 12.9963i −0.913813 + 0.406135i
\(33\) 35.6042 + 61.6683i 1.07891 + 1.86874i
\(34\) 5.80213 3.18875i 0.170651 0.0937868i
\(35\) 7.65245 + 48.4709i 0.218641 + 1.38488i
\(36\) 24.2280 38.1551i 0.673001 1.05986i
\(37\) −15.2932 + 8.82951i −0.413328 + 0.238635i −0.692219 0.721688i \(-0.743367\pi\)
0.278890 + 0.960323i \(0.410033\pi\)
\(38\) 0.683523 32.4270i 0.0179875 0.853341i
\(39\) −11.3169 6.53382i −0.290177 0.167534i
\(40\) −24.9159 50.2427i −0.622898 1.25607i
\(41\) 1.13482 0.0276785 0.0138392 0.999904i \(-0.495595\pi\)
0.0138392 + 0.999904i \(0.495595\pi\)
\(42\) −8.52133 62.4985i −0.202889 1.48806i
\(43\) 50.2084 1.16764 0.583818 0.811884i \(-0.301558\pi\)
0.583818 + 0.811884i \(0.301558\pi\)
\(44\) −63.1632 2.66400i −1.43553 0.0605454i
\(45\) 68.5983 + 39.6053i 1.52441 + 0.880117i
\(46\) 38.0515 + 0.802081i 0.827206 + 0.0174365i
\(47\) −0.657646 + 0.379692i −0.0139925 + 0.00807855i −0.506980 0.861958i \(-0.669238\pi\)
0.492987 + 0.870036i \(0.335905\pi\)
\(48\) 30.6591 + 65.2431i 0.638730 + 1.35923i
\(49\) −36.3816 32.8234i −0.742482 0.669866i
\(50\) 42.3157 23.2560i 0.846315 0.465120i
\(51\) −7.45728 12.9164i −0.146221 0.253263i
\(52\) 10.2828 5.37224i 0.197745 0.103312i
\(53\) 38.9677 + 22.4980i 0.735240 + 0.424491i 0.820336 0.571882i \(-0.193786\pi\)
−0.0850958 + 0.996373i \(0.527120\pi\)
\(54\) −17.7212 10.7355i −0.328171 0.198806i
\(55\) 110.795i 2.01445i
\(56\) 50.8964 + 23.3570i 0.908865 + 0.417090i
\(57\) −73.0658 −1.28186
\(58\) 21.9061 36.1605i 0.377691 0.623457i
\(59\) −1.19239 + 2.06529i −0.0202101 + 0.0350048i −0.875954 0.482395i \(-0.839767\pi\)
0.855743 + 0.517400i \(0.173100\pi\)
\(60\) −111.976 + 58.5019i −1.86626 + 0.975031i
\(61\) −86.1653 + 49.7476i −1.41255 + 0.815534i −0.995628 0.0934097i \(-0.970223\pi\)
−0.416919 + 0.908944i \(0.636890\pi\)
\(62\) 26.3608 + 47.9651i 0.425175 + 0.773631i
\(63\) −78.1278 + 12.3346i −1.24012 + 0.195787i
\(64\) −63.4890 8.07153i −0.992015 0.126118i
\(65\) 10.1661 + 17.6082i 0.156402 + 0.270896i
\(66\) −3.00132 + 142.385i −0.0454745 + 2.15735i
\(67\) 33.2440 57.5804i 0.496180 0.859408i −0.503811 0.863814i \(-0.668069\pi\)
0.999990 + 0.00440572i \(0.00140239\pi\)
\(68\) 13.2295 + 0.557974i 0.194552 + 0.00820549i
\(69\) 85.7391i 1.24260i
\(70\) −37.1392 + 90.8440i −0.530560 + 1.29777i
\(71\) 44.4376i 0.625882i 0.949773 + 0.312941i \(0.101314\pi\)
−0.949773 + 0.312941i \(0.898686\pi\)
\(72\) 80.9836 40.1607i 1.12477 0.557788i
\(73\) −0.859703 + 1.48905i −0.0117768 + 0.0203979i −0.871854 0.489766i \(-0.837082\pi\)
0.860077 + 0.510164i \(0.170415\pi\)
\(74\) −35.3102 0.744298i −0.477165 0.0100581i
\(75\) −54.3870 94.2011i −0.725161 1.25602i
\(76\) 34.7726 54.7610i 0.457535 0.720539i
\(77\) 69.5816 + 86.0131i 0.903657 + 1.11705i
\(78\) −12.5878 22.9042i −0.161381 0.293643i
\(79\) −62.9171 + 36.3252i −0.796418 + 0.459812i −0.842217 0.539138i \(-0.818750\pi\)
0.0457989 + 0.998951i \(0.485417\pi\)
\(80\) 9.44446 111.765i 0.118056 1.39706i
\(81\) 27.5094 47.6476i 0.339622 0.588243i
\(82\) 1.94121 + 1.17599i 0.0236733 + 0.0143413i
\(83\) −102.081 −1.22990 −0.614948 0.788568i \(-0.710823\pi\)
−0.614948 + 0.788568i \(0.710823\pi\)
\(84\) 50.1894 115.740i 0.597493 1.37786i
\(85\) 23.2059i 0.273011i
\(86\) 85.8861 + 52.0299i 0.998675 + 0.604999i
\(87\) −82.4821 47.6211i −0.948070 0.547369i
\(88\) −105.286 70.0117i −1.19643 0.795588i
\(89\) 30.6865 + 53.1505i 0.344792 + 0.597197i 0.985316 0.170741i \(-0.0546162\pi\)
−0.640524 + 0.767938i \(0.721283\pi\)
\(90\) 76.3016 + 138.835i 0.847796 + 1.54262i
\(91\) −18.9506 7.28522i −0.208249 0.0800574i
\(92\) 64.2594 + 40.8040i 0.698471 + 0.443522i
\(93\) 106.778 61.6480i 1.14815 0.662882i
\(94\) −1.51843 0.0320068i −0.0161535 0.000340498i
\(95\) 98.4538 + 56.8423i 1.03636 + 0.598340i
\(96\) −15.1649 + 143.376i −0.157968 + 1.49350i
\(97\) −102.826 −1.06006 −0.530030 0.847979i \(-0.677819\pi\)
−0.530030 + 0.847979i \(0.677819\pi\)
\(98\) −28.2199 93.8490i −0.287958 0.957643i
\(99\) 178.584 1.80388
\(100\) 96.4847 + 4.06938i 0.964847 + 0.0406938i
\(101\) −157.651 91.0197i −1.56090 0.901185i −0.997166 0.0752264i \(-0.976032\pi\)
−0.563731 0.825958i \(-0.690635\pi\)
\(102\) 0.628624 29.8225i 0.00616298 0.292378i
\(103\) 39.7104 22.9268i 0.385538 0.222591i −0.294687 0.955594i \(-0.595215\pi\)
0.680225 + 0.733003i \(0.261882\pi\)
\(104\) 23.1567 + 1.46609i 0.222661 + 0.0140970i
\(105\) 206.366 + 79.3336i 1.96539 + 0.755558i
\(106\) 43.3437 + 78.8664i 0.408902 + 0.744023i
\(107\) 36.9463 + 63.9928i 0.345292 + 0.598064i 0.985407 0.170216i \(-0.0544465\pi\)
−0.640115 + 0.768279i \(0.721113\pi\)
\(108\) −19.1888 36.7283i −0.177674 0.340077i
\(109\) 104.724 + 60.4622i 0.960767 + 0.554699i 0.896409 0.443228i \(-0.146167\pi\)
0.0643577 + 0.997927i \(0.479500\pi\)
\(110\) 114.814 189.525i 1.04377 1.72295i
\(111\) 79.5623i 0.716778i
\(112\) 62.8586 + 92.6973i 0.561238 + 0.827655i
\(113\) −97.7663 −0.865188 −0.432594 0.901589i \(-0.642402\pi\)
−0.432594 + 0.901589i \(0.642402\pi\)
\(114\) −124.986 75.7166i −1.09637 0.664180i
\(115\) −66.7017 + 115.531i −0.580015 + 1.00462i
\(116\) 74.9448 39.1550i 0.646076 0.337543i
\(117\) −28.3818 + 16.3863i −0.242580 + 0.140053i
\(118\) −4.17991 + 2.29721i −0.0354230 + 0.0194679i
\(119\) −14.5738 18.0154i −0.122469 0.151390i
\(120\) −252.169 15.9652i −2.10141 0.133043i
\(121\) −64.3964 111.538i −0.532202 0.921801i
\(122\) −198.946 4.19356i −1.63071 0.0343734i
\(123\) 2.55645 4.42790i 0.0207841 0.0359992i
\(124\) −4.61267 + 109.366i −0.0371989 + 0.881984i
\(125\) 6.01041i 0.0480833i
\(126\) −146.427 59.8628i −1.16212 0.475101i
\(127\) 175.050i 1.37835i −0.724595 0.689175i \(-0.757973\pi\)
0.724595 0.689175i \(-0.242027\pi\)
\(128\) −100.239 79.5994i −0.783120 0.621870i
\(129\) 113.106 195.906i 0.876794 1.51865i
\(130\) −0.856970 + 40.6554i −0.00659208 + 0.312734i
\(131\) 4.30993 + 7.46501i 0.0329002 + 0.0569848i 0.882007 0.471237i \(-0.156192\pi\)
−0.849106 + 0.528222i \(0.822859\pi\)
\(132\) −152.685 + 240.453i −1.15670 + 1.82161i
\(133\) −112.131 + 17.7029i −0.843088 + 0.133104i
\(134\) 116.536 64.0464i 0.869674 0.477958i
\(135\) 62.8937 36.3117i 0.465879 0.268975i
\(136\) 22.0521 + 14.6639i 0.162148 + 0.107823i
\(137\) −128.042 + 221.776i −0.934615 + 1.61880i −0.159295 + 0.987231i \(0.550922\pi\)
−0.775320 + 0.631569i \(0.782411\pi\)
\(138\) 88.8497 146.665i 0.643838 1.06279i
\(139\) 218.834 1.57434 0.787171 0.616735i \(-0.211545\pi\)
0.787171 + 0.616735i \(0.211545\pi\)
\(140\) −157.670 + 116.910i −1.12621 + 0.835075i
\(141\) 3.42139i 0.0242652i
\(142\) −46.0498 + 76.0147i −0.324295 + 0.535315i
\(143\) 39.6987 + 22.9201i 0.277614 + 0.160280i
\(144\) 180.148 + 15.2231i 1.25103 + 0.105716i
\(145\) 74.0947 + 128.336i 0.510998 + 0.885074i
\(146\) −3.01367 + 1.65626i −0.0206416 + 0.0113443i
\(147\) −210.031 + 68.0134i −1.42878 + 0.462676i
\(148\) −59.6300 37.8644i −0.402906 0.255841i
\(149\) 20.6792 11.9391i 0.138786 0.0801284i −0.428999 0.903305i \(-0.641134\pi\)
0.567785 + 0.823177i \(0.307800\pi\)
\(150\) 4.58465 217.500i 0.0305643 1.45000i
\(151\) 158.916 + 91.7504i 1.05243 + 0.607619i 0.923328 0.384013i \(-0.125458\pi\)
0.129099 + 0.991632i \(0.458792\pi\)
\(152\) 116.229 57.6395i 0.764668 0.379208i
\(153\) −37.4044 −0.244474
\(154\) 29.8921 + 219.239i 0.194104 + 1.42363i
\(155\) −191.839 −1.23767
\(156\) 2.20263 52.2241i 0.0141194 0.334770i
\(157\) 143.703 + 82.9671i 0.915307 + 0.528453i 0.882135 0.470997i \(-0.156106\pi\)
0.0331720 + 0.999450i \(0.489439\pi\)
\(158\) −145.268 3.06209i −0.919420 0.0193803i
\(159\) 175.568 101.364i 1.10420 0.637512i
\(160\) 131.975 181.396i 0.824843 1.13373i
\(161\) −20.7735 131.580i −0.129028 0.817267i
\(162\) 96.4336 52.9983i 0.595269 0.327150i
\(163\) 5.05216 + 8.75059i 0.0309948 + 0.0536846i 0.881107 0.472917i \(-0.156799\pi\)
−0.850112 + 0.526602i \(0.823466\pi\)
\(164\) 2.10196 + 4.02327i 0.0128169 + 0.0245321i
\(165\) −432.306 249.592i −2.62003 1.51268i
\(166\) −174.620 105.785i −1.05193 0.637258i
\(167\) 285.049i 1.70688i 0.521190 + 0.853441i \(0.325488\pi\)
−0.521190 + 0.853441i \(0.674512\pi\)
\(168\) 205.792 145.973i 1.22495 0.868890i
\(169\) 160.588 0.950223
\(170\) −24.0478 + 39.6959i −0.141458 + 0.233505i
\(171\) −91.6213 + 158.693i −0.535797 + 0.928028i
\(172\) 92.9985 + 178.004i 0.540689 + 1.03491i
\(173\) 84.3266 48.6860i 0.487437 0.281422i −0.236074 0.971735i \(-0.575861\pi\)
0.723511 + 0.690313i \(0.242527\pi\)
\(174\) −91.7445 166.935i −0.527267 0.959395i
\(175\) −106.289 131.389i −0.607366 0.750794i
\(176\) −107.549 228.867i −0.611076 1.30038i
\(177\) 5.37230 + 9.30510i 0.0303520 + 0.0525712i
\(178\) −2.58677 + 122.719i −0.0145324 + 0.689430i
\(179\) 150.908 261.380i 0.843061 1.46022i −0.0442343 0.999021i \(-0.514085\pi\)
0.887295 0.461203i \(-0.152582\pi\)
\(180\) −13.3514 + 316.561i −0.0741745 + 1.75867i
\(181\) 60.4535i 0.333997i 0.985957 + 0.166999i \(0.0534076\pi\)
−0.985957 + 0.166999i \(0.946592\pi\)
\(182\) −24.8672 32.1002i −0.136633 0.176375i
\(183\) 448.273i 2.44958i
\(184\) 67.6372 + 136.390i 0.367593 + 0.741248i
\(185\) 61.8964 107.208i 0.334575 0.579501i
\(186\) 246.537 + 5.19673i 1.32547 + 0.0279394i
\(187\) 26.1595 + 45.3096i 0.139890 + 0.242297i
\(188\) −2.56425 1.62827i −0.0136396 0.00866100i
\(189\) −26.0216 + 67.6884i −0.137680 + 0.358140i
\(190\) 109.510 + 199.260i 0.576367 + 1.04874i
\(191\) 63.5769 36.7062i 0.332864 0.192179i −0.324248 0.945972i \(-0.605111\pi\)
0.657112 + 0.753793i \(0.271778\pi\)
\(192\) −174.518 + 229.542i −0.908949 + 1.19553i
\(193\) −32.5446 + 56.3690i −0.168625 + 0.292067i −0.937937 0.346807i \(-0.887266\pi\)
0.769312 + 0.638874i \(0.220599\pi\)
\(194\) −175.893 106.556i −0.906665 0.549259i
\(195\) 91.6065 0.469777
\(196\) 48.9811 189.781i 0.249904 0.968271i
\(197\) 348.324i 1.76814i −0.467355 0.884070i \(-0.654793\pi\)
0.467355 0.884070i \(-0.345207\pi\)
\(198\) 305.485 + 185.063i 1.54285 + 0.934664i
\(199\) −225.265 130.057i −1.13198 0.653551i −0.187550 0.982255i \(-0.560055\pi\)
−0.944433 + 0.328704i \(0.893388\pi\)
\(200\) 160.829 + 106.946i 0.804145 + 0.534731i
\(201\) −149.780 259.427i −0.745176 1.29068i
\(202\) −175.354 319.068i −0.868090 1.57954i
\(203\) −138.120 53.0976i −0.680392 0.261564i
\(204\) 31.9798 50.3627i 0.156764 0.246876i
\(205\) −6.88946 + 3.97763i −0.0336071 + 0.0194031i
\(206\) 91.6869 + 1.93266i 0.445082 + 0.00938182i
\(207\) −186.218 107.513i −0.899605 0.519387i
\(208\) 38.0925 + 26.5047i 0.183137 + 0.127427i
\(209\) 256.308 1.22636
\(210\) 270.796 + 349.560i 1.28950 + 1.66457i
\(211\) 4.73025 0.0224182 0.0112091 0.999937i \(-0.496432\pi\)
0.0112091 + 0.999937i \(0.496432\pi\)
\(212\) −7.58435 + 179.824i −0.0357753 + 0.848228i
\(213\) 173.390 + 100.106i 0.814035 + 0.469983i
\(214\) −3.11445 + 147.752i −0.0145535 + 0.690431i
\(215\) −304.815 + 175.985i −1.41774 + 0.818534i
\(216\) 5.23663 82.7120i 0.0242437 0.382926i
\(217\) 148.930 120.479i 0.686314 0.555204i
\(218\) 116.484 + 211.949i 0.534328 + 0.972243i
\(219\) 3.87337 + 6.70888i 0.0176866 + 0.0306342i
\(220\) 392.801 205.220i 1.78546 0.932816i
\(221\) −8.31489 4.80060i −0.0376239 0.0217222i
\(222\) −82.4488 + 136.099i −0.371391 + 0.613057i
\(223\) 109.315i 0.490200i −0.969498 0.245100i \(-0.921179\pi\)
0.969498 0.245100i \(-0.0788209\pi\)
\(224\) 11.4651 + 223.706i 0.0511837 + 0.998689i
\(225\) −272.796 −1.21243
\(226\) −167.238 101.313i −0.739992 0.448288i
\(227\) 60.7205 105.171i 0.267491 0.463308i −0.700722 0.713434i \(-0.747139\pi\)
0.968213 + 0.250126i \(0.0804721\pi\)
\(228\) −135.336 259.040i −0.593579 1.13614i
\(229\) −124.878 + 72.0983i −0.545319 + 0.314840i −0.747232 0.664564i \(-0.768617\pi\)
0.201913 + 0.979403i \(0.435284\pi\)
\(230\) −233.822 + 128.504i −1.01662 + 0.558715i
\(231\) 492.360 77.7325i 2.13143 0.336504i
\(232\) 168.775 + 10.6854i 0.727480 + 0.0460579i
\(233\) −97.1309 168.236i −0.416871 0.722042i 0.578752 0.815504i \(-0.303540\pi\)
−0.995623 + 0.0934621i \(0.970207\pi\)
\(234\) −65.5305 1.38131i −0.280045 0.00590302i
\(235\) 2.66171 4.61021i 0.0113264 0.0196179i
\(236\) −9.53067 0.401970i −0.0403842 0.00170326i
\(237\) 327.325i 1.38112i
\(238\) −6.26089 45.9196i −0.0263062 0.192939i
\(239\) 315.567i 1.32036i −0.751106 0.660181i \(-0.770479\pi\)
0.751106 0.660181i \(-0.229521\pi\)
\(240\) −414.814 288.627i −1.72839 1.20261i
\(241\) −181.356 + 314.117i −0.752513 + 1.30339i 0.194089 + 0.980984i \(0.437825\pi\)
−0.946601 + 0.322406i \(0.895508\pi\)
\(242\) 5.42841 257.529i 0.0224314 1.06417i
\(243\) −170.562 295.421i −0.701900 1.21573i
\(244\) −335.970 213.337i −1.37693 0.874333i
\(245\) 335.922 + 71.7499i 1.37111 + 0.292857i
\(246\) 8.96158 4.92513i 0.0364292 0.0200209i
\(247\) −40.7342 + 23.5179i −0.164916 + 0.0952143i
\(248\) −121.224 + 182.301i −0.488807 + 0.735083i
\(249\) −229.963 + 398.307i −0.923545 + 1.59963i
\(250\) 6.22847 10.2814i 0.0249139 0.0411254i
\(251\) −9.04237 −0.0360254 −0.0180127 0.999838i \(-0.505734\pi\)
−0.0180127 + 0.999838i \(0.505734\pi\)
\(252\) −188.442 254.140i −0.747786 1.00849i
\(253\) 300.765i 1.18880i
\(254\) 181.401 299.440i 0.714178 1.17890i
\(255\) 90.5463 + 52.2769i 0.355083 + 0.205007i
\(256\) −88.9814 240.038i −0.347584 0.937649i
\(257\) 185.539 + 321.363i 0.721942 + 1.25044i 0.960221 + 0.279243i \(0.0900834\pi\)
−0.238279 + 0.971197i \(0.576583\pi\)
\(258\) 396.492 217.906i 1.53679 0.844595i
\(259\) 19.2769 + 122.101i 0.0744283 + 0.471432i
\(260\) −43.5963 + 68.6568i −0.167678 + 0.264065i
\(261\) −206.858 + 119.430i −0.792559 + 0.457584i
\(262\) −0.363313 + 17.2359i −0.00138669 + 0.0657858i
\(263\) −410.392 236.940i −1.56043 0.900912i −0.997214 0.0745993i \(-0.976232\pi\)
−0.563212 0.826313i \(-0.690434\pi\)
\(264\) −510.358 + 253.092i −1.93317 + 0.958683i
\(265\) −315.431 −1.19030
\(266\) −210.155 85.9164i −0.790057 0.322994i
\(267\) 276.515 1.03563
\(268\) 265.716 + 11.2070i 0.991478 + 0.0418170i
\(269\) 81.5026 + 47.0556i 0.302984 + 0.174928i 0.643782 0.765209i \(-0.277364\pi\)
−0.340799 + 0.940136i \(0.610697\pi\)
\(270\) 145.214 + 3.06096i 0.537831 + 0.0113369i
\(271\) 137.021 79.1093i 0.505614 0.291916i −0.225415 0.974263i \(-0.572374\pi\)
0.731029 + 0.682347i \(0.239041\pi\)
\(272\) 22.5262 + 47.9361i 0.0828168 + 0.176236i
\(273\) −71.1167 + 57.5309i −0.260501 + 0.210736i
\(274\) −448.849 + 246.680i −1.63814 + 0.900292i
\(275\) 190.785 + 330.449i 0.693764 + 1.20163i
\(276\) 303.971 158.810i 1.10134 0.575399i
\(277\) 205.022 + 118.370i 0.740153 + 0.427328i 0.822125 0.569307i \(-0.192788\pi\)
−0.0819717 + 0.996635i \(0.526122\pi\)
\(278\) 374.335 + 226.773i 1.34653 + 0.815729i
\(279\) 309.216i 1.10830i
\(280\) −390.861 + 36.5962i −1.39593 + 0.130701i
\(281\) 241.948 0.861025 0.430512 0.902585i \(-0.358333\pi\)
0.430512 + 0.902585i \(0.358333\pi\)
\(282\) −3.54552 + 5.85260i −0.0125728 + 0.0207539i
\(283\) 116.737 202.194i 0.412498 0.714468i −0.582664 0.812713i \(-0.697990\pi\)
0.995162 + 0.0982453i \(0.0313230\pi\)
\(284\) −157.545 + 82.3096i −0.554736 + 0.289823i
\(285\) 443.582 256.102i 1.55643 0.898604i
\(286\) 44.1567 + 80.3459i 0.154394 + 0.280930i
\(287\) 2.85044 7.41469i 0.00993186 0.0258351i
\(288\) 292.384 + 212.724i 1.01522 + 0.738624i
\(289\) 139.021 + 240.791i 0.481041 + 0.833188i
\(290\) −6.24594 + 296.313i −0.0215377 + 1.02177i
\(291\) −231.640 + 401.212i −0.796014 + 1.37874i
\(292\) −6.87151 0.289816i −0.0235326 0.000992521i
\(293\) 216.492i 0.738882i −0.929254 0.369441i \(-0.879549\pi\)
0.929254 0.369441i \(-0.120451\pi\)
\(294\) −429.758 101.307i −1.46176 0.344583i
\(295\) 16.7178i 0.0566704i
\(296\) −62.7645 126.564i −0.212042 0.427581i
\(297\) 81.8667 141.797i 0.275645 0.477432i
\(298\) 47.7459 + 1.00643i 0.160221 + 0.00337728i
\(299\) −27.5971 47.7996i −0.0922981 0.159865i
\(300\) 233.233 367.303i 0.777444 1.22434i
\(301\) 126.114 328.053i 0.418983 1.08988i
\(302\) 176.762 + 321.629i 0.585305 + 1.06500i
\(303\) −710.292 + 410.087i −2.34420 + 1.35342i
\(304\) 258.552 + 21.8485i 0.850500 + 0.0718700i
\(305\) 348.739 604.034i 1.14341 1.98044i
\(306\) −63.9838 38.7615i −0.209097 0.126671i
\(307\) 173.487 0.565106 0.282553 0.959252i \(-0.408819\pi\)
0.282553 + 0.959252i \(0.408819\pi\)
\(308\) −176.060 + 406.006i −0.571623 + 1.31820i
\(309\) 206.593i 0.668585i
\(310\) −328.159 198.799i −1.05858 0.641287i
\(311\) 100.205 + 57.8536i 0.322204 + 0.186024i 0.652374 0.757897i \(-0.273773\pi\)
−0.330171 + 0.943921i \(0.607106\pi\)
\(312\) 57.8866 87.0517i 0.185534 0.279012i
\(313\) −105.261 182.317i −0.336297 0.582483i 0.647436 0.762120i \(-0.275841\pi\)
−0.983733 + 0.179637i \(0.942508\pi\)
\(314\) 159.840 + 290.839i 0.509046 + 0.926240i
\(315\) 431.080 348.728i 1.36851 1.10707i
\(316\) −245.322 155.777i −0.776335 0.492964i
\(317\) −302.997 + 174.936i −0.955828 + 0.551847i −0.894886 0.446294i \(-0.852744\pi\)
−0.0609413 + 0.998141i \(0.519410\pi\)
\(318\) 405.368 + 8.54469i 1.27474 + 0.0268701i
\(319\) 289.340 + 167.051i 0.907022 + 0.523669i
\(320\) 413.733 173.532i 1.29291 0.542289i
\(321\) 332.921 1.03714
\(322\) 100.819 246.607i 0.313102 0.765860i
\(323\) −53.6837 −0.166203
\(324\) 219.880 + 9.27374i 0.678641 + 0.0286227i
\(325\) −60.6417 35.0115i −0.186590 0.107728i
\(326\) −0.425880 + 20.2041i −0.00130638 + 0.0619759i
\(327\) 471.830 272.411i 1.44291 0.833062i
\(328\) −0.573628 + 9.06039i −0.00174887 + 0.0276231i
\(329\) 0.828958 + 5.25065i 0.00251963 + 0.0159594i
\(330\) −480.852 874.939i −1.45713 2.65133i
\(331\) −107.055 185.425i −0.323430 0.560196i 0.657764 0.753224i \(-0.271503\pi\)
−0.981193 + 0.193028i \(0.938169\pi\)
\(332\) −189.080 361.909i −0.569519 1.09009i
\(333\) 172.803 + 99.7677i 0.518927 + 0.299603i
\(334\) −295.391 + 487.603i −0.884403 + 1.45989i
\(335\) 466.093i 1.39132i
\(336\) 503.296 36.4426i 1.49791 0.108460i
\(337\) −437.275 −1.29755 −0.648777 0.760979i \(-0.724719\pi\)
−0.648777 + 0.760979i \(0.724719\pi\)
\(338\) 274.700 + 166.414i 0.812722 + 0.492348i
\(339\) −220.242 + 381.470i −0.649682 + 1.12528i
\(340\) −82.2720 + 42.9832i −0.241976 + 0.126421i
\(341\) −374.566 + 216.256i −1.09844 + 0.634182i
\(342\) −321.177 + 176.513i −0.939113 + 0.516121i
\(343\) −305.846 + 155.265i −0.891680 + 0.452667i
\(344\) −25.3794 + 400.864i −0.0737772 + 1.16530i
\(345\) 300.523 + 520.522i 0.871082 + 1.50876i
\(346\) 194.701 + 4.10407i 0.562719 + 0.0118615i
\(347\) −188.694 + 326.827i −0.543786 + 0.941865i 0.454896 + 0.890545i \(0.349676\pi\)
−0.998682 + 0.0513208i \(0.983657\pi\)
\(348\) 16.0536 380.630i 0.0461311 1.09376i
\(349\) 211.146i 0.605003i −0.953149 0.302502i \(-0.902178\pi\)
0.953149 0.302502i \(-0.0978218\pi\)
\(350\) −45.6615 334.898i −0.130462 0.956852i
\(351\) 30.0472i 0.0856044i
\(352\) 53.1972 502.949i 0.151128 1.42883i
\(353\) −149.375 + 258.725i −0.423159 + 0.732933i −0.996247 0.0865610i \(-0.972412\pi\)
0.573087 + 0.819494i \(0.305746\pi\)
\(354\) −0.452868 + 21.4844i −0.00127929 + 0.0606905i
\(355\) −155.758 269.781i −0.438755 0.759946i
\(356\) −131.596 + 207.241i −0.369651 + 0.582137i
\(357\) −103.125 + 16.2810i −0.288865 + 0.0456051i
\(358\) 529.005 290.732i 1.47767 0.812100i
\(359\) 191.258 110.423i 0.532751 0.307584i −0.209385 0.977833i \(-0.567146\pi\)
0.742136 + 0.670249i \(0.233813\pi\)
\(360\) −350.884 + 527.670i −0.974678 + 1.46575i
\(361\) 49.0031 84.8758i 0.135743 0.235113i
\(362\) −62.6468 + 103.411i −0.173057 + 0.285667i
\(363\) −580.274 −1.59855
\(364\) −9.27295 80.6797i −0.0254751 0.221648i
\(365\) 12.0533i 0.0330229i
\(366\) −464.537 + 766.813i −1.26923 + 2.09512i
\(367\) 186.496 + 107.674i 0.508165 + 0.293389i 0.732079 0.681220i \(-0.238550\pi\)
−0.223914 + 0.974609i \(0.571884\pi\)
\(368\) −25.6381 + 303.398i −0.0696688 + 0.824451i
\(369\) −6.41135 11.1048i −0.0173749 0.0300943i
\(370\) 216.977 119.247i 0.586424 0.322288i
\(371\) 244.878 198.097i 0.660048 0.533955i
\(372\) 416.340 + 264.371i 1.11919 + 0.710675i
\(373\) 193.884 111.939i 0.519796 0.300104i −0.217055 0.976159i \(-0.569645\pi\)
0.736851 + 0.676055i \(0.236312\pi\)
\(374\) −2.20516 + 104.615i −0.00589615 + 0.279719i
\(375\) −23.4518 13.5399i −0.0625381 0.0361064i
\(376\) −2.69904 5.44258i −0.00717830 0.0144749i
\(377\) −61.3118 −0.162631
\(378\) −114.656 + 88.8217i −0.303324 + 0.234978i
\(379\) −507.051 −1.33787 −0.668933 0.743323i \(-0.733249\pi\)
−0.668933 + 0.743323i \(0.733249\pi\)
\(380\) −19.1622 + 454.335i −0.0504269 + 1.19562i
\(381\) −683.023 394.343i −1.79271 1.03502i
\(382\) 146.792 + 3.09421i 0.384272 + 0.00810002i
\(383\) 128.681 74.2939i 0.335981 0.193979i −0.322512 0.946565i \(-0.604527\pi\)
0.658493 + 0.752586i \(0.271194\pi\)
\(384\) −536.399 + 211.803i −1.39687 + 0.551571i
\(385\) −723.913 278.295i −1.88029 0.722845i
\(386\) −114.085 + 62.6990i −0.295556 + 0.162433i
\(387\) −283.661 491.316i −0.732975 1.26955i
\(388\) −190.459 364.549i −0.490874 0.939559i
\(389\) −137.107 79.1586i −0.352459 0.203493i 0.313309 0.949651i \(-0.398563\pi\)
−0.665768 + 0.746159i \(0.731896\pi\)
\(390\) 156.701 + 94.9299i 0.401798 + 0.243410i
\(391\) 62.9952i 0.161113i
\(392\) 280.453 273.880i 0.715441 0.698673i
\(393\) 38.8366 0.0988208
\(394\) 360.960 595.839i 0.916143 1.51228i
\(395\) 254.646 441.060i 0.644673 1.11661i
\(396\) 330.783 + 633.136i 0.835311 + 1.59883i
\(397\) −240.531 + 138.871i −0.605872 + 0.349801i −0.771348 0.636413i \(-0.780417\pi\)
0.165476 + 0.986214i \(0.447084\pi\)
\(398\) −250.561 455.911i −0.629550 1.14550i
\(399\) −183.527 + 477.399i −0.459968 + 1.19649i
\(400\) 164.287 + 349.605i 0.410716 + 0.874012i
\(401\) −311.899 540.225i −0.777803 1.34719i −0.933205 0.359344i \(-0.883001\pi\)
0.155402 0.987851i \(-0.450333\pi\)
\(402\) 12.6260 598.988i 0.0314079 1.49002i
\(403\) 39.6857 68.7377i 0.0984757 0.170565i
\(404\) 30.6838 727.510i 0.0759500 1.80077i
\(405\) 385.691i 0.952324i
\(406\) −181.242 233.959i −0.446410 0.576253i
\(407\) 279.098i 0.685744i
\(408\) 106.894 53.0101i 0.261996 0.129927i
\(409\) 247.569 428.801i 0.605302 1.04841i −0.386701 0.922205i \(-0.626386\pi\)
0.992004 0.126209i \(-0.0402810\pi\)
\(410\) −15.9070 0.335301i −0.0387976 0.000817808i
\(411\) 576.892 + 999.206i 1.40363 + 2.43116i
\(412\) 154.836 + 98.3193i 0.375816 + 0.238639i
\(413\) 10.4991 + 12.9785i 0.0254217 + 0.0314249i
\(414\) −207.130 376.885i −0.500313 0.910351i
\(415\) 619.735 357.804i 1.49334 0.862179i
\(416\) 37.6943 + 84.8132i 0.0906114 + 0.203878i
\(417\) 492.975 853.858i 1.18219 2.04762i
\(418\) 438.439 + 265.607i 1.04890 + 0.635424i
\(419\) 112.631 0.268810 0.134405 0.990927i \(-0.457088\pi\)
0.134405 + 0.990927i \(0.457088\pi\)
\(420\) 100.979 + 878.574i 0.240427 + 2.09184i
\(421\) 821.936i 1.95234i 0.217003 + 0.976171i \(0.430372\pi\)
−0.217003 + 0.976171i \(0.569628\pi\)
\(422\) 8.09152 + 4.90186i 0.0191742 + 0.0116158i
\(423\) 7.43097 + 4.29027i 0.0175673 + 0.0101425i
\(424\) −199.322 + 299.747i −0.470099 + 0.706950i
\(425\) −39.9599 69.2125i −0.0940232 0.162853i
\(426\) 192.860 + 350.921i 0.452724 + 0.823759i
\(427\) 108.611 + 687.945i 0.254358 + 1.61111i
\(428\) −158.440 + 249.516i −0.370187 + 0.582982i
\(429\) 178.862 103.266i 0.416928 0.240713i
\(430\) −703.783 14.8349i −1.63671 0.0344999i
\(431\) −289.087 166.904i −0.670735 0.387249i 0.125620 0.992078i \(-0.459908\pi\)
−0.796355 + 0.604830i \(0.793241\pi\)
\(432\) 94.6705 136.060i 0.219145 0.314953i
\(433\) 604.681 1.39649 0.698246 0.715858i \(-0.253964\pi\)
0.698246 + 0.715858i \(0.253964\pi\)
\(434\) 379.609 51.7576i 0.874675 0.119257i
\(435\) 667.664 1.53486
\(436\) −20.3825 + 483.268i −0.0467489 + 1.10841i
\(437\) −267.265 154.305i −0.611589 0.353101i
\(438\) −0.326513 + 15.4901i −0.000745463 + 0.0353654i
\(439\) −416.657 + 240.557i −0.949105 + 0.547966i −0.892803 0.450448i \(-0.851264\pi\)
−0.0563019 + 0.998414i \(0.517931\pi\)
\(440\) 884.587 + 56.0046i 2.01042 + 0.127283i
\(441\) −115.650 + 541.455i −0.262245 + 1.22779i
\(442\) −9.24861 16.8284i −0.0209245 0.0380733i
\(443\) −92.3599 159.972i −0.208487 0.361111i 0.742751 0.669568i \(-0.233521\pi\)
−0.951238 + 0.308457i \(0.900187\pi\)
\(444\) −282.073 + 147.369i −0.635299 + 0.331913i
\(445\) −372.595 215.118i −0.837291 0.483410i
\(446\) 113.281 186.993i 0.253992 0.419266i
\(447\) 107.583i 0.240678i
\(448\) −212.210 + 394.551i −0.473683 + 0.880695i
\(449\) 115.894 0.258115 0.129057 0.991637i \(-0.458805\pi\)
0.129057 + 0.991637i \(0.458805\pi\)
\(450\) −466.643 282.693i −1.03698 0.628206i
\(451\) −8.96779 + 15.5327i −0.0198842 + 0.0344405i
\(452\) −181.088 346.611i −0.400636 0.766839i
\(453\) 715.995 413.380i 1.58056 0.912538i
\(454\) 212.854 116.981i 0.468842 0.257668i
\(455\) 140.584 22.1951i 0.308977 0.0487804i
\(456\) 36.9333 583.358i 0.0809941 1.27929i
\(457\) 79.2311 + 137.232i 0.173372 + 0.300290i 0.939597 0.342283i \(-0.111200\pi\)
−0.766224 + 0.642573i \(0.777867\pi\)
\(458\) −288.329 6.07765i −0.629540 0.0132700i
\(459\) −17.1470 + 29.6994i −0.0373572 + 0.0647046i
\(460\) −533.140 22.4859i −1.15900 0.0488825i
\(461\) 42.3829i 0.0919368i 0.998943 + 0.0459684i \(0.0146374\pi\)
−0.998943 + 0.0459684i \(0.985363\pi\)
\(462\) 922.780 + 377.254i 1.99736 + 0.816568i
\(463\) 390.038i 0.842416i 0.906964 + 0.421208i \(0.138394\pi\)
−0.906964 + 0.421208i \(0.861606\pi\)
\(464\) 277.633 + 193.177i 0.598347 + 0.416330i
\(465\) −432.164 + 748.530i −0.929385 + 1.60974i
\(466\) 8.18781 388.437i 0.0175704 0.833557i
\(467\) −19.1723 33.2074i −0.0410541 0.0711078i 0.844768 0.535132i \(-0.179738\pi\)
−0.885822 + 0.464025i \(0.846405\pi\)
\(468\) −110.664 70.2707i −0.236463 0.150151i
\(469\) −292.717 361.841i −0.624130 0.771517i
\(470\) 9.33057 5.12792i 0.0198523 0.0109105i
\(471\) 647.452 373.807i 1.37463 0.793644i
\(472\) −15.8865 10.5640i −0.0336579 0.0223815i
\(473\) −396.768 + 687.222i −0.838832 + 1.45290i
\(474\) −339.200 + 559.919i −0.715612 + 1.18126i
\(475\) −391.523 −0.824259
\(476\) 36.8757 85.0377i 0.0774700 0.178651i
\(477\) 508.427i 1.06588i
\(478\) 327.015 539.806i 0.684132 1.12930i
\(479\) 561.326 + 324.082i 1.17187 + 0.676580i 0.954120 0.299424i \(-0.0967945\pi\)
0.217751 + 0.976004i \(0.430128\pi\)
\(480\) −410.478 923.587i −0.855163 1.92414i
\(481\) 25.6090 + 44.3561i 0.0532412 + 0.0922164i
\(482\) −635.738 + 349.391i −1.31896 + 0.724878i
\(483\) −560.204 215.360i −1.15984 0.445881i
\(484\) 276.157 434.901i 0.570573 0.898555i
\(485\) 624.255 360.414i 1.28712 0.743121i
\(486\) 14.3778 682.095i 0.0295839 1.40349i
\(487\) 303.304 + 175.113i 0.622800 + 0.359574i 0.777959 0.628316i \(-0.216255\pi\)
−0.155158 + 0.987890i \(0.549589\pi\)
\(488\) −353.630 713.092i −0.724653 1.46125i
\(489\) 45.5248 0.0930977
\(490\) 500.272 + 470.844i 1.02096 + 0.960905i
\(491\) −453.547 −0.923722 −0.461861 0.886952i \(-0.652818\pi\)
−0.461861 + 0.886952i \(0.652818\pi\)
\(492\) 20.4334 + 0.861809i 0.0415313 + 0.00175164i
\(493\) −60.6022 34.9887i −0.122925 0.0709710i
\(494\) −94.0508 1.98248i −0.190386 0.00401312i
\(495\) −1084.19 + 625.955i −2.19027 + 1.26455i
\(496\) −396.279 + 186.220i −0.798950 + 0.375443i
\(497\) 290.348 + 111.619i 0.584200 + 0.224585i
\(498\) −806.130 + 443.035i −1.61874 + 0.889629i
\(499\) 264.783 + 458.617i 0.530626 + 0.919072i 0.999361 + 0.0357329i \(0.0113766\pi\)
−0.468735 + 0.883339i \(0.655290\pi\)
\(500\) 21.3087 11.1328i 0.0426175 0.0222656i
\(501\) 1112.22 + 642.142i 2.22000 + 1.28172i
\(502\) −15.4678 9.37042i −0.0308124 0.0186662i
\(503\) 321.597i 0.639358i −0.947526 0.319679i \(-0.896425\pi\)
0.947526 0.319679i \(-0.103575\pi\)
\(504\) −58.9875 630.008i −0.117039 1.25002i
\(505\) 1276.13 2.52699
\(506\) −311.677 + 514.487i −0.615962 + 1.01677i
\(507\) 361.762 626.591i 0.713536 1.23588i
\(508\) 620.607 324.237i 1.22167 0.638262i
\(509\) −623.464 + 359.957i −1.22488 + 0.707185i −0.965954 0.258712i \(-0.916702\pi\)
−0.258926 + 0.965897i \(0.583369\pi\)
\(510\) 100.714 + 183.256i 0.197479 + 0.359325i
\(511\) 7.56977 + 9.35735i 0.0148136 + 0.0183118i
\(512\) 96.5357 502.817i 0.188546 0.982064i
\(513\) 84.0021 + 145.496i 0.163747 + 0.283618i
\(514\) −15.6403 + 741.991i −0.0304286 + 1.44356i
\(515\) −160.721 + 278.377i −0.312080 + 0.540538i
\(516\) 904.048 + 38.1295i 1.75203 + 0.0738944i
\(517\) 12.0019i 0.0232146i
\(518\) −93.5556 + 228.841i −0.180609 + 0.441778i
\(519\) 438.708i 0.845294i
\(520\) −145.723 + 72.2658i −0.280237 + 0.138973i
\(521\) −206.990 + 358.517i −0.397294 + 0.688133i −0.993391 0.114779i \(-0.963384\pi\)
0.596097 + 0.802912i \(0.296717\pi\)
\(522\) −477.612 10.0675i −0.914965 0.0192864i
\(523\) 174.324 + 301.938i 0.333316 + 0.577320i 0.983160 0.182747i \(-0.0584991\pi\)
−0.649844 + 0.760068i \(0.725166\pi\)
\(524\) −18.4827 + 29.1071i −0.0352723 + 0.0555478i
\(525\) −752.103 + 118.740i −1.43258 + 0.226171i
\(526\) −456.477 830.588i −0.867827 1.57906i
\(527\) 78.4528 45.2947i 0.148867 0.0859483i
\(528\) −1135.29 95.9355i −2.15017 0.181696i
\(529\) −83.4303 + 144.506i −0.157713 + 0.273167i
\(530\) −539.573 326.874i −1.01806 0.616744i
\(531\) 26.9466 0.0507468
\(532\) −270.456 364.747i −0.508376 0.685615i
\(533\) 3.29141i 0.00617525i
\(534\) 473.004 + 286.546i 0.885774 + 0.536604i
\(535\) −448.601 259.000i −0.838507 0.484112i
\(536\) 442.918 + 294.527i 0.826340 + 0.549490i
\(537\) −679.912 1177.64i −1.26613 2.19300i
\(538\) 90.6550 + 164.952i 0.168504 + 0.306603i
\(539\) 736.770 238.585i 1.36692 0.442644i
\(540\) 245.231 + 155.719i 0.454131 + 0.288368i
\(541\) 202.840 117.110i 0.374936 0.216469i −0.300677 0.953726i \(-0.597213\pi\)
0.675613 + 0.737257i \(0.263879\pi\)
\(542\) 316.367 + 6.66865i 0.583703 + 0.0123038i
\(543\) 235.881 + 136.186i 0.434404 + 0.250803i
\(544\) −11.1421 + 105.343i −0.0204819 + 0.193644i
\(545\) −847.701 −1.55542
\(546\) −181.270 + 24.7152i −0.331996 + 0.0452659i
\(547\) −577.082 −1.05499 −0.527497 0.849557i \(-0.676870\pi\)
−0.527497 + 0.849557i \(0.676870\pi\)
\(548\) −1023.43 43.1645i −1.86757 0.0787674i
\(549\) 973.613 + 562.116i 1.77343 + 1.02389i
\(550\) −16.0825 + 762.971i −0.0292410 + 1.38722i
\(551\) −296.887 + 171.408i −0.538815 + 0.311085i
\(552\) 684.542 + 43.3395i 1.24011 + 0.0785135i
\(553\) 79.3065 + 502.331i 0.143411 + 0.908374i
\(554\) 228.046 + 414.943i 0.411635 + 0.748995i
\(555\) −278.873 483.022i −0.502474 0.870311i
\(556\) 405.334 + 775.831i 0.729019 + 1.39538i
\(557\) −36.7252 21.2033i −0.0659339 0.0380670i 0.466671 0.884431i \(-0.345453\pi\)
−0.532605 + 0.846364i \(0.678787\pi\)
\(558\) 320.434 528.942i 0.574255 0.947925i
\(559\) 145.624i 0.260508i
\(560\) −706.527 342.440i −1.26165 0.611499i
\(561\) 235.722 0.420182
\(562\) 413.874 + 250.726i 0.736431 + 0.446131i
\(563\) 123.648 214.165i 0.219624 0.380399i −0.735069 0.677992i \(-0.762850\pi\)
0.954693 + 0.297593i \(0.0961837\pi\)
\(564\) −12.1299 + 6.33727i −0.0215068 + 0.0112363i
\(565\) 593.539 342.680i 1.05051 0.606513i
\(566\) 409.219 224.900i 0.723002 0.397350i
\(567\) −242.223 299.423i −0.427201 0.528083i
\(568\) −354.791 22.4624i −0.624632 0.0395464i
\(569\) −312.737 541.677i −0.549626 0.951980i −0.998300 0.0582847i \(-0.981437\pi\)
0.448674 0.893696i \(-0.351896\pi\)
\(570\) 1024.18 + 21.5886i 1.79681 + 0.0378747i
\(571\) 291.287 504.524i 0.510135 0.883579i −0.489796 0.871837i \(-0.662929\pi\)
0.999931 0.0117423i \(-0.00373777\pi\)
\(572\) −7.72663 + 183.198i −0.0135081 + 0.320276i
\(573\) 330.758i 0.577239i
\(574\) 12.5596 9.72965i 0.0218809 0.0169506i
\(575\) 459.433i 0.799014i
\(576\) 279.708 + 666.875i 0.485604 + 1.15777i
\(577\) 198.380 343.605i 0.343814 0.595503i −0.641324 0.767270i \(-0.721615\pi\)
0.985137 + 0.171768i \(0.0549478\pi\)
\(578\) −11.7190 + 555.960i −0.0202751 + 0.961869i
\(579\) 146.629 + 253.969i 0.253246 + 0.438634i
\(580\) −317.747 + 500.398i −0.547840 + 0.862755i
\(581\) −256.409 + 666.981i −0.441324 + 1.14799i
\(582\) −812.009 + 446.267i −1.39521 + 0.766781i
\(583\) −615.879 + 355.578i −1.05640 + 0.609910i
\(584\) −11.4540 7.61657i −0.0196131 0.0130421i
\(585\) 114.871 198.962i 0.196360 0.340106i
\(586\) 224.347 370.330i 0.382844 0.631963i
\(587\) 355.763 0.606070 0.303035 0.952979i \(-0.402000\pi\)
0.303035 + 0.952979i \(0.402000\pi\)
\(588\) −630.157 618.645i −1.07170 1.05212i
\(589\) 443.794i 0.753470i
\(590\) 17.3243 28.5973i 0.0293632 0.0484700i
\(591\) −1359.11 784.682i −2.29968 1.32772i
\(592\) 23.7911 281.541i 0.0401877 0.475576i
\(593\) 89.8611 + 155.644i 0.151536 + 0.262469i 0.931792 0.362991i \(-0.118245\pi\)
−0.780256 + 0.625460i \(0.784911\pi\)
\(594\) 286.982 157.721i 0.483135 0.265523i
\(595\) 151.623 + 58.2888i 0.254829 + 0.0979644i
\(596\) 80.6308 + 51.1997i 0.135287 + 0.0859055i
\(597\) −1014.93 + 585.967i −1.70004 + 0.981520i
\(598\) 2.32635 110.364i 0.00389021 0.184555i
\(599\) −35.2310 20.3406i −0.0588163 0.0339576i 0.470303 0.882505i \(-0.344144\pi\)
−0.529120 + 0.848547i \(0.677478\pi\)
\(600\) 779.595 386.610i 1.29932 0.644350i
\(601\) −1020.79 −1.69849 −0.849245 0.527998i \(-0.822943\pi\)
−0.849245 + 0.527998i \(0.822943\pi\)
\(602\) 555.684 430.475i 0.923062 0.715075i
\(603\) −751.272 −1.24589
\(604\) −30.9302 + 733.351i −0.0512089 + 1.21416i
\(605\) 781.901 + 451.431i 1.29240 + 0.746166i
\(606\) −1639.98 34.5690i −2.70625 0.0570446i
\(607\) 273.220 157.744i 0.450116 0.259874i −0.257763 0.966208i \(-0.582986\pi\)
0.707879 + 0.706334i \(0.249652\pi\)
\(608\) 419.636 + 305.306i 0.690190 + 0.502148i
\(609\) −518.327 + 419.308i −0.851111 + 0.688519i
\(610\) 1222.50 671.865i 2.00410 1.10142i
\(611\) 1.10125 + 1.90743i 0.00180238 + 0.00312181i
\(612\) −69.2824 132.610i −0.113207 0.216683i
\(613\) 358.417 + 206.932i 0.584693 + 0.337572i 0.762996 0.646403i \(-0.223728\pi\)
−0.178303 + 0.983976i \(0.557061\pi\)
\(614\) 296.766 + 179.781i 0.483333 + 0.292804i
\(615\) 35.8423i 0.0582802i
\(616\) −721.902 + 512.062i −1.17192 + 0.831270i
\(617\) 139.167 0.225554 0.112777 0.993620i \(-0.464025\pi\)
0.112777 + 0.993620i \(0.464025\pi\)
\(618\) 214.088 353.396i 0.346420 0.571838i
\(619\) −167.006 + 289.264i −0.269800 + 0.467308i −0.968810 0.247804i \(-0.920291\pi\)
0.699010 + 0.715112i \(0.253624\pi\)
\(620\) −355.334 680.128i −0.573120 1.09698i
\(621\) −170.732 + 98.5724i −0.274931 + 0.158732i
\(622\) 111.458 + 202.805i 0.179193 + 0.326053i
\(623\) 424.354 66.9959i 0.681147 0.107538i
\(624\) 189.230 88.9232i 0.303254 0.142505i
\(625\) 322.850 + 559.192i 0.516560 + 0.894707i
\(626\) 8.87314 420.950i 0.0141743 0.672444i
\(627\) 577.396 1000.08i 0.920887 1.59502i
\(628\) −27.9692 + 663.147i −0.0445369 + 1.05597i
\(629\) 58.4569i 0.0929363i
\(630\) 1098.78 149.813i 1.74410 0.237798i
\(631\) 284.343i 0.450623i 0.974287 + 0.225311i \(0.0723399\pi\)
−0.974287 + 0.225311i \(0.927660\pi\)
\(632\) −258.217 520.692i −0.408572 0.823880i
\(633\) 10.6560 18.4568i 0.0168342 0.0291576i
\(634\) −699.587 14.7465i −1.10345 0.0232595i
\(635\) 613.568 + 1062.73i 0.966248 + 1.67359i
\(636\) 684.564 + 434.691i 1.07636 + 0.683476i
\(637\) −95.2007 + 105.521i −0.149452 + 0.165653i
\(638\) 321.832 + 585.593i 0.504438 + 0.917857i
\(639\) 434.846 251.058i 0.680510 0.392893i
\(640\) 887.556 + 131.900i 1.38681 + 0.206093i
\(641\) −32.4545 + 56.2128i −0.0506310 + 0.0876955i −0.890230 0.455511i \(-0.849457\pi\)
0.839599 + 0.543206i \(0.182790\pi\)
\(642\) 569.493 + 345.000i 0.887060 + 0.537382i
\(643\) 683.365 1.06278 0.531388 0.847128i \(-0.321671\pi\)
0.531388 + 0.847128i \(0.321671\pi\)
\(644\) 428.013 317.367i 0.664617 0.492806i
\(645\) 1585.79i 2.45859i
\(646\) −91.8309 55.6313i −0.142153 0.0861166i
\(647\) 1103.61 + 637.171i 1.70574 + 0.984808i 0.939691 + 0.342024i \(0.111112\pi\)
0.766047 + 0.642785i \(0.222221\pi\)
\(648\) 366.514 + 243.720i 0.565608 + 0.376112i
\(649\) −18.8456 32.6415i −0.0290379 0.0502951i
\(650\) −67.4515 122.732i −0.103771 0.188819i
\(651\) −134.592 852.514i −0.206747 1.30954i
\(652\) −21.6656 + 34.1197i −0.0332295 + 0.0523308i
\(653\) −472.891 + 273.024i −0.724182 + 0.418107i −0.816290 0.577642i \(-0.803973\pi\)
0.0921079 + 0.995749i \(0.470640\pi\)
\(654\) 1089.40 + 22.9634i 1.66575 + 0.0351122i
\(655\) −52.3311 30.2134i −0.0798948 0.0461273i
\(656\) −10.3703 + 14.9042i −0.0158084 + 0.0227198i
\(657\) 19.4282 0.0295710
\(658\) −4.02313 + 9.84076i −0.00611419 + 0.0149556i
\(659\) −398.883 −0.605285 −0.302642 0.953104i \(-0.597869\pi\)
−0.302642 + 0.953104i \(0.597869\pi\)
\(660\) 84.1404 1994.96i 0.127485 3.02267i
\(661\) −718.146 414.622i −1.08645 0.627264i −0.153824 0.988098i \(-0.549159\pi\)
−0.932630 + 0.360834i \(0.882492\pi\)
\(662\) 9.02440 428.126i 0.0136320 0.646716i
\(663\) −37.4626 + 21.6290i −0.0565046 + 0.0326230i
\(664\) 51.6002 815.019i 0.0777111 1.22744i
\(665\) 618.695 500.502i 0.930368 0.752635i
\(666\) 192.208 + 349.734i 0.288600 + 0.525126i
\(667\) −201.139 348.383i −0.301557 0.522313i
\(668\) −1010.59 + 527.982i −1.51285 + 0.790393i
\(669\) −426.531 246.258i −0.637565 0.368098i
\(670\) −483.003 + 797.296i −0.720900 + 1.18999i
\(671\) 1572.50i 2.34352i
\(672\) 898.699 + 459.217i 1.33735 + 0.683359i
\(673\) 946.218 1.40597 0.702985 0.711205i \(-0.251850\pi\)
0.702985 + 0.711205i \(0.251850\pi\)
\(674\) −748.000 453.140i −1.10979 0.672314i
\(675\) −125.055 + 216.602i −0.185267 + 0.320892i
\(676\) 297.449 + 569.332i 0.440013 + 0.842207i
\(677\) 987.793 570.303i 1.45907 0.842397i 0.460108 0.887863i \(-0.347811\pi\)
0.998966 + 0.0454660i \(0.0144773\pi\)
\(678\) −772.054 + 424.308i −1.13872 + 0.625823i
\(679\) −258.279 + 671.846i −0.380381 + 0.989463i
\(680\) −185.276 11.7301i −0.272465 0.0172502i
\(681\) −273.575 473.846i −0.401725 0.695809i
\(682\) −864.832 18.2297i −1.26808 0.0267297i
\(683\) −58.7041 + 101.678i −0.0859504 + 0.148870i −0.905796 0.423715i \(-0.860726\pi\)
0.819845 + 0.572585i \(0.194059\pi\)
\(684\) −732.319 30.8866i −1.07064 0.0451559i
\(685\) 1795.20i 2.62073i
\(686\) −684.076 51.3473i −0.997195 0.0748503i
\(687\) 649.675i 0.945670i
\(688\) −458.821 + 659.415i −0.666892 + 0.958453i
\(689\) 65.2530 113.022i 0.0947069 0.164037i
\(690\) −25.3331 + 1201.83i −0.0367147 + 1.74178i
\(691\) −477.961 827.853i −0.691695 1.19805i −0.971282 0.237930i \(-0.923531\pi\)
0.279588 0.960120i \(-0.409802\pi\)
\(692\) 328.801 + 208.785i 0.475145 + 0.301712i
\(693\) 448.570 1166.84i 0.647287 1.68375i
\(694\) −661.463 + 363.529i −0.953116 + 0.523816i
\(695\) −1328.54 + 767.031i −1.91156 + 1.10364i
\(696\) 421.900 634.467i 0.606179 0.911590i
\(697\) 1.87830 3.25331i 0.00269484 0.00466759i
\(698\) 218.806 361.185i 0.313476 0.517457i
\(699\) −875.243 −1.25214
\(700\) 268.940 620.192i 0.384200 0.885989i
\(701\) 824.950i 1.17682i 0.808563 + 0.588410i \(0.200246\pi\)
−0.808563 + 0.588410i \(0.799754\pi\)
\(702\) −31.1373 + 51.3984i −0.0443551 + 0.0732171i
\(703\) 248.010 + 143.189i 0.352789 + 0.203683i
\(704\) 612.195 805.214i 0.869595 1.14377i
\(705\) −11.9923 20.7712i −0.0170103 0.0294627i
\(706\) −523.632 + 287.779i −0.741688 + 0.407619i
\(707\) −990.695 + 801.437i −1.40127 + 1.13357i
\(708\) −23.0386 + 36.2818i −0.0325403 + 0.0512455i
\(709\) −112.576 + 64.9959i −0.158782 + 0.0916726i −0.577285 0.816542i \(-0.695888\pi\)
0.418504 + 0.908215i \(0.362555\pi\)
\(710\) 13.1299 622.893i 0.0184928 0.877315i
\(711\) 710.922 + 410.451i 0.999890 + 0.577287i
\(712\) −439.866 + 218.135i −0.617789 + 0.306369i
\(713\) 520.770 0.730393
\(714\) −193.276 79.0158i −0.270695 0.110666i
\(715\) −321.348 −0.449437
\(716\) 1206.19 + 50.8728i 1.68462 + 0.0710514i
\(717\) −1231.30 710.890i −1.71729 0.991478i
\(718\) 441.593 + 9.30827i 0.615032 + 0.0129642i
\(719\) −438.623 + 253.239i −0.610046 + 0.352210i −0.772984 0.634426i \(-0.781237\pi\)
0.162937 + 0.986636i \(0.447903\pi\)
\(720\) −1147.03 + 539.015i −1.59310 + 0.748631i
\(721\) −50.0547 317.049i −0.0694240 0.439735i
\(722\) 171.779 94.4070i 0.237921 0.130758i
\(723\) 817.094 + 1415.25i 1.13014 + 1.95747i
\(724\) −214.326 + 111.975i −0.296031 + 0.154662i
\(725\) −441.980 255.177i −0.609628 0.351969i
\(726\) −992.612 601.326i −1.36723 0.828272i
\(727\) 1272.41i 1.75022i 0.483924 + 0.875110i \(0.339211\pi\)
−0.483924 + 0.875110i \(0.660789\pi\)
\(728\) 67.7445 147.619i 0.0930556 0.202774i
\(729\) −1041.76 −1.42902
\(730\) 12.4906 20.6184i 0.0171105 0.0282443i
\(731\) 83.1028 143.938i 0.113684 0.196906i
\(732\) −1589.27 + 830.314i −2.17113 + 1.13431i
\(733\) 615.475 355.345i 0.839666 0.484781i −0.0174847 0.999847i \(-0.505566\pi\)
0.857151 + 0.515066i \(0.172233\pi\)
\(734\) 207.439 + 377.448i 0.282615 + 0.514235i
\(735\) 1036.70 1149.09i 1.41048 1.56338i
\(736\) −358.261 + 492.422i −0.486768 + 0.669052i
\(737\) 525.417 + 910.048i 0.712913 + 1.23480i
\(738\) 0.540455 25.6397i 0.000732324 0.0347421i
\(739\) 105.509 182.748i 0.142773 0.247291i −0.785767 0.618523i \(-0.787731\pi\)
0.928540 + 0.371232i \(0.121065\pi\)
\(740\) 494.732 + 20.8660i 0.668556 + 0.0281973i
\(741\) 211.919i 0.285991i
\(742\) 624.170 85.1022i 0.841200 0.114693i
\(743\) 244.355i 0.328876i −0.986387 0.164438i \(-0.947419\pi\)
0.986387 0.164438i \(-0.0525811\pi\)
\(744\) 438.225 + 883.675i 0.589012 + 1.18774i
\(745\) −83.6954 + 144.965i −0.112343 + 0.194583i
\(746\) 447.656 + 9.43608i 0.600075 + 0.0126489i
\(747\) 576.727 + 998.920i 0.772057 + 1.33724i
\(748\) −112.182 + 176.668i −0.149976 + 0.236187i
\(749\) 510.919 80.6625i 0.682136 0.107694i
\(750\) −26.0853 47.4638i −0.0347804 0.0632851i
\(751\) 262.737 151.692i 0.349850 0.201986i −0.314769 0.949168i \(-0.601927\pi\)
0.664619 + 0.747182i \(0.268594\pi\)
\(752\) 1.02308 12.1070i 0.00136048 0.0160997i
\(753\) −20.3701 + 35.2821i −0.0270519 + 0.0468553i
\(754\) −104.879 63.5362i −0.139097 0.0842655i
\(755\) −1286.37 −1.70381
\(756\) −288.175 + 33.1215i −0.381183 + 0.0438114i
\(757\) 668.225i 0.882728i −0.897328 0.441364i \(-0.854495\pi\)
0.897328 0.441364i \(-0.145505\pi\)
\(758\) −867.358 525.447i −1.14427 0.693201i
\(759\) 1173.54 + 677.546i 1.54617 + 0.892683i
\(760\) −503.597 + 757.324i −0.662627 + 0.996479i
\(761\) −45.4152 78.6615i −0.0596784 0.103366i 0.834643 0.550792i \(-0.185674\pi\)
−0.894321 + 0.447426i \(0.852341\pi\)
\(762\) −759.723 1382.36i −0.997012 1.81412i
\(763\) 658.095 532.375i 0.862509 0.697740i
\(764\) 247.895 + 157.410i 0.324470 + 0.206035i
\(765\) 227.082 131.106i 0.296839 0.171380i
\(766\) 297.110 + 6.26273i 0.387872 + 0.00817589i
\(767\) 5.99013 + 3.45840i 0.00780982 + 0.00450900i
\(768\) −1137.05 193.550i −1.48053 0.252019i
\(769\) 421.091 0.547582 0.273791 0.961789i \(-0.411722\pi\)
0.273791 + 0.961789i \(0.411722\pi\)
\(770\) −949.928 1226.23i −1.23367 1.59250i
\(771\) 1671.88 2.16846
\(772\) −260.126 10.9712i −0.336951 0.0142114i
\(773\) 508.100 + 293.352i 0.657309 + 0.379498i 0.791251 0.611492i \(-0.209430\pi\)
−0.133942 + 0.990989i \(0.542763\pi\)
\(774\) 23.9117 1134.39i 0.0308937 1.46562i
\(775\) 572.167 330.341i 0.738281 0.426247i
\(776\) 51.9765 820.963i 0.0669800 1.05794i
\(777\) 519.846 + 199.845i 0.669043 + 0.257201i
\(778\) −152.503 277.489i −0.196020 0.356670i
\(779\) −9.20171 15.9378i −0.0118122 0.0204593i
\(780\) 169.678 + 324.773i 0.217536 + 0.416375i
\(781\) −608.235 351.165i −0.778791 0.449635i
\(782\) 65.2806 107.759i 0.0834791 0.137799i
\(783\) 218.996i 0.279688i
\(784\) 763.557 177.869i 0.973924 0.226874i
\(785\) −1163.23 −1.48182
\(786\) 66.4335 + 40.2455i 0.0845210 + 0.0512030i
\(787\) −681.137 + 1179.76i −0.865485 + 1.49906i 0.00107958 + 0.999999i \(0.499656\pi\)
−0.866565 + 0.499065i \(0.833677\pi\)
\(788\) 1234.91 645.182i 1.56715 0.818759i
\(789\) −1849.01 + 1067.53i −2.34349 + 1.35301i
\(790\) 892.657 490.589i 1.12995 0.620999i
\(791\) −245.570 + 638.787i −0.310456 + 0.807569i
\(792\) −90.2710 + 1425.82i −0.113979 + 1.80028i
\(793\) 144.287 + 249.913i 0.181951 + 0.315149i
\(794\) −555.360 11.7064i −0.699446 0.0147435i
\(795\) −710.583 + 1230.77i −0.893815 + 1.54813i
\(796\) 43.8436 1039.53i 0.0550799 1.30594i
\(797\) 874.598i 1.09736i 0.836032 + 0.548681i \(0.184870\pi\)
−0.836032 + 0.548681i \(0.815130\pi\)
\(798\) −808.659 + 626.449i −1.01336 + 0.785023i
\(799\) 2.51380i 0.00314618i
\(800\) −81.2611 + 768.278i −0.101576 + 0.960348i
\(801\) 346.737 600.567i 0.432880 0.749771i
\(802\) 26.2921 1247.32i 0.0327831 1.55526i
\(803\) −13.5875 23.5342i −0.0169209 0.0293078i
\(804\) 642.317 1011.54i 0.798902 1.25814i
\(805\) 587.315 + 726.008i 0.729584 + 0.901874i
\(806\) 139.118 76.4566i 0.172602 0.0948594i
\(807\) 367.208 212.008i 0.455029 0.262711i
\(808\) 806.392 1212.68i 0.998009 1.50084i
\(809\) 27.9415 48.3961i 0.0345383 0.0598222i −0.848240 0.529613i \(-0.822337\pi\)
0.882778 + 0.469791i \(0.155671\pi\)
\(810\) −399.684 + 659.761i −0.493437 + 0.814519i
\(811\) 917.924 1.13184 0.565921 0.824459i \(-0.308521\pi\)
0.565921 + 0.824459i \(0.308521\pi\)
\(812\) −67.5850 588.026i −0.0832327 0.724169i
\(813\) 712.850i 0.876815i
\(814\) 289.223 477.422i 0.355311 0.586514i
\(815\) −61.3432 35.4165i −0.0752677 0.0434559i
\(816\) 237.786 + 20.0936i 0.291404 + 0.0246246i
\(817\) −407.117 705.147i −0.498307 0.863093i
\(818\) 867.847 476.954i 1.06094 0.583073i
\(819\) 35.7751 + 226.601i 0.0436815 + 0.276680i
\(820\) −26.8629 17.0577i −0.0327597 0.0208020i
\(821\) 1178.10 680.176i 1.43496 0.828472i 0.437463 0.899237i \(-0.355877\pi\)
0.997493 + 0.0707646i \(0.0225439\pi\)
\(822\) −48.6301 + 2307.05i −0.0591607 + 2.80664i
\(823\) −488.057 281.780i −0.593022 0.342382i 0.173269 0.984874i \(-0.444567\pi\)
−0.766292 + 0.642493i \(0.777900\pi\)
\(824\) 162.975 + 328.638i 0.197785 + 0.398832i
\(825\) 1719.16 2.08383
\(826\) 4.51041 + 33.0809i 0.00546054 + 0.0400496i
\(827\) 63.4180 0.0766844 0.0383422 0.999265i \(-0.487792\pi\)
0.0383422 + 0.999265i \(0.487792\pi\)
\(828\) 36.2440 859.341i 0.0437729 1.03785i
\(829\) 252.620 + 145.850i 0.304728 + 0.175935i 0.644565 0.764549i \(-0.277038\pi\)
−0.339837 + 0.940484i \(0.610372\pi\)
\(830\) 1430.90 + 30.1617i 1.72398 + 0.0363394i
\(831\) 923.725 533.313i 1.11158 0.641772i
\(832\) −23.4106 + 184.143i −0.0281377 + 0.221325i
\(833\) −154.316 + 49.9715i −0.185254 + 0.0599899i
\(834\) 1728.11 949.743i 2.07208 1.13878i
\(835\) −999.123 1730.53i −1.19655 2.07249i
\(836\) 474.747 + 908.691i 0.567879 + 1.08695i
\(837\) −245.520 141.751i −0.293333 0.169356i
\(838\) 192.666 + 116.717i 0.229912 + 0.139281i
\(839\) 463.917i 0.552940i −0.961023 0.276470i \(-0.910835\pi\)
0.961023 0.276470i \(-0.0891646\pi\)
\(840\) −737.714 + 1607.53i −0.878231 + 1.91372i
\(841\) 394.135 0.468651
\(842\) −851.755 + 1406.00i −1.01159 + 1.66983i
\(843\) 545.046 944.047i 0.646555 1.11987i
\(844\) 8.76160 + 16.7702i 0.0103810 + 0.0198699i
\(845\) −974.927 + 562.874i −1.15376 + 0.666124i
\(846\) 8.26544 + 15.0395i 0.00977002 + 0.0177772i
\(847\) −890.520 + 140.593i −1.05138 + 0.165989i
\(848\) −651.580 + 306.191i −0.768373 + 0.361074i
\(849\) −525.956 910.983i −0.619501 1.07301i
\(850\) 3.36848 159.804i 0.00396292 0.188005i
\(851\) −168.025 + 291.028i −0.197444 + 0.341984i
\(852\) −33.7471 + 800.141i −0.0396093 + 0.939132i
\(853\) 649.909i 0.761909i 0.924594 + 0.380955i \(0.124405\pi\)
−0.924594 + 0.380955i \(0.875595\pi\)
\(854\) −527.115 + 1289.34i −0.617230 + 1.50977i
\(855\) 1284.56i 1.50241i
\(856\) −529.595 + 262.632i −0.618686 + 0.306814i
\(857\) −584.140 + 1011.76i −0.681610 + 1.18058i 0.292880 + 0.956149i \(0.405386\pi\)
−0.974489 + 0.224433i \(0.927947\pi\)
\(858\) 412.972 + 8.70498i 0.481320 + 0.0101457i
\(859\) −733.208 1269.95i −0.853560 1.47841i −0.877974 0.478708i \(-0.841105\pi\)
0.0244139 0.999702i \(-0.492228\pi\)
\(860\) −1188.51 754.693i −1.38199 0.877550i
\(861\) −22.5098 27.8254i −0.0261438 0.0323175i
\(862\) −321.550 585.080i −0.373028 0.678747i
\(863\) 36.9921 21.3574i 0.0428646 0.0247479i −0.478415 0.878134i \(-0.658788\pi\)
0.521279 + 0.853386i \(0.325455\pi\)
\(864\) 302.939 134.638i 0.350623 0.155831i
\(865\) −341.298 + 591.145i −0.394564 + 0.683404i
\(866\) 1034.36 + 626.618i 1.19441 + 0.723578i
\(867\) 1252.71 1.44488
\(868\) 702.992 + 304.845i 0.809898 + 0.351204i
\(869\) 1148.23i 1.32132i
\(870\) 1142.10 + 691.887i 1.31276 + 0.795272i
\(871\) −167.005 96.4206i −0.191740 0.110701i
\(872\) −535.667 + 805.552i −0.614297 + 0.923798i
\(873\) 580.933 + 1006.21i 0.665444 + 1.15258i
\(874\) −297.277 540.914i −0.340134 0.618895i
\(875\) −39.2709 15.0970i −0.0448811 0.0172537i
\(876\) −16.6106 + 26.1588i −0.0189618 + 0.0298617i
\(877\) −842.217 + 486.254i −0.960338 + 0.554452i −0.896277 0.443494i \(-0.853739\pi\)
−0.0640612 + 0.997946i \(0.520405\pi\)
\(878\) −962.014 20.2782i −1.09569 0.0230959i
\(879\) −844.723 487.701i −0.961005 0.554836i
\(880\) 1455.13 + 1012.48i 1.65356 + 1.15055i
\(881\) −110.722 −0.125678 −0.0628390 0.998024i \(-0.520015\pi\)
−0.0628390 + 0.998024i \(0.520015\pi\)
\(882\) −758.929 + 806.363i −0.860464 + 0.914244i
\(883\) 1283.66 1.45375 0.726874 0.686770i \(-0.240972\pi\)
0.726874 + 0.686770i \(0.240972\pi\)
\(884\) 1.61834 38.3707i 0.00183070 0.0434058i
\(885\) −65.2305 37.6608i −0.0737067 0.0425546i
\(886\) 7.78563 369.357i 0.00878739 0.416882i
\(887\) 429.755 248.119i 0.484504 0.279729i −0.237788 0.971317i \(-0.576422\pi\)
0.722292 + 0.691589i \(0.243089\pi\)
\(888\) −635.227 40.2172i −0.715346 0.0452897i
\(889\) −1143.75 439.693i −1.28656 0.494593i
\(890\) −414.435 754.091i −0.465658 0.847293i
\(891\) 434.781 + 753.063i 0.487970 + 0.845189i
\(892\) 387.554 202.478i 0.434477 0.226993i
\(893\) 10.6651 + 6.15750i 0.0119430 + 0.00689529i
\(894\) 111.486 184.031i 0.124705 0.205851i
\(895\) 2115.78i 2.36400i
\(896\) −771.871 + 455.008i −0.861463 + 0.507821i
\(897\) −248.677 −0.277232
\(898\) 198.247 + 120.098i 0.220765 + 0.133740i
\(899\) 289.245 500.987i 0.321741 0.557272i
\(900\) −505.286 967.144i −0.561429 1.07460i
\(901\) 128.996 74.4756i 0.143169 0.0826589i
\(902\) −31.4364 + 17.2769i −0.0348519 + 0.0191540i
\(903\) −995.914 1231.10i −1.10289 1.36334i
\(904\) 49.4190 780.568i 0.0546670 0.863460i
\(905\) −211.895 367.013i −0.234138 0.405539i
\(906\) 1653.15 + 34.8465i 1.82467 + 0.0384620i
\(907\) −796.131 + 1378.94i −0.877763 + 1.52033i −0.0239725 + 0.999713i \(0.507631\pi\)
−0.853790 + 0.520617i \(0.825702\pi\)
\(908\) 485.332 + 20.4696i 0.534507 + 0.0225436i
\(909\) 2056.93i 2.26285i
\(910\) 263.483 + 107.718i 0.289542 + 0.118371i
\(911\) 663.197i 0.727988i 0.931401 + 0.363994i \(0.118587\pi\)
−0.931401 + 0.363994i \(0.881413\pi\)
\(912\) 667.700 959.615i 0.732127 1.05221i
\(913\) 806.690 1397.23i 0.883559 1.53037i
\(914\) −6.67892 + 316.854i −0.00730736 + 0.346668i
\(915\) −1571.24 2721.47i −1.71720 2.97428i
\(916\) −486.916 309.186i −0.531567 0.337539i
\(917\) 59.6008 9.40960i 0.0649954 0.0102613i
\(918\) −60.1083 + 33.0345i −0.0654775 + 0.0359853i
\(919\) −441.371 + 254.826i −0.480273 + 0.277286i −0.720530 0.693424i \(-0.756102\pi\)
0.240257 + 0.970709i \(0.422768\pi\)
\(920\) −888.683 590.946i −0.965960 0.642333i
\(921\) 390.822 676.924i 0.424345 0.734988i
\(922\) −43.9205 + 72.4998i −0.0476361 + 0.0786332i
\(923\) 128.886 0.139639
\(924\) 1187.56 + 1601.59i 1.28524 + 1.73332i
\(925\) 426.335i 0.460902i
\(926\) −404.189 + 667.197i −0.436489 + 0.720515i
\(927\) −448.702 259.058i −0.484037 0.279459i
\(928\) 274.731 + 618.152i 0.296047 + 0.666112i
\(929\) 161.143 + 279.108i 0.173459 + 0.300439i 0.939627 0.342201i \(-0.111172\pi\)
−0.766168 + 0.642640i \(0.777839\pi\)
\(930\) −1514.94 + 832.587i −1.62897 + 0.895254i
\(931\) −165.984 + 777.109i −0.178285 + 0.834703i
\(932\) 416.536 655.973i 0.446927 0.703834i
\(933\) 451.473 260.658i 0.483894 0.279376i
\(934\) 1.61616 76.6721i 0.00173036 0.0820900i
\(935\) −317.628 183.383i −0.339710 0.196131i
\(936\) −116.482 234.884i −0.124446 0.250944i
\(937\) −1077.79 −1.15026 −0.575130 0.818062i \(-0.695048\pi\)
−0.575130 + 0.818062i \(0.695048\pi\)
\(938\) −125.751 922.300i −0.134062 0.983262i
\(939\) −948.502 −1.01012
\(940\) 21.2748 + 0.897294i 0.0226327 + 0.000954568i
\(941\) −63.5953 36.7168i −0.0675827 0.0390189i 0.465828 0.884875i \(-0.345757\pi\)
−0.533411 + 0.845856i \(0.679090\pi\)
\(942\) 1494.89 + 31.5107i 1.58694 + 0.0334508i
\(943\) 18.7023 10.7978i 0.0198327 0.0114504i
\(944\) −16.2281 34.5337i −0.0171908 0.0365823i
\(945\) −79.2771 502.144i −0.0838911 0.531369i
\(946\) −1390.86 + 764.394i −1.47026 + 0.808027i
\(947\) −38.4077 66.5241i −0.0405572 0.0702472i 0.845034 0.534712i \(-0.179580\pi\)
−0.885591 + 0.464465i \(0.846247\pi\)
\(948\) −1160.47 + 606.287i −1.22412 + 0.639543i
\(949\) 4.31882 + 2.49347i 0.00455092 + 0.00262747i
\(950\) −669.736 405.727i −0.704985 0.427081i
\(951\) 1576.34i 1.65756i
\(952\) 151.202 107.251i 0.158826 0.112659i
\(953\) −1329.39 −1.39495 −0.697477 0.716607i \(-0.745694\pi\)
−0.697477 + 0.716607i \(0.745694\pi\)
\(954\) 526.872 869.710i 0.552277 0.911646i
\(955\) −257.317 + 445.686i −0.269442 + 0.466687i
\(956\) 1118.78 584.508i 1.17027 0.611410i
\(957\) 1303.62 752.643i 1.36219 0.786461i
\(958\) 624.361 + 1136.06i 0.651734 + 1.18587i
\(959\) 1127.42 + 1393.66i 1.17563 + 1.45325i
\(960\) 254.933 2005.25i 0.265555 2.08880i
\(961\) −106.056 183.695i −0.110360 0.191150i
\(962\) −2.15875 + 102.413i −0.00224403 + 0.106459i
\(963\) 417.469 723.077i 0.433509 0.750859i
\(964\) −1449.56 61.1371i −1.50369 0.0634202i
\(965\) 456.288i 0.472837i
\(966\) −735.107 948.922i −0.760980 0.982320i
\(967\) 601.743i 0.622279i −0.950364 0.311139i \(-0.899289\pi\)
0.950364 0.311139i \(-0.100711\pi\)
\(968\) 923.071 457.762i 0.953586 0.472894i
\(969\) −120.935 + 209.466i −0.124804 + 0.216167i
\(970\) 1441.34 + 30.3817i 1.48591 + 0.0313213i
\(971\) −213.139 369.168i −0.219505 0.380193i 0.735152 0.677902i \(-0.237111\pi\)
−0.954657 + 0.297709i \(0.903777\pi\)
\(972\) 731.436 1151.89i 0.752506 1.18507i
\(973\) 549.668 1429.82i 0.564921 1.46950i
\(974\) 337.364 + 613.854i 0.346369 + 0.630240i
\(975\) −273.220 + 157.744i −0.280225 + 0.161788i
\(976\) 134.045 1586.27i 0.137341 1.62528i
\(977\) −109.928 + 190.401i −0.112516 + 0.194884i −0.916784 0.399383i \(-0.869224\pi\)
0.804268 + 0.594267i \(0.202558\pi\)
\(978\) 77.8743 + 47.1764i 0.0796261 + 0.0482376i
\(979\) −969.989 −0.990796
\(980\) 367.836 + 1323.84i 0.375342 + 1.35086i
\(981\) 1366.37i 1.39283i
\(982\) −775.834 470.002i −0.790055 0.478617i
\(983\) −1444.72 834.112i −1.46971 0.848537i −0.470286 0.882514i \(-0.655849\pi\)
−0.999423 + 0.0339771i \(0.989183\pi\)
\(984\) 34.0602 + 22.6489i 0.0346140 + 0.0230172i
\(985\) 1220.91 + 2114.67i 1.23950 + 2.14687i
\(986\) −67.4075 122.652i −0.0683646 0.124394i
\(987\) 22.3547 + 8.59388i 0.0226492 + 0.00870707i
\(988\) −158.828 100.854i −0.160757 0.102079i
\(989\) 827.456 477.732i 0.836659 0.483045i
\(990\) −2503.26 52.7659i −2.52855 0.0532989i
\(991\) −1184.20 683.697i −1.19495 0.689906i −0.235527 0.971868i \(-0.575682\pi\)
−0.959426 + 0.281962i \(0.909015\pi\)
\(992\) −870.848 92.1100i −0.877871 0.0928528i
\(993\) −964.670 −0.971471
\(994\) 380.998 + 491.816i 0.383298 + 0.494784i
\(995\) 1823.44 1.83260
\(996\) −1838.07 77.5232i −1.84545 0.0778345i
\(997\) 803.308 + 463.790i 0.805725 + 0.465186i 0.845469 0.534024i \(-0.179321\pi\)
−0.0397440 + 0.999210i \(0.512654\pi\)
\(998\) −22.3203 + 1058.89i −0.0223650 + 1.06102i
\(999\) 158.433 91.4711i 0.158591 0.0915626i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 56.3.k.c.11.5 yes 12
4.3 odd 2 224.3.o.c.207.1 12
7.2 even 3 inner 56.3.k.c.51.4 yes 12
7.3 odd 6 392.3.g.l.99.2 6
7.4 even 3 392.3.g.k.99.2 6
7.5 odd 6 392.3.k.k.275.4 12
7.6 odd 2 392.3.k.k.67.5 12
8.3 odd 2 inner 56.3.k.c.11.4 12
8.5 even 2 224.3.o.c.207.2 12
28.3 even 6 1568.3.g.i.687.2 6
28.11 odd 6 1568.3.g.k.687.5 6
28.23 odd 6 224.3.o.c.79.2 12
56.3 even 6 392.3.g.l.99.1 6
56.11 odd 6 392.3.g.k.99.1 6
56.19 even 6 392.3.k.k.275.5 12
56.27 even 2 392.3.k.k.67.4 12
56.37 even 6 224.3.o.c.79.1 12
56.45 odd 6 1568.3.g.i.687.1 6
56.51 odd 6 inner 56.3.k.c.51.5 yes 12
56.53 even 6 1568.3.g.k.687.6 6
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
56.3.k.c.11.4 12 8.3 odd 2 inner
56.3.k.c.11.5 yes 12 1.1 even 1 trivial
56.3.k.c.51.4 yes 12 7.2 even 3 inner
56.3.k.c.51.5 yes 12 56.51 odd 6 inner
224.3.o.c.79.1 12 56.37 even 6
224.3.o.c.79.2 12 28.23 odd 6
224.3.o.c.207.1 12 4.3 odd 2
224.3.o.c.207.2 12 8.5 even 2
392.3.g.k.99.1 6 56.11 odd 6
392.3.g.k.99.2 6 7.4 even 3
392.3.g.l.99.1 6 56.3 even 6
392.3.g.l.99.2 6 7.3 odd 6
392.3.k.k.67.4 12 56.27 even 2
392.3.k.k.67.5 12 7.6 odd 2
392.3.k.k.275.4 12 7.5 odd 6
392.3.k.k.275.5 12 56.19 even 6
1568.3.g.i.687.1 6 56.45 odd 6
1568.3.g.i.687.2 6 28.3 even 6
1568.3.g.k.687.5 6 28.11 odd 6
1568.3.g.k.687.6 6 56.53 even 6