Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [560,2,Mod(97,560)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(560, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 0, 1, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("560.97");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.bj (of order \(4\), degree \(2\), not minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.47162251319\) |
Analytic rank: | \(0\) |
Dimension: | \(24\) |
Relative dimension: | \(12\) over \(\Q(i)\) |
Twist minimal: | no (minimal twist has level 280) |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
97.1 | 0 | −2.16993 | − | 2.16993i | 0 | −0.272751 | − | 2.21937i | 0 | −2.07939 | + | 1.63589i | 0 | 6.41716i | 0 | ||||||||||||
97.2 | 0 | −2.16341 | − | 2.16341i | 0 | −1.91827 | + | 1.14901i | 0 | 2.61380 | + | 0.409966i | 0 | 6.36066i | 0 | ||||||||||||
97.3 | 0 | −1.41195 | − | 1.41195i | 0 | 1.94983 | + | 1.09461i | 0 | −2.64529 | − | 0.0496428i | 0 | 0.987218i | 0 | ||||||||||||
97.4 | 0 | −1.03893 | − | 1.03893i | 0 | −1.21973 | + | 1.87411i | 0 | −1.58883 | − | 2.11557i | 0 | − | 0.841261i | 0 | |||||||||||
97.5 | 0 | −0.730185 | − | 0.730185i | 0 | 1.51201 | − | 1.64737i | 0 | 1.08445 | − | 2.41329i | 0 | − | 1.93366i | 0 | |||||||||||
97.6 | 0 | −0.0703127 | − | 0.0703127i | 0 | 2.16104 | + | 0.574360i | 0 | 0.562657 | + | 2.58523i | 0 | − | 2.99011i | 0 | |||||||||||
97.7 | 0 | 0.0703127 | + | 0.0703127i | 0 | −2.16104 | − | 0.574360i | 0 | 2.58523 | + | 0.562657i | 0 | − | 2.99011i | 0 | |||||||||||
97.8 | 0 | 0.730185 | + | 0.730185i | 0 | −1.51201 | + | 1.64737i | 0 | −2.41329 | + | 1.08445i | 0 | − | 1.93366i | 0 | |||||||||||
97.9 | 0 | 1.03893 | + | 1.03893i | 0 | 1.21973 | − | 1.87411i | 0 | −2.11557 | − | 1.58883i | 0 | − | 0.841261i | 0 | |||||||||||
97.10 | 0 | 1.41195 | + | 1.41195i | 0 | −1.94983 | − | 1.09461i | 0 | −0.0496428 | − | 2.64529i | 0 | 0.987218i | 0 | ||||||||||||
97.11 | 0 | 2.16341 | + | 2.16341i | 0 | 1.91827 | − | 1.14901i | 0 | 0.409966 | + | 2.61380i | 0 | 6.36066i | 0 | ||||||||||||
97.12 | 0 | 2.16993 | + | 2.16993i | 0 | 0.272751 | + | 2.21937i | 0 | 1.63589 | − | 2.07939i | 0 | 6.41716i | 0 | ||||||||||||
433.1 | 0 | −2.16993 | + | 2.16993i | 0 | −0.272751 | + | 2.21937i | 0 | −2.07939 | − | 1.63589i | 0 | − | 6.41716i | 0 | |||||||||||
433.2 | 0 | −2.16341 | + | 2.16341i | 0 | −1.91827 | − | 1.14901i | 0 | 2.61380 | − | 0.409966i | 0 | − | 6.36066i | 0 | |||||||||||
433.3 | 0 | −1.41195 | + | 1.41195i | 0 | 1.94983 | − | 1.09461i | 0 | −2.64529 | + | 0.0496428i | 0 | − | 0.987218i | 0 | |||||||||||
433.4 | 0 | −1.03893 | + | 1.03893i | 0 | −1.21973 | − | 1.87411i | 0 | −1.58883 | + | 2.11557i | 0 | 0.841261i | 0 | ||||||||||||
433.5 | 0 | −0.730185 | + | 0.730185i | 0 | 1.51201 | + | 1.64737i | 0 | 1.08445 | + | 2.41329i | 0 | 1.93366i | 0 | ||||||||||||
433.6 | 0 | −0.0703127 | + | 0.0703127i | 0 | 2.16104 | − | 0.574360i | 0 | 0.562657 | − | 2.58523i | 0 | 2.99011i | 0 | ||||||||||||
433.7 | 0 | 0.0703127 | − | 0.0703127i | 0 | −2.16104 | + | 0.574360i | 0 | 2.58523 | − | 0.562657i | 0 | 2.99011i | 0 | ||||||||||||
433.8 | 0 | 0.730185 | − | 0.730185i | 0 | −1.51201 | − | 1.64737i | 0 | −2.41329 | − | 1.08445i | 0 | 1.93366i | 0 | ||||||||||||
See all 24 embeddings |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.c | odd | 4 | 1 | inner |
7.b | odd | 2 | 1 | inner |
35.f | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.2.bj.d | 24 | |
4.b | odd | 2 | 1 | 280.2.x.a | ✓ | 24 | |
5.c | odd | 4 | 1 | inner | 560.2.bj.d | 24 | |
7.b | odd | 2 | 1 | inner | 560.2.bj.d | 24 | |
20.d | odd | 2 | 1 | 1400.2.x.b | 24 | ||
20.e | even | 4 | 1 | 280.2.x.a | ✓ | 24 | |
20.e | even | 4 | 1 | 1400.2.x.b | 24 | ||
28.d | even | 2 | 1 | 280.2.x.a | ✓ | 24 | |
35.f | even | 4 | 1 | inner | 560.2.bj.d | 24 | |
140.c | even | 2 | 1 | 1400.2.x.b | 24 | ||
140.j | odd | 4 | 1 | 280.2.x.a | ✓ | 24 | |
140.j | odd | 4 | 1 | 1400.2.x.b | 24 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
280.2.x.a | ✓ | 24 | 4.b | odd | 2 | 1 | |
280.2.x.a | ✓ | 24 | 20.e | even | 4 | 1 | |
280.2.x.a | ✓ | 24 | 28.d | even | 2 | 1 | |
280.2.x.a | ✓ | 24 | 140.j | odd | 4 | 1 | |
560.2.bj.d | 24 | 1.a | even | 1 | 1 | trivial | |
560.2.bj.d | 24 | 5.c | odd | 4 | 1 | inner | |
560.2.bj.d | 24 | 7.b | odd | 2 | 1 | inner | |
560.2.bj.d | 24 | 35.f | even | 4 | 1 | inner | |
1400.2.x.b | 24 | 20.d | odd | 2 | 1 | ||
1400.2.x.b | 24 | 20.e | even | 4 | 1 | ||
1400.2.x.b | 24 | 140.c | even | 2 | 1 | ||
1400.2.x.b | 24 | 140.j | odd | 4 | 1 |
Hecke kernels
This newform subspace can be constructed as the kernel of the linear operator \( T_{3}^{24} + 198T_{3}^{20} + 11693T_{3}^{16} + 185852T_{3}^{12} + 772212T_{3}^{8} + 654688T_{3}^{4} + 64 \) acting on \(S_{2}^{\mathrm{new}}(560, [\chi])\).