Properties

Label 560.4.a.t.1.1
Level $560$
Weight $4$
Character 560.1
Self dual yes
Analytic conductor $33.041$
Analytic rank $0$
Dimension $3$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,4,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 4, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 4);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 4 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(33.0410696032\)
Analytic rank: \(0\)
Dimension: \(3\)
Coefficient field: 3.3.6053.1
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{3} - 20x - 31 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{11}]\)
Coefficient ring index: \( 2^{2} \)
Twist minimal: no (minimal twist has level 280)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

Embedding invariants

Embedding label 1.1
Root \(-1.88477\) of defining polynomial
Character \(\chi\) \(=\) 560.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q-8.56288 q^{3} -5.00000 q^{5} -7.00000 q^{7} +46.3230 q^{9} -50.3535 q^{11} -62.9573 q^{13} +42.8144 q^{15} +37.5324 q^{17} -156.341 q^{19} +59.9402 q^{21} -17.3009 q^{23} +25.0000 q^{25} -165.460 q^{27} -91.8017 q^{29} -307.464 q^{31} +431.171 q^{33} +35.0000 q^{35} -287.010 q^{37} +539.096 q^{39} -424.591 q^{41} -8.88215 q^{43} -231.615 q^{45} +137.338 q^{47} +49.0000 q^{49} -321.385 q^{51} +567.325 q^{53} +251.767 q^{55} +1338.73 q^{57} +507.568 q^{59} +222.341 q^{61} -324.261 q^{63} +314.786 q^{65} +943.665 q^{67} +148.146 q^{69} -567.712 q^{71} +478.069 q^{73} -214.072 q^{75} +352.474 q^{77} +697.133 q^{79} +166.098 q^{81} -427.235 q^{83} -187.662 q^{85} +786.087 q^{87} -199.150 q^{89} +440.701 q^{91} +2632.77 q^{93} +781.706 q^{95} -1634.66 q^{97} -2332.52 q^{99} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 3 q - 2 q^{3} - 15 q^{5} - 21 q^{7} + 41 q^{9} - 10 q^{11} - 64 q^{13} + 10 q^{15} + 132 q^{17} - 160 q^{19} + 14 q^{21} - 40 q^{23} + 75 q^{25} - 182 q^{27} + 348 q^{29} - 396 q^{31} + 822 q^{33} + 105 q^{35}+ \cdots - 744 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 0 0
\(3\) −8.56288 −1.64793 −0.823964 0.566642i \(-0.808242\pi\)
−0.823964 + 0.566642i \(0.808242\pi\)
\(4\) 0 0
\(5\) −5.00000 −0.447214
\(6\) 0 0
\(7\) −7.00000 −0.377964
\(8\) 0 0
\(9\) 46.3230 1.71567
\(10\) 0 0
\(11\) −50.3535 −1.38020 −0.690098 0.723716i \(-0.742432\pi\)
−0.690098 + 0.723716i \(0.742432\pi\)
\(12\) 0 0
\(13\) −62.9573 −1.34317 −0.671585 0.740927i \(-0.734386\pi\)
−0.671585 + 0.740927i \(0.734386\pi\)
\(14\) 0 0
\(15\) 42.8144 0.736976
\(16\) 0 0
\(17\) 37.5324 0.535467 0.267733 0.963493i \(-0.413725\pi\)
0.267733 + 0.963493i \(0.413725\pi\)
\(18\) 0 0
\(19\) −156.341 −1.88774 −0.943872 0.330310i \(-0.892847\pi\)
−0.943872 + 0.330310i \(0.892847\pi\)
\(20\) 0 0
\(21\) 59.9402 0.622858
\(22\) 0 0
\(23\) −17.3009 −0.156848 −0.0784238 0.996920i \(-0.524989\pi\)
−0.0784238 + 0.996920i \(0.524989\pi\)
\(24\) 0 0
\(25\) 25.0000 0.200000
\(26\) 0 0
\(27\) −165.460 −1.17937
\(28\) 0 0
\(29\) −91.8017 −0.587832 −0.293916 0.955831i \(-0.594959\pi\)
−0.293916 + 0.955831i \(0.594959\pi\)
\(30\) 0 0
\(31\) −307.464 −1.78136 −0.890679 0.454633i \(-0.849770\pi\)
−0.890679 + 0.454633i \(0.849770\pi\)
\(32\) 0 0
\(33\) 431.171 2.27446
\(34\) 0 0
\(35\) 35.0000 0.169031
\(36\) 0 0
\(37\) −287.010 −1.27525 −0.637625 0.770347i \(-0.720083\pi\)
−0.637625 + 0.770347i \(0.720083\pi\)
\(38\) 0 0
\(39\) 539.096 2.21345
\(40\) 0 0
\(41\) −424.591 −1.61731 −0.808657 0.588280i \(-0.799805\pi\)
−0.808657 + 0.588280i \(0.799805\pi\)
\(42\) 0 0
\(43\) −8.88215 −0.0315003 −0.0157502 0.999876i \(-0.505014\pi\)
−0.0157502 + 0.999876i \(0.505014\pi\)
\(44\) 0 0
\(45\) −231.615 −0.767269
\(46\) 0 0
\(47\) 137.338 0.426231 0.213115 0.977027i \(-0.431639\pi\)
0.213115 + 0.977027i \(0.431639\pi\)
\(48\) 0 0
\(49\) 49.0000 0.142857
\(50\) 0 0
\(51\) −321.385 −0.882411
\(52\) 0 0
\(53\) 567.325 1.47034 0.735171 0.677882i \(-0.237102\pi\)
0.735171 + 0.677882i \(0.237102\pi\)
\(54\) 0 0
\(55\) 251.767 0.617242
\(56\) 0 0
\(57\) 1338.73 3.11087
\(58\) 0 0
\(59\) 507.568 1.12000 0.559998 0.828494i \(-0.310802\pi\)
0.559998 + 0.828494i \(0.310802\pi\)
\(60\) 0 0
\(61\) 222.341 0.466687 0.233343 0.972394i \(-0.425033\pi\)
0.233343 + 0.972394i \(0.425033\pi\)
\(62\) 0 0
\(63\) −324.261 −0.648461
\(64\) 0 0
\(65\) 314.786 0.600684
\(66\) 0 0
\(67\) 943.665 1.72070 0.860351 0.509701i \(-0.170244\pi\)
0.860351 + 0.509701i \(0.170244\pi\)
\(68\) 0 0
\(69\) 148.146 0.258474
\(70\) 0 0
\(71\) −567.712 −0.948944 −0.474472 0.880271i \(-0.657361\pi\)
−0.474472 + 0.880271i \(0.657361\pi\)
\(72\) 0 0
\(73\) 478.069 0.766490 0.383245 0.923647i \(-0.374806\pi\)
0.383245 + 0.923647i \(0.374806\pi\)
\(74\) 0 0
\(75\) −214.072 −0.329586
\(76\) 0 0
\(77\) 352.474 0.521665
\(78\) 0 0
\(79\) 697.133 0.992830 0.496415 0.868085i \(-0.334649\pi\)
0.496415 + 0.868085i \(0.334649\pi\)
\(80\) 0 0
\(81\) 166.098 0.227843
\(82\) 0 0
\(83\) −427.235 −0.565001 −0.282501 0.959267i \(-0.591164\pi\)
−0.282501 + 0.959267i \(0.591164\pi\)
\(84\) 0 0
\(85\) −187.662 −0.239468
\(86\) 0 0
\(87\) 786.087 0.968705
\(88\) 0 0
\(89\) −199.150 −0.237189 −0.118595 0.992943i \(-0.537839\pi\)
−0.118595 + 0.992943i \(0.537839\pi\)
\(90\) 0 0
\(91\) 440.701 0.507671
\(92\) 0 0
\(93\) 2632.77 2.93555
\(94\) 0 0
\(95\) 781.706 0.844225
\(96\) 0 0
\(97\) −1634.66 −1.71108 −0.855538 0.517740i \(-0.826774\pi\)
−0.855538 + 0.517740i \(0.826774\pi\)
\(98\) 0 0
\(99\) −2332.52 −2.36795
\(100\) 0 0
\(101\) 552.725 0.544537 0.272268 0.962221i \(-0.412226\pi\)
0.272268 + 0.962221i \(0.412226\pi\)
\(102\) 0 0
\(103\) 866.615 0.829031 0.414515 0.910042i \(-0.363951\pi\)
0.414515 + 0.910042i \(0.363951\pi\)
\(104\) 0 0
\(105\) −299.701 −0.278551
\(106\) 0 0
\(107\) −524.040 −0.473466 −0.236733 0.971575i \(-0.576077\pi\)
−0.236733 + 0.971575i \(0.576077\pi\)
\(108\) 0 0
\(109\) −943.667 −0.829238 −0.414619 0.909995i \(-0.636085\pi\)
−0.414619 + 0.909995i \(0.636085\pi\)
\(110\) 0 0
\(111\) 2457.64 2.10152
\(112\) 0 0
\(113\) −438.555 −0.365096 −0.182548 0.983197i \(-0.558434\pi\)
−0.182548 + 0.983197i \(0.558434\pi\)
\(114\) 0 0
\(115\) 86.5047 0.0701444
\(116\) 0 0
\(117\) −2916.37 −2.30443
\(118\) 0 0
\(119\) −262.727 −0.202387
\(120\) 0 0
\(121\) 1204.47 0.904939
\(122\) 0 0
\(123\) 3635.72 2.66522
\(124\) 0 0
\(125\) −125.000 −0.0894427
\(126\) 0 0
\(127\) 1650.14 1.15296 0.576482 0.817110i \(-0.304425\pi\)
0.576482 + 0.817110i \(0.304425\pi\)
\(128\) 0 0
\(129\) 76.0568 0.0519103
\(130\) 0 0
\(131\) −1798.09 −1.19924 −0.599619 0.800286i \(-0.704681\pi\)
−0.599619 + 0.800286i \(0.704681\pi\)
\(132\) 0 0
\(133\) 1094.39 0.713501
\(134\) 0 0
\(135\) 827.302 0.527428
\(136\) 0 0
\(137\) −443.140 −0.276350 −0.138175 0.990408i \(-0.544124\pi\)
−0.138175 + 0.990408i \(0.544124\pi\)
\(138\) 0 0
\(139\) 1282.10 0.782347 0.391174 0.920317i \(-0.372069\pi\)
0.391174 + 0.920317i \(0.372069\pi\)
\(140\) 0 0
\(141\) −1176.01 −0.702398
\(142\) 0 0
\(143\) 3170.12 1.85384
\(144\) 0 0
\(145\) 459.008 0.262887
\(146\) 0 0
\(147\) −419.581 −0.235418
\(148\) 0 0
\(149\) −1777.65 −0.977387 −0.488693 0.872456i \(-0.662526\pi\)
−0.488693 + 0.872456i \(0.662526\pi\)
\(150\) 0 0
\(151\) 1835.91 0.989433 0.494717 0.869054i \(-0.335272\pi\)
0.494717 + 0.869054i \(0.335272\pi\)
\(152\) 0 0
\(153\) 1738.61 0.918682
\(154\) 0 0
\(155\) 1537.32 0.796647
\(156\) 0 0
\(157\) −1813.06 −0.921641 −0.460820 0.887493i \(-0.652445\pi\)
−0.460820 + 0.887493i \(0.652445\pi\)
\(158\) 0 0
\(159\) −4857.94 −2.42302
\(160\) 0 0
\(161\) 121.107 0.0592828
\(162\) 0 0
\(163\) −785.406 −0.377409 −0.188705 0.982034i \(-0.560429\pi\)
−0.188705 + 0.982034i \(0.560429\pi\)
\(164\) 0 0
\(165\) −2155.86 −1.01717
\(166\) 0 0
\(167\) −2313.08 −1.07181 −0.535904 0.844279i \(-0.680029\pi\)
−0.535904 + 0.844279i \(0.680029\pi\)
\(168\) 0 0
\(169\) 1766.62 0.804106
\(170\) 0 0
\(171\) −7242.19 −3.23874
\(172\) 0 0
\(173\) −3527.06 −1.55004 −0.775021 0.631936i \(-0.782261\pi\)
−0.775021 + 0.631936i \(0.782261\pi\)
\(174\) 0 0
\(175\) −175.000 −0.0755929
\(176\) 0 0
\(177\) −4346.25 −1.84567
\(178\) 0 0
\(179\) −1776.08 −0.741621 −0.370811 0.928709i \(-0.620920\pi\)
−0.370811 + 0.928709i \(0.620920\pi\)
\(180\) 0 0
\(181\) −700.812 −0.287795 −0.143898 0.989593i \(-0.545964\pi\)
−0.143898 + 0.989593i \(0.545964\pi\)
\(182\) 0 0
\(183\) −1903.88 −0.769066
\(184\) 0 0
\(185\) 1435.05 0.570309
\(186\) 0 0
\(187\) −1889.89 −0.739049
\(188\) 0 0
\(189\) 1158.22 0.445758
\(190\) 0 0
\(191\) 3472.93 1.31567 0.657834 0.753163i \(-0.271473\pi\)
0.657834 + 0.753163i \(0.271473\pi\)
\(192\) 0 0
\(193\) 1023.95 0.381896 0.190948 0.981600i \(-0.438844\pi\)
0.190948 + 0.981600i \(0.438844\pi\)
\(194\) 0 0
\(195\) −2695.48 −0.989884
\(196\) 0 0
\(197\) 1781.28 0.644219 0.322110 0.946702i \(-0.395608\pi\)
0.322110 + 0.946702i \(0.395608\pi\)
\(198\) 0 0
\(199\) −3764.21 −1.34089 −0.670446 0.741958i \(-0.733897\pi\)
−0.670446 + 0.741958i \(0.733897\pi\)
\(200\) 0 0
\(201\) −8080.50 −2.83559
\(202\) 0 0
\(203\) 642.612 0.222180
\(204\) 0 0
\(205\) 2122.95 0.723285
\(206\) 0 0
\(207\) −801.431 −0.269098
\(208\) 0 0
\(209\) 7872.33 2.60546
\(210\) 0 0
\(211\) 3052.77 0.996025 0.498012 0.867170i \(-0.334063\pi\)
0.498012 + 0.867170i \(0.334063\pi\)
\(212\) 0 0
\(213\) 4861.25 1.56379
\(214\) 0 0
\(215\) 44.4107 0.0140874
\(216\) 0 0
\(217\) 2152.24 0.673290
\(218\) 0 0
\(219\) −4093.65 −1.26312
\(220\) 0 0
\(221\) −2362.94 −0.719223
\(222\) 0 0
\(223\) −34.2588 −0.0102876 −0.00514382 0.999987i \(-0.501637\pi\)
−0.00514382 + 0.999987i \(0.501637\pi\)
\(224\) 0 0
\(225\) 1158.07 0.343133
\(226\) 0 0
\(227\) 5176.61 1.51359 0.756793 0.653655i \(-0.226765\pi\)
0.756793 + 0.653655i \(0.226765\pi\)
\(228\) 0 0
\(229\) −1900.70 −0.548479 −0.274239 0.961661i \(-0.588426\pi\)
−0.274239 + 0.961661i \(0.588426\pi\)
\(230\) 0 0
\(231\) −3018.20 −0.859666
\(232\) 0 0
\(233\) 2386.78 0.671087 0.335544 0.942025i \(-0.391080\pi\)
0.335544 + 0.942025i \(0.391080\pi\)
\(234\) 0 0
\(235\) −686.692 −0.190616
\(236\) 0 0
\(237\) −5969.47 −1.63611
\(238\) 0 0
\(239\) −4000.94 −1.08284 −0.541421 0.840752i \(-0.682113\pi\)
−0.541421 + 0.840752i \(0.682113\pi\)
\(240\) 0 0
\(241\) 5578.43 1.49103 0.745516 0.666488i \(-0.232203\pi\)
0.745516 + 0.666488i \(0.232203\pi\)
\(242\) 0 0
\(243\) 3045.16 0.803896
\(244\) 0 0
\(245\) −245.000 −0.0638877
\(246\) 0 0
\(247\) 9842.83 2.53556
\(248\) 0 0
\(249\) 3658.36 0.931081
\(250\) 0 0
\(251\) −6094.25 −1.53253 −0.766267 0.642523i \(-0.777888\pi\)
−0.766267 + 0.642523i \(0.777888\pi\)
\(252\) 0 0
\(253\) 871.163 0.216480
\(254\) 0 0
\(255\) 1606.93 0.394626
\(256\) 0 0
\(257\) −935.737 −0.227119 −0.113560 0.993531i \(-0.536225\pi\)
−0.113560 + 0.993531i \(0.536225\pi\)
\(258\) 0 0
\(259\) 2009.07 0.481999
\(260\) 0 0
\(261\) −4252.53 −1.00852
\(262\) 0 0
\(263\) −2449.50 −0.574305 −0.287153 0.957885i \(-0.592709\pi\)
−0.287153 + 0.957885i \(0.592709\pi\)
\(264\) 0 0
\(265\) −2836.62 −0.657557
\(266\) 0 0
\(267\) 1705.30 0.390871
\(268\) 0 0
\(269\) 3040.59 0.689174 0.344587 0.938754i \(-0.388019\pi\)
0.344587 + 0.938754i \(0.388019\pi\)
\(270\) 0 0
\(271\) −6226.83 −1.39577 −0.697884 0.716211i \(-0.745875\pi\)
−0.697884 + 0.716211i \(0.745875\pi\)
\(272\) 0 0
\(273\) −3773.67 −0.836604
\(274\) 0 0
\(275\) −1258.84 −0.276039
\(276\) 0 0
\(277\) −2251.87 −0.488455 −0.244227 0.969718i \(-0.578534\pi\)
−0.244227 + 0.969718i \(0.578534\pi\)
\(278\) 0 0
\(279\) −14242.6 −3.05621
\(280\) 0 0
\(281\) 4923.65 1.04527 0.522634 0.852557i \(-0.324950\pi\)
0.522634 + 0.852557i \(0.324950\pi\)
\(282\) 0 0
\(283\) 7678.49 1.61286 0.806429 0.591331i \(-0.201397\pi\)
0.806429 + 0.591331i \(0.201397\pi\)
\(284\) 0 0
\(285\) −6693.66 −1.39122
\(286\) 0 0
\(287\) 2972.13 0.611288
\(288\) 0 0
\(289\) −3504.32 −0.713275
\(290\) 0 0
\(291\) 13997.4 2.81973
\(292\) 0 0
\(293\) 6707.41 1.33738 0.668688 0.743544i \(-0.266856\pi\)
0.668688 + 0.743544i \(0.266856\pi\)
\(294\) 0 0
\(295\) −2537.84 −0.500877
\(296\) 0 0
\(297\) 8331.51 1.62775
\(298\) 0 0
\(299\) 1089.22 0.210673
\(300\) 0 0
\(301\) 62.1750 0.0119060
\(302\) 0 0
\(303\) −4732.92 −0.897357
\(304\) 0 0
\(305\) −1111.71 −0.208709
\(306\) 0 0
\(307\) −9563.80 −1.77796 −0.888982 0.457942i \(-0.848587\pi\)
−0.888982 + 0.457942i \(0.848587\pi\)
\(308\) 0 0
\(309\) −7420.73 −1.36618
\(310\) 0 0
\(311\) −8143.75 −1.48486 −0.742428 0.669926i \(-0.766326\pi\)
−0.742428 + 0.669926i \(0.766326\pi\)
\(312\) 0 0
\(313\) −3482.85 −0.628954 −0.314477 0.949265i \(-0.601829\pi\)
−0.314477 + 0.949265i \(0.601829\pi\)
\(314\) 0 0
\(315\) 1621.30 0.290000
\(316\) 0 0
\(317\) 68.3992 0.0121189 0.00605943 0.999982i \(-0.498071\pi\)
0.00605943 + 0.999982i \(0.498071\pi\)
\(318\) 0 0
\(319\) 4622.53 0.811324
\(320\) 0 0
\(321\) 4487.29 0.780237
\(322\) 0 0
\(323\) −5867.86 −1.01082
\(324\) 0 0
\(325\) −1573.93 −0.268634
\(326\) 0 0
\(327\) 8080.51 1.36652
\(328\) 0 0
\(329\) −961.368 −0.161100
\(330\) 0 0
\(331\) 9215.53 1.53031 0.765153 0.643848i \(-0.222663\pi\)
0.765153 + 0.643848i \(0.222663\pi\)
\(332\) 0 0
\(333\) −13295.2 −2.18790
\(334\) 0 0
\(335\) −4718.33 −0.769522
\(336\) 0 0
\(337\) −4931.89 −0.797203 −0.398601 0.917124i \(-0.630504\pi\)
−0.398601 + 0.917124i \(0.630504\pi\)
\(338\) 0 0
\(339\) 3755.30 0.601652
\(340\) 0 0
\(341\) 15481.9 2.45862
\(342\) 0 0
\(343\) −343.000 −0.0539949
\(344\) 0 0
\(345\) −740.730 −0.115593
\(346\) 0 0
\(347\) −13.7153 −0.00212183 −0.00106091 0.999999i \(-0.500338\pi\)
−0.00106091 + 0.999999i \(0.500338\pi\)
\(348\) 0 0
\(349\) −5025.11 −0.770739 −0.385370 0.922762i \(-0.625926\pi\)
−0.385370 + 0.922762i \(0.625926\pi\)
\(350\) 0 0
\(351\) 10416.9 1.58409
\(352\) 0 0
\(353\) 1896.14 0.285896 0.142948 0.989730i \(-0.454342\pi\)
0.142948 + 0.989730i \(0.454342\pi\)
\(354\) 0 0
\(355\) 2838.56 0.424381
\(356\) 0 0
\(357\) 2249.70 0.333520
\(358\) 0 0
\(359\) −7546.30 −1.10941 −0.554706 0.832047i \(-0.687169\pi\)
−0.554706 + 0.832047i \(0.687169\pi\)
\(360\) 0 0
\(361\) 17583.6 2.56358
\(362\) 0 0
\(363\) −10313.8 −1.49127
\(364\) 0 0
\(365\) −2390.35 −0.342785
\(366\) 0 0
\(367\) −11910.9 −1.69413 −0.847065 0.531490i \(-0.821632\pi\)
−0.847065 + 0.531490i \(0.821632\pi\)
\(368\) 0 0
\(369\) −19668.3 −2.77477
\(370\) 0 0
\(371\) −3971.27 −0.555737
\(372\) 0 0
\(373\) 7194.68 0.998731 0.499365 0.866392i \(-0.333567\pi\)
0.499365 + 0.866392i \(0.333567\pi\)
\(374\) 0 0
\(375\) 1070.36 0.147395
\(376\) 0 0
\(377\) 5779.58 0.789559
\(378\) 0 0
\(379\) 4505.98 0.610704 0.305352 0.952240i \(-0.401226\pi\)
0.305352 + 0.952240i \(0.401226\pi\)
\(380\) 0 0
\(381\) −14130.0 −1.90000
\(382\) 0 0
\(383\) −3908.84 −0.521495 −0.260748 0.965407i \(-0.583969\pi\)
−0.260748 + 0.965407i \(0.583969\pi\)
\(384\) 0 0
\(385\) −1762.37 −0.233296
\(386\) 0 0
\(387\) −411.448 −0.0540441
\(388\) 0 0
\(389\) −3693.58 −0.481419 −0.240709 0.970597i \(-0.577380\pi\)
−0.240709 + 0.970597i \(0.577380\pi\)
\(390\) 0 0
\(391\) −649.345 −0.0839867
\(392\) 0 0
\(393\) 15396.9 1.97626
\(394\) 0 0
\(395\) −3485.66 −0.444007
\(396\) 0 0
\(397\) 4763.16 0.602157 0.301079 0.953599i \(-0.402653\pi\)
0.301079 + 0.953599i \(0.402653\pi\)
\(398\) 0 0
\(399\) −9371.13 −1.17580
\(400\) 0 0
\(401\) −9889.66 −1.23159 −0.615793 0.787908i \(-0.711164\pi\)
−0.615793 + 0.787908i \(0.711164\pi\)
\(402\) 0 0
\(403\) 19357.1 2.39267
\(404\) 0 0
\(405\) −830.488 −0.101894
\(406\) 0 0
\(407\) 14452.0 1.76009
\(408\) 0 0
\(409\) 12451.6 1.50536 0.752678 0.658389i \(-0.228762\pi\)
0.752678 + 0.658389i \(0.228762\pi\)
\(410\) 0 0
\(411\) 3794.55 0.455405
\(412\) 0 0
\(413\) −3552.98 −0.423318
\(414\) 0 0
\(415\) 2136.17 0.252676
\(416\) 0 0
\(417\) −10978.5 −1.28925
\(418\) 0 0
\(419\) 12910.7 1.50532 0.752662 0.658407i \(-0.228769\pi\)
0.752662 + 0.658407i \(0.228769\pi\)
\(420\) 0 0
\(421\) 3422.51 0.396207 0.198103 0.980181i \(-0.436522\pi\)
0.198103 + 0.980181i \(0.436522\pi\)
\(422\) 0 0
\(423\) 6361.92 0.731270
\(424\) 0 0
\(425\) 938.309 0.107093
\(426\) 0 0
\(427\) −1556.39 −0.176391
\(428\) 0 0
\(429\) −27145.4 −3.05499
\(430\) 0 0
\(431\) −4930.33 −0.551010 −0.275505 0.961300i \(-0.588845\pi\)
−0.275505 + 0.961300i \(0.588845\pi\)
\(432\) 0 0
\(433\) 5890.88 0.653805 0.326902 0.945058i \(-0.393995\pi\)
0.326902 + 0.945058i \(0.393995\pi\)
\(434\) 0 0
\(435\) −3930.43 −0.433218
\(436\) 0 0
\(437\) 2704.85 0.296088
\(438\) 0 0
\(439\) 2632.66 0.286218 0.143109 0.989707i \(-0.454290\pi\)
0.143109 + 0.989707i \(0.454290\pi\)
\(440\) 0 0
\(441\) 2269.83 0.245095
\(442\) 0 0
\(443\) −8701.76 −0.933258 −0.466629 0.884453i \(-0.654532\pi\)
−0.466629 + 0.884453i \(0.654532\pi\)
\(444\) 0 0
\(445\) 995.749 0.106074
\(446\) 0 0
\(447\) 15221.8 1.61066
\(448\) 0 0
\(449\) −9393.15 −0.987283 −0.493641 0.869666i \(-0.664334\pi\)
−0.493641 + 0.869666i \(0.664334\pi\)
\(450\) 0 0
\(451\) 21379.6 2.23221
\(452\) 0 0
\(453\) −15720.7 −1.63051
\(454\) 0 0
\(455\) −2203.51 −0.227037
\(456\) 0 0
\(457\) −8489.35 −0.868961 −0.434480 0.900681i \(-0.643068\pi\)
−0.434480 + 0.900681i \(0.643068\pi\)
\(458\) 0 0
\(459\) −6210.12 −0.631511
\(460\) 0 0
\(461\) −17481.3 −1.76612 −0.883062 0.469256i \(-0.844522\pi\)
−0.883062 + 0.469256i \(0.844522\pi\)
\(462\) 0 0
\(463\) −9318.16 −0.935317 −0.467658 0.883909i \(-0.654902\pi\)
−0.467658 + 0.883909i \(0.654902\pi\)
\(464\) 0 0
\(465\) −13163.9 −1.31282
\(466\) 0 0
\(467\) −14620.7 −1.44875 −0.724373 0.689408i \(-0.757871\pi\)
−0.724373 + 0.689408i \(0.757871\pi\)
\(468\) 0 0
\(469\) −6605.66 −0.650365
\(470\) 0 0
\(471\) 15525.0 1.51880
\(472\) 0 0
\(473\) 447.247 0.0434766
\(474\) 0 0
\(475\) −3908.53 −0.377549
\(476\) 0 0
\(477\) 26280.2 2.52261
\(478\) 0 0
\(479\) −6775.20 −0.646277 −0.323139 0.946352i \(-0.604738\pi\)
−0.323139 + 0.946352i \(0.604738\pi\)
\(480\) 0 0
\(481\) 18069.4 1.71288
\(482\) 0 0
\(483\) −1037.02 −0.0976938
\(484\) 0 0
\(485\) 8173.29 0.765217
\(486\) 0 0
\(487\) 12188.5 1.13411 0.567057 0.823678i \(-0.308082\pi\)
0.567057 + 0.823678i \(0.308082\pi\)
\(488\) 0 0
\(489\) 6725.34 0.621944
\(490\) 0 0
\(491\) −6590.32 −0.605737 −0.302869 0.953032i \(-0.597944\pi\)
−0.302869 + 0.953032i \(0.597944\pi\)
\(492\) 0 0
\(493\) −3445.53 −0.314765
\(494\) 0 0
\(495\) 11662.6 1.05898
\(496\) 0 0
\(497\) 3973.98 0.358667
\(498\) 0 0
\(499\) 8661.16 0.777008 0.388504 0.921447i \(-0.372992\pi\)
0.388504 + 0.921447i \(0.372992\pi\)
\(500\) 0 0
\(501\) 19806.7 1.76626
\(502\) 0 0
\(503\) 2756.60 0.244355 0.122178 0.992508i \(-0.461012\pi\)
0.122178 + 0.992508i \(0.461012\pi\)
\(504\) 0 0
\(505\) −2763.63 −0.243524
\(506\) 0 0
\(507\) −15127.4 −1.32511
\(508\) 0 0
\(509\) 5847.93 0.509244 0.254622 0.967041i \(-0.418049\pi\)
0.254622 + 0.967041i \(0.418049\pi\)
\(510\) 0 0
\(511\) −3346.49 −0.289706
\(512\) 0 0
\(513\) 25868.3 2.22634
\(514\) 0 0
\(515\) −4333.08 −0.370754
\(516\) 0 0
\(517\) −6915.46 −0.588282
\(518\) 0 0
\(519\) 30201.8 2.55436
\(520\) 0 0
\(521\) 22727.6 1.91116 0.955580 0.294732i \(-0.0952302\pi\)
0.955580 + 0.294732i \(0.0952302\pi\)
\(522\) 0 0
\(523\) −339.387 −0.0283754 −0.0141877 0.999899i \(-0.504516\pi\)
−0.0141877 + 0.999899i \(0.504516\pi\)
\(524\) 0 0
\(525\) 1498.50 0.124572
\(526\) 0 0
\(527\) −11539.8 −0.953858
\(528\) 0 0
\(529\) −11867.7 −0.975399
\(530\) 0 0
\(531\) 23512.1 1.92154
\(532\) 0 0
\(533\) 26731.1 2.17233
\(534\) 0 0
\(535\) 2620.20 0.211740
\(536\) 0 0
\(537\) 15208.3 1.22214
\(538\) 0 0
\(539\) −2467.32 −0.197171
\(540\) 0 0
\(541\) −1807.30 −0.143626 −0.0718132 0.997418i \(-0.522879\pi\)
−0.0718132 + 0.997418i \(0.522879\pi\)
\(542\) 0 0
\(543\) 6000.97 0.474266
\(544\) 0 0
\(545\) 4718.34 0.370846
\(546\) 0 0
\(547\) 7047.70 0.550892 0.275446 0.961317i \(-0.411174\pi\)
0.275446 + 0.961317i \(0.411174\pi\)
\(548\) 0 0
\(549\) 10299.5 0.800678
\(550\) 0 0
\(551\) 14352.4 1.10968
\(552\) 0 0
\(553\) −4879.93 −0.375254
\(554\) 0 0
\(555\) −12288.2 −0.939828
\(556\) 0 0
\(557\) −17815.6 −1.35524 −0.677622 0.735410i \(-0.736990\pi\)
−0.677622 + 0.735410i \(0.736990\pi\)
\(558\) 0 0
\(559\) 559.196 0.0423103
\(560\) 0 0
\(561\) 16182.9 1.21790
\(562\) 0 0
\(563\) 13002.1 0.973307 0.486654 0.873595i \(-0.338217\pi\)
0.486654 + 0.873595i \(0.338217\pi\)
\(564\) 0 0
\(565\) 2192.78 0.163276
\(566\) 0 0
\(567\) −1162.68 −0.0861166
\(568\) 0 0
\(569\) 4414.05 0.325213 0.162607 0.986691i \(-0.448010\pi\)
0.162607 + 0.986691i \(0.448010\pi\)
\(570\) 0 0
\(571\) −7957.50 −0.583206 −0.291603 0.956539i \(-0.594189\pi\)
−0.291603 + 0.956539i \(0.594189\pi\)
\(572\) 0 0
\(573\) −29738.3 −2.16813
\(574\) 0 0
\(575\) −432.524 −0.0313695
\(576\) 0 0
\(577\) 17205.7 1.24139 0.620697 0.784051i \(-0.286850\pi\)
0.620697 + 0.784051i \(0.286850\pi\)
\(578\) 0 0
\(579\) −8768.00 −0.629336
\(580\) 0 0
\(581\) 2990.64 0.213550
\(582\) 0 0
\(583\) −28566.8 −2.02936
\(584\) 0 0
\(585\) 14581.8 1.03057
\(586\) 0 0
\(587\) 2045.50 0.143828 0.0719138 0.997411i \(-0.477089\pi\)
0.0719138 + 0.997411i \(0.477089\pi\)
\(588\) 0 0
\(589\) 48069.2 3.36275
\(590\) 0 0
\(591\) −15252.9 −1.06163
\(592\) 0 0
\(593\) 10844.0 0.750943 0.375471 0.926834i \(-0.377481\pi\)
0.375471 + 0.926834i \(0.377481\pi\)
\(594\) 0 0
\(595\) 1313.63 0.0905104
\(596\) 0 0
\(597\) 32232.5 2.20969
\(598\) 0 0
\(599\) −3607.63 −0.246083 −0.123042 0.992402i \(-0.539265\pi\)
−0.123042 + 0.992402i \(0.539265\pi\)
\(600\) 0 0
\(601\) 1287.61 0.0873920 0.0436960 0.999045i \(-0.486087\pi\)
0.0436960 + 0.999045i \(0.486087\pi\)
\(602\) 0 0
\(603\) 43713.4 2.95215
\(604\) 0 0
\(605\) −6022.37 −0.404701
\(606\) 0 0
\(607\) −7342.44 −0.490973 −0.245486 0.969400i \(-0.578948\pi\)
−0.245486 + 0.969400i \(0.578948\pi\)
\(608\) 0 0
\(609\) −5502.61 −0.366136
\(610\) 0 0
\(611\) −8646.45 −0.572501
\(612\) 0 0
\(613\) −23046.3 −1.51848 −0.759242 0.650809i \(-0.774430\pi\)
−0.759242 + 0.650809i \(0.774430\pi\)
\(614\) 0 0
\(615\) −18178.6 −1.19192
\(616\) 0 0
\(617\) 17708.3 1.15544 0.577721 0.816234i \(-0.303942\pi\)
0.577721 + 0.816234i \(0.303942\pi\)
\(618\) 0 0
\(619\) 677.370 0.0439835 0.0219918 0.999758i \(-0.492999\pi\)
0.0219918 + 0.999758i \(0.492999\pi\)
\(620\) 0 0
\(621\) 2862.62 0.184981
\(622\) 0 0
\(623\) 1394.05 0.0896491
\(624\) 0 0
\(625\) 625.000 0.0400000
\(626\) 0 0
\(627\) −67409.8 −4.29360
\(628\) 0 0
\(629\) −10772.2 −0.682854
\(630\) 0 0
\(631\) −12453.9 −0.785706 −0.392853 0.919601i \(-0.628512\pi\)
−0.392853 + 0.919601i \(0.628512\pi\)
\(632\) 0 0
\(633\) −26140.5 −1.64138
\(634\) 0 0
\(635\) −8250.71 −0.515621
\(636\) 0 0
\(637\) −3084.91 −0.191881
\(638\) 0 0
\(639\) −26298.1 −1.62807
\(640\) 0 0
\(641\) −23183.4 −1.42853 −0.714265 0.699876i \(-0.753239\pi\)
−0.714265 + 0.699876i \(0.753239\pi\)
\(642\) 0 0
\(643\) 20218.9 1.24006 0.620028 0.784579i \(-0.287121\pi\)
0.620028 + 0.784579i \(0.287121\pi\)
\(644\) 0 0
\(645\) −380.284 −0.0232150
\(646\) 0 0
\(647\) 25370.2 1.54158 0.770792 0.637087i \(-0.219861\pi\)
0.770792 + 0.637087i \(0.219861\pi\)
\(648\) 0 0
\(649\) −25557.8 −1.54581
\(650\) 0 0
\(651\) −18429.4 −1.10953
\(652\) 0 0
\(653\) 875.999 0.0524969 0.0262485 0.999655i \(-0.491644\pi\)
0.0262485 + 0.999655i \(0.491644\pi\)
\(654\) 0 0
\(655\) 8990.46 0.536315
\(656\) 0 0
\(657\) 22145.6 1.31504
\(658\) 0 0
\(659\) 7407.23 0.437853 0.218926 0.975741i \(-0.429745\pi\)
0.218926 + 0.975741i \(0.429745\pi\)
\(660\) 0 0
\(661\) −11390.1 −0.670232 −0.335116 0.942177i \(-0.608776\pi\)
−0.335116 + 0.942177i \(0.608776\pi\)
\(662\) 0 0
\(663\) 20233.5 1.18523
\(664\) 0 0
\(665\) −5471.95 −0.319087
\(666\) 0 0
\(667\) 1588.26 0.0922001
\(668\) 0 0
\(669\) 293.354 0.0169533
\(670\) 0 0
\(671\) −11195.7 −0.644119
\(672\) 0 0
\(673\) −30992.3 −1.77514 −0.887568 0.460676i \(-0.847607\pi\)
−0.887568 + 0.460676i \(0.847607\pi\)
\(674\) 0 0
\(675\) −4136.51 −0.235873
\(676\) 0 0
\(677\) −14659.2 −0.832201 −0.416101 0.909319i \(-0.636604\pi\)
−0.416101 + 0.909319i \(0.636604\pi\)
\(678\) 0 0
\(679\) 11442.6 0.646726
\(680\) 0 0
\(681\) −44326.8 −2.49428
\(682\) 0 0
\(683\) 7693.91 0.431039 0.215519 0.976500i \(-0.430856\pi\)
0.215519 + 0.976500i \(0.430856\pi\)
\(684\) 0 0
\(685\) 2215.70 0.123588
\(686\) 0 0
\(687\) 16275.5 0.903853
\(688\) 0 0
\(689\) −35717.2 −1.97492
\(690\) 0 0
\(691\) 1483.17 0.0816534 0.0408267 0.999166i \(-0.487001\pi\)
0.0408267 + 0.999166i \(0.487001\pi\)
\(692\) 0 0
\(693\) 16327.7 0.895002
\(694\) 0 0
\(695\) −6410.50 −0.349876
\(696\) 0 0
\(697\) −15935.9 −0.866018
\(698\) 0 0
\(699\) −20437.7 −1.10590
\(700\) 0 0
\(701\) −6316.56 −0.340332 −0.170166 0.985415i \(-0.554430\pi\)
−0.170166 + 0.985415i \(0.554430\pi\)
\(702\) 0 0
\(703\) 44871.6 2.40735
\(704\) 0 0
\(705\) 5880.06 0.314122
\(706\) 0 0
\(707\) −3869.08 −0.205815
\(708\) 0 0
\(709\) 15141.3 0.802035 0.401017 0.916071i \(-0.368657\pi\)
0.401017 + 0.916071i \(0.368657\pi\)
\(710\) 0 0
\(711\) 32293.3 1.70336
\(712\) 0 0
\(713\) 5319.41 0.279402
\(714\) 0 0
\(715\) −15850.6 −0.829061
\(716\) 0 0
\(717\) 34259.6 1.78444
\(718\) 0 0
\(719\) −27594.2 −1.43128 −0.715639 0.698471i \(-0.753864\pi\)
−0.715639 + 0.698471i \(0.753864\pi\)
\(720\) 0 0
\(721\) −6066.31 −0.313344
\(722\) 0 0
\(723\) −47767.5 −2.45711
\(724\) 0 0
\(725\) −2295.04 −0.117566
\(726\) 0 0
\(727\) 37646.1 1.92052 0.960260 0.279107i \(-0.0900384\pi\)
0.960260 + 0.279107i \(0.0900384\pi\)
\(728\) 0 0
\(729\) −30559.9 −1.55261
\(730\) 0 0
\(731\) −333.368 −0.0168674
\(732\) 0 0
\(733\) 16306.3 0.821676 0.410838 0.911708i \(-0.365236\pi\)
0.410838 + 0.911708i \(0.365236\pi\)
\(734\) 0 0
\(735\) 2097.91 0.105282
\(736\) 0 0
\(737\) −47516.8 −2.37491
\(738\) 0 0
\(739\) −31419.3 −1.56397 −0.781987 0.623295i \(-0.785794\pi\)
−0.781987 + 0.623295i \(0.785794\pi\)
\(740\) 0 0
\(741\) −84283.0 −4.17842
\(742\) 0 0
\(743\) −4475.71 −0.220993 −0.110497 0.993877i \(-0.535244\pi\)
−0.110497 + 0.993877i \(0.535244\pi\)
\(744\) 0 0
\(745\) 8888.24 0.437101
\(746\) 0 0
\(747\) −19790.8 −0.969353
\(748\) 0 0
\(749\) 3668.28 0.178953
\(750\) 0 0
\(751\) −13207.9 −0.641763 −0.320882 0.947119i \(-0.603979\pi\)
−0.320882 + 0.947119i \(0.603979\pi\)
\(752\) 0 0
\(753\) 52184.4 2.52550
\(754\) 0 0
\(755\) −9179.56 −0.442488
\(756\) 0 0
\(757\) −6040.06 −0.290000 −0.145000 0.989432i \(-0.546318\pi\)
−0.145000 + 0.989432i \(0.546318\pi\)
\(758\) 0 0
\(759\) −7459.66 −0.356744
\(760\) 0 0
\(761\) 22751.2 1.08375 0.541873 0.840460i \(-0.317715\pi\)
0.541873 + 0.840460i \(0.317715\pi\)
\(762\) 0 0
\(763\) 6605.67 0.313422
\(764\) 0 0
\(765\) −8693.05 −0.410847
\(766\) 0 0
\(767\) −31955.1 −1.50434
\(768\) 0 0
\(769\) 16581.3 0.777550 0.388775 0.921333i \(-0.372898\pi\)
0.388775 + 0.921333i \(0.372898\pi\)
\(770\) 0 0
\(771\) 8012.60 0.374276
\(772\) 0 0
\(773\) −22529.0 −1.04827 −0.524134 0.851636i \(-0.675611\pi\)
−0.524134 + 0.851636i \(0.675611\pi\)
\(774\) 0 0
\(775\) −7686.59 −0.356271
\(776\) 0 0
\(777\) −17203.5 −0.794300
\(778\) 0 0
\(779\) 66381.0 3.05308
\(780\) 0 0
\(781\) 28586.3 1.30973
\(782\) 0 0
\(783\) 15189.5 0.693269
\(784\) 0 0
\(785\) 9065.28 0.412170
\(786\) 0 0
\(787\) 2748.35 0.124483 0.0622415 0.998061i \(-0.480175\pi\)
0.0622415 + 0.998061i \(0.480175\pi\)
\(788\) 0 0
\(789\) 20974.7 0.946414
\(790\) 0 0
\(791\) 3069.89 0.137993
\(792\) 0 0
\(793\) −13998.0 −0.626840
\(794\) 0 0
\(795\) 24289.7 1.08361
\(796\) 0 0
\(797\) −26825.3 −1.19222 −0.596112 0.802901i \(-0.703289\pi\)
−0.596112 + 0.802901i \(0.703289\pi\)
\(798\) 0 0
\(799\) 5154.63 0.228232
\(800\) 0 0
\(801\) −9225.21 −0.406937
\(802\) 0 0
\(803\) −24072.5 −1.05791
\(804\) 0 0
\(805\) −605.533 −0.0265121
\(806\) 0 0
\(807\) −26036.2 −1.13571
\(808\) 0 0
\(809\) 8696.46 0.377937 0.188969 0.981983i \(-0.439486\pi\)
0.188969 + 0.981983i \(0.439486\pi\)
\(810\) 0 0
\(811\) −40031.6 −1.73329 −0.866646 0.498924i \(-0.833729\pi\)
−0.866646 + 0.498924i \(0.833729\pi\)
\(812\) 0 0
\(813\) 53319.6 2.30012
\(814\) 0 0
\(815\) 3927.03 0.168783
\(816\) 0 0
\(817\) 1388.65 0.0594646
\(818\) 0 0
\(819\) 20414.6 0.870993
\(820\) 0 0
\(821\) −3291.06 −0.139901 −0.0699505 0.997550i \(-0.522284\pi\)
−0.0699505 + 0.997550i \(0.522284\pi\)
\(822\) 0 0
\(823\) 21342.1 0.903934 0.451967 0.892035i \(-0.350723\pi\)
0.451967 + 0.892035i \(0.350723\pi\)
\(824\) 0 0
\(825\) 10779.3 0.454892
\(826\) 0 0
\(827\) −21039.4 −0.884657 −0.442328 0.896853i \(-0.645847\pi\)
−0.442328 + 0.896853i \(0.645847\pi\)
\(828\) 0 0
\(829\) −22220.4 −0.930935 −0.465467 0.885065i \(-0.654114\pi\)
−0.465467 + 0.885065i \(0.654114\pi\)
\(830\) 0 0
\(831\) 19282.5 0.804938
\(832\) 0 0
\(833\) 1839.09 0.0764953
\(834\) 0 0
\(835\) 11565.4 0.479327
\(836\) 0 0
\(837\) 50873.0 2.10087
\(838\) 0 0
\(839\) −38654.3 −1.59058 −0.795288 0.606232i \(-0.792680\pi\)
−0.795288 + 0.606232i \(0.792680\pi\)
\(840\) 0 0
\(841\) −15961.5 −0.654453
\(842\) 0 0
\(843\) −42160.6 −1.72253
\(844\) 0 0
\(845\) −8833.10 −0.359607
\(846\) 0 0
\(847\) −8431.32 −0.342035
\(848\) 0 0
\(849\) −65750.0 −2.65787
\(850\) 0 0
\(851\) 4965.55 0.200020
\(852\) 0 0
\(853\) 25772.6 1.03451 0.517254 0.855832i \(-0.326954\pi\)
0.517254 + 0.855832i \(0.326954\pi\)
\(854\) 0 0
\(855\) 36211.0 1.44841
\(856\) 0 0
\(857\) −39874.8 −1.58938 −0.794690 0.607016i \(-0.792366\pi\)
−0.794690 + 0.607016i \(0.792366\pi\)
\(858\) 0 0
\(859\) 21430.3 0.851215 0.425608 0.904908i \(-0.360060\pi\)
0.425608 + 0.904908i \(0.360060\pi\)
\(860\) 0 0
\(861\) −25450.0 −1.00736
\(862\) 0 0
\(863\) 25908.7 1.02195 0.510974 0.859596i \(-0.329285\pi\)
0.510974 + 0.859596i \(0.329285\pi\)
\(864\) 0 0
\(865\) 17635.3 0.693200
\(866\) 0 0
\(867\) 30007.1 1.17543
\(868\) 0 0
\(869\) −35103.1 −1.37030
\(870\) 0 0
\(871\) −59410.6 −2.31120
\(872\) 0 0
\(873\) −75722.2 −2.93564
\(874\) 0 0
\(875\) 875.000 0.0338062
\(876\) 0 0
\(877\) −12837.0 −0.494269 −0.247135 0.968981i \(-0.579489\pi\)
−0.247135 + 0.968981i \(0.579489\pi\)
\(878\) 0 0
\(879\) −57434.7 −2.20390
\(880\) 0 0
\(881\) −20254.9 −0.774580 −0.387290 0.921958i \(-0.626589\pi\)
−0.387290 + 0.921958i \(0.626589\pi\)
\(882\) 0 0
\(883\) 43532.0 1.65908 0.829541 0.558446i \(-0.188602\pi\)
0.829541 + 0.558446i \(0.188602\pi\)
\(884\) 0 0
\(885\) 21731.2 0.825409
\(886\) 0 0
\(887\) −27490.1 −1.04062 −0.520309 0.853978i \(-0.674183\pi\)
−0.520309 + 0.853978i \(0.674183\pi\)
\(888\) 0 0
\(889\) −11551.0 −0.435779
\(890\) 0 0
\(891\) −8363.59 −0.314468
\(892\) 0 0
\(893\) −21471.6 −0.804615
\(894\) 0 0
\(895\) 8880.38 0.331663
\(896\) 0 0
\(897\) −9326.87 −0.347174
\(898\) 0 0
\(899\) 28225.7 1.04714
\(900\) 0 0
\(901\) 21293.1 0.787319
\(902\) 0 0
\(903\) −532.398 −0.0196202
\(904\) 0 0
\(905\) 3504.06 0.128706
\(906\) 0 0
\(907\) −19460.3 −0.712425 −0.356212 0.934405i \(-0.615932\pi\)
−0.356212 + 0.934405i \(0.615932\pi\)
\(908\) 0 0
\(909\) 25603.9 0.934243
\(910\) 0 0
\(911\) 24975.7 0.908322 0.454161 0.890920i \(-0.349939\pi\)
0.454161 + 0.890920i \(0.349939\pi\)
\(912\) 0 0
\(913\) 21512.8 0.779812
\(914\) 0 0
\(915\) 9519.41 0.343937
\(916\) 0 0
\(917\) 12586.6 0.453269
\(918\) 0 0
\(919\) 31394.8 1.12690 0.563449 0.826151i \(-0.309474\pi\)
0.563449 + 0.826151i \(0.309474\pi\)
\(920\) 0 0
\(921\) 81893.7 2.92996
\(922\) 0 0
\(923\) 35741.6 1.27459
\(924\) 0 0
\(925\) −7175.26 −0.255050
\(926\) 0 0
\(927\) 40144.2 1.42234
\(928\) 0 0
\(929\) 24242.8 0.856167 0.428084 0.903739i \(-0.359189\pi\)
0.428084 + 0.903739i \(0.359189\pi\)
\(930\) 0 0
\(931\) −7660.72 −0.269678
\(932\) 0 0
\(933\) 69734.0 2.44693
\(934\) 0 0
\(935\) 9449.43 0.330513
\(936\) 0 0
\(937\) 40490.0 1.41169 0.705843 0.708368i \(-0.250568\pi\)
0.705843 + 0.708368i \(0.250568\pi\)
\(938\) 0 0
\(939\) 29823.3 1.03647
\(940\) 0 0
\(941\) 14891.5 0.515885 0.257943 0.966160i \(-0.416955\pi\)
0.257943 + 0.966160i \(0.416955\pi\)
\(942\) 0 0
\(943\) 7345.82 0.253672
\(944\) 0 0
\(945\) −5791.11 −0.199349
\(946\) 0 0
\(947\) 20154.3 0.691580 0.345790 0.938312i \(-0.387611\pi\)
0.345790 + 0.938312i \(0.387611\pi\)
\(948\) 0 0
\(949\) −30098.0 −1.02953
\(950\) 0 0
\(951\) −585.694 −0.0199710
\(952\) 0 0
\(953\) −16353.8 −0.555878 −0.277939 0.960599i \(-0.589651\pi\)
−0.277939 + 0.960599i \(0.589651\pi\)
\(954\) 0 0
\(955\) −17364.7 −0.588384
\(956\) 0 0
\(957\) −39582.2 −1.33700
\(958\) 0 0
\(959\) 3101.98 0.104451
\(960\) 0 0
\(961\) 64742.8 2.17323
\(962\) 0 0
\(963\) −24275.1 −0.812309
\(964\) 0 0
\(965\) −5119.77 −0.170789
\(966\) 0 0
\(967\) −11441.4 −0.380488 −0.190244 0.981737i \(-0.560928\pi\)
−0.190244 + 0.981737i \(0.560928\pi\)
\(968\) 0 0
\(969\) 50245.8 1.66577
\(970\) 0 0
\(971\) −12434.6 −0.410962 −0.205481 0.978661i \(-0.565876\pi\)
−0.205481 + 0.978661i \(0.565876\pi\)
\(972\) 0 0
\(973\) −8974.70 −0.295700
\(974\) 0 0
\(975\) 13477.4 0.442689
\(976\) 0 0
\(977\) −23296.9 −0.762880 −0.381440 0.924394i \(-0.624572\pi\)
−0.381440 + 0.924394i \(0.624572\pi\)
\(978\) 0 0
\(979\) 10027.9 0.327367
\(980\) 0 0
\(981\) −43713.5 −1.42269
\(982\) 0 0
\(983\) −16323.9 −0.529656 −0.264828 0.964296i \(-0.585315\pi\)
−0.264828 + 0.964296i \(0.585315\pi\)
\(984\) 0 0
\(985\) −8906.42 −0.288104
\(986\) 0 0
\(987\) 8232.08 0.265481
\(988\) 0 0
\(989\) 153.670 0.00494076
\(990\) 0 0
\(991\) 42229.5 1.35365 0.676823 0.736146i \(-0.263356\pi\)
0.676823 + 0.736146i \(0.263356\pi\)
\(992\) 0 0
\(993\) −78911.5 −2.52183
\(994\) 0 0
\(995\) 18821.0 0.599665
\(996\) 0 0
\(997\) 6744.97 0.214258 0.107129 0.994245i \(-0.465834\pi\)
0.107129 + 0.994245i \(0.465834\pi\)
\(998\) 0 0
\(999\) 47488.9 1.50399
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 560.4.a.t.1.1 3
4.3 odd 2 280.4.a.h.1.3 3
8.3 odd 2 2240.4.a.bu.1.1 3
8.5 even 2 2240.4.a.bx.1.3 3
20.3 even 4 1400.4.g.k.449.6 6
20.7 even 4 1400.4.g.k.449.1 6
20.19 odd 2 1400.4.a.k.1.1 3
28.27 even 2 1960.4.a.p.1.1 3
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
280.4.a.h.1.3 3 4.3 odd 2
560.4.a.t.1.1 3 1.1 even 1 trivial
1400.4.a.k.1.1 3 20.19 odd 2
1400.4.g.k.449.1 6 20.7 even 4
1400.4.g.k.449.6 6 20.3 even 4
1960.4.a.p.1.1 3 28.27 even 2
2240.4.a.bu.1.1 3 8.3 odd 2
2240.4.a.bx.1.3 3 8.5 even 2