Newspace parameters
comment: Compute space of new eigenforms
[N,k,chi] = [560,2,Mod(237,560)]
mf = mfinit([N,k,chi],0)
lf = mfeigenbasis(mf)
from sage.modular.dirichlet import DirichletCharacter
H = DirichletGroup(560, base_ring=CyclotomicField(4))
chi = DirichletCharacter(H, H._module([0, 3, 1, 2]))
N = Newforms(chi, 2, names="a")
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
chi := DirichletCharacter("560.237");
S:= CuspForms(chi, 2);
N := Newforms(S);
Level: | \( N \) | \(=\) | \( 560 = 2^{4} \cdot 5 \cdot 7 \) |
Weight: | \( k \) | \(=\) | \( 2 \) |
Character orbit: | \([\chi]\) | \(=\) | 560.r (of order \(4\), degree \(2\), minimal) |
Newform invariants
comment: select newform
sage: f = N[0] # Warning: the index may be different
gp: f = lf[1] \\ Warning: the index may be different
Self dual: | no |
Analytic conductor: | \(4.47162251319\) |
Analytic rank: | \(0\) |
Dimension: | \(184\) |
Relative dimension: | \(92\) over \(\Q(i)\) |
Twist minimal: | yes |
Sato-Tate group: | $\mathrm{SU}(2)[C_{4}]$ |
$q$-expansion
The algebraic \(q\)-expansion of this newform has not been computed, but we have computed the trace expansion.
Embeddings
For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.
For more information on an embedded modular form you can click on its label.
comment: embeddings in the coefficient field
gp: mfembed(f)
Label | \( a_{2} \) | \( a_{3} \) | \( a_{4} \) | \( a_{5} \) | \( a_{6} \) | \( a_{7} \) | \( a_{8} \) | \( a_{9} \) | \( a_{10} \) | ||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
237.1 | −1.41385 | + | 0.0320021i | − | 2.37744i | 1.99795 | − | 0.0904924i | −1.88118 | − | 1.20879i | 0.0760829 | + | 3.36134i | 2.53631 | + | 0.753095i | −2.82191 | + | 0.191881i | −2.65221 | 2.69839 | + | 1.64884i | |||
237.2 | −1.41385 | + | 0.0320021i | 2.37744i | 1.99795 | − | 0.0904924i | 1.88118 | + | 1.20879i | −0.0760829 | − | 3.36134i | −0.753095 | − | 2.53631i | −2.82191 | + | 0.191881i | −2.65221 | −2.69839 | − | 1.64884i | ||||
237.3 | −1.40124 | − | 0.191148i | − | 0.303303i | 1.92692 | + | 0.535688i | −0.412090 | + | 2.19777i | −0.0579760 | + | 0.425000i | −2.04400 | + | 1.67990i | −2.59768 | − | 1.11895i | 2.90801 | 0.997536 | − | 3.00082i | |||
237.4 | −1.40124 | − | 0.191148i | 0.303303i | 1.92692 | + | 0.535688i | 0.412090 | − | 2.19777i | 0.0579760 | − | 0.425000i | −1.67990 | + | 2.04400i | −2.59768 | − | 1.11895i | 2.90801 | −0.997536 | + | 3.00082i | ||||
237.5 | −1.39265 | − | 0.246023i | − | 2.36202i | 1.87894 | + | 0.685249i | 2.19592 | + | 0.421835i | −0.581111 | + | 3.28946i | 1.13552 | + | 2.38968i | −2.44812 | − | 1.41658i | −2.57912 | −2.95436 | − | 1.12772i | |||
237.6 | −1.39265 | − | 0.246023i | 2.36202i | 1.87894 | + | 0.685249i | −2.19592 | − | 0.421835i | 0.581111 | − | 3.28946i | −2.38968 | − | 1.13552i | −2.44812 | − | 1.41658i | −2.57912 | 2.95436 | + | 1.12772i | ||||
237.7 | −1.34754 | − | 0.429109i | − | 2.77875i | 1.63173 | + | 1.15648i | 1.52419 | − | 1.63611i | −1.19239 | + | 3.74447i | −0.904951 | − | 2.48617i | −1.70257 | − | 2.25860i | −4.72144 | −2.75598 | + | 1.55067i | |||
237.8 | −1.34754 | − | 0.429109i | 2.77875i | 1.63173 | + | 1.15648i | −1.52419 | + | 1.63611i | 1.19239 | − | 3.74447i | 2.48617 | + | 0.904951i | −1.70257 | − | 2.25860i | −4.72144 | 2.75598 | − | 1.55067i | ||||
237.9 | −1.33659 | + | 0.462100i | − | 0.445450i | 1.57293 | − | 1.23527i | −2.22590 | − | 0.213020i | 0.205843 | + | 0.595383i | −1.93702 | − | 1.80221i | −1.53153 | + | 2.37790i | 2.80157 | 3.07354 | − | 0.743868i | |||
237.10 | −1.33659 | + | 0.462100i | 0.445450i | 1.57293 | − | 1.23527i | 2.22590 | + | 0.213020i | −0.205843 | − | 0.595383i | 1.80221 | + | 1.93702i | −1.53153 | + | 2.37790i | 2.80157 | −3.07354 | + | 0.743868i | ||||
237.11 | −1.33522 | + | 0.466046i | − | 0.958223i | 1.56560 | − | 1.24454i | 0.666131 | − | 2.13454i | 0.446576 | + | 1.27943i | 0.729292 | − | 2.54325i | −1.51040 | + | 2.39138i | 2.08181 | 0.105366 | + | 3.16052i | |||
237.12 | −1.33522 | + | 0.466046i | 0.958223i | 1.56560 | − | 1.24454i | −0.666131 | + | 2.13454i | −0.446576 | − | 1.27943i | 2.54325 | − | 0.729292i | −1.51040 | + | 2.39138i | 2.08181 | −0.105366 | − | 3.16052i | ||||
237.13 | −1.31458 | + | 0.521428i | − | 2.31341i | 1.45623 | − | 1.37091i | 1.44475 | + | 1.70666i | 1.20628 | + | 3.04115i | −2.55188 | − | 0.698510i | −1.19949 | + | 2.56149i | −2.35185 | −2.78914 | − | 1.49020i | |||
237.14 | −1.31458 | + | 0.521428i | 2.31341i | 1.45623 | − | 1.37091i | −1.44475 | − | 1.70666i | −1.20628 | − | 3.04115i | 0.698510 | + | 2.55188i | −1.19949 | + | 2.56149i | −2.35185 | 2.78914 | + | 1.49020i | ||||
237.15 | −1.24845 | − | 0.664358i | − | 1.05190i | 1.11726 | + | 1.65884i | −2.04569 | + | 0.902849i | −0.698839 | + | 1.31325i | 0.442290 | − | 2.60852i | −0.292782 | − | 2.81323i | 1.89350 | 3.15376 | + | 0.231910i | |||
237.16 | −1.24845 | − | 0.664358i | 1.05190i | 1.11726 | + | 1.65884i | 2.04569 | − | 0.902849i | 0.698839 | − | 1.31325i | 2.60852 | − | 0.442290i | −0.292782 | − | 2.81323i | 1.89350 | −3.15376 | − | 0.231910i | ||||
237.17 | −1.18156 | + | 0.777113i | − | 2.96802i | 0.792190 | − | 1.83642i | −0.835108 | + | 2.07427i | 2.30649 | + | 3.50691i | 2.64524 | − | 0.0522070i | 0.491081 | + | 2.78547i | −5.80916 | −0.625209 | − | 3.09986i | |||
237.18 | −1.18156 | + | 0.777113i | 2.96802i | 0.792190 | − | 1.83642i | 0.835108 | − | 2.07427i | −2.30649 | − | 3.50691i | 0.0522070 | − | 2.64524i | 0.491081 | + | 2.78547i | −5.80916 | 0.625209 | + | 3.09986i | ||||
237.19 | −1.13458 | − | 0.844232i | − | 3.14518i | 0.574546 | + | 1.91570i | −1.64124 | + | 1.51866i | −2.65526 | + | 3.56847i | −1.68783 | + | 2.03745i | 0.965423 | − | 2.65856i | −6.89218 | 3.14422 | − | 0.337448i | |||
237.20 | −1.13458 | − | 0.844232i | 3.14518i | 0.574546 | + | 1.91570i | 1.64124 | − | 1.51866i | 2.65526 | − | 3.56847i | −2.03745 | + | 1.68783i | 0.965423 | − | 2.65856i | −6.89218 | −3.14422 | + | 0.337448i | ||||
See next 80 embeddings (of 184 total) |
Inner twists
Char | Parity | Ord | Mult | Type |
---|---|---|---|---|
1.a | even | 1 | 1 | trivial |
7.b | odd | 2 | 1 | inner |
80.t | odd | 4 | 1 | inner |
560.r | even | 4 | 1 | inner |
Twists
By twisting character orbit | |||||||
---|---|---|---|---|---|---|---|
Char | Parity | Ord | Mult | Type | Twist | Min | Dim |
1.a | even | 1 | 1 | trivial | 560.2.r.a | ✓ | 184 |
5.c | odd | 4 | 1 | 560.2.bn.a | yes | 184 | |
7.b | odd | 2 | 1 | inner | 560.2.r.a | ✓ | 184 |
16.e | even | 4 | 1 | 560.2.bn.a | yes | 184 | |
35.f | even | 4 | 1 | 560.2.bn.a | yes | 184 | |
80.t | odd | 4 | 1 | inner | 560.2.r.a | ✓ | 184 |
112.l | odd | 4 | 1 | 560.2.bn.a | yes | 184 | |
560.r | even | 4 | 1 | inner | 560.2.r.a | ✓ | 184 |
By twisted newform orbit | |||||||
---|---|---|---|---|---|---|---|
Twist | Min | Dim | Char | Parity | Ord | Mult | Type |
560.2.r.a | ✓ | 184 | 1.a | even | 1 | 1 | trivial |
560.2.r.a | ✓ | 184 | 7.b | odd | 2 | 1 | inner |
560.2.r.a | ✓ | 184 | 80.t | odd | 4 | 1 | inner |
560.2.r.a | ✓ | 184 | 560.r | even | 4 | 1 | inner |
560.2.bn.a | yes | 184 | 5.c | odd | 4 | 1 | |
560.2.bn.a | yes | 184 | 16.e | even | 4 | 1 | |
560.2.bn.a | yes | 184 | 35.f | even | 4 | 1 | |
560.2.bn.a | yes | 184 | 112.l | odd | 4 | 1 |
Hecke kernels
This newform subspace is the entire newspace \(S_{2}^{\mathrm{new}}(560, [\chi])\).