Properties

Label 560.2.bj.d
Level 560560
Weight 22
Character orbit 560.bj
Analytic conductor 4.4724.472
Analytic rank 00
Dimension 2424
Inner twists 44

Related objects

Downloads

Learn more

Show commands: Magma / Pari/GP / SageMath

Newspace parameters

Copy content comment:Compute space of new eigenforms
 
Copy content gp:[N,k,chi] = [560,2,Mod(97,560)] mf = mfinit([N,k,chi],0) lf = mfeigenbasis(mf)
 
Copy content sage:from sage.modular.dirichlet import DirichletCharacter H = DirichletGroup(560, base_ring=CyclotomicField(4)) chi = DirichletCharacter(H, H._module([0, 0, 1, 2])) N = Newforms(chi, 2, names="a")
 
Copy content magma://Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code chi := DirichletCharacter("560.97"); S:= CuspForms(chi, 2); N := Newforms(S);
 
Level: N N == 560=2457 560 = 2^{4} \cdot 5 \cdot 7
Weight: k k == 2 2
Character orbit: [χ][\chi] == 560.bj (of order 44, degree 22, not minimal)

Newform invariants

Copy content comment:select newform
 
Copy content sage:traces = [24,0,0,0,0,0,-4] f = next(g for g in N if [g.coefficient(i+1).trace() for i in range(7)] == traces)
 
Copy content gp:f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: 4.471622513194.47162251319
Analytic rank: 00
Dimension: 2424
Relative dimension: 1212 over Q(i)\Q(i)
Twist minimal: no (minimal twist has level 280)
Sato-Tate group: SU(2)[C4]\mathrm{SU}(2)[C_{4}]

qq-expansion

The algebraic qq-expansion of this newform has not been computed, but we have computed the trace expansion.

Tr(f)(q)=\operatorname{Tr}(f)(q) = 24q4q78q11+8q15+16q21+32q23+8q2512q358q3716q43+24q5116q5320q6348q65+32q67+32q7140q7772q81++24q95+O(q100) 24 q - 4 q^{7} - 8 q^{11} + 8 q^{15} + 16 q^{21} + 32 q^{23} + 8 q^{25} - 12 q^{35} - 8 q^{37} - 16 q^{43} + 24 q^{51} - 16 q^{53} - 20 q^{63} - 48 q^{65} + 32 q^{67} + 32 q^{71} - 40 q^{77} - 72 q^{81}+ \cdots + 24 q^{95}+O(q^{100}) Copy content Toggle raw display

Embeddings

For each embedding ιm\iota_m of the coefficient field, the values ιm(an)\iota_m(a_n) are shown below.

For more information on an embedded modular form you can click on its label.

Copy content comment:embeddings in the coefficient field
 
Copy content gp:mfembed(f)
 
Label   a2 a_{2} a3 a_{3} a4 a_{4} a5 a_{5} a6 a_{6} a7 a_{7} a8 a_{8} a9 a_{9} a10 a_{10}
97.1 0 −2.16993 2.16993i 0 −0.272751 2.21937i 0 −2.07939 + 1.63589i 0 6.41716i 0
97.2 0 −2.16341 2.16341i 0 −1.91827 + 1.14901i 0 2.61380 + 0.409966i 0 6.36066i 0
97.3 0 −1.41195 1.41195i 0 1.94983 + 1.09461i 0 −2.64529 0.0496428i 0 0.987218i 0
97.4 0 −1.03893 1.03893i 0 −1.21973 + 1.87411i 0 −1.58883 2.11557i 0 0.841261i 0
97.5 0 −0.730185 0.730185i 0 1.51201 1.64737i 0 1.08445 2.41329i 0 1.93366i 0
97.6 0 −0.0703127 0.0703127i 0 2.16104 + 0.574360i 0 0.562657 + 2.58523i 0 2.99011i 0
97.7 0 0.0703127 + 0.0703127i 0 −2.16104 0.574360i 0 2.58523 + 0.562657i 0 2.99011i 0
97.8 0 0.730185 + 0.730185i 0 −1.51201 + 1.64737i 0 −2.41329 + 1.08445i 0 1.93366i 0
97.9 0 1.03893 + 1.03893i 0 1.21973 1.87411i 0 −2.11557 1.58883i 0 0.841261i 0
97.10 0 1.41195 + 1.41195i 0 −1.94983 1.09461i 0 −0.0496428 2.64529i 0 0.987218i 0
97.11 0 2.16341 + 2.16341i 0 1.91827 1.14901i 0 0.409966 + 2.61380i 0 6.36066i 0
97.12 0 2.16993 + 2.16993i 0 0.272751 + 2.21937i 0 1.63589 2.07939i 0 6.41716i 0
433.1 0 −2.16993 + 2.16993i 0 −0.272751 + 2.21937i 0 −2.07939 1.63589i 0 6.41716i 0
433.2 0 −2.16341 + 2.16341i 0 −1.91827 1.14901i 0 2.61380 0.409966i 0 6.36066i 0
433.3 0 −1.41195 + 1.41195i 0 1.94983 1.09461i 0 −2.64529 + 0.0496428i 0 0.987218i 0
433.4 0 −1.03893 + 1.03893i 0 −1.21973 1.87411i 0 −1.58883 + 2.11557i 0 0.841261i 0
433.5 0 −0.730185 + 0.730185i 0 1.51201 + 1.64737i 0 1.08445 + 2.41329i 0 1.93366i 0
433.6 0 −0.0703127 + 0.0703127i 0 2.16104 0.574360i 0 0.562657 2.58523i 0 2.99011i 0
433.7 0 0.0703127 0.0703127i 0 −2.16104 + 0.574360i 0 2.58523 0.562657i 0 2.99011i 0
433.8 0 0.730185 0.730185i 0 −1.51201 1.64737i 0 −2.41329 1.08445i 0 1.93366i 0
See all 24 embeddings
nn: e.g. 2-40 or 990-1000
Embeddings: e.g. 1-3 or 97.12
Significant digits:
Format:

Inner twists

Char Parity Ord Mult Type
1.a even 1 1 trivial
5.c odd 4 1 inner
7.b odd 2 1 inner
35.f even 4 1 inner

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.2.bj.d 24
4.b odd 2 1 280.2.x.a 24
5.c odd 4 1 inner 560.2.bj.d 24
7.b odd 2 1 inner 560.2.bj.d 24
20.d odd 2 1 1400.2.x.b 24
20.e even 4 1 280.2.x.a 24
20.e even 4 1 1400.2.x.b 24
28.d even 2 1 280.2.x.a 24
35.f even 4 1 inner 560.2.bj.d 24
140.c even 2 1 1400.2.x.b 24
140.j odd 4 1 280.2.x.a 24
140.j odd 4 1 1400.2.x.b 24
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
280.2.x.a 24 4.b odd 2 1
280.2.x.a 24 20.e even 4 1
280.2.x.a 24 28.d even 2 1
280.2.x.a 24 140.j odd 4 1
560.2.bj.d 24 1.a even 1 1 trivial
560.2.bj.d 24 5.c odd 4 1 inner
560.2.bj.d 24 7.b odd 2 1 inner
560.2.bj.d 24 35.f even 4 1 inner
1400.2.x.b 24 20.d odd 2 1
1400.2.x.b 24 20.e even 4 1
1400.2.x.b 24 140.c even 2 1
1400.2.x.b 24 140.j odd 4 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator T324+198T320+11693T316+185852T312+772212T38+654688T34+64 T_{3}^{24} + 198T_{3}^{20} + 11693T_{3}^{16} + 185852T_{3}^{12} + 772212T_{3}^{8} + 654688T_{3}^{4} + 64 acting on S2new(560,[χ])S_{2}^{\mathrm{new}}(560, [\chi]). Copy content Toggle raw display