Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [560,2,Mod(109,560)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(560, base_ring=CyclotomicField(12))
chi = DirichletCharacter(H, H._module([0, 9, 6, 8]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("560.109");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.cr (of order \(12\), degree \(4\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.47162251319\) |
Analytic rank: | \(0\) |
Dimension: | \(368\) |
Relative dimension: | \(92\) over \(\Q(\zeta_{12})\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{12}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
109.1 | −1.41413 | − | 0.0158067i | 0.702166 | + | 2.62052i | 1.99950 | + | 0.0447052i | −1.41355 | + | 1.73259i | −0.951529 | − | 3.71684i | 1.01362 | + | 2.44389i | −2.82684 | − | 0.0948243i | −3.77600 | + | 2.18008i | 2.02633 | − | 2.42776i |
109.2 | −1.41398 | + | 0.0257616i | −0.111122 | − | 0.414711i | 1.99867 | − | 0.0728528i | 0.968683 | − | 2.01535i | 0.167807 | + | 0.583530i | 0.251962 | + | 2.63373i | −2.82420 | + | 0.154501i | 2.43844 | − | 1.40783i | −1.31778 | + | 2.87462i |
109.3 | −1.41398 | − | 0.0258393i | −0.476445 | − | 1.77812i | 1.99866 | + | 0.0730723i | −1.16968 | − | 1.90574i | 0.627737 | + | 2.52653i | 1.31827 | − | 2.29394i | −2.82418 | − | 0.154967i | −0.336625 | + | 0.194351i | 1.60466 | + | 2.72490i |
109.4 | −1.41262 | + | 0.0670727i | 0.556398 | + | 2.07650i | 1.99100 | − | 0.189497i | 0.628067 | − | 2.14605i | −0.925256 | − | 2.89600i | −2.55518 | + | 0.686347i | −2.79982 | + | 0.401229i | −1.40422 | + | 0.810725i | −0.743279 | + | 3.07368i |
109.5 | −1.41214 | − | 0.0765587i | 0.365045 | + | 1.36237i | 1.98828 | + | 0.216223i | 1.04859 | + | 1.97496i | −0.411194 | − | 1.95180i | −1.15344 | − | 2.38109i | −2.79117 | − | 0.457557i | 0.875291 | − | 0.505349i | −1.32956 | − | 2.86920i |
109.6 | −1.38543 | − | 0.283883i | −0.832282 | − | 3.10612i | 1.83882 | + | 0.786600i | 1.90768 | + | 1.16652i | 0.271291 | + | 4.53957i | 1.46634 | + | 2.20224i | −2.32425 | − | 1.61179i | −6.35720 | + | 3.67033i | −2.31179 | − | 2.15769i |
109.7 | −1.37214 | − | 0.342403i | 0.176672 | + | 0.659350i | 1.76552 | + | 0.939648i | −1.89276 | + | 1.19058i | −0.0166550 | − | 0.965212i | 0.539354 | − | 2.59019i | −2.10080 | − | 1.89385i | 2.19455 | − | 1.26702i | 3.00478 | − | 0.985549i |
109.8 | −1.35207 | + | 0.414632i | −0.400636 | − | 1.49519i | 1.65616 | − | 1.12122i | −2.06107 | + | 0.867170i | 1.16164 | + | 1.85548i | 0.295693 | + | 2.62918i | −1.77435 | + | 2.20266i | 0.522982 | − | 0.301944i | 2.42715 | − | 2.02706i |
109.9 | −1.35070 | + | 0.419057i | 0.683112 | + | 2.54941i | 1.64878 | − | 1.13204i | 2.22666 | − | 0.204876i | −1.99103 | − | 3.15723i | 2.62002 | − | 0.368126i | −1.75262 | + | 2.21998i | −3.43477 | + | 1.98307i | −2.92170 | + | 1.20982i |
109.10 | −1.32157 | + | 0.503445i | −0.456068 | − | 1.70207i | 1.49309 | − | 1.33067i | 0.335144 | + | 2.21081i | 1.45963 | + | 2.01980i | 2.44498 | − | 1.01098i | −1.30329 | + | 2.51026i | −0.0909702 | + | 0.0525217i | −1.55594 | − | 2.75301i |
109.11 | −1.30660 | + | 0.541096i | 0.176005 | + | 0.656861i | 1.41443 | − | 1.41400i | −2.08402 | − | 0.810465i | −0.585395 | − | 0.763022i | −2.59981 | − | 0.490918i | −1.08299 | + | 2.61288i | 2.19759 | − | 1.26878i | 3.16153 | − | 0.0686997i |
109.12 | −1.30452 | − | 0.546096i | 0.00957310 | + | 0.0357273i | 1.40356 | + | 1.42479i | 2.15151 | − | 0.609097i | 0.00702222 | − | 0.0518349i | 2.61560 | − | 0.398306i | −1.05290 | − | 2.62515i | 2.59689 | − | 1.49932i | −3.13932 | − | 0.380351i |
109.13 | −1.27536 | + | 0.611118i | −0.522208 | − | 1.94891i | 1.25307 | − | 1.55879i | 2.23422 | − | 0.0908072i | 1.85701 | + | 2.16642i | −1.13277 | − | 2.39099i | −0.645505 | + | 2.75378i | −0.927462 | + | 0.535470i | −2.79394 | + | 1.48119i |
109.14 | −1.25773 | − | 0.646612i | 0.734175 | + | 2.73998i | 1.16379 | + | 1.62653i | −0.310069 | − | 2.21447i | 0.848306 | − | 3.92089i | −0.269749 | − | 2.63196i | −0.411999 | − | 2.79826i | −4.37039 | + | 2.52325i | −1.04191 | + | 2.98570i |
109.15 | −1.24211 | − | 0.676133i | −0.124199 | − | 0.463517i | 1.08569 | + | 1.67967i | 0.0754865 | + | 2.23479i | −0.159130 | + | 0.659716i | −1.51467 | + | 2.16928i | −0.212869 | − | 2.82041i | 2.39865 | − | 1.38486i | 1.41725 | − | 2.82690i |
109.16 | −1.19960 | + | 0.748973i | −0.849916 | − | 3.17193i | 0.878078 | − | 1.79694i | 0.0978968 | − | 2.23392i | 3.39525 | + | 3.16848i | −2.01880 | + | 1.71010i | 0.292515 | + | 2.81326i | −6.74071 | + | 3.89175i | 1.55571 | + | 2.75314i |
109.17 | −1.19364 | − | 0.758440i | −0.0643864 | − | 0.240293i | 0.849537 | + | 1.81060i | −2.16970 | − | 0.540741i | −0.105394 | + | 0.335656i | −2.37316 | + | 1.16967i | 0.359196 | − | 2.80553i | 2.54448 | − | 1.46906i | 2.17971 | + | 2.29104i |
109.18 | −1.17827 | − | 0.782092i | −0.520713 | − | 1.94333i | 0.776663 | + | 1.84304i | 0.750852 | − | 2.10623i | −0.906318 | + | 2.69702i | −2.58556 | − | 0.561118i | 0.526305 | − | 2.77903i | −0.907297 | + | 0.523828i | −2.53198 | + | 1.89449i |
109.19 | −1.17009 | − | 0.794288i | 0.542884 | + | 2.02607i | 0.738214 | + | 1.85877i | −1.69801 | − | 1.45491i | 0.974060 | − | 2.80189i | 2.27024 | + | 1.35868i | 0.612626 | − | 2.76128i | −1.21216 | + | 0.699839i | 0.831209 | + | 3.05108i |
109.20 | −1.10426 | − | 0.883519i | −0.704473 | − | 2.62913i | 0.438788 | + | 1.95127i | −2.16543 | − | 0.557594i | −1.54496 | + | 3.52566i | 2.48520 | + | 0.907612i | 1.23945 | − | 2.54239i | −3.81797 | + | 2.20431i | 1.89856 | + | 2.52893i |
See next 80 embeddings (of 368 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
5.b | even | 2 | 1 | inner |
7.c | even | 3 | 1 | inner |
16.e | even | 4 | 1 | inner |
35.j | even | 6 | 1 | inner |
80.q | even | 4 | 1 | inner |
112.w | even | 12 | 1 | inner |
560.cr | even | 12 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.2.cr.a | ✓ | 368 |
5.b | even | 2 | 1 | inner | 560.2.cr.a | ✓ | 368 |
7.c | even | 3 | 1 | inner | 560.2.cr.a | ✓ | 368 |
16.e | even | 4 | 1 | inner | 560.2.cr.a | ✓ | 368 |
35.j | even | 6 | 1 | inner | 560.2.cr.a | ✓ | 368 |
80.q | even | 4 | 1 | inner | 560.2.cr.a | ✓ | 368 |
112.w | even | 12 | 1 | inner | 560.2.cr.a | ✓ | 368 |
560.cr | even | 12 | 1 | inner | 560.2.cr.a | ✓ | 368 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
560.2.cr.a | ✓ | 368 | 1.a | even | 1 | 1 | trivial |
560.2.cr.a | ✓ | 368 | 5.b | even | 2 | 1 | inner |
560.2.cr.a | ✓ | 368 | 7.c | even | 3 | 1 | inner |
560.2.cr.a | ✓ | 368 | 16.e | even | 4 | 1 | inner |
560.2.cr.a | ✓ | 368 | 35.j | even | 6 | 1 | inner |
560.2.cr.a | ✓ | 368 | 80.q | even | 4 | 1 | inner |
560.2.cr.a | ✓ | 368 | 112.w | even | 12 | 1 | inner |
560.2.cr.a | ✓ | 368 | 560.cr | even | 12 | 1 | inner |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(560, [\chi])\).