Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [56,5,Mod(11,56)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(56, base_ring=CyclotomicField(6))
chi = DirichletCharacter(H, H._module([3, 3, 4]))
N = Newforms(chi, 5, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("56.11");
S:= CuspForms(chi, 5);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 56 = 2^{3} \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 5 \) |
Character orbit: | \([\chi]\) | \(=\) | 56.k (of order \(6\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(5.78871793270\) |
Analytic rank: | \(0\) |
Dimension: | \(60\) |
Relative dimension: | \(30\) over \(\Q(\zeta_{6})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{6}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
11.1 | −3.99270 | + | 0.241514i | 2.90447 | − | 5.03069i | 15.8833 | − | 1.92859i | −35.7453 | + | 20.6376i | −10.3817 | + | 20.7875i | 33.5978 | − | 35.6678i | −62.9517 | + | 11.5363i | 23.6281 | + | 40.9250i | 137.736 | − | 91.0326i |
11.2 | −3.91997 | − | 0.796124i | 4.42688 | − | 7.66758i | 14.7324 | + | 6.24157i | 19.7872 | − | 11.4241i | −23.4576 | + | 26.5324i | 24.1747 | + | 42.6214i | −52.7814 | − | 36.1956i | 1.30543 | + | 2.26108i | −86.6602 | + | 29.0292i |
11.3 | −3.73587 | − | 1.42944i | −2.68606 | + | 4.65239i | 11.9134 | + | 10.6804i | 15.6318 | − | 9.02500i | 16.6851 | − | 13.5412i | −44.4242 | − | 20.6759i | −29.2399 | − | 56.9301i | 26.0702 | + | 45.1548i | −71.2989 | + | 11.3715i |
11.4 | −3.72154 | + | 1.46634i | −5.61505 | + | 9.72556i | 11.6997 | − | 10.9141i | 29.2132 | − | 16.8663i | 6.63571 | − | 44.4276i | 48.9331 | + | 2.56001i | −27.5373 | + | 57.7728i | −22.5576 | − | 39.0709i | −83.9866 | + | 105.605i |
11.5 | −3.66880 | + | 1.59370i | −4.03038 | + | 6.98083i | 10.9202 | − | 11.6939i | −15.7223 | + | 9.07726i | 3.66135 | − | 32.0345i | −48.8060 | + | 4.35649i | −21.4276 | + | 60.3064i | 8.01201 | + | 13.8772i | 43.2155 | − | 58.3593i |
11.6 | −3.49436 | + | 1.94665i | 6.97904 | − | 12.0881i | 8.42110 | − | 13.6046i | 12.6763 | − | 7.31864i | −0.856068 | + | 55.8258i | −37.6711 | − | 31.3351i | −2.94298 | + | 63.9323i | −56.9141 | − | 98.5781i | −30.0486 | + | 50.2502i |
11.7 | −3.42567 | − | 2.06513i | −8.62600 | + | 14.9407i | 7.47046 | + | 14.1489i | −27.4474 | + | 15.8467i | 60.4043 | − | 33.3680i | 24.0616 | + | 42.6853i | 3.62804 | − | 63.8971i | −108.316 | − | 187.609i | 126.751 | + | 2.39667i |
11.8 | −2.66196 | − | 2.98562i | 6.96678 | − | 12.0668i | −1.82790 | + | 15.8952i | −33.4946 | + | 19.3381i | −54.5723 | + | 11.3212i | −35.7007 | + | 33.5627i | 52.3230 | − | 36.8552i | −56.5720 | − | 97.9856i | 146.898 | + | 48.5249i |
11.9 | −2.66151 | − | 2.98603i | −0.962732 | + | 1.66750i | −1.83276 | + | 15.8947i | −3.89042 | + | 2.24614i | 7.54153 | − | 1.56332i | 31.0044 | − | 37.9437i | 52.3399 | − | 36.8312i | 38.6463 | + | 66.9373i | 17.0614 | + | 5.63881i |
11.10 | −2.31118 | + | 3.26473i | 2.16063 | − | 3.74231i | −5.31692 | − | 15.0907i | −4.23878 | + | 2.44726i | 7.22405 | + | 15.7030i | 7.11583 | + | 48.4806i | 61.5555 | + | 17.5191i | 31.1634 | + | 53.9766i | 1.80693 | − | 19.4945i |
11.11 | −1.61448 | + | 3.65971i | −5.08078 | + | 8.80018i | −10.7869 | − | 11.8170i | −25.7945 | + | 14.8925i | −24.0033 | − | 32.8019i | 24.6862 | − | 42.3272i | 60.6622 | − | 20.3986i | −11.1287 | − | 19.2755i | −12.8574 | − | 118.444i |
11.12 | −1.25522 | − | 3.79795i | −0.962732 | + | 1.66750i | −12.8488 | + | 9.53456i | 3.89042 | − | 2.24614i | 7.54153 | + | 1.56332i | −31.0044 | + | 37.9437i | 52.3399 | + | 36.8312i | 38.6463 | + | 66.9373i | −13.4141 | − | 11.9562i |
11.13 | −1.25464 | − | 3.79814i | 6.96678 | − | 12.0668i | −12.8517 | + | 9.53063i | 33.4946 | − | 19.3381i | −54.5723 | − | 11.3212i | 35.7007 | − | 33.5627i | 52.3230 | + | 36.8552i | −56.5720 | − | 97.9856i | −115.473 | − | 102.955i |
11.14 | −0.907680 | + | 3.89565i | −0.285840 | + | 0.495090i | −14.3522 | − | 7.07202i | 40.2341 | − | 23.2292i | −1.66925 | − | 1.56292i | −22.8899 | − | 43.3249i | 40.5774 | − | 49.4922i | 40.3366 | + | 69.8650i | 53.9731 | + | 177.823i |
11.15 | −0.229998 | + | 3.99338i | 7.74459 | − | 13.4140i | −15.8942 | − | 1.83694i | −13.5276 | + | 7.81018i | 51.7861 | + | 34.0123i | 43.5544 | − | 22.4503i | 10.9912 | − | 63.0491i | −79.4574 | − | 137.624i | −28.0777 | − | 55.8173i |
11.16 | −0.0756202 | − | 3.99929i | −8.62600 | + | 14.9407i | −15.9886 | + | 0.604854i | 27.4474 | − | 15.8467i | 60.4043 | + | 33.3680i | −24.0616 | − | 42.6853i | 3.62804 | + | 63.8971i | −108.316 | − | 187.609i | −65.4512 | − | 108.571i |
11.17 | 0.630001 | − | 3.95008i | −2.68606 | + | 4.65239i | −15.2062 | − | 4.97710i | −15.6318 | + | 9.02500i | 16.6851 | + | 13.5412i | 44.4242 | + | 20.6759i | −29.2399 | + | 56.9301i | 26.0702 | + | 45.1548i | 25.8014 | + | 67.4324i |
11.18 | 0.635272 | + | 3.94923i | −6.43733 | + | 11.1498i | −15.1929 | + | 5.01767i | 8.48321 | − | 4.89778i | −48.1225 | − | 18.3394i | −4.25339 | + | 48.8150i | −29.4675 | − | 56.8125i | −42.3785 | − | 73.4017i | 24.7316 | + | 30.3907i |
11.19 | 1.27052 | − | 3.79286i | 4.42688 | − | 7.66758i | −12.7715 | − | 9.63782i | −19.7872 | + | 11.4241i | −23.4576 | − | 26.5324i | −24.1747 | − | 42.6214i | −52.7814 | + | 36.1956i | 1.30543 | + | 2.26108i | 18.1900 | + | 89.5645i |
11.20 | 1.42092 | + | 3.73911i | 2.04179 | − | 3.53649i | −11.9620 | + | 10.6260i | −20.9617 | + | 12.1023i | 16.1246 | + | 2.60942i | −48.9779 | − | 1.47008i | −56.7288 | − | 29.6284i | 32.1621 | + | 55.7065i | −75.0368 | − | 61.1819i |
See all 60 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.c | even | 3 | 1 | inner |
8.d | odd | 2 | 1 | inner |
56.k | odd | 6 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 56.5.k.a | ✓ | 60 |
4.b | odd | 2 | 1 | 224.5.o.a | 60 | ||
7.c | even | 3 | 1 | inner | 56.5.k.a | ✓ | 60 |
8.b | even | 2 | 1 | 224.5.o.a | 60 | ||
8.d | odd | 2 | 1 | inner | 56.5.k.a | ✓ | 60 |
28.g | odd | 6 | 1 | 224.5.o.a | 60 | ||
56.k | odd | 6 | 1 | inner | 56.5.k.a | ✓ | 60 |
56.p | even | 6 | 1 | 224.5.o.a | 60 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
56.5.k.a | ✓ | 60 | 1.a | even | 1 | 1 | trivial |
56.5.k.a | ✓ | 60 | 7.c | even | 3 | 1 | inner |
56.5.k.a | ✓ | 60 | 8.d | odd | 2 | 1 | inner |
56.5.k.a | ✓ | 60 | 56.k | odd | 6 | 1 | inner |
224.5.o.a | 60 | 4.b | odd | 2 | 1 | ||
224.5.o.a | 60 | 8.b | even | 2 | 1 | ||
224.5.o.a | 60 | 28.g | odd | 6 | 1 | ||
224.5.o.a | 60 | 56.p | even | 6 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{5}^{\mathrm{new}}(56, [\chi])\).