Properties

Label 560.2.cc.d.159.2
Level $560$
Weight $2$
Character 560.159
Analytic conductor $4.472$
Analytic rank $0$
Dimension $4$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,2,Mod(159,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([3, 0, 3, 5]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.159");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 560.cc (of order \(6\), degree \(2\), minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.47162251319\)
Analytic rank: \(0\)
Dimension: \(4\)
Relative dimension: \(2\) over \(\Q(\zeta_{6})\)
Coefficient field: \(\Q(\sqrt{-3}, \sqrt{-11})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{4} - x^{3} - 2x^{2} - 3x + 9 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: yes
Sato-Tate group: $\mathrm{SU}(2)[C_{6}]$

Embedding invariants

Embedding label 159.2
Root \(-1.18614 + 1.26217i\) of defining polynomial
Character \(\chi\) \(=\) 560.159
Dual form 560.2.cc.d.479.2

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(2.18614 - 1.26217i) q^{3} +(0.686141 - 2.12819i) q^{5} +(2.00000 - 1.73205i) q^{7} +(1.68614 - 2.92048i) q^{9} +(-1.50000 + 0.866025i) q^{11} -1.37228 q^{13} +(-1.18614 - 5.51856i) q^{15} +(0.813859 + 1.40965i) q^{17} +(-2.87228 + 4.97494i) q^{19} +(2.18614 - 6.31084i) q^{21} +(-2.87228 + 4.97494i) q^{23} +(-4.05842 - 2.92048i) q^{25} -0.939764i q^{27} +8.74456 q^{29} +(-3.55842 - 6.16337i) q^{31} +(-2.18614 + 3.78651i) q^{33} +(-2.31386 - 5.44482i) q^{35} +(7.50000 + 4.33013i) q^{37} +(-3.00000 + 1.73205i) q^{39} +4.25639i q^{41} -4.00000 q^{43} +(-5.05842 - 5.59230i) q^{45} +(-1.24456 - 0.718549i) q^{47} +(1.00000 - 6.92820i) q^{49} +(3.55842 + 2.05446i) q^{51} +(11.6168 - 6.70699i) q^{53} +(0.813859 + 3.78651i) q^{55} +14.5012i q^{57} +(5.18614 + 8.98266i) q^{59} +(-9.55842 - 5.51856i) q^{61} +(-1.68614 - 8.76144i) q^{63} +(-0.941578 + 2.92048i) q^{65} +(4.55842 + 7.89542i) q^{67} +14.5012i q^{69} -10.3923i q^{71} +(-5.18614 - 8.98266i) q^{73} +(-12.5584 - 1.26217i) q^{75} +(-1.50000 + 4.33013i) q^{77} +(0.558422 + 0.322405i) q^{79} +(3.87228 + 6.70699i) q^{81} +1.87953i q^{83} +(3.55842 - 0.764836i) q^{85} +(19.1168 - 11.0371i) q^{87} +(-0.813859 - 0.469882i) q^{89} +(-2.74456 + 2.37686i) q^{91} +(-15.5584 - 8.98266i) q^{93} +(8.61684 + 9.52628i) q^{95} +6.00000 q^{97} +5.84096i q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 4 q + 3 q^{3} - 3 q^{5} + 8 q^{7} + q^{9} - 6 q^{11} + 6 q^{13} + q^{15} + 9 q^{17} + 3 q^{21} + q^{25} + 12 q^{29} + 3 q^{31} - 3 q^{33} - 15 q^{35} + 30 q^{37} - 12 q^{39} - 16 q^{43} - 3 q^{45} + 18 q^{47}+ \cdots + 24 q^{97}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/560\mathbb{Z}\right)^\times\).

\(n\) \(241\) \(337\) \(351\) \(421\)
\(\chi(n)\) \(e\left(\frac{5}{6}\right)\) \(-1\) \(-1\) \(1\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) 2.18614 1.26217i 1.26217 0.728714i 0.288675 0.957427i \(-0.406785\pi\)
0.973494 + 0.228714i \(0.0734519\pi\)
\(4\) 0 0
\(5\) 0.686141 2.12819i 0.306851 0.951757i
\(6\) 0 0
\(7\) 2.00000 1.73205i 0.755929 0.654654i
\(8\) 0 0
\(9\) 1.68614 2.92048i 0.562047 0.973494i
\(10\) 0 0
\(11\) −1.50000 + 0.866025i −0.452267 + 0.261116i −0.708787 0.705422i \(-0.750757\pi\)
0.256520 + 0.966539i \(0.417424\pi\)
\(12\) 0 0
\(13\) −1.37228 −0.380602 −0.190301 0.981726i \(-0.560946\pi\)
−0.190301 + 0.981726i \(0.560946\pi\)
\(14\) 0 0
\(15\) −1.18614 5.51856i −0.306260 1.42489i
\(16\) 0 0
\(17\) 0.813859 + 1.40965i 0.197390 + 0.341889i 0.947681 0.319218i \(-0.103420\pi\)
−0.750291 + 0.661107i \(0.770087\pi\)
\(18\) 0 0
\(19\) −2.87228 + 4.97494i −0.658947 + 1.14133i 0.321942 + 0.946759i \(0.395664\pi\)
−0.980889 + 0.194570i \(0.937669\pi\)
\(20\) 0 0
\(21\) 2.18614 6.31084i 0.477055 1.37714i
\(22\) 0 0
\(23\) −2.87228 + 4.97494i −0.598912 + 1.03735i 0.394070 + 0.919080i \(0.371067\pi\)
−0.992982 + 0.118266i \(0.962267\pi\)
\(24\) 0 0
\(25\) −4.05842 2.92048i −0.811684 0.584096i
\(26\) 0 0
\(27\) 0.939764i 0.180858i
\(28\) 0 0
\(29\) 8.74456 1.62382 0.811912 0.583779i \(-0.198427\pi\)
0.811912 + 0.583779i \(0.198427\pi\)
\(30\) 0 0
\(31\) −3.55842 6.16337i −0.639111 1.10697i −0.985628 0.168930i \(-0.945969\pi\)
0.346517 0.938044i \(-0.387364\pi\)
\(32\) 0 0
\(33\) −2.18614 + 3.78651i −0.380558 + 0.659146i
\(34\) 0 0
\(35\) −2.31386 5.44482i −0.391114 0.920342i
\(36\) 0 0
\(37\) 7.50000 + 4.33013i 1.23299 + 0.711868i 0.967653 0.252286i \(-0.0811825\pi\)
0.265340 + 0.964155i \(0.414516\pi\)
\(38\) 0 0
\(39\) −3.00000 + 1.73205i −0.480384 + 0.277350i
\(40\) 0 0
\(41\) 4.25639i 0.664736i 0.943150 + 0.332368i \(0.107848\pi\)
−0.943150 + 0.332368i \(0.892152\pi\)
\(42\) 0 0
\(43\) −4.00000 −0.609994 −0.304997 0.952353i \(-0.598656\pi\)
−0.304997 + 0.952353i \(0.598656\pi\)
\(44\) 0 0
\(45\) −5.05842 5.59230i −0.754065 0.833650i
\(46\) 0 0
\(47\) −1.24456 0.718549i −0.181538 0.104811i 0.406477 0.913661i \(-0.366757\pi\)
−0.588015 + 0.808850i \(0.700090\pi\)
\(48\) 0 0
\(49\) 1.00000 6.92820i 0.142857 0.989743i
\(50\) 0 0
\(51\) 3.55842 + 2.05446i 0.498279 + 0.287681i
\(52\) 0 0
\(53\) 11.6168 6.70699i 1.59570 0.921276i 0.603393 0.797444i \(-0.293815\pi\)
0.992303 0.123832i \(-0.0395183\pi\)
\(54\) 0 0
\(55\) 0.813859 + 3.78651i 0.109741 + 0.510572i
\(56\) 0 0
\(57\) 14.5012i 1.92073i
\(58\) 0 0
\(59\) 5.18614 + 8.98266i 0.675178 + 1.16944i 0.976417 + 0.215894i \(0.0692665\pi\)
−0.301239 + 0.953549i \(0.597400\pi\)
\(60\) 0 0
\(61\) −9.55842 5.51856i −1.22383 0.706579i −0.258098 0.966119i \(-0.583096\pi\)
−0.965732 + 0.259540i \(0.916429\pi\)
\(62\) 0 0
\(63\) −1.68614 8.76144i −0.212434 1.10384i
\(64\) 0 0
\(65\) −0.941578 + 2.92048i −0.116788 + 0.362241i
\(66\) 0 0
\(67\) 4.55842 + 7.89542i 0.556900 + 0.964579i 0.997753 + 0.0669996i \(0.0213426\pi\)
−0.440853 + 0.897579i \(0.645324\pi\)
\(68\) 0 0
\(69\) 14.5012i 1.74574i
\(70\) 0 0
\(71\) 10.3923i 1.23334i −0.787222 0.616670i \(-0.788481\pi\)
0.787222 0.616670i \(-0.211519\pi\)
\(72\) 0 0
\(73\) −5.18614 8.98266i −0.606992 1.05134i −0.991733 0.128316i \(-0.959043\pi\)
0.384741 0.923024i \(-0.374291\pi\)
\(74\) 0 0
\(75\) −12.5584 1.26217i −1.45012 0.145743i
\(76\) 0 0
\(77\) −1.50000 + 4.33013i −0.170941 + 0.493464i
\(78\) 0 0
\(79\) 0.558422 + 0.322405i 0.0628274 + 0.0362734i 0.531085 0.847319i \(-0.321785\pi\)
−0.468257 + 0.883592i \(0.655118\pi\)
\(80\) 0 0
\(81\) 3.87228 + 6.70699i 0.430253 + 0.745221i
\(82\) 0 0
\(83\) 1.87953i 0.206305i 0.994666 + 0.103152i \(0.0328930\pi\)
−0.994666 + 0.103152i \(0.967107\pi\)
\(84\) 0 0
\(85\) 3.55842 0.764836i 0.385965 0.0829581i
\(86\) 0 0
\(87\) 19.1168 11.0371i 2.04954 1.18330i
\(88\) 0 0
\(89\) −0.813859 0.469882i −0.0862689 0.0498074i 0.456245 0.889854i \(-0.349194\pi\)
−0.542514 + 0.840047i \(0.682527\pi\)
\(90\) 0 0
\(91\) −2.74456 + 2.37686i −0.287708 + 0.249163i
\(92\) 0 0
\(93\) −15.5584 8.98266i −1.61333 0.931458i
\(94\) 0 0
\(95\) 8.61684 + 9.52628i 0.884070 + 0.977376i
\(96\) 0 0
\(97\) 6.00000 0.609208 0.304604 0.952479i \(-0.401476\pi\)
0.304604 + 0.952479i \(0.401476\pi\)
\(98\) 0 0
\(99\) 5.84096i 0.587039i
\(100\) 0 0
\(101\) −4.93070 + 2.84674i −0.490623 + 0.283262i −0.724833 0.688925i \(-0.758083\pi\)
0.234210 + 0.972186i \(0.424750\pi\)
\(102\) 0 0
\(103\) 0.558422 + 0.322405i 0.0550230 + 0.0317675i 0.527259 0.849705i \(-0.323220\pi\)
−0.472236 + 0.881472i \(0.656553\pi\)
\(104\) 0 0
\(105\) −11.9307 8.98266i −1.16432 0.876618i
\(106\) 0 0
\(107\) 2.18614 3.78651i 0.211342 0.366055i −0.740793 0.671734i \(-0.765550\pi\)
0.952135 + 0.305678i \(0.0988832\pi\)
\(108\) 0 0
\(109\) −2.55842 4.43132i −0.245052 0.424443i 0.717094 0.696977i \(-0.245472\pi\)
−0.962146 + 0.272533i \(0.912138\pi\)
\(110\) 0 0
\(111\) 21.8614 2.07499
\(112\) 0 0
\(113\) 6.92820i 0.651751i −0.945413 0.325875i \(-0.894341\pi\)
0.945413 0.325875i \(-0.105659\pi\)
\(114\) 0 0
\(115\) 8.61684 + 9.52628i 0.803525 + 0.888330i
\(116\) 0 0
\(117\) −2.31386 + 4.00772i −0.213916 + 0.370514i
\(118\) 0 0
\(119\) 4.06930 + 1.40965i 0.373032 + 0.129222i
\(120\) 0 0
\(121\) −4.00000 + 6.92820i −0.363636 + 0.629837i
\(122\) 0 0
\(123\) 5.37228 + 9.30506i 0.484402 + 0.839009i
\(124\) 0 0
\(125\) −9.00000 + 6.63325i −0.804984 + 0.593296i
\(126\) 0 0
\(127\) −2.11684 −0.187840 −0.0939198 0.995580i \(-0.529940\pi\)
−0.0939198 + 0.995580i \(0.529940\pi\)
\(128\) 0 0
\(129\) −8.74456 + 5.04868i −0.769916 + 0.444511i
\(130\) 0 0
\(131\) −1.50000 + 2.59808i −0.131056 + 0.226995i −0.924084 0.382190i \(-0.875170\pi\)
0.793028 + 0.609185i \(0.208503\pi\)
\(132\) 0 0
\(133\) 2.87228 + 14.9248i 0.249058 + 1.29415i
\(134\) 0 0
\(135\) −2.00000 0.644810i −0.172133 0.0554964i
\(136\) 0 0
\(137\) 0.558422 0.322405i 0.0477092 0.0275449i −0.475956 0.879469i \(-0.657898\pi\)
0.523665 + 0.851924i \(0.324564\pi\)
\(138\) 0 0
\(139\) −12.0000 −1.01783 −0.508913 0.860818i \(-0.669953\pi\)
−0.508913 + 0.860818i \(0.669953\pi\)
\(140\) 0 0
\(141\) −3.62772 −0.305509
\(142\) 0 0
\(143\) 2.05842 1.18843i 0.172134 0.0993815i
\(144\) 0 0
\(145\) 6.00000 18.6101i 0.498273 1.54549i
\(146\) 0 0
\(147\) −6.55842 16.4082i −0.540930 1.35333i
\(148\) 0 0
\(149\) −7.93070 + 13.7364i −0.649709 + 1.12533i 0.333484 + 0.942756i \(0.391776\pi\)
−0.983192 + 0.182572i \(0.941558\pi\)
\(150\) 0 0
\(151\) −18.5584 + 10.7147i −1.51026 + 0.871951i −0.510335 + 0.859976i \(0.670478\pi\)
−0.999928 + 0.0119748i \(0.996188\pi\)
\(152\) 0 0
\(153\) 5.48913 0.443769
\(154\) 0 0
\(155\) −15.5584 + 3.34408i −1.24968 + 0.268603i
\(156\) 0 0
\(157\) 4.50000 + 7.79423i 0.359139 + 0.622047i 0.987817 0.155618i \(-0.0497370\pi\)
−0.628678 + 0.777666i \(0.716404\pi\)
\(158\) 0 0
\(159\) 16.9307 29.3248i 1.34269 2.32561i
\(160\) 0 0
\(161\) 2.87228 + 14.9248i 0.226367 + 1.17624i
\(162\) 0 0
\(163\) −10.5584 + 18.2877i −0.826999 + 1.43241i 0.0733821 + 0.997304i \(0.476621\pi\)
−0.900382 + 0.435101i \(0.856713\pi\)
\(164\) 0 0
\(165\) 6.55842 + 7.25061i 0.510572 + 0.564459i
\(166\) 0 0
\(167\) 10.8896i 0.842666i 0.906906 + 0.421333i \(0.138438\pi\)
−0.906906 + 0.421333i \(0.861562\pi\)
\(168\) 0 0
\(169\) −11.1168 −0.855142
\(170\) 0 0
\(171\) 9.68614 + 16.7769i 0.740718 + 1.28296i
\(172\) 0 0
\(173\) −11.6168 + 20.1210i −0.883212 + 1.52977i −0.0354633 + 0.999371i \(0.511291\pi\)
−0.847749 + 0.530398i \(0.822043\pi\)
\(174\) 0 0
\(175\) −13.1753 + 1.18843i −0.995956 + 0.0898369i
\(176\) 0 0
\(177\) 22.6753 + 13.0916i 1.70438 + 0.984023i
\(178\) 0 0
\(179\) 18.7337 10.8159i 1.40022 0.808418i 0.405807 0.913959i \(-0.366991\pi\)
0.994415 + 0.105541i \(0.0336573\pi\)
\(180\) 0 0
\(181\) 18.6101i 1.38328i −0.722242 0.691640i \(-0.756889\pi\)
0.722242 0.691640i \(-0.243111\pi\)
\(182\) 0 0
\(183\) −27.8614 −2.05957
\(184\) 0 0
\(185\) 14.3614 12.9904i 1.05587 0.955072i
\(186\) 0 0
\(187\) −2.44158 1.40965i −0.178546 0.103084i
\(188\) 0 0
\(189\) −1.62772 1.87953i −0.118399 0.136716i
\(190\) 0 0
\(191\) −3.55842 2.05446i −0.257478 0.148655i 0.365705 0.930731i \(-0.380828\pi\)
−0.623184 + 0.782075i \(0.714161\pi\)
\(192\) 0 0
\(193\) 12.5584 7.25061i 0.903975 0.521910i 0.0254873 0.999675i \(-0.491886\pi\)
0.878488 + 0.477765i \(0.158553\pi\)
\(194\) 0 0
\(195\) 1.62772 + 7.57301i 0.116563 + 0.542315i
\(196\) 0 0
\(197\) 19.6974i 1.40338i 0.712483 + 0.701690i \(0.247571\pi\)
−0.712483 + 0.701690i \(0.752429\pi\)
\(198\) 0 0
\(199\) −10.9307 18.9325i −0.774857 1.34209i −0.934875 0.354978i \(-0.884488\pi\)
0.160018 0.987114i \(-0.448845\pi\)
\(200\) 0 0
\(201\) 19.9307 + 11.5070i 1.40580 + 0.811641i
\(202\) 0 0
\(203\) 17.4891 15.1460i 1.22750 1.06304i
\(204\) 0 0
\(205\) 9.05842 + 2.92048i 0.632668 + 0.203975i
\(206\) 0 0
\(207\) 9.68614 + 16.7769i 0.673233 + 1.16607i
\(208\) 0 0
\(209\) 9.94987i 0.688247i
\(210\) 0 0
\(211\) 2.37686i 0.163630i 0.996648 + 0.0818149i \(0.0260716\pi\)
−0.996648 + 0.0818149i \(0.973928\pi\)
\(212\) 0 0
\(213\) −13.1168 22.7190i −0.898751 1.55668i
\(214\) 0 0
\(215\) −2.74456 + 8.51278i −0.187178 + 0.580567i
\(216\) 0 0
\(217\) −17.7921 6.16337i −1.20781 0.418397i
\(218\) 0 0
\(219\) −22.6753 13.0916i −1.53225 0.884646i
\(220\) 0 0
\(221\) −1.11684 1.93443i −0.0751271 0.130124i
\(222\) 0 0
\(223\) 10.3923i 0.695920i −0.937509 0.347960i \(-0.886874\pi\)
0.937509 0.347960i \(-0.113126\pi\)
\(224\) 0 0
\(225\) −15.3723 + 6.92820i −1.02482 + 0.461880i
\(226\) 0 0
\(227\) 8.18614 4.72627i 0.543333 0.313694i −0.203096 0.979159i \(-0.565100\pi\)
0.746429 + 0.665465i \(0.231767\pi\)
\(228\) 0 0
\(229\) −15.5584 8.98266i −1.02813 0.593591i −0.111681 0.993744i \(-0.535624\pi\)
−0.916448 + 0.400153i \(0.868957\pi\)
\(230\) 0 0
\(231\) 2.18614 + 11.3595i 0.143837 + 0.747402i
\(232\) 0 0
\(233\) −7.67527 4.43132i −0.502823 0.290305i 0.227055 0.973882i \(-0.427090\pi\)
−0.729879 + 0.683577i \(0.760423\pi\)
\(234\) 0 0
\(235\) −2.38316 + 2.15565i −0.155460 + 0.140619i
\(236\) 0 0
\(237\) 1.62772 0.105732
\(238\) 0 0
\(239\) 10.3923i 0.672222i 0.941822 + 0.336111i \(0.109112\pi\)
−0.941822 + 0.336111i \(0.890888\pi\)
\(240\) 0 0
\(241\) 13.5000 7.79423i 0.869611 0.502070i 0.00239235 0.999997i \(-0.499238\pi\)
0.867219 + 0.497927i \(0.165905\pi\)
\(242\) 0 0
\(243\) 19.3723 + 11.1846i 1.24273 + 0.717492i
\(244\) 0 0
\(245\) −14.0584 6.88192i −0.898160 0.439670i
\(246\) 0 0
\(247\) 3.94158 6.82701i 0.250797 0.434392i
\(248\) 0 0
\(249\) 2.37228 + 4.10891i 0.150337 + 0.260392i
\(250\) 0 0
\(251\) −24.8614 −1.56924 −0.784619 0.619978i \(-0.787141\pi\)
−0.784619 + 0.619978i \(0.787141\pi\)
\(252\) 0 0
\(253\) 9.94987i 0.625543i
\(254\) 0 0
\(255\) 6.81386 6.16337i 0.426700 0.385965i
\(256\) 0 0
\(257\) 3.55842 6.16337i 0.221968 0.384460i −0.733437 0.679757i \(-0.762085\pi\)
0.955406 + 0.295297i \(0.0954185\pi\)
\(258\) 0 0
\(259\) 22.5000 4.33013i 1.39808 0.269061i
\(260\) 0 0
\(261\) 14.7446 25.5383i 0.912666 1.58078i
\(262\) 0 0
\(263\) −6.81386 11.8020i −0.420161 0.727739i 0.575794 0.817595i \(-0.304693\pi\)
−0.995955 + 0.0898552i \(0.971360\pi\)
\(264\) 0 0
\(265\) −6.30298 29.3248i −0.387189 1.80141i
\(266\) 0 0
\(267\) −2.37228 −0.145181
\(268\) 0 0
\(269\) 21.3030 12.2993i 1.29887 0.749901i 0.318658 0.947870i \(-0.396768\pi\)
0.980208 + 0.197969i \(0.0634346\pi\)
\(270\) 0 0
\(271\) 2.18614 3.78651i 0.132799 0.230014i −0.791956 0.610578i \(-0.790937\pi\)
0.924754 + 0.380565i \(0.124270\pi\)
\(272\) 0 0
\(273\) −3.00000 + 8.66025i −0.181568 + 0.524142i
\(274\) 0 0
\(275\) 8.61684 + 0.866025i 0.519615 + 0.0522233i
\(276\) 0 0
\(277\) 8.44158 4.87375i 0.507205 0.292835i −0.224479 0.974479i \(-0.572068\pi\)
0.731684 + 0.681644i \(0.238735\pi\)
\(278\) 0 0
\(279\) −24.0000 −1.43684
\(280\) 0 0
\(281\) −7.88316 −0.470270 −0.235135 0.971963i \(-0.575553\pi\)
−0.235135 + 0.971963i \(0.575553\pi\)
\(282\) 0 0
\(283\) 15.5584 8.98266i 0.924852 0.533964i 0.0396724 0.999213i \(-0.487369\pi\)
0.885180 + 0.465249i \(0.154035\pi\)
\(284\) 0 0
\(285\) 30.8614 + 9.94987i 1.82807 + 0.589380i
\(286\) 0 0
\(287\) 7.37228 + 8.51278i 0.435172 + 0.502493i
\(288\) 0 0
\(289\) 7.17527 12.4279i 0.422074 0.731054i
\(290\) 0 0
\(291\) 13.1168 7.57301i 0.768923 0.443938i
\(292\) 0 0
\(293\) 30.8614 1.80294 0.901471 0.432839i \(-0.142488\pi\)
0.901471 + 0.432839i \(0.142488\pi\)
\(294\) 0 0
\(295\) 22.6753 4.87375i 1.32021 0.283761i
\(296\) 0 0
\(297\) 0.813859 + 1.40965i 0.0472249 + 0.0817959i
\(298\) 0 0
\(299\) 3.94158 6.82701i 0.227947 0.394816i
\(300\) 0 0
\(301\) −8.00000 + 6.92820i −0.461112 + 0.399335i
\(302\) 0 0
\(303\) −7.18614 + 12.4468i −0.412833 + 0.715048i
\(304\) 0 0
\(305\) −18.3030 + 16.5557i −1.04803 + 0.947975i
\(306\) 0 0
\(307\) 26.8280i 1.53115i −0.643345 0.765576i \(-0.722454\pi\)
0.643345 0.765576i \(-0.277546\pi\)
\(308\) 0 0
\(309\) 1.62772 0.0925977
\(310\) 0 0
\(311\) −2.18614 3.78651i −0.123965 0.214713i 0.797363 0.603500i \(-0.206228\pi\)
−0.921328 + 0.388787i \(0.872894\pi\)
\(312\) 0 0
\(313\) −7.93070 + 13.7364i −0.448270 + 0.776426i −0.998274 0.0587361i \(-0.981293\pi\)
0.550004 + 0.835162i \(0.314626\pi\)
\(314\) 0 0
\(315\) −19.8030 2.42315i −1.11577 0.136529i
\(316\) 0 0
\(317\) −9.55842 5.51856i −0.536854 0.309953i 0.206949 0.978352i \(-0.433647\pi\)
−0.743803 + 0.668399i \(0.766980\pi\)
\(318\) 0 0
\(319\) −13.1168 + 7.57301i −0.734402 + 0.424007i
\(320\) 0 0
\(321\) 11.0371i 0.616032i
\(322\) 0 0
\(323\) −9.35053 −0.520278
\(324\) 0 0
\(325\) 5.56930 + 4.00772i 0.308929 + 0.222308i
\(326\) 0 0
\(327\) −11.1861 6.45832i −0.618595 0.357146i
\(328\) 0 0
\(329\) −3.73369 + 0.718549i −0.205845 + 0.0396149i
\(330\) 0 0
\(331\) −10.5000 6.06218i −0.577132 0.333207i 0.182861 0.983139i \(-0.441464\pi\)
−0.759993 + 0.649931i \(0.774798\pi\)
\(332\) 0 0
\(333\) 25.2921 14.6024i 1.38600 0.800207i
\(334\) 0 0
\(335\) 19.9307 4.28384i 1.08893 0.234051i
\(336\) 0 0
\(337\) 6.92820i 0.377403i −0.982034 0.188702i \(-0.939572\pi\)
0.982034 0.188702i \(-0.0604279\pi\)
\(338\) 0 0
\(339\) −8.74456 15.1460i −0.474939 0.822619i
\(340\) 0 0
\(341\) 10.6753 + 6.16337i 0.578098 + 0.333765i
\(342\) 0 0
\(343\) −10.0000 15.5885i −0.539949 0.841698i
\(344\) 0 0
\(345\) 30.8614 + 9.94987i 1.66152 + 0.535683i
\(346\) 0 0
\(347\) 7.93070 + 13.7364i 0.425742 + 0.737408i 0.996489 0.0837184i \(-0.0266796\pi\)
−0.570747 + 0.821126i \(0.693346\pi\)
\(348\) 0 0
\(349\) 11.6819i 0.625319i −0.949865 0.312660i \(-0.898780\pi\)
0.949865 0.312660i \(-0.101220\pi\)
\(350\) 0 0
\(351\) 1.28962i 0.0688348i
\(352\) 0 0
\(353\) 8.18614 + 14.1788i 0.435704 + 0.754662i 0.997353 0.0727139i \(-0.0231660\pi\)
−0.561649 + 0.827376i \(0.689833\pi\)
\(354\) 0 0
\(355\) −22.1168 7.13058i −1.17384 0.378452i
\(356\) 0 0
\(357\) 10.6753 2.05446i 0.564995 0.108733i
\(358\) 0 0
\(359\) 16.6753 + 9.62747i 0.880087 + 0.508118i 0.870687 0.491837i \(-0.163675\pi\)
0.00939982 + 0.999956i \(0.497008\pi\)
\(360\) 0 0
\(361\) −7.00000 12.1244i −0.368421 0.638124i
\(362\) 0 0
\(363\) 20.1947i 1.05995i
\(364\) 0 0
\(365\) −22.6753 + 4.87375i −1.18688 + 0.255104i
\(366\) 0 0
\(367\) 2.61684 1.51084i 0.136598 0.0788650i −0.430144 0.902760i \(-0.641537\pi\)
0.566742 + 0.823896i \(0.308204\pi\)
\(368\) 0 0
\(369\) 12.4307 + 7.17687i 0.647117 + 0.373613i
\(370\) 0 0
\(371\) 11.6168 33.5349i 0.603116 1.74105i
\(372\) 0 0
\(373\) −29.7921 17.2005i −1.54258 0.890607i −0.998675 0.0514584i \(-0.983613\pi\)
−0.543902 0.839149i \(-0.683054\pi\)
\(374\) 0 0
\(375\) −11.3030 + 25.8607i −0.583684 + 1.33544i
\(376\) 0 0
\(377\) −12.0000 −0.618031
\(378\) 0 0
\(379\) 25.3360i 1.30142i 0.759326 + 0.650710i \(0.225529\pi\)
−0.759326 + 0.650710i \(0.774471\pi\)
\(380\) 0 0
\(381\) −4.62772 + 2.67181i −0.237085 + 0.136881i
\(382\) 0 0
\(383\) −7.75544 4.47760i −0.396284 0.228795i 0.288595 0.957451i \(-0.406812\pi\)
−0.684879 + 0.728656i \(0.740145\pi\)
\(384\) 0 0
\(385\) 8.18614 + 6.16337i 0.417204 + 0.314114i
\(386\) 0 0
\(387\) −6.74456 + 11.6819i −0.342845 + 0.593826i
\(388\) 0 0
\(389\) 3.55842 + 6.16337i 0.180419 + 0.312495i 0.942023 0.335547i \(-0.108921\pi\)
−0.761604 + 0.648042i \(0.775588\pi\)
\(390\) 0 0
\(391\) −9.35053 −0.472877
\(392\) 0 0
\(393\) 7.57301i 0.382008i
\(394\) 0 0
\(395\) 1.06930 0.967215i 0.0538022 0.0486659i
\(396\) 0 0
\(397\) −0.558422 + 0.967215i −0.0280264 + 0.0485431i −0.879698 0.475532i \(-0.842256\pi\)
0.851672 + 0.524075i \(0.175589\pi\)
\(398\) 0 0
\(399\) 25.1168 + 29.0024i 1.25741 + 1.45194i
\(400\) 0 0
\(401\) −8.87228 + 15.3672i −0.443061 + 0.767403i −0.997915 0.0645441i \(-0.979441\pi\)
0.554854 + 0.831948i \(0.312774\pi\)
\(402\) 0 0
\(403\) 4.88316 + 8.45787i 0.243247 + 0.421317i
\(404\) 0 0
\(405\) 16.9307 3.63903i 0.841293 0.180825i
\(406\) 0 0
\(407\) −15.0000 −0.743522
\(408\) 0 0
\(409\) −9.55842 + 5.51856i −0.472634 + 0.272875i −0.717342 0.696722i \(-0.754641\pi\)
0.244708 + 0.969597i \(0.421308\pi\)
\(410\) 0 0
\(411\) 0.813859 1.40965i 0.0401447 0.0695327i
\(412\) 0 0
\(413\) 25.9307 + 8.98266i 1.27597 + 0.442008i
\(414\) 0 0
\(415\) 4.00000 + 1.28962i 0.196352 + 0.0633050i
\(416\) 0 0
\(417\) −26.2337 + 15.1460i −1.28467 + 0.741704i
\(418\) 0 0
\(419\) −31.3723 −1.53264 −0.766318 0.642461i \(-0.777913\pi\)
−0.766318 + 0.642461i \(0.777913\pi\)
\(420\) 0 0
\(421\) −18.2337 −0.888656 −0.444328 0.895864i \(-0.646557\pi\)
−0.444328 + 0.895864i \(0.646557\pi\)
\(422\) 0 0
\(423\) −4.19702 + 2.42315i −0.204066 + 0.117817i
\(424\) 0 0
\(425\) 0.813859 8.09780i 0.0394780 0.392801i
\(426\) 0 0
\(427\) −28.6753 + 5.51856i −1.38769 + 0.267062i
\(428\) 0 0
\(429\) 3.00000 5.19615i 0.144841 0.250873i
\(430\) 0 0
\(431\) 13.6753 7.89542i 0.658714 0.380309i −0.133073 0.991106i \(-0.542484\pi\)
0.791787 + 0.610797i \(0.209151\pi\)
\(432\) 0 0
\(433\) −23.4891 −1.12882 −0.564408 0.825496i \(-0.690895\pi\)
−0.564408 + 0.825496i \(0.690895\pi\)
\(434\) 0 0
\(435\) −10.3723 48.2574i −0.497313 2.31376i
\(436\) 0 0
\(437\) −16.5000 28.5788i −0.789302 1.36711i
\(438\) 0 0
\(439\) −9.30298 + 16.1132i −0.444007 + 0.769043i −0.997982 0.0634901i \(-0.979777\pi\)
0.553975 + 0.832533i \(0.313110\pi\)
\(440\) 0 0
\(441\) −18.5475 14.6024i −0.883217 0.695353i
\(442\) 0 0
\(443\) 6.81386 11.8020i 0.323736 0.560728i −0.657520 0.753437i \(-0.728394\pi\)
0.981256 + 0.192710i \(0.0617276\pi\)
\(444\) 0 0
\(445\) −1.55842 + 1.40965i −0.0738763 + 0.0668236i
\(446\) 0 0
\(447\) 40.0395i 1.89381i
\(448\) 0 0
\(449\) 30.8614 1.45644 0.728220 0.685344i \(-0.240348\pi\)
0.728220 + 0.685344i \(0.240348\pi\)
\(450\) 0 0
\(451\) −3.68614 6.38458i −0.173574 0.300638i
\(452\) 0 0
\(453\) −27.0475 + 46.8477i −1.27080 + 2.20110i
\(454\) 0 0
\(455\) 3.17527 + 7.47182i 0.148859 + 0.350284i
\(456\) 0 0
\(457\) 14.7921 + 8.54023i 0.691946 + 0.399495i 0.804341 0.594169i \(-0.202519\pi\)
−0.112395 + 0.993664i \(0.535852\pi\)
\(458\) 0 0
\(459\) 1.32473 0.764836i 0.0618333 0.0356995i
\(460\) 0 0
\(461\) 18.0202i 0.839285i 0.907689 + 0.419643i \(0.137845\pi\)
−0.907689 + 0.419643i \(0.862155\pi\)
\(462\) 0 0
\(463\) 14.3505 0.666926 0.333463 0.942763i \(-0.391783\pi\)
0.333463 + 0.942763i \(0.391783\pi\)
\(464\) 0 0
\(465\) −29.7921 + 26.9480i −1.38158 + 1.24968i
\(466\) 0 0
\(467\) −16.4198 9.47999i −0.759819 0.438682i 0.0694117 0.997588i \(-0.477888\pi\)
−0.829231 + 0.558906i \(0.811221\pi\)
\(468\) 0 0
\(469\) 22.7921 + 7.89542i 1.05244 + 0.364577i
\(470\) 0 0
\(471\) 19.6753 + 11.3595i 0.906588 + 0.523419i
\(472\) 0 0
\(473\) 6.00000 3.46410i 0.275880 0.159280i
\(474\) 0 0
\(475\) 26.1861 11.8020i 1.20150 0.541511i
\(476\) 0 0
\(477\) 45.2357i 2.07120i
\(478\) 0 0
\(479\) 3.30298 + 5.72094i 0.150917 + 0.261396i 0.931565 0.363575i \(-0.118444\pi\)
−0.780648 + 0.624971i \(0.785111\pi\)
\(480\) 0 0
\(481\) −10.2921 5.94215i −0.469280 0.270939i
\(482\) 0 0
\(483\) 25.1168 + 29.0024i 1.14286 + 1.31966i
\(484\) 0 0
\(485\) 4.11684 12.7692i 0.186936 0.579818i
\(486\) 0 0
\(487\) −13.5584 23.4839i −0.614391 1.06416i −0.990491 0.137577i \(-0.956069\pi\)
0.376100 0.926579i \(-0.377265\pi\)
\(488\) 0 0
\(489\) 53.3060i 2.41058i
\(490\) 0 0
\(491\) 10.3923i 0.468998i −0.972116 0.234499i \(-0.924655\pi\)
0.972116 0.234499i \(-0.0753450\pi\)
\(492\) 0 0
\(493\) 7.11684 + 12.3267i 0.320527 + 0.555168i
\(494\) 0 0
\(495\) 12.4307 + 4.00772i 0.558719 + 0.180134i
\(496\) 0 0
\(497\) −18.0000 20.7846i −0.807410 0.932317i
\(498\) 0 0
\(499\) 26.7921 + 15.4684i 1.19938 + 0.692462i 0.960417 0.278567i \(-0.0898593\pi\)
0.238963 + 0.971029i \(0.423193\pi\)
\(500\) 0 0
\(501\) 13.7446 + 23.8063i 0.614062 + 1.06359i
\(502\) 0 0
\(503\) 27.4179i 1.22250i −0.791437 0.611251i \(-0.790667\pi\)
0.791437 0.611251i \(-0.209333\pi\)
\(504\) 0 0
\(505\) 2.67527 + 12.4468i 0.119048 + 0.553874i
\(506\) 0 0
\(507\) −24.3030 + 14.0313i −1.07933 + 0.623153i
\(508\) 0 0
\(509\) −22.0693 12.7417i −0.978204 0.564767i −0.0764768 0.997071i \(-0.524367\pi\)
−0.901728 + 0.432305i \(0.857700\pi\)
\(510\) 0 0
\(511\) −25.9307 8.98266i −1.14711 0.397369i
\(512\) 0 0
\(513\) 4.67527 + 2.69927i 0.206418 + 0.119176i
\(514\) 0 0
\(515\) 1.06930 0.967215i 0.0471188 0.0426206i
\(516\) 0 0
\(517\) 2.48913 0.109472
\(518\) 0 0
\(519\) 58.6497i 2.57444i
\(520\) 0 0
\(521\) 14.3614 8.29156i 0.629185 0.363260i −0.151252 0.988495i \(-0.548330\pi\)
0.780436 + 0.625235i \(0.214997\pi\)
\(522\) 0 0
\(523\) 24.5584 + 14.1788i 1.07386 + 0.619996i 0.929235 0.369490i \(-0.120467\pi\)
0.144630 + 0.989486i \(0.453801\pi\)
\(524\) 0 0
\(525\) −27.3030 + 19.2275i −1.19160 + 0.839156i
\(526\) 0 0
\(527\) 5.79211 10.0322i 0.252308 0.437011i
\(528\) 0 0
\(529\) −5.00000 8.66025i −0.217391 0.376533i
\(530\) 0 0
\(531\) 34.9783 1.51793
\(532\) 0 0
\(533\) 5.84096i 0.253000i
\(534\) 0 0
\(535\) −6.55842 7.25061i −0.283545 0.313471i
\(536\) 0 0
\(537\) 27.3030 47.2902i 1.17821 2.04072i
\(538\) 0 0
\(539\) 4.50000 + 11.2583i 0.193829 + 0.484931i
\(540\) 0 0
\(541\) −14.6753 + 25.4183i −0.630939 + 1.09282i 0.356421 + 0.934325i \(0.383997\pi\)
−0.987360 + 0.158493i \(0.949336\pi\)
\(542\) 0 0
\(543\) −23.4891 40.6844i −1.00801 1.74593i
\(544\) 0 0
\(545\) −11.1861 + 2.40431i −0.479162 + 0.102989i
\(546\) 0 0
\(547\) 32.4674 1.38820 0.694102 0.719876i \(-0.255801\pi\)
0.694102 + 0.719876i \(0.255801\pi\)
\(548\) 0 0
\(549\) −32.2337 + 18.6101i −1.37570 + 0.794261i
\(550\) 0 0
\(551\) −25.1168 + 43.5036i −1.07001 + 1.85332i
\(552\) 0 0
\(553\) 1.67527 0.322405i 0.0712396 0.0137101i
\(554\) 0 0
\(555\) 15.0000 46.5253i 0.636715 1.97489i
\(556\) 0 0
\(557\) 3.73369 2.15565i 0.158201 0.0913376i −0.418809 0.908074i \(-0.637552\pi\)
0.577011 + 0.816737i \(0.304219\pi\)
\(558\) 0 0
\(559\) 5.48913 0.232165
\(560\) 0 0
\(561\) −7.11684 −0.300473
\(562\) 0 0
\(563\) −3.30298 + 1.90698i −0.139204 + 0.0803696i −0.567985 0.823039i \(-0.692277\pi\)
0.428780 + 0.903409i \(0.358943\pi\)
\(564\) 0 0
\(565\) −14.7446 4.75372i −0.620308 0.199991i
\(566\) 0 0
\(567\) 19.3614 + 6.70699i 0.813103 + 0.281667i
\(568\) 0 0
\(569\) −17.6168 + 30.5133i −0.738537 + 1.27918i 0.214618 + 0.976698i \(0.431149\pi\)
−0.953154 + 0.302485i \(0.902184\pi\)
\(570\) 0 0
\(571\) 13.6753 7.89542i 0.572292 0.330413i −0.185772 0.982593i \(-0.559479\pi\)
0.758064 + 0.652180i \(0.226145\pi\)
\(572\) 0 0
\(573\) −10.3723 −0.433308
\(574\) 0 0
\(575\) 26.1861 11.8020i 1.09204 0.492175i
\(576\) 0 0
\(577\) −9.81386 16.9981i −0.408556 0.707640i 0.586172 0.810187i \(-0.300634\pi\)
−0.994728 + 0.102546i \(0.967301\pi\)
\(578\) 0 0
\(579\) 18.3030 31.7017i 0.760646 1.31748i
\(580\) 0 0
\(581\) 3.25544 + 3.75906i 0.135058 + 0.155952i
\(582\) 0 0
\(583\) −11.6168 + 20.1210i −0.481121 + 0.833325i
\(584\) 0 0
\(585\) 6.94158 + 7.67420i 0.286999 + 0.317289i
\(586\) 0 0
\(587\) 6.63325i 0.273784i −0.990586 0.136892i \(-0.956289\pi\)
0.990586 0.136892i \(-0.0437113\pi\)
\(588\) 0 0
\(589\) 40.8832 1.68456
\(590\) 0 0
\(591\) 24.8614 + 43.0612i 1.02266 + 1.77130i
\(592\) 0 0
\(593\) 21.0475 36.4554i 0.864319 1.49704i −0.00340244 0.999994i \(-0.501083\pi\)
0.867722 0.497051i \(-0.165584\pi\)
\(594\) 0 0
\(595\) 5.79211 7.69304i 0.237453 0.315384i
\(596\) 0 0
\(597\) −47.7921 27.5928i −1.95600 1.12930i
\(598\) 0 0
\(599\) 1.32473 0.764836i 0.0541272 0.0312503i −0.472692 0.881228i \(-0.656718\pi\)
0.526819 + 0.849977i \(0.323384\pi\)
\(600\) 0 0
\(601\) 30.2921i 1.23564i 0.786320 + 0.617819i \(0.211984\pi\)
−0.786320 + 0.617819i \(0.788016\pi\)
\(602\) 0 0
\(603\) 30.7446 1.25202
\(604\) 0 0
\(605\) 12.0000 + 13.2665i 0.487869 + 0.539360i
\(606\) 0 0
\(607\) 23.6168 + 13.6352i 0.958578 + 0.553435i 0.895735 0.444588i \(-0.146650\pi\)
0.0628430 + 0.998023i \(0.479983\pi\)
\(608\) 0 0
\(609\) 19.1168 55.1856i 0.774654 2.23623i
\(610\) 0 0
\(611\) 1.70789 + 0.986051i 0.0690938 + 0.0398913i
\(612\) 0 0
\(613\) −4.50000 + 2.59808i −0.181753 + 0.104935i −0.588116 0.808776i \(-0.700130\pi\)
0.406363 + 0.913712i \(0.366797\pi\)
\(614\) 0 0
\(615\) 23.4891 5.04868i 0.947173 0.203582i
\(616\) 0 0
\(617\) 14.2612i 0.574133i 0.957911 + 0.287066i \(0.0926801\pi\)
−0.957911 + 0.287066i \(0.907320\pi\)
\(618\) 0 0
\(619\) 0.989125 + 1.71322i 0.0397563 + 0.0688599i 0.885219 0.465175i \(-0.154009\pi\)
−0.845463 + 0.534035i \(0.820675\pi\)
\(620\) 0 0
\(621\) 4.67527 + 2.69927i 0.187612 + 0.108318i
\(622\) 0 0
\(623\) −2.44158 + 0.469882i −0.0978198 + 0.0188254i
\(624\) 0 0
\(625\) 7.94158 + 23.7051i 0.317663 + 0.948204i
\(626\) 0 0
\(627\) −12.5584 21.7518i −0.501535 0.868684i
\(628\) 0 0
\(629\) 14.0965i 0.562063i
\(630\) 0 0
\(631\) 31.5817i 1.25725i −0.777710 0.628623i \(-0.783619\pi\)
0.777710 0.628623i \(-0.216381\pi\)
\(632\) 0 0
\(633\) 3.00000 + 5.19615i 0.119239 + 0.206529i
\(634\) 0 0
\(635\) −1.45245 + 4.50506i −0.0576388 + 0.178778i
\(636\) 0 0
\(637\) −1.37228 + 9.50744i −0.0543718 + 0.376699i
\(638\) 0 0
\(639\) −30.3505 17.5229i −1.20065 0.693195i
\(640\) 0 0
\(641\) −12.1277 21.0058i −0.479016 0.829680i 0.520694 0.853743i \(-0.325673\pi\)
−0.999710 + 0.0240630i \(0.992340\pi\)
\(642\) 0 0
\(643\) 0.884861i 0.0348955i 0.999848 + 0.0174478i \(0.00555407\pi\)
−0.999848 + 0.0174478i \(0.994446\pi\)
\(644\) 0 0
\(645\) 4.74456 + 22.0742i 0.186817 + 0.869172i
\(646\) 0 0
\(647\) −32.3614 + 18.6839i −1.27226 + 0.734539i −0.975413 0.220387i \(-0.929268\pi\)
−0.296846 + 0.954925i \(0.595935\pi\)
\(648\) 0 0
\(649\) −15.5584 8.98266i −0.610721 0.352600i
\(650\) 0 0
\(651\) −46.6753 + 8.98266i −1.82935 + 0.352058i
\(652\) 0 0
\(653\) 9.38316 + 5.41737i 0.367191 + 0.211998i 0.672231 0.740342i \(-0.265336\pi\)
−0.305039 + 0.952340i \(0.598670\pi\)
\(654\) 0 0
\(655\) 4.50000 + 4.97494i 0.175830 + 0.194387i
\(656\) 0 0
\(657\) −34.9783 −1.36463
\(658\) 0 0
\(659\) 0.884861i 0.0344693i 0.999851 + 0.0172346i \(0.00548623\pi\)
−0.999851 + 0.0172346i \(0.994514\pi\)
\(660\) 0 0
\(661\) 4.67527 2.69927i 0.181847 0.104989i −0.406313 0.913734i \(-0.633186\pi\)
0.588160 + 0.808745i \(0.299853\pi\)
\(662\) 0 0
\(663\) −4.88316 2.81929i −0.189646 0.109492i
\(664\) 0 0
\(665\) 33.7337 + 4.12775i 1.30814 + 0.160067i
\(666\) 0 0
\(667\) −25.1168 + 43.5036i −0.972528 + 1.68447i
\(668\) 0 0
\(669\) −13.1168 22.7190i −0.507126 0.878369i
\(670\) 0 0
\(671\) 19.1168 0.737998
\(672\) 0 0
\(673\) 4.75372i 0.183243i −0.995794 0.0916213i \(-0.970795\pi\)
0.995794 0.0916213i \(-0.0292049\pi\)
\(674\) 0 0
\(675\) −2.74456 + 3.81396i −0.105638 + 0.146799i
\(676\) 0 0
\(677\) −5.61684 + 9.72866i −0.215873 + 0.373903i −0.953542 0.301259i \(-0.902593\pi\)
0.737669 + 0.675162i \(0.235926\pi\)
\(678\) 0 0
\(679\) 12.0000 10.3923i 0.460518 0.398820i
\(680\) 0 0
\(681\) 11.9307 20.6646i 0.457186 0.791869i
\(682\) 0 0
\(683\) −8.18614 14.1788i −0.313234 0.542537i 0.665827 0.746107i \(-0.268079\pi\)
−0.979061 + 0.203569i \(0.934746\pi\)
\(684\) 0 0
\(685\) −0.302985 1.40965i −0.0115764 0.0538598i
\(686\) 0 0
\(687\) −45.3505 −1.73023
\(688\) 0 0
\(689\) −15.9416 + 9.20387i −0.607326 + 0.350640i
\(690\) 0 0
\(691\) −11.1861 + 19.3750i −0.425541 + 0.737058i −0.996471 0.0839404i \(-0.973249\pi\)
0.570930 + 0.820999i \(0.306583\pi\)
\(692\) 0 0
\(693\) 10.1168 + 11.6819i 0.384307 + 0.443760i
\(694\) 0 0
\(695\) −8.23369 + 25.5383i −0.312322 + 0.968724i
\(696\) 0 0
\(697\) −6.00000 + 3.46410i −0.227266 + 0.131212i
\(698\) 0 0
\(699\) −22.3723 −0.846197
\(700\) 0 0
\(701\) 20.7446 0.783511 0.391756 0.920069i \(-0.371868\pi\)
0.391756 + 0.920069i \(0.371868\pi\)
\(702\) 0 0
\(703\) −43.0842 + 24.8747i −1.62495 + 0.938167i
\(704\) 0 0
\(705\) −2.48913 + 7.72049i −0.0937459 + 0.290770i
\(706\) 0 0
\(707\) −4.93070 + 14.2337i −0.185438 + 0.535314i
\(708\) 0 0
\(709\) −8.67527 + 15.0260i −0.325806 + 0.564313i −0.981675 0.190562i \(-0.938969\pi\)
0.655869 + 0.754875i \(0.272302\pi\)
\(710\) 0 0
\(711\) 1.88316 1.08724i 0.0706239 0.0407747i
\(712\) 0 0
\(713\) 40.8832 1.53109
\(714\) 0 0
\(715\) −1.11684 5.19615i −0.0417676 0.194325i
\(716\) 0 0
\(717\) 13.1168 + 22.7190i 0.489858 + 0.848458i
\(718\) 0 0
\(719\) 14.1861 24.5711i 0.529054 0.916348i −0.470372 0.882468i \(-0.655880\pi\)
0.999426 0.0338799i \(-0.0107864\pi\)
\(720\) 0 0
\(721\) 1.67527 0.322405i 0.0623902 0.0120070i
\(722\) 0 0
\(723\) 19.6753 34.0786i 0.731731 1.26740i
\(724\) 0 0
\(725\) −35.4891 25.5383i −1.31803 0.948470i
\(726\) 0 0
\(727\) 6.72582i 0.249447i −0.992192 0.124723i \(-0.960196\pi\)
0.992192 0.124723i \(-0.0398044\pi\)
\(728\) 0 0
\(729\) 33.2337 1.23088
\(730\) 0 0
\(731\) −3.25544 5.63858i −0.120407 0.208551i
\(732\) 0 0
\(733\) 3.98913 6.90937i 0.147342 0.255203i −0.782902 0.622144i \(-0.786262\pi\)
0.930244 + 0.366941i \(0.119595\pi\)
\(734\) 0 0
\(735\) −39.4198 + 2.69927i −1.45402 + 0.0995639i
\(736\) 0 0
\(737\) −13.6753 7.89542i −0.503735 0.290831i
\(738\) 0 0
\(739\) 0.383156 0.221215i 0.0140946 0.00813753i −0.492936 0.870065i \(-0.664076\pi\)
0.507031 + 0.861928i \(0.330743\pi\)
\(740\) 0 0
\(741\) 19.8997i 0.731036i
\(742\) 0 0
\(743\) 0.861407 0.0316019 0.0158010 0.999875i \(-0.494970\pi\)
0.0158010 + 0.999875i \(0.494970\pi\)
\(744\) 0 0
\(745\) 23.7921 + 26.3032i 0.871675 + 0.963673i
\(746\) 0 0
\(747\) 5.48913 + 3.16915i 0.200837 + 0.115953i
\(748\) 0 0
\(749\) −2.18614 11.3595i −0.0798798 0.415068i
\(750\) 0 0
\(751\) −15.5584 8.98266i −0.567735 0.327782i 0.188509 0.982071i \(-0.439634\pi\)
−0.756244 + 0.654290i \(0.772968\pi\)
\(752\) 0 0
\(753\) −54.3505 + 31.3793i −1.98064 + 1.14353i
\(754\) 0 0
\(755\) 10.0693 + 46.8477i 0.366459 + 1.70496i
\(756\) 0 0
\(757\) 23.3639i 0.849174i −0.905387 0.424587i \(-0.860419\pi\)
0.905387 0.424587i \(-0.139581\pi\)
\(758\) 0 0
\(759\) −12.5584 21.7518i −0.455842 0.789541i
\(760\) 0 0
\(761\) −28.3397 16.3619i −1.02731 0.593119i −0.111098 0.993809i \(-0.535437\pi\)
−0.916213 + 0.400691i \(0.868770\pi\)
\(762\) 0 0
\(763\) −12.7921 4.43132i −0.463105 0.160424i
\(764\) 0 0
\(765\) 3.76631 11.6819i 0.136171 0.422361i
\(766\) 0 0
\(767\) −7.11684 12.3267i −0.256974 0.445093i
\(768\) 0 0
\(769\) 22.2766i 0.803315i 0.915790 + 0.401658i \(0.131566\pi\)
−0.915790 + 0.401658i \(0.868434\pi\)
\(770\) 0 0
\(771\) 17.9653i 0.647005i
\(772\) 0 0
\(773\) 15.1277 + 26.2020i 0.544106 + 0.942420i 0.998663 + 0.0517016i \(0.0164645\pi\)
−0.454556 + 0.890718i \(0.650202\pi\)
\(774\) 0 0
\(775\) −3.55842 + 35.4059i −0.127822 + 1.27182i
\(776\) 0 0
\(777\) 43.7228 37.8651i 1.56855 1.35840i
\(778\) 0 0
\(779\) −21.1753 12.2255i −0.758683 0.438026i
\(780\) 0 0
\(781\) 9.00000 + 15.5885i 0.322045 + 0.557799i
\(782\) 0 0
\(783\) 8.21782i 0.293681i
\(784\) 0 0
\(785\) 19.6753 4.22894i 0.702240 0.150937i
\(786\) 0 0
\(787\) −34.6753 + 20.0198i −1.23604 + 0.713628i −0.968282 0.249858i \(-0.919616\pi\)
−0.267757 + 0.963486i \(0.586283\pi\)
\(788\) 0 0
\(789\) −29.7921 17.2005i −1.06063 0.612353i
\(790\) 0 0
\(791\) −12.0000 13.8564i −0.426671 0.492677i
\(792\) 0 0
\(793\) 13.1168 + 7.57301i 0.465793 + 0.268926i
\(794\) 0 0
\(795\) −50.7921 56.1528i −1.80141 1.99153i
\(796\) 0 0
\(797\) −6.00000 −0.212531 −0.106265 0.994338i \(-0.533889\pi\)
−0.106265 + 0.994338i \(0.533889\pi\)
\(798\) 0 0
\(799\) 2.33919i 0.0827546i
\(800\) 0 0
\(801\) −2.74456 + 1.58457i −0.0969744 + 0.0559882i
\(802\) 0 0
\(803\) 15.5584 + 8.98266i 0.549045 + 0.316991i
\(804\) 0 0
\(805\) 33.7337 + 4.12775i 1.18896 + 0.145484i
\(806\) 0 0
\(807\) 31.0475 53.7759i 1.09293 1.89300i
\(808\) 0 0
\(809\) −12.1277 21.0058i −0.426388 0.738525i 0.570161 0.821533i \(-0.306881\pi\)
−0.996549 + 0.0830075i \(0.973547\pi\)
\(810\) 0 0
\(811\) 40.6277 1.42663 0.713316 0.700842i \(-0.247192\pi\)
0.713316 + 0.700842i \(0.247192\pi\)
\(812\) 0 0
\(813\) 11.0371i 0.387089i
\(814\) 0 0
\(815\) 31.6753 + 35.0183i 1.10954 + 1.22664i
\(816\) 0 0
\(817\) 11.4891 19.8997i 0.401954 0.696204i
\(818\) 0 0
\(819\) 2.31386 + 12.0232i 0.0808528 + 0.420123i
\(820\) 0 0
\(821\) 11.4416 19.8174i 0.399314 0.691632i −0.594328 0.804223i \(-0.702582\pi\)
0.993641 + 0.112591i \(0.0359151\pi\)
\(822\) 0 0
\(823\) 18.6753 + 32.3465i 0.650979 + 1.12753i 0.982886 + 0.184216i \(0.0589747\pi\)
−0.331907 + 0.943312i \(0.607692\pi\)
\(824\) 0 0
\(825\) 19.9307 8.98266i 0.693898 0.312736i
\(826\) 0 0
\(827\) 37.7228 1.31175 0.655875 0.754869i \(-0.272300\pi\)
0.655875 + 0.754869i \(0.272300\pi\)
\(828\) 0 0
\(829\) 18.9090 10.9171i 0.656735 0.379166i −0.134297 0.990941i \(-0.542878\pi\)
0.791032 + 0.611775i \(0.209544\pi\)
\(830\) 0 0
\(831\) 12.3030 21.3094i 0.426786 0.739215i
\(832\) 0 0
\(833\) 10.5802 4.22894i 0.366581 0.146524i
\(834\) 0 0
\(835\) 23.1753 + 7.47182i 0.802013 + 0.258573i
\(836\) 0 0
\(837\) −5.79211 + 3.34408i −0.200205 + 0.115588i
\(838\) 0 0
\(839\) −33.2554 −1.14811 −0.574053 0.818818i \(-0.694630\pi\)
−0.574053 + 0.818818i \(0.694630\pi\)
\(840\) 0 0
\(841\) 47.4674 1.63681
\(842\) 0 0
\(843\) −17.2337 + 9.94987i −0.593560 + 0.342692i
\(844\) 0 0
\(845\) −7.62772 + 23.6588i −0.262401 + 0.813888i
\(846\) 0 0
\(847\) 4.00000 + 20.7846i 0.137442 + 0.714168i
\(848\) 0 0
\(849\) 22.6753 39.2747i 0.778213 1.34790i
\(850\) 0 0
\(851\) −43.0842 + 24.8747i −1.47691 + 0.852693i
\(852\) 0 0
\(853\) −19.8832 −0.680786 −0.340393 0.940283i \(-0.610560\pi\)
−0.340393 + 0.940283i \(0.610560\pi\)
\(854\) 0 0
\(855\) 42.3505 9.10268i 1.44836 0.311305i
\(856\) 0 0
\(857\) 2.18614 + 3.78651i 0.0746771 + 0.129345i 0.900946 0.433932i \(-0.142874\pi\)
−0.826269 + 0.563276i \(0.809541\pi\)
\(858\) 0 0
\(859\) 27.0475 46.8477i 0.922850 1.59842i 0.127868 0.991791i \(-0.459187\pi\)
0.794982 0.606633i \(-0.207480\pi\)
\(860\) 0 0
\(861\) 26.8614 + 9.30506i 0.915434 + 0.317116i
\(862\) 0 0
\(863\) 23.8723 41.3480i 0.812622 1.40750i −0.0984011 0.995147i \(-0.531373\pi\)
0.911023 0.412356i \(-0.135294\pi\)
\(864\) 0 0
\(865\) 34.8505 + 38.5287i 1.18495 + 1.31002i
\(866\) 0 0
\(867\) 36.2256i 1.23029i
\(868\) 0 0
\(869\) −1.11684 −0.0378863
\(870\) 0 0
\(871\) −6.25544 10.8347i −0.211957 0.367121i
\(872\) 0 0
\(873\) 10.1168 17.5229i 0.342403 0.593060i
\(874\) 0 0
\(875\) −6.51087 + 28.8550i −0.220108 + 0.975476i
\(876\) 0 0
\(877\) 1.50000 + 0.866025i 0.0506514 + 0.0292436i 0.525112 0.851033i \(-0.324023\pi\)
−0.474460 + 0.880277i \(0.657357\pi\)
\(878\) 0 0
\(879\) 67.4674 38.9523i 2.27562 1.31383i
\(880\) 0 0
\(881\) 34.5484i 1.16397i −0.813201 0.581983i \(-0.802277\pi\)
0.813201 0.581983i \(-0.197723\pi\)
\(882\) 0 0
\(883\) 44.4674 1.49645 0.748223 0.663447i \(-0.230907\pi\)
0.748223 + 0.663447i \(0.230907\pi\)
\(884\) 0 0
\(885\) 43.4198 39.2747i 1.45954 1.32021i
\(886\) 0 0
\(887\) −8.18614 4.72627i −0.274864 0.158693i 0.356232 0.934397i \(-0.384061\pi\)
−0.631096 + 0.775705i \(0.717395\pi\)
\(888\) 0 0
\(889\) −4.23369 + 3.66648i −0.141993 + 0.122970i
\(890\) 0 0
\(891\) −11.6168 6.70699i −0.389179 0.224693i
\(892\) 0 0
\(893\) 7.14947 4.12775i 0.239248 0.138130i
\(894\) 0 0
\(895\) −10.1644 47.2902i −0.339758 1.58074i
\(896\) 0 0
\(897\) 19.8997i 0.664433i
\(898\) 0 0
\(899\) −31.1168 53.8960i −1.03780 1.79753i
\(900\) 0 0
\(901\) 18.9090 + 10.9171i 0.629949 + 0.363701i
\(902\) 0 0
\(903\) −8.74456 + 25.2434i −0.291001 + 0.840047i
\(904\) 0 0
\(905\) −39.6060 12.7692i −1.31655 0.424461i
\(906\) 0 0
\(907\) −3.67527 6.36575i −0.122035 0.211371i 0.798535 0.601948i \(-0.205609\pi\)
−0.920570 + 0.390577i \(0.872275\pi\)
\(908\) 0 0
\(909\) 19.2000i 0.636825i
\(910\) 0 0
\(911\) 12.9715i 0.429766i 0.976640 + 0.214883i \(0.0689371\pi\)
−0.976640 + 0.214883i \(0.931063\pi\)
\(912\) 0 0
\(913\) −1.62772 2.81929i −0.0538696 0.0933049i
\(914\) 0 0
\(915\) −19.1168 + 59.2945i −0.631983 + 1.96022i
\(916\) 0 0
\(917\) 1.50000 + 7.79423i 0.0495344 + 0.257388i
\(918\) 0 0
\(919\) −35.7921 20.6646i −1.18067 0.681662i −0.224503 0.974473i \(-0.572076\pi\)
−0.956170 + 0.292812i \(0.905409\pi\)
\(920\) 0 0
\(921\) −33.8614 58.6497i −1.11577 1.93257i
\(922\) 0 0
\(923\) 14.2612i 0.469412i
\(924\) 0 0
\(925\) −17.7921 39.4771i −0.585001 1.29800i
\(926\) 0 0
\(927\) 1.88316 1.08724i 0.0618510 0.0357097i
\(928\) 0 0
\(929\) −24.2228 13.9850i −0.794725 0.458835i 0.0468985 0.998900i \(-0.485066\pi\)
−0.841623 + 0.540065i \(0.818400\pi\)
\(930\) 0 0
\(931\) 31.5951 + 24.8747i 1.03549 + 0.815235i
\(932\) 0 0
\(933\) −9.55842 5.51856i −0.312929 0.180669i
\(934\) 0 0
\(935\) −4.67527 + 4.22894i −0.152898 + 0.138301i
\(936\) 0 0
\(937\) 3.25544 0.106351 0.0531753 0.998585i \(-0.483066\pi\)
0.0531753 + 0.998585i \(0.483066\pi\)
\(938\) 0 0
\(939\) 40.0395i 1.30664i
\(940\) 0 0
\(941\) −30.3030 + 17.4954i −0.987849 + 0.570335i −0.904631 0.426196i \(-0.859853\pi\)
−0.0832184 + 0.996531i \(0.526520\pi\)
\(942\) 0 0
\(943\) −21.1753 12.2255i −0.689562 0.398119i
\(944\) 0 0
\(945\) −5.11684 + 2.17448i −0.166451 + 0.0707359i
\(946\) 0 0
\(947\) 2.69702 4.67137i 0.0876412 0.151799i −0.818872 0.573976i \(-0.805400\pi\)
0.906514 + 0.422177i \(0.138734\pi\)
\(948\) 0 0
\(949\) 7.11684 + 12.3267i 0.231023 + 0.400143i
\(950\) 0 0
\(951\) −27.8614 −0.903468
\(952\) 0 0
\(953\) 46.3229i 1.50055i 0.661127 + 0.750274i \(0.270078\pi\)
−0.661127 + 0.750274i \(0.729922\pi\)
\(954\) 0 0
\(955\) −6.81386 + 6.16337i −0.220491 + 0.199442i
\(956\) 0 0
\(957\) −19.1168 + 33.1113i −0.617960 + 1.07034i
\(958\) 0 0
\(959\) 0.558422 1.61203i 0.0180324 0.0520550i
\(960\) 0 0
\(961\) −9.82473 + 17.0169i −0.316927 + 0.548934i
\(962\) 0 0
\(963\) −7.37228 12.7692i −0.237568 0.411481i
\(964\) 0 0
\(965\) −6.81386 31.7017i −0.219346 1.02051i
\(966\) 0 0
\(967\) 40.0000 1.28631 0.643157 0.765735i \(-0.277624\pi\)
0.643157 + 0.765735i \(0.277624\pi\)
\(968\) 0 0
\(969\) −20.4416 + 11.8020i −0.656678 + 0.379133i
\(970\) 0 0
\(971\) 3.98913 6.90937i 0.128017 0.221732i −0.794891 0.606752i \(-0.792472\pi\)
0.922908 + 0.385020i \(0.125805\pi\)
\(972\) 0 0
\(973\) −24.0000 + 20.7846i −0.769405 + 0.666324i
\(974\) 0 0
\(975\) 17.2337 + 1.73205i 0.551920 + 0.0554700i
\(976\) 0 0
\(977\) 4.32473 2.49689i 0.138361 0.0798825i −0.429222 0.903199i \(-0.641212\pi\)
0.567582 + 0.823317i \(0.307879\pi\)
\(978\) 0 0
\(979\) 1.62772 0.0520221
\(980\) 0 0
\(981\) −17.2554 −0.550924
\(982\) 0 0
\(983\) 23.3614 13.4877i 0.745113 0.430191i −0.0788123 0.996889i \(-0.525113\pi\)
0.823925 + 0.566698i \(0.191779\pi\)
\(984\) 0 0
\(985\) 41.9198 + 13.5152i 1.33568 + 0.430629i
\(986\) 0 0
\(987\) −7.25544 + 6.28339i −0.230943 + 0.200003i
\(988\) 0 0
\(989\) 11.4891 19.8997i 0.365333 0.632775i
\(990\) 0 0
\(991\) −8.79211 + 5.07613i −0.279291 + 0.161248i −0.633102 0.774068i \(-0.718219\pi\)
0.353812 + 0.935317i \(0.384885\pi\)
\(992\) 0 0
\(993\) −30.6060 −0.971251
\(994\) 0 0
\(995\) −47.7921 + 10.2723i −1.51511 + 0.325653i
\(996\) 0 0
\(997\) −0.558422 0.967215i −0.0176854 0.0306320i 0.857047 0.515238i \(-0.172296\pi\)
−0.874733 + 0.484606i \(0.838963\pi\)
\(998\) 0 0
\(999\) 4.06930 7.04823i 0.128747 0.222996i
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.2.cc.d.159.2 yes 4
4.3 odd 2 560.2.cc.b.159.1 yes 4
5.4 even 2 560.2.cc.a.159.1 4
7.3 odd 6 560.2.cc.c.479.2 yes 4
20.19 odd 2 560.2.cc.c.159.2 yes 4
28.3 even 6 560.2.cc.a.479.1 yes 4
35.24 odd 6 560.2.cc.b.479.1 yes 4
140.59 even 6 inner 560.2.cc.d.479.2 yes 4
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
560.2.cc.a.159.1 4 5.4 even 2
560.2.cc.a.479.1 yes 4 28.3 even 6
560.2.cc.b.159.1 yes 4 4.3 odd 2
560.2.cc.b.479.1 yes 4 35.24 odd 6
560.2.cc.c.159.2 yes 4 20.19 odd 2
560.2.cc.c.479.2 yes 4 7.3 odd 6
560.2.cc.d.159.2 yes 4 1.1 even 1 trivial
560.2.cc.d.479.2 yes 4 140.59 even 6 inner