Properties

Label 560.6.a.i
Level $560$
Weight $6$
Character orbit 560.a
Self dual yes
Analytic conductor $89.815$
Analytic rank $1$
Dimension $1$
CM no
Inner twists $1$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [560,6,Mod(1,560)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(560, base_ring=CyclotomicField(2))
 
chi = DirichletCharacter(H, H._module([0, 0, 0, 0]))
 
N = Newforms(chi, 6, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("560.1");
 
S:= CuspForms(chi, 6);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 560 = 2^{4} \cdot 5 \cdot 7 \)
Weight: \( k \) \(=\) \( 6 \)
Character orbit: \([\chi]\) \(=\) 560.a (trivial)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: yes
Analytic conductor: \(89.8149390953\)
Analytic rank: \(1\)
Dimension: \(1\)
Coefficient field: \(\mathbb{Q}\)
Coefficient ring: \(\mathbb{Z}\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 70)
Fricke sign: \(+1\)
Sato-Tate group: $\mathrm{SU}(2)$

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \( q + 23 q^{3} + 25 q^{5} - 49 q^{7} + 286 q^{9} - 555 q^{11} - 241 q^{13} + 575 q^{15} - 1491 q^{17} + 2038 q^{19} - 1127 q^{21} + 1230 q^{23} + 625 q^{25} + 989 q^{27} - 5001 q^{29} - 5696 q^{31} - 12765 q^{33}+ \cdots - 158730 q^{99}+O(q^{100}) \) Copy content Toggle raw display

Embeddings

For each embedding \(\iota_m\) of the coefficient field, the values \(\iota_m(a_n)\) are shown below.

For more information on an embedded modular form you can click on its label.

comment: embeddings in the coefficient field
 
gp: mfembed(f)
 
Label   \(\iota_m(\nu)\) \( a_{2} \) \( a_{3} \) \( a_{4} \) \( a_{5} \) \( a_{6} \) \( a_{7} \) \( a_{8} \) \( a_{9} \) \( a_{10} \)
1.1
0
0 23.0000 0 25.0000 0 −49.0000 0 286.000 0
\(n\): e.g. 2-40 or 990-1000
Significant digits:
Format:

Atkin-Lehner signs

\( p \) Sign
\(2\) \( -1 \)
\(5\) \( -1 \)
\(7\) \( +1 \)

Inner twists

This newform does not admit any (nontrivial) inner twists.

Twists

       By twisting character orbit
Char Parity Ord Mult Type Twist Min Dim
1.a even 1 1 trivial 560.6.a.i 1
4.b odd 2 1 70.6.a.a 1
12.b even 2 1 630.6.a.j 1
20.d odd 2 1 350.6.a.n 1
20.e even 4 2 350.6.c.h 2
28.d even 2 1 490.6.a.i 1
    
        By twisted newform orbit
Twist Min Dim Char Parity Ord Mult Type
70.6.a.a 1 4.b odd 2 1
350.6.a.n 1 20.d odd 2 1
350.6.c.h 2 20.e even 4 2
490.6.a.i 1 28.d even 2 1
560.6.a.i 1 1.a even 1 1 trivial
630.6.a.j 1 12.b even 2 1

Hecke kernels

This newform subspace can be constructed as the kernel of the linear operator \( T_{3} - 23 \) acting on \(S_{6}^{\mathrm{new}}(\Gamma_0(560))\). Copy content Toggle raw display

Hecke characteristic polynomials

$p$ $F_p(T)$
$2$ \( T \) Copy content Toggle raw display
$3$ \( T - 23 \) Copy content Toggle raw display
$5$ \( T - 25 \) Copy content Toggle raw display
$7$ \( T + 49 \) Copy content Toggle raw display
$11$ \( T + 555 \) Copy content Toggle raw display
$13$ \( T + 241 \) Copy content Toggle raw display
$17$ \( T + 1491 \) Copy content Toggle raw display
$19$ \( T - 2038 \) Copy content Toggle raw display
$23$ \( T - 1230 \) Copy content Toggle raw display
$29$ \( T + 5001 \) Copy content Toggle raw display
$31$ \( T + 5696 \) Copy content Toggle raw display
$37$ \( T + 5602 \) Copy content Toggle raw display
$41$ \( T + 2424 \) Copy content Toggle raw display
$43$ \( T + 602 \) Copy content Toggle raw display
$47$ \( T - 23163 \) Copy content Toggle raw display
$53$ \( T + 25296 \) Copy content Toggle raw display
$59$ \( T + 5724 \) Copy content Toggle raw display
$61$ \( T + 36112 \) Copy content Toggle raw display
$67$ \( T + 66104 \) Copy content Toggle raw display
$71$ \( T + 16080 \) Copy content Toggle raw display
$73$ \( T + 80482 \) Copy content Toggle raw display
$79$ \( T - 64147 \) Copy content Toggle raw display
$83$ \( T - 106284 \) Copy content Toggle raw display
$89$ \( T + 71676 \) Copy content Toggle raw display
$97$ \( T - 151025 \) Copy content Toggle raw display
show more
show less