Properties

Label 567.2.f.h.379.1
Level $567$
Weight $2$
Character 567.379
Analytic conductor $4.528$
Analytic rank $0$
Dimension $2$
Inner twists $2$

Related objects

Downloads

Learn more

Show commands: Magma / PariGP / SageMath

Newspace parameters

comment: Compute space of new eigenforms
 
[N,k,chi] = [567,2,Mod(190,567)]
 
mf = mfinit([N,k,chi],0)
 
lf = mfeigenbasis(mf)
 
from sage.modular.dirichlet import DirichletCharacter
 
H = DirichletGroup(567, base_ring=CyclotomicField(6))
 
chi = DirichletCharacter(H, H._module([2, 0]))
 
N = Newforms(chi, 2, names="a")
 
//Please install CHIMP (https://github.com/edgarcosta/CHIMP) if you want to run this code
 
chi := DirichletCharacter("567.190");
 
S:= CuspForms(chi, 2);
 
N := Newforms(S);
 
Level: \( N \) \(=\) \( 567 = 3^{4} \cdot 7 \)
Weight: \( k \) \(=\) \( 2 \)
Character orbit: \([\chi]\) \(=\) 567.f (of order \(3\), degree \(2\), not minimal)

Newform invariants

comment: select newform
 
sage: f = N[0] # Warning: the index may be different
 
gp: f = lf[1] \\ Warning: the index may be different
 
Self dual: no
Analytic conductor: \(4.52751779461\)
Analytic rank: \(0\)
Dimension: \(2\)
Coefficient field: \(\Q(\zeta_{6})\)
comment: defining polynomial
 
gp: f.mod \\ as an extension of the character field
 
Defining polynomial: \( x^{2} - x + 1 \) Copy content Toggle raw display
Coefficient ring: \(\Z[a_1, \ldots, a_{5}]\)
Coefficient ring index: \( 1 \)
Twist minimal: no (minimal twist has level 189)
Sato-Tate group: $\mathrm{SU}(2)[C_{3}]$

Embedding invariants

Embedding label 379.1
Root \(0.500000 + 0.866025i\) of defining polynomial
Character \(\chi\) \(=\) 567.379
Dual form 567.2.f.h.190.1

$q$-expansion

comment: q-expansion
 
sage: f.q_expansion() # note that sage often uses an isomorphic number field
 
gp: mfcoefs(f, 20)
 
\(f(q)\) \(=\) \(q+(1.00000 - 1.73205i) q^{2} +(-1.00000 - 1.73205i) q^{4} +(0.500000 + 0.866025i) q^{5} +(0.500000 - 0.866025i) q^{7} +2.00000 q^{10} +(2.00000 - 3.46410i) q^{11} +(1.00000 + 1.73205i) q^{13} +(-1.00000 - 1.73205i) q^{14} +(2.00000 - 3.46410i) q^{16} +3.00000 q^{17} -8.00000 q^{19} +(1.00000 - 1.73205i) q^{20} +(-4.00000 - 6.92820i) q^{22} +(3.00000 + 5.19615i) q^{23} +(2.00000 - 3.46410i) q^{25} +4.00000 q^{26} -2.00000 q^{28} +(2.00000 - 3.46410i) q^{29} +(-3.00000 - 5.19615i) q^{31} +(-4.00000 - 6.92820i) q^{32} +(3.00000 - 5.19615i) q^{34} +1.00000 q^{35} -3.00000 q^{37} +(-8.00000 + 13.8564i) q^{38} +(-0.500000 - 0.866025i) q^{41} +(-5.50000 + 9.52628i) q^{43} -8.00000 q^{44} +12.0000 q^{46} +(-4.50000 + 7.79423i) q^{47} +(-0.500000 - 0.866025i) q^{49} +(-4.00000 - 6.92820i) q^{50} +(2.00000 - 3.46410i) q^{52} +6.00000 q^{53} +4.00000 q^{55} +(-4.00000 - 6.92820i) q^{58} +(7.50000 + 12.9904i) q^{59} +(-2.00000 + 3.46410i) q^{61} -12.0000 q^{62} -8.00000 q^{64} +(-1.00000 + 1.73205i) q^{65} +(4.00000 + 6.92820i) q^{67} +(-3.00000 - 5.19615i) q^{68} +(1.00000 - 1.73205i) q^{70} -12.0000 q^{71} +6.00000 q^{73} +(-3.00000 + 5.19615i) q^{74} +(8.00000 + 13.8564i) q^{76} +(-2.00000 - 3.46410i) q^{77} +(0.500000 - 0.866025i) q^{79} +4.00000 q^{80} -2.00000 q^{82} +(4.50000 - 7.79423i) q^{83} +(1.50000 + 2.59808i) q^{85} +(11.0000 + 19.0526i) q^{86} +2.00000 q^{89} +2.00000 q^{91} +(6.00000 - 10.3923i) q^{92} +(9.00000 + 15.5885i) q^{94} +(-4.00000 - 6.92820i) q^{95} +(-6.00000 + 10.3923i) q^{97} -2.00000 q^{98} +O(q^{100})\)
\(\operatorname{Tr}(f)(q)\) \(=\) \( 2 q + 2 q^{2} - 2 q^{4} + q^{5} + q^{7} + 4 q^{10} + 4 q^{11} + 2 q^{13} - 2 q^{14} + 4 q^{16} + 6 q^{17} - 16 q^{19} + 2 q^{20} - 8 q^{22} + 6 q^{23} + 4 q^{25} + 8 q^{26} - 4 q^{28} + 4 q^{29} - 6 q^{31}+ \cdots - 4 q^{98}+O(q^{100}) \) Copy content Toggle raw display

Character values

We give the values of \(\chi\) on generators for \(\left(\mathbb{Z}/567\mathbb{Z}\right)^\times\).

\(n\) \(325\) \(407\)
\(\chi(n)\) \(1\) \(e\left(\frac{2}{3}\right)\)

Coefficient data

For each \(n\) we display the coefficients of the \(q\)-expansion \(a_n\), the Satake parameters \(\alpha_p\), and the Satake angles \(\theta_p = \textrm{Arg}(\alpha_p)\).



Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))
Significant digits:
\(n\) \(a_n\) \(a_n / n^{(k-1)/2}\) \( \alpha_n \) \( \theta_n \)
\(p\) \(a_p\) \(a_p / p^{(k-1)/2}\) \( \alpha_p\) \( \theta_p \)
\(2\) 1.00000 1.73205i 0.707107 1.22474i −0.258819 0.965926i \(-0.583333\pi\)
0.965926 0.258819i \(-0.0833333\pi\)
\(3\) 0 0
\(4\) −1.00000 1.73205i −0.500000 0.866025i
\(5\) 0.500000 + 0.866025i 0.223607 + 0.387298i 0.955901 0.293691i \(-0.0948835\pi\)
−0.732294 + 0.680989i \(0.761550\pi\)
\(6\) 0 0
\(7\) 0.500000 0.866025i 0.188982 0.327327i
\(8\) 0 0
\(9\) 0 0
\(10\) 2.00000 0.632456
\(11\) 2.00000 3.46410i 0.603023 1.04447i −0.389338 0.921095i \(-0.627296\pi\)
0.992361 0.123371i \(-0.0393705\pi\)
\(12\) 0 0
\(13\) 1.00000 + 1.73205i 0.277350 + 0.480384i 0.970725 0.240192i \(-0.0772105\pi\)
−0.693375 + 0.720577i \(0.743877\pi\)
\(14\) −1.00000 1.73205i −0.267261 0.462910i
\(15\) 0 0
\(16\) 2.00000 3.46410i 0.500000 0.866025i
\(17\) 3.00000 0.727607 0.363803 0.931476i \(-0.381478\pi\)
0.363803 + 0.931476i \(0.381478\pi\)
\(18\) 0 0
\(19\) −8.00000 −1.83533 −0.917663 0.397360i \(-0.869927\pi\)
−0.917663 + 0.397360i \(0.869927\pi\)
\(20\) 1.00000 1.73205i 0.223607 0.387298i
\(21\) 0 0
\(22\) −4.00000 6.92820i −0.852803 1.47710i
\(23\) 3.00000 + 5.19615i 0.625543 + 1.08347i 0.988436 + 0.151642i \(0.0484560\pi\)
−0.362892 + 0.931831i \(0.618211\pi\)
\(24\) 0 0
\(25\) 2.00000 3.46410i 0.400000 0.692820i
\(26\) 4.00000 0.784465
\(27\) 0 0
\(28\) −2.00000 −0.377964
\(29\) 2.00000 3.46410i 0.371391 0.643268i −0.618389 0.785872i \(-0.712214\pi\)
0.989780 + 0.142605i \(0.0455477\pi\)
\(30\) 0 0
\(31\) −3.00000 5.19615i −0.538816 0.933257i −0.998968 0.0454165i \(-0.985539\pi\)
0.460152 0.887840i \(-0.347795\pi\)
\(32\) −4.00000 6.92820i −0.707107 1.22474i
\(33\) 0 0
\(34\) 3.00000 5.19615i 0.514496 0.891133i
\(35\) 1.00000 0.169031
\(36\) 0 0
\(37\) −3.00000 −0.493197 −0.246598 0.969118i \(-0.579313\pi\)
−0.246598 + 0.969118i \(0.579313\pi\)
\(38\) −8.00000 + 13.8564i −1.29777 + 2.24781i
\(39\) 0 0
\(40\) 0 0
\(41\) −0.500000 0.866025i −0.0780869 0.135250i 0.824338 0.566099i \(-0.191548\pi\)
−0.902424 + 0.430848i \(0.858214\pi\)
\(42\) 0 0
\(43\) −5.50000 + 9.52628i −0.838742 + 1.45274i 0.0522047 + 0.998636i \(0.483375\pi\)
−0.890947 + 0.454108i \(0.849958\pi\)
\(44\) −8.00000 −1.20605
\(45\) 0 0
\(46\) 12.0000 1.76930
\(47\) −4.50000 + 7.79423i −0.656392 + 1.13691i 0.325150 + 0.945662i \(0.394585\pi\)
−0.981543 + 0.191243i \(0.938748\pi\)
\(48\) 0 0
\(49\) −0.500000 0.866025i −0.0714286 0.123718i
\(50\) −4.00000 6.92820i −0.565685 0.979796i
\(51\) 0 0
\(52\) 2.00000 3.46410i 0.277350 0.480384i
\(53\) 6.00000 0.824163 0.412082 0.911147i \(-0.364802\pi\)
0.412082 + 0.911147i \(0.364802\pi\)
\(54\) 0 0
\(55\) 4.00000 0.539360
\(56\) 0 0
\(57\) 0 0
\(58\) −4.00000 6.92820i −0.525226 0.909718i
\(59\) 7.50000 + 12.9904i 0.976417 + 1.69120i 0.675178 + 0.737655i \(0.264067\pi\)
0.301239 + 0.953549i \(0.402600\pi\)
\(60\) 0 0
\(61\) −2.00000 + 3.46410i −0.256074 + 0.443533i −0.965187 0.261562i \(-0.915762\pi\)
0.709113 + 0.705095i \(0.249096\pi\)
\(62\) −12.0000 −1.52400
\(63\) 0 0
\(64\) −8.00000 −1.00000
\(65\) −1.00000 + 1.73205i −0.124035 + 0.214834i
\(66\) 0 0
\(67\) 4.00000 + 6.92820i 0.488678 + 0.846415i 0.999915 0.0130248i \(-0.00414604\pi\)
−0.511237 + 0.859440i \(0.670813\pi\)
\(68\) −3.00000 5.19615i −0.363803 0.630126i
\(69\) 0 0
\(70\) 1.00000 1.73205i 0.119523 0.207020i
\(71\) −12.0000 −1.42414 −0.712069 0.702109i \(-0.752242\pi\)
−0.712069 + 0.702109i \(0.752242\pi\)
\(72\) 0 0
\(73\) 6.00000 0.702247 0.351123 0.936329i \(-0.385800\pi\)
0.351123 + 0.936329i \(0.385800\pi\)
\(74\) −3.00000 + 5.19615i −0.348743 + 0.604040i
\(75\) 0 0
\(76\) 8.00000 + 13.8564i 0.917663 + 1.58944i
\(77\) −2.00000 3.46410i −0.227921 0.394771i
\(78\) 0 0
\(79\) 0.500000 0.866025i 0.0562544 0.0974355i −0.836527 0.547926i \(-0.815418\pi\)
0.892781 + 0.450490i \(0.148751\pi\)
\(80\) 4.00000 0.447214
\(81\) 0 0
\(82\) −2.00000 −0.220863
\(83\) 4.50000 7.79423i 0.493939 0.855528i −0.506036 0.862512i \(-0.668890\pi\)
0.999976 + 0.00698436i \(0.00222321\pi\)
\(84\) 0 0
\(85\) 1.50000 + 2.59808i 0.162698 + 0.281801i
\(86\) 11.0000 + 19.0526i 1.18616 + 2.05449i
\(87\) 0 0
\(88\) 0 0
\(89\) 2.00000 0.212000 0.106000 0.994366i \(-0.466196\pi\)
0.106000 + 0.994366i \(0.466196\pi\)
\(90\) 0 0
\(91\) 2.00000 0.209657
\(92\) 6.00000 10.3923i 0.625543 1.08347i
\(93\) 0 0
\(94\) 9.00000 + 15.5885i 0.928279 + 1.60783i
\(95\) −4.00000 6.92820i −0.410391 0.710819i
\(96\) 0 0
\(97\) −6.00000 + 10.3923i −0.609208 + 1.05518i 0.382164 + 0.924095i \(0.375179\pi\)
−0.991371 + 0.131084i \(0.958154\pi\)
\(98\) −2.00000 −0.202031
\(99\) 0 0
\(100\) −8.00000 −0.800000
\(101\) −5.00000 + 8.66025i −0.497519 + 0.861727i −0.999996 0.00286291i \(-0.999089\pi\)
0.502477 + 0.864590i \(0.332422\pi\)
\(102\) 0 0
\(103\) −1.00000 1.73205i −0.0985329 0.170664i 0.812545 0.582899i \(-0.198082\pi\)
−0.911078 + 0.412235i \(0.864748\pi\)
\(104\) 0 0
\(105\) 0 0
\(106\) 6.00000 10.3923i 0.582772 1.00939i
\(107\) 2.00000 0.193347 0.0966736 0.995316i \(-0.469180\pi\)
0.0966736 + 0.995316i \(0.469180\pi\)
\(108\) 0 0
\(109\) −9.00000 −0.862044 −0.431022 0.902342i \(-0.641847\pi\)
−0.431022 + 0.902342i \(0.641847\pi\)
\(110\) 4.00000 6.92820i 0.381385 0.660578i
\(111\) 0 0
\(112\) −2.00000 3.46410i −0.188982 0.327327i
\(113\) −1.00000 1.73205i −0.0940721 0.162938i 0.815149 0.579252i \(-0.196655\pi\)
−0.909221 + 0.416314i \(0.863322\pi\)
\(114\) 0 0
\(115\) −3.00000 + 5.19615i −0.279751 + 0.484544i
\(116\) −8.00000 −0.742781
\(117\) 0 0
\(118\) 30.0000 2.76172
\(119\) 1.50000 2.59808i 0.137505 0.238165i
\(120\) 0 0
\(121\) −2.50000 4.33013i −0.227273 0.393648i
\(122\) 4.00000 + 6.92820i 0.362143 + 0.627250i
\(123\) 0 0
\(124\) −6.00000 + 10.3923i −0.538816 + 0.933257i
\(125\) 9.00000 0.804984
\(126\) 0 0
\(127\) −15.0000 −1.33103 −0.665517 0.746382i \(-0.731789\pi\)
−0.665517 + 0.746382i \(0.731789\pi\)
\(128\) 0 0
\(129\) 0 0
\(130\) 2.00000 + 3.46410i 0.175412 + 0.303822i
\(131\) 2.00000 + 3.46410i 0.174741 + 0.302660i 0.940072 0.340977i \(-0.110758\pi\)
−0.765331 + 0.643637i \(0.777425\pi\)
\(132\) 0 0
\(133\) −4.00000 + 6.92820i −0.346844 + 0.600751i
\(134\) 16.0000 1.38219
\(135\) 0 0
\(136\) 0 0
\(137\) 9.00000 15.5885i 0.768922 1.33181i −0.169226 0.985577i \(-0.554127\pi\)
0.938148 0.346235i \(-0.112540\pi\)
\(138\) 0 0
\(139\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(140\) −1.00000 1.73205i −0.0845154 0.146385i
\(141\) 0 0
\(142\) −12.0000 + 20.7846i −1.00702 + 1.74421i
\(143\) 8.00000 0.668994
\(144\) 0 0
\(145\) 4.00000 0.332182
\(146\) 6.00000 10.3923i 0.496564 0.860073i
\(147\) 0 0
\(148\) 3.00000 + 5.19615i 0.246598 + 0.427121i
\(149\) −6.00000 10.3923i −0.491539 0.851371i 0.508413 0.861113i \(-0.330232\pi\)
−0.999953 + 0.00974235i \(0.996899\pi\)
\(150\) 0 0
\(151\) −2.50000 + 4.33013i −0.203447 + 0.352381i −0.949637 0.313353i \(-0.898548\pi\)
0.746190 + 0.665733i \(0.231881\pi\)
\(152\) 0 0
\(153\) 0 0
\(154\) −8.00000 −0.644658
\(155\) 3.00000 5.19615i 0.240966 0.417365i
\(156\) 0 0
\(157\) 4.00000 + 6.92820i 0.319235 + 0.552931i 0.980329 0.197372i \(-0.0632408\pi\)
−0.661094 + 0.750303i \(0.729907\pi\)
\(158\) −1.00000 1.73205i −0.0795557 0.137795i
\(159\) 0 0
\(160\) 4.00000 6.92820i 0.316228 0.547723i
\(161\) 6.00000 0.472866
\(162\) 0 0
\(163\) −11.0000 −0.861586 −0.430793 0.902451i \(-0.641766\pi\)
−0.430793 + 0.902451i \(0.641766\pi\)
\(164\) −1.00000 + 1.73205i −0.0780869 + 0.135250i
\(165\) 0 0
\(166\) −9.00000 15.5885i −0.698535 1.20990i
\(167\) −8.50000 14.7224i −0.657750 1.13926i −0.981197 0.193010i \(-0.938175\pi\)
0.323447 0.946246i \(-0.395158\pi\)
\(168\) 0 0
\(169\) 4.50000 7.79423i 0.346154 0.599556i
\(170\) 6.00000 0.460179
\(171\) 0 0
\(172\) 22.0000 1.67748
\(173\) −11.0000 + 19.0526i −0.836315 + 1.44854i 0.0566411 + 0.998395i \(0.481961\pi\)
−0.892956 + 0.450145i \(0.851372\pi\)
\(174\) 0 0
\(175\) −2.00000 3.46410i −0.151186 0.261861i
\(176\) −8.00000 13.8564i −0.603023 1.04447i
\(177\) 0 0
\(178\) 2.00000 3.46410i 0.149906 0.259645i
\(179\) −2.00000 −0.149487 −0.0747435 0.997203i \(-0.523814\pi\)
−0.0747435 + 0.997203i \(0.523814\pi\)
\(180\) 0 0
\(181\) 16.0000 1.18927 0.594635 0.803996i \(-0.297296\pi\)
0.594635 + 0.803996i \(0.297296\pi\)
\(182\) 2.00000 3.46410i 0.148250 0.256776i
\(183\) 0 0
\(184\) 0 0
\(185\) −1.50000 2.59808i −0.110282 0.191014i
\(186\) 0 0
\(187\) 6.00000 10.3923i 0.438763 0.759961i
\(188\) 18.0000 1.31278
\(189\) 0 0
\(190\) −16.0000 −1.16076
\(191\) −1.00000 + 1.73205i −0.0723575 + 0.125327i −0.899934 0.436026i \(-0.856386\pi\)
0.827577 + 0.561353i \(0.189719\pi\)
\(192\) 0 0
\(193\) 12.5000 + 21.6506i 0.899770 + 1.55845i 0.827788 + 0.561041i \(0.189599\pi\)
0.0719816 + 0.997406i \(0.477068\pi\)
\(194\) 12.0000 + 20.7846i 0.861550 + 1.49225i
\(195\) 0 0
\(196\) −1.00000 + 1.73205i −0.0714286 + 0.123718i
\(197\) −4.00000 −0.284988 −0.142494 0.989796i \(-0.545512\pi\)
−0.142494 + 0.989796i \(0.545512\pi\)
\(198\) 0 0
\(199\) −12.0000 −0.850657 −0.425329 0.905039i \(-0.639842\pi\)
−0.425329 + 0.905039i \(0.639842\pi\)
\(200\) 0 0
\(201\) 0 0
\(202\) 10.0000 + 17.3205i 0.703598 + 1.21867i
\(203\) −2.00000 3.46410i −0.140372 0.243132i
\(204\) 0 0
\(205\) 0.500000 0.866025i 0.0349215 0.0604858i
\(206\) −4.00000 −0.278693
\(207\) 0 0
\(208\) 8.00000 0.554700
\(209\) −16.0000 + 27.7128i −1.10674 + 1.91694i
\(210\) 0 0
\(211\) −2.00000 3.46410i −0.137686 0.238479i 0.788935 0.614477i \(-0.210633\pi\)
−0.926620 + 0.375999i \(0.877300\pi\)
\(212\) −6.00000 10.3923i −0.412082 0.713746i
\(213\) 0 0
\(214\) 2.00000 3.46410i 0.136717 0.236801i
\(215\) −11.0000 −0.750194
\(216\) 0 0
\(217\) −6.00000 −0.407307
\(218\) −9.00000 + 15.5885i −0.609557 + 1.05578i
\(219\) 0 0
\(220\) −4.00000 6.92820i −0.269680 0.467099i
\(221\) 3.00000 + 5.19615i 0.201802 + 0.349531i
\(222\) 0 0
\(223\) 1.00000 1.73205i 0.0669650 0.115987i −0.830599 0.556871i \(-0.812002\pi\)
0.897564 + 0.440884i \(0.145335\pi\)
\(224\) −8.00000 −0.534522
\(225\) 0 0
\(226\) −4.00000 −0.266076
\(227\) 12.0000 20.7846i 0.796468 1.37952i −0.125435 0.992102i \(-0.540033\pi\)
0.921903 0.387421i \(-0.126634\pi\)
\(228\) 0 0
\(229\) 2.00000 + 3.46410i 0.132164 + 0.228914i 0.924510 0.381157i \(-0.124474\pi\)
−0.792347 + 0.610071i \(0.791141\pi\)
\(230\) 6.00000 + 10.3923i 0.395628 + 0.685248i
\(231\) 0 0
\(232\) 0 0
\(233\) 6.00000 0.393073 0.196537 0.980497i \(-0.437031\pi\)
0.196537 + 0.980497i \(0.437031\pi\)
\(234\) 0 0
\(235\) −9.00000 −0.587095
\(236\) 15.0000 25.9808i 0.976417 1.69120i
\(237\) 0 0
\(238\) −3.00000 5.19615i −0.194461 0.336817i
\(239\) 9.00000 + 15.5885i 0.582162 + 1.00833i 0.995223 + 0.0976302i \(0.0311262\pi\)
−0.413061 + 0.910703i \(0.635540\pi\)
\(240\) 0 0
\(241\) 5.00000 8.66025i 0.322078 0.557856i −0.658838 0.752285i \(-0.728952\pi\)
0.980917 + 0.194429i \(0.0622852\pi\)
\(242\) −10.0000 −0.642824
\(243\) 0 0
\(244\) 8.00000 0.512148
\(245\) 0.500000 0.866025i 0.0319438 0.0553283i
\(246\) 0 0
\(247\) −8.00000 13.8564i −0.509028 0.881662i
\(248\) 0 0
\(249\) 0 0
\(250\) 9.00000 15.5885i 0.569210 0.985901i
\(251\) −25.0000 −1.57799 −0.788993 0.614402i \(-0.789397\pi\)
−0.788993 + 0.614402i \(0.789397\pi\)
\(252\) 0 0
\(253\) 24.0000 1.50887
\(254\) −15.0000 + 25.9808i −0.941184 + 1.63018i
\(255\) 0 0
\(256\) −8.00000 13.8564i −0.500000 0.866025i
\(257\) −5.00000 8.66025i −0.311891 0.540212i 0.666880 0.745165i \(-0.267629\pi\)
−0.978772 + 0.204953i \(0.934296\pi\)
\(258\) 0 0
\(259\) −1.50000 + 2.59808i −0.0932055 + 0.161437i
\(260\) 4.00000 0.248069
\(261\) 0 0
\(262\) 8.00000 0.494242
\(263\) −7.00000 + 12.1244i −0.431638 + 0.747620i −0.997015 0.0772134i \(-0.975398\pi\)
0.565376 + 0.824833i \(0.308731\pi\)
\(264\) 0 0
\(265\) 3.00000 + 5.19615i 0.184289 + 0.319197i
\(266\) 8.00000 + 13.8564i 0.490511 + 0.849591i
\(267\) 0 0
\(268\) 8.00000 13.8564i 0.488678 0.846415i
\(269\) −21.0000 −1.28039 −0.640196 0.768211i \(-0.721147\pi\)
−0.640196 + 0.768211i \(0.721147\pi\)
\(270\) 0 0
\(271\) −2.00000 −0.121491 −0.0607457 0.998153i \(-0.519348\pi\)
−0.0607457 + 0.998153i \(0.519348\pi\)
\(272\) 6.00000 10.3923i 0.363803 0.630126i
\(273\) 0 0
\(274\) −18.0000 31.1769i −1.08742 1.88347i
\(275\) −8.00000 13.8564i −0.482418 0.835573i
\(276\) 0 0
\(277\) −6.50000 + 11.2583i −0.390547 + 0.676448i −0.992522 0.122068i \(-0.961047\pi\)
0.601975 + 0.798515i \(0.294381\pi\)
\(278\) 0 0
\(279\) 0 0
\(280\) 0 0
\(281\) −5.00000 + 8.66025i −0.298275 + 0.516627i −0.975741 0.218926i \(-0.929745\pi\)
0.677466 + 0.735554i \(0.263078\pi\)
\(282\) 0 0
\(283\) −14.0000 24.2487i −0.832214 1.44144i −0.896279 0.443491i \(-0.853740\pi\)
0.0640654 0.997946i \(-0.479593\pi\)
\(284\) 12.0000 + 20.7846i 0.712069 + 1.23334i
\(285\) 0 0
\(286\) 8.00000 13.8564i 0.473050 0.819346i
\(287\) −1.00000 −0.0590281
\(288\) 0 0
\(289\) −8.00000 −0.470588
\(290\) 4.00000 6.92820i 0.234888 0.406838i
\(291\) 0 0
\(292\) −6.00000 10.3923i −0.351123 0.608164i
\(293\) −0.500000 0.866025i −0.0292103 0.0505937i 0.851051 0.525084i \(-0.175966\pi\)
−0.880261 + 0.474490i \(0.842633\pi\)
\(294\) 0 0
\(295\) −7.50000 + 12.9904i −0.436667 + 0.756329i
\(296\) 0 0
\(297\) 0 0
\(298\) −24.0000 −1.39028
\(299\) −6.00000 + 10.3923i −0.346989 + 0.601003i
\(300\) 0 0
\(301\) 5.50000 + 9.52628i 0.317015 + 0.549086i
\(302\) 5.00000 + 8.66025i 0.287718 + 0.498342i
\(303\) 0 0
\(304\) −16.0000 + 27.7128i −0.917663 + 1.58944i
\(305\) −4.00000 −0.229039
\(306\) 0 0
\(307\) −2.00000 −0.114146 −0.0570730 0.998370i \(-0.518177\pi\)
−0.0570730 + 0.998370i \(0.518177\pi\)
\(308\) −4.00000 + 6.92820i −0.227921 + 0.394771i
\(309\) 0 0
\(310\) −6.00000 10.3923i −0.340777 0.590243i
\(311\) 1.50000 + 2.59808i 0.0850572 + 0.147323i 0.905416 0.424526i \(-0.139559\pi\)
−0.820358 + 0.571850i \(0.806226\pi\)
\(312\) 0 0
\(313\) 8.00000 13.8564i 0.452187 0.783210i −0.546335 0.837567i \(-0.683977\pi\)
0.998522 + 0.0543564i \(0.0173107\pi\)
\(314\) 16.0000 0.902932
\(315\) 0 0
\(316\) −2.00000 −0.112509
\(317\) 9.00000 15.5885i 0.505490 0.875535i −0.494489 0.869184i \(-0.664645\pi\)
0.999980 0.00635137i \(-0.00202172\pi\)
\(318\) 0 0
\(319\) −8.00000 13.8564i −0.447914 0.775810i
\(320\) −4.00000 6.92820i −0.223607 0.387298i
\(321\) 0 0
\(322\) 6.00000 10.3923i 0.334367 0.579141i
\(323\) −24.0000 −1.33540
\(324\) 0 0
\(325\) 8.00000 0.443760
\(326\) −11.0000 + 19.0526i −0.609234 + 1.05522i
\(327\) 0 0
\(328\) 0 0
\(329\) 4.50000 + 7.79423i 0.248093 + 0.429710i
\(330\) 0 0
\(331\) 0.500000 0.866025i 0.0274825 0.0476011i −0.851957 0.523612i \(-0.824584\pi\)
0.879440 + 0.476011i \(0.157918\pi\)
\(332\) −18.0000 −0.987878
\(333\) 0 0
\(334\) −34.0000 −1.86040
\(335\) −4.00000 + 6.92820i −0.218543 + 0.378528i
\(336\) 0 0
\(337\) −3.50000 6.06218i −0.190657 0.330228i 0.754811 0.655942i \(-0.227729\pi\)
−0.945468 + 0.325714i \(0.894395\pi\)
\(338\) −9.00000 15.5885i −0.489535 0.847900i
\(339\) 0 0
\(340\) 3.00000 5.19615i 0.162698 0.281801i
\(341\) −24.0000 −1.29967
\(342\) 0 0
\(343\) −1.00000 −0.0539949
\(344\) 0 0
\(345\) 0 0
\(346\) 22.0000 + 38.1051i 1.18273 + 2.04854i
\(347\) 1.00000 + 1.73205i 0.0536828 + 0.0929814i 0.891618 0.452788i \(-0.149571\pi\)
−0.837935 + 0.545770i \(0.816237\pi\)
\(348\) 0 0
\(349\) 10.0000 17.3205i 0.535288 0.927146i −0.463862 0.885908i \(-0.653537\pi\)
0.999149 0.0412379i \(-0.0131301\pi\)
\(350\) −8.00000 −0.427618
\(351\) 0 0
\(352\) −32.0000 −1.70561
\(353\) 12.5000 21.6506i 0.665308 1.15235i −0.313894 0.949458i \(-0.601634\pi\)
0.979202 0.202889i \(-0.0650330\pi\)
\(354\) 0 0
\(355\) −6.00000 10.3923i −0.318447 0.551566i
\(356\) −2.00000 3.46410i −0.106000 0.183597i
\(357\) 0 0
\(358\) −2.00000 + 3.46410i −0.105703 + 0.183083i
\(359\) 34.0000 1.79445 0.897226 0.441572i \(-0.145579\pi\)
0.897226 + 0.441572i \(0.145579\pi\)
\(360\) 0 0
\(361\) 45.0000 2.36842
\(362\) 16.0000 27.7128i 0.840941 1.45655i
\(363\) 0 0
\(364\) −2.00000 3.46410i −0.104828 0.181568i
\(365\) 3.00000 + 5.19615i 0.157027 + 0.271979i
\(366\) 0 0
\(367\) 15.0000 25.9808i 0.782994 1.35618i −0.147197 0.989107i \(-0.547025\pi\)
0.930190 0.367078i \(-0.119642\pi\)
\(368\) 24.0000 1.25109
\(369\) 0 0
\(370\) −6.00000 −0.311925
\(371\) 3.00000 5.19615i 0.155752 0.269771i
\(372\) 0 0
\(373\) 6.50000 + 11.2583i 0.336557 + 0.582934i 0.983783 0.179364i \(-0.0574041\pi\)
−0.647225 + 0.762299i \(0.724071\pi\)
\(374\) −12.0000 20.7846i −0.620505 1.07475i
\(375\) 0 0
\(376\) 0 0
\(377\) 8.00000 0.412021
\(378\) 0 0
\(379\) −3.00000 −0.154100 −0.0770498 0.997027i \(-0.524550\pi\)
−0.0770498 + 0.997027i \(0.524550\pi\)
\(380\) −8.00000 + 13.8564i −0.410391 + 0.710819i
\(381\) 0 0
\(382\) 2.00000 + 3.46410i 0.102329 + 0.177239i
\(383\) −10.5000 18.1865i −0.536525 0.929288i −0.999088 0.0427020i \(-0.986403\pi\)
0.462563 0.886586i \(-0.346930\pi\)
\(384\) 0 0
\(385\) 2.00000 3.46410i 0.101929 0.176547i
\(386\) 50.0000 2.54493
\(387\) 0 0
\(388\) 24.0000 1.21842
\(389\) 12.0000 20.7846i 0.608424 1.05382i −0.383076 0.923717i \(-0.625135\pi\)
0.991500 0.130105i \(-0.0415314\pi\)
\(390\) 0 0
\(391\) 9.00000 + 15.5885i 0.455150 + 0.788342i
\(392\) 0 0
\(393\) 0 0
\(394\) −4.00000 + 6.92820i −0.201517 + 0.349038i
\(395\) 1.00000 0.0503155
\(396\) 0 0
\(397\) 6.00000 0.301131 0.150566 0.988600i \(-0.451890\pi\)
0.150566 + 0.988600i \(0.451890\pi\)
\(398\) −12.0000 + 20.7846i −0.601506 + 1.04184i
\(399\) 0 0
\(400\) −8.00000 13.8564i −0.400000 0.692820i
\(401\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(402\) 0 0
\(403\) 6.00000 10.3923i 0.298881 0.517678i
\(404\) 20.0000 0.995037
\(405\) 0 0
\(406\) −8.00000 −0.397033
\(407\) −6.00000 + 10.3923i −0.297409 + 0.515127i
\(408\) 0 0
\(409\) −16.0000 27.7128i −0.791149 1.37031i −0.925256 0.379344i \(-0.876150\pi\)
0.134107 0.990967i \(-0.457183\pi\)
\(410\) −1.00000 1.73205i −0.0493865 0.0855399i
\(411\) 0 0
\(412\) −2.00000 + 3.46410i −0.0985329 + 0.170664i
\(413\) 15.0000 0.738102
\(414\) 0 0
\(415\) 9.00000 0.441793
\(416\) 8.00000 13.8564i 0.392232 0.679366i
\(417\) 0 0
\(418\) 32.0000 + 55.4256i 1.56517 + 2.71096i
\(419\) 16.5000 + 28.5788i 0.806078 + 1.39617i 0.915561 + 0.402179i \(0.131747\pi\)
−0.109483 + 0.993989i \(0.534920\pi\)
\(420\) 0 0
\(421\) −7.00000 + 12.1244i −0.341159 + 0.590905i −0.984648 0.174550i \(-0.944153\pi\)
0.643489 + 0.765455i \(0.277486\pi\)
\(422\) −8.00000 −0.389434
\(423\) 0 0
\(424\) 0 0
\(425\) 6.00000 10.3923i 0.291043 0.504101i
\(426\) 0 0
\(427\) 2.00000 + 3.46410i 0.0967868 + 0.167640i
\(428\) −2.00000 3.46410i −0.0966736 0.167444i
\(429\) 0 0
\(430\) −11.0000 + 19.0526i −0.530467 + 0.918796i
\(431\) 24.0000 1.15604 0.578020 0.816023i \(-0.303826\pi\)
0.578020 + 0.816023i \(0.303826\pi\)
\(432\) 0 0
\(433\) −2.00000 −0.0961139 −0.0480569 0.998845i \(-0.515303\pi\)
−0.0480569 + 0.998845i \(0.515303\pi\)
\(434\) −6.00000 + 10.3923i −0.288009 + 0.498847i
\(435\) 0 0
\(436\) 9.00000 + 15.5885i 0.431022 + 0.746552i
\(437\) −24.0000 41.5692i −1.14808 1.98853i
\(438\) 0 0
\(439\) −12.0000 + 20.7846i −0.572729 + 0.991995i 0.423556 + 0.905870i \(0.360782\pi\)
−0.996284 + 0.0861252i \(0.972552\pi\)
\(440\) 0 0
\(441\) 0 0
\(442\) 12.0000 0.570782
\(443\) 12.0000 20.7846i 0.570137 0.987507i −0.426414 0.904528i \(-0.640223\pi\)
0.996551 0.0829786i \(-0.0264433\pi\)
\(444\) 0 0
\(445\) 1.00000 + 1.73205i 0.0474045 + 0.0821071i
\(446\) −2.00000 3.46410i −0.0947027 0.164030i
\(447\) 0 0
\(448\) −4.00000 + 6.92820i −0.188982 + 0.327327i
\(449\) −6.00000 −0.283158 −0.141579 0.989927i \(-0.545218\pi\)
−0.141579 + 0.989927i \(0.545218\pi\)
\(450\) 0 0
\(451\) −4.00000 −0.188353
\(452\) −2.00000 + 3.46410i −0.0940721 + 0.162938i
\(453\) 0 0
\(454\) −24.0000 41.5692i −1.12638 1.95094i
\(455\) 1.00000 + 1.73205i 0.0468807 + 0.0811998i
\(456\) 0 0
\(457\) 7.00000 12.1244i 0.327446 0.567153i −0.654558 0.756012i \(-0.727145\pi\)
0.982004 + 0.188858i \(0.0604787\pi\)
\(458\) 8.00000 0.373815
\(459\) 0 0
\(460\) 12.0000 0.559503
\(461\) −0.500000 + 0.866025i −0.0232873 + 0.0403348i −0.877434 0.479697i \(-0.840747\pi\)
0.854147 + 0.520032i \(0.174080\pi\)
\(462\) 0 0
\(463\) 11.5000 + 19.9186i 0.534450 + 0.925695i 0.999190 + 0.0402476i \(0.0128147\pi\)
−0.464739 + 0.885448i \(0.653852\pi\)
\(464\) −8.00000 13.8564i −0.371391 0.643268i
\(465\) 0 0
\(466\) 6.00000 10.3923i 0.277945 0.481414i
\(467\) 12.0000 0.555294 0.277647 0.960683i \(-0.410445\pi\)
0.277647 + 0.960683i \(0.410445\pi\)
\(468\) 0 0
\(469\) 8.00000 0.369406
\(470\) −9.00000 + 15.5885i −0.415139 + 0.719042i
\(471\) 0 0
\(472\) 0 0
\(473\) 22.0000 + 38.1051i 1.01156 + 1.75208i
\(474\) 0 0
\(475\) −16.0000 + 27.7128i −0.734130 + 1.27155i
\(476\) −6.00000 −0.275010
\(477\) 0 0
\(478\) 36.0000 1.64660
\(479\) 8.50000 14.7224i 0.388375 0.672685i −0.603856 0.797093i \(-0.706370\pi\)
0.992231 + 0.124408i \(0.0397032\pi\)
\(480\) 0 0
\(481\) −3.00000 5.19615i −0.136788 0.236924i
\(482\) −10.0000 17.3205i −0.455488 0.788928i
\(483\) 0 0
\(484\) −5.00000 + 8.66025i −0.227273 + 0.393648i
\(485\) −12.0000 −0.544892
\(486\) 0 0
\(487\) 16.0000 0.725029 0.362515 0.931978i \(-0.381918\pi\)
0.362515 + 0.931978i \(0.381918\pi\)
\(488\) 0 0
\(489\) 0 0
\(490\) −1.00000 1.73205i −0.0451754 0.0782461i
\(491\) 13.0000 + 22.5167i 0.586682 + 1.01616i 0.994663 + 0.103173i \(0.0328994\pi\)
−0.407982 + 0.912990i \(0.633767\pi\)
\(492\) 0 0
\(493\) 6.00000 10.3923i 0.270226 0.468046i
\(494\) −32.0000 −1.43975
\(495\) 0 0
\(496\) −24.0000 −1.07763
\(497\) −6.00000 + 10.3923i −0.269137 + 0.466159i
\(498\) 0 0
\(499\) −6.50000 11.2583i −0.290980 0.503992i 0.683062 0.730361i \(-0.260648\pi\)
−0.974042 + 0.226369i \(0.927315\pi\)
\(500\) −9.00000 15.5885i −0.402492 0.697137i
\(501\) 0 0
\(502\) −25.0000 + 43.3013i −1.11580 + 1.93263i
\(503\) 21.0000 0.936344 0.468172 0.883637i \(-0.344913\pi\)
0.468172 + 0.883637i \(0.344913\pi\)
\(504\) 0 0
\(505\) −10.0000 −0.444994
\(506\) 24.0000 41.5692i 1.06693 1.84798i
\(507\) 0 0
\(508\) 15.0000 + 25.9808i 0.665517 + 1.15271i
\(509\) 20.5000 + 35.5070i 0.908647 + 1.57382i 0.815946 + 0.578128i \(0.196217\pi\)
0.0927004 + 0.995694i \(0.470450\pi\)
\(510\) 0 0
\(511\) 3.00000 5.19615i 0.132712 0.229864i
\(512\) −32.0000 −1.41421
\(513\) 0 0
\(514\) −20.0000 −0.882162
\(515\) 1.00000 1.73205i 0.0440653 0.0763233i
\(516\) 0 0
\(517\) 18.0000 + 31.1769i 0.791639 + 1.37116i
\(518\) 3.00000 + 5.19615i 0.131812 + 0.228306i
\(519\) 0 0
\(520\) 0 0
\(521\) 15.0000 0.657162 0.328581 0.944476i \(-0.393430\pi\)
0.328581 + 0.944476i \(0.393430\pi\)
\(522\) 0 0
\(523\) −26.0000 −1.13690 −0.568450 0.822718i \(-0.692457\pi\)
−0.568450 + 0.822718i \(0.692457\pi\)
\(524\) 4.00000 6.92820i 0.174741 0.302660i
\(525\) 0 0
\(526\) 14.0000 + 24.2487i 0.610429 + 1.05729i
\(527\) −9.00000 15.5885i −0.392046 0.679044i
\(528\) 0 0
\(529\) −6.50000 + 11.2583i −0.282609 + 0.489493i
\(530\) 12.0000 0.521247
\(531\) 0 0
\(532\) 16.0000 0.693688
\(533\) 1.00000 1.73205i 0.0433148 0.0750234i
\(534\) 0 0
\(535\) 1.00000 + 1.73205i 0.0432338 + 0.0748831i
\(536\) 0 0
\(537\) 0 0
\(538\) −21.0000 + 36.3731i −0.905374 + 1.56815i
\(539\) −4.00000 −0.172292
\(540\) 0 0
\(541\) 29.0000 1.24681 0.623404 0.781900i \(-0.285749\pi\)
0.623404 + 0.781900i \(0.285749\pi\)
\(542\) −2.00000 + 3.46410i −0.0859074 + 0.148796i
\(543\) 0 0
\(544\) −12.0000 20.7846i −0.514496 0.891133i
\(545\) −4.50000 7.79423i −0.192759 0.333868i
\(546\) 0 0
\(547\) 14.5000 25.1147i 0.619975 1.07383i −0.369514 0.929225i \(-0.620476\pi\)
0.989490 0.144604i \(-0.0461907\pi\)
\(548\) −36.0000 −1.53784
\(549\) 0 0
\(550\) −32.0000 −1.36448
\(551\) −16.0000 + 27.7128i −0.681623 + 1.18061i
\(552\) 0 0
\(553\) −0.500000 0.866025i −0.0212622 0.0368271i
\(554\) 13.0000 + 22.5167i 0.552317 + 0.956641i
\(555\) 0 0
\(556\) 0 0
\(557\) −4.00000 −0.169485 −0.0847427 0.996403i \(-0.527007\pi\)
−0.0847427 + 0.996403i \(0.527007\pi\)
\(558\) 0 0
\(559\) −22.0000 −0.930501
\(560\) 2.00000 3.46410i 0.0845154 0.146385i
\(561\) 0 0
\(562\) 10.0000 + 17.3205i 0.421825 + 0.730622i
\(563\) 2.00000 + 3.46410i 0.0842900 + 0.145994i 0.905088 0.425223i \(-0.139804\pi\)
−0.820798 + 0.571218i \(0.806471\pi\)
\(564\) 0 0
\(565\) 1.00000 1.73205i 0.0420703 0.0728679i
\(566\) −56.0000 −2.35386
\(567\) 0 0
\(568\) 0 0
\(569\) −1.00000 + 1.73205i −0.0419222 + 0.0726113i −0.886225 0.463255i \(-0.846681\pi\)
0.844303 + 0.535866i \(0.180015\pi\)
\(570\) 0 0
\(571\) −5.50000 9.52628i −0.230168 0.398662i 0.727690 0.685907i \(-0.240594\pi\)
−0.957857 + 0.287244i \(0.907261\pi\)
\(572\) −8.00000 13.8564i −0.334497 0.579365i
\(573\) 0 0
\(574\) −1.00000 + 1.73205i −0.0417392 + 0.0722944i
\(575\) 24.0000 1.00087
\(576\) 0 0
\(577\) −20.0000 −0.832611 −0.416305 0.909225i \(-0.636675\pi\)
−0.416305 + 0.909225i \(0.636675\pi\)
\(578\) −8.00000 + 13.8564i −0.332756 + 0.576351i
\(579\) 0 0
\(580\) −4.00000 6.92820i −0.166091 0.287678i
\(581\) −4.50000 7.79423i −0.186691 0.323359i
\(582\) 0 0
\(583\) 12.0000 20.7846i 0.496989 0.860811i
\(584\) 0 0
\(585\) 0 0
\(586\) −2.00000 −0.0826192
\(587\) −10.0000 + 17.3205i −0.412744 + 0.714894i −0.995189 0.0979766i \(-0.968763\pi\)
0.582445 + 0.812870i \(0.302096\pi\)
\(588\) 0 0
\(589\) 24.0000 + 41.5692i 0.988903 + 1.71283i
\(590\) 15.0000 + 25.9808i 0.617540 + 1.06961i
\(591\) 0 0
\(592\) −6.00000 + 10.3923i −0.246598 + 0.427121i
\(593\) −33.0000 −1.35515 −0.677574 0.735455i \(-0.736969\pi\)
−0.677574 + 0.735455i \(0.736969\pi\)
\(594\) 0 0
\(595\) 3.00000 0.122988
\(596\) −12.0000 + 20.7846i −0.491539 + 0.851371i
\(597\) 0 0
\(598\) 12.0000 + 20.7846i 0.490716 + 0.849946i
\(599\) −18.0000 31.1769i −0.735460 1.27385i −0.954521 0.298143i \(-0.903633\pi\)
0.219061 0.975711i \(-0.429701\pi\)
\(600\) 0 0
\(601\) 9.00000 15.5885i 0.367118 0.635866i −0.621996 0.783020i \(-0.713678\pi\)
0.989114 + 0.147154i \(0.0470113\pi\)
\(602\) 22.0000 0.896653
\(603\) 0 0
\(604\) 10.0000 0.406894
\(605\) 2.50000 4.33013i 0.101639 0.176045i
\(606\) 0 0
\(607\) −7.00000 12.1244i −0.284121 0.492112i 0.688274 0.725450i \(-0.258368\pi\)
−0.972396 + 0.233338i \(0.925035\pi\)
\(608\) 32.0000 + 55.4256i 1.29777 + 2.24781i
\(609\) 0 0
\(610\) −4.00000 + 6.92820i −0.161955 + 0.280515i
\(611\) −18.0000 −0.728202
\(612\) 0 0
\(613\) −26.0000 −1.05013 −0.525065 0.851062i \(-0.675959\pi\)
−0.525065 + 0.851062i \(0.675959\pi\)
\(614\) −2.00000 + 3.46410i −0.0807134 + 0.139800i
\(615\) 0 0
\(616\) 0 0
\(617\) 3.00000 + 5.19615i 0.120775 + 0.209189i 0.920074 0.391745i \(-0.128129\pi\)
−0.799298 + 0.600935i \(0.794795\pi\)
\(618\) 0 0
\(619\) 22.0000 38.1051i 0.884255 1.53157i 0.0376891 0.999290i \(-0.488000\pi\)
0.846566 0.532284i \(-0.178666\pi\)
\(620\) −12.0000 −0.481932
\(621\) 0 0
\(622\) 6.00000 0.240578
\(623\) 1.00000 1.73205i 0.0400642 0.0693932i
\(624\) 0 0
\(625\) −5.50000 9.52628i −0.220000 0.381051i
\(626\) −16.0000 27.7128i −0.639489 1.10763i
\(627\) 0 0
\(628\) 8.00000 13.8564i 0.319235 0.552931i
\(629\) −9.00000 −0.358854
\(630\) 0 0
\(631\) −19.0000 −0.756378 −0.378189 0.925728i \(-0.623453\pi\)
−0.378189 + 0.925728i \(0.623453\pi\)
\(632\) 0 0
\(633\) 0 0
\(634\) −18.0000 31.1769i −0.714871 1.23819i
\(635\) −7.50000 12.9904i −0.297628 0.515508i
\(636\) 0 0
\(637\) 1.00000 1.73205i 0.0396214 0.0686264i
\(638\) −32.0000 −1.26689
\(639\) 0 0
\(640\) 0 0
\(641\) −6.00000 + 10.3923i −0.236986 + 0.410471i −0.959848 0.280521i \(-0.909493\pi\)
0.722862 + 0.690992i \(0.242826\pi\)
\(642\) 0 0
\(643\) −13.0000 22.5167i −0.512670 0.887970i −0.999892 0.0146923i \(-0.995323\pi\)
0.487222 0.873278i \(-0.338010\pi\)
\(644\) −6.00000 10.3923i −0.236433 0.409514i
\(645\) 0 0
\(646\) −24.0000 + 41.5692i −0.944267 + 1.63552i
\(647\) −8.00000 −0.314512 −0.157256 0.987558i \(-0.550265\pi\)
−0.157256 + 0.987558i \(0.550265\pi\)
\(648\) 0 0
\(649\) 60.0000 2.35521
\(650\) 8.00000 13.8564i 0.313786 0.543493i
\(651\) 0 0
\(652\) 11.0000 + 19.0526i 0.430793 + 0.746156i
\(653\) 21.0000 + 36.3731i 0.821794 + 1.42339i 0.904345 + 0.426801i \(0.140360\pi\)
−0.0825519 + 0.996587i \(0.526307\pi\)
\(654\) 0 0
\(655\) −2.00000 + 3.46410i −0.0781465 + 0.135354i
\(656\) −4.00000 −0.156174
\(657\) 0 0
\(658\) 18.0000 0.701713
\(659\) −6.00000 + 10.3923i −0.233727 + 0.404827i −0.958902 0.283738i \(-0.908425\pi\)
0.725175 + 0.688565i \(0.241759\pi\)
\(660\) 0 0
\(661\) 7.00000 + 12.1244i 0.272268 + 0.471583i 0.969442 0.245319i \(-0.0788928\pi\)
−0.697174 + 0.716902i \(0.745559\pi\)
\(662\) −1.00000 1.73205i −0.0388661 0.0673181i
\(663\) 0 0
\(664\) 0 0
\(665\) −8.00000 −0.310227
\(666\) 0 0
\(667\) 24.0000 0.929284
\(668\) −17.0000 + 29.4449i −0.657750 + 1.13926i
\(669\) 0 0
\(670\) 8.00000 + 13.8564i 0.309067 + 0.535320i
\(671\) 8.00000 + 13.8564i 0.308837 + 0.534921i
\(672\) 0 0
\(673\) 1.00000 1.73205i 0.0385472 0.0667657i −0.846108 0.533011i \(-0.821060\pi\)
0.884655 + 0.466246i \(0.154394\pi\)
\(674\) −14.0000 −0.539260
\(675\) 0 0
\(676\) −18.0000 −0.692308
\(677\) −15.0000 + 25.9808i −0.576497 + 0.998522i 0.419380 + 0.907811i \(0.362247\pi\)
−0.995877 + 0.0907112i \(0.971086\pi\)
\(678\) 0 0
\(679\) 6.00000 + 10.3923i 0.230259 + 0.398820i
\(680\) 0 0
\(681\) 0 0
\(682\) −24.0000 + 41.5692i −0.919007 + 1.59177i
\(683\) 42.0000 1.60709 0.803543 0.595247i \(-0.202946\pi\)
0.803543 + 0.595247i \(0.202946\pi\)
\(684\) 0 0
\(685\) 18.0000 0.687745
\(686\) −1.00000 + 1.73205i −0.0381802 + 0.0661300i
\(687\) 0 0
\(688\) 22.0000 + 38.1051i 0.838742 + 1.45274i
\(689\) 6.00000 + 10.3923i 0.228582 + 0.395915i
\(690\) 0 0
\(691\) −25.0000 + 43.3013i −0.951045 + 1.64726i −0.207875 + 0.978155i \(0.566655\pi\)
−0.743170 + 0.669102i \(0.766679\pi\)
\(692\) 44.0000 1.67263
\(693\) 0 0
\(694\) 4.00000 0.151838
\(695\) 0 0
\(696\) 0 0
\(697\) −1.50000 2.59808i −0.0568166 0.0984092i
\(698\) −20.0000 34.6410i −0.757011 1.31118i
\(699\) 0 0
\(700\) −4.00000 + 6.92820i −0.151186 + 0.261861i
\(701\) 18.0000 0.679851 0.339925 0.940452i \(-0.389598\pi\)
0.339925 + 0.940452i \(0.389598\pi\)
\(702\) 0 0
\(703\) 24.0000 0.905177
\(704\) −16.0000 + 27.7128i −0.603023 + 1.04447i
\(705\) 0 0
\(706\) −25.0000 43.3013i −0.940887 1.62966i
\(707\) 5.00000 + 8.66025i 0.188044 + 0.325702i
\(708\) 0 0
\(709\) −7.50000 + 12.9904i −0.281668 + 0.487864i −0.971796 0.235824i \(-0.924221\pi\)
0.690127 + 0.723688i \(0.257554\pi\)
\(710\) −24.0000 −0.900704
\(711\) 0 0
\(712\) 0 0
\(713\) 18.0000 31.1769i 0.674105 1.16758i
\(714\) 0 0
\(715\) 4.00000 + 6.92820i 0.149592 + 0.259100i
\(716\) 2.00000 + 3.46410i 0.0747435 + 0.129460i
\(717\) 0 0
\(718\) 34.0000 58.8897i 1.26887 2.19775i
\(719\) 33.0000 1.23069 0.615346 0.788257i \(-0.289016\pi\)
0.615346 + 0.788257i \(0.289016\pi\)
\(720\) 0 0
\(721\) −2.00000 −0.0744839
\(722\) 45.0000 77.9423i 1.67473 2.90071i
\(723\) 0 0
\(724\) −16.0000 27.7128i −0.594635 1.02994i
\(725\) −8.00000 13.8564i −0.297113 0.514614i
\(726\) 0 0
\(727\) 2.00000 3.46410i 0.0741759 0.128476i −0.826552 0.562861i \(-0.809701\pi\)
0.900728 + 0.434384i \(0.143034\pi\)
\(728\) 0 0
\(729\) 0 0
\(730\) 12.0000 0.444140
\(731\) −16.5000 + 28.5788i −0.610275 + 1.05703i
\(732\) 0 0
\(733\) 0 0 0.866025 0.500000i \(-0.166667\pi\)
−0.866025 + 0.500000i \(0.833333\pi\)
\(734\) −30.0000 51.9615i −1.10732 1.91793i
\(735\) 0 0
\(736\) 24.0000 41.5692i 0.884652 1.53226i
\(737\) 32.0000 1.17874
\(738\) 0 0
\(739\) 12.0000 0.441427 0.220714 0.975339i \(-0.429161\pi\)
0.220714 + 0.975339i \(0.429161\pi\)
\(740\) −3.00000 + 5.19615i −0.110282 + 0.191014i
\(741\) 0 0
\(742\) −6.00000 10.3923i −0.220267 0.381514i
\(743\) −18.0000 31.1769i −0.660356 1.14377i −0.980522 0.196409i \(-0.937072\pi\)
0.320166 0.947361i \(-0.396261\pi\)
\(744\) 0 0
\(745\) 6.00000 10.3923i 0.219823 0.380745i
\(746\) 26.0000 0.951928
\(747\) 0 0
\(748\) −24.0000 −0.877527
\(749\) 1.00000 1.73205i 0.0365392 0.0632878i
\(750\) 0 0
\(751\) −8.00000 13.8564i −0.291924 0.505627i 0.682341 0.731034i \(-0.260962\pi\)
−0.974265 + 0.225407i \(0.927629\pi\)
\(752\) 18.0000 + 31.1769i 0.656392 + 1.13691i
\(753\) 0 0
\(754\) 8.00000 13.8564i 0.291343 0.504621i
\(755\) −5.00000 −0.181969
\(756\) 0 0
\(757\) 23.0000 0.835949 0.417975 0.908459i \(-0.362740\pi\)
0.417975 + 0.908459i \(0.362740\pi\)
\(758\) −3.00000 + 5.19615i −0.108965 + 0.188733i
\(759\) 0 0
\(760\) 0 0
\(761\) 1.50000 + 2.59808i 0.0543750 + 0.0941802i 0.891932 0.452170i \(-0.149350\pi\)
−0.837557 + 0.546350i \(0.816017\pi\)
\(762\) 0 0
\(763\) −4.50000 + 7.79423i −0.162911 + 0.282170i
\(764\) 4.00000 0.144715
\(765\) 0 0
\(766\) −42.0000 −1.51752
\(767\) −15.0000 + 25.9808i −0.541619 + 0.938111i
\(768\) 0 0
\(769\) −22.0000 38.1051i −0.793340 1.37411i −0.923888 0.382664i \(-0.875007\pi\)
0.130547 0.991442i \(-0.458327\pi\)
\(770\) −4.00000 6.92820i −0.144150 0.249675i
\(771\) 0 0
\(772\) 25.0000 43.3013i 0.899770 1.55845i
\(773\) 49.0000 1.76241 0.881204 0.472737i \(-0.156734\pi\)
0.881204 + 0.472737i \(0.156734\pi\)
\(774\) 0 0
\(775\) −24.0000 −0.862105
\(776\) 0 0
\(777\) 0 0
\(778\) −24.0000 41.5692i −0.860442 1.49033i
\(779\) 4.00000 + 6.92820i 0.143315 + 0.248229i
\(780\) 0 0
\(781\) −24.0000 + 41.5692i −0.858788 + 1.48746i
\(782\) 36.0000 1.28736
\(783\) 0 0
\(784\) −4.00000 −0.142857
\(785\) −4.00000 + 6.92820i −0.142766 + 0.247278i
\(786\) 0 0
\(787\) 1.00000 + 1.73205i 0.0356462 + 0.0617409i 0.883298 0.468812i \(-0.155318\pi\)
−0.847652 + 0.530553i \(0.821984\pi\)
\(788\) 4.00000 + 6.92820i 0.142494 + 0.246807i
\(789\) 0 0
\(790\) 1.00000 1.73205i 0.0355784 0.0616236i
\(791\) −2.00000 −0.0711118
\(792\) 0 0
\(793\) −8.00000 −0.284088
\(794\) 6.00000 10.3923i 0.212932 0.368809i
\(795\) 0 0
\(796\) 12.0000 + 20.7846i 0.425329 + 0.736691i
\(797\) −1.00000 1.73205i −0.0354218 0.0613524i 0.847771 0.530362i \(-0.177944\pi\)
−0.883193 + 0.469010i \(0.844611\pi\)
\(798\) 0 0
\(799\) −13.5000 + 23.3827i −0.477596 + 0.827220i
\(800\) −32.0000 −1.13137
\(801\) 0 0
\(802\) 0 0
\(803\) 12.0000 20.7846i 0.423471 0.733473i
\(804\) 0 0
\(805\) 3.00000 + 5.19615i 0.105736 + 0.183140i
\(806\) −12.0000 20.7846i −0.422682 0.732107i
\(807\) 0 0
\(808\) 0 0
\(809\) −42.0000 −1.47664 −0.738321 0.674450i \(-0.764381\pi\)
−0.738321 + 0.674450i \(0.764381\pi\)
\(810\) 0 0
\(811\) −46.0000 −1.61528 −0.807639 0.589677i \(-0.799255\pi\)
−0.807639 + 0.589677i \(0.799255\pi\)
\(812\) −4.00000 + 6.92820i −0.140372 + 0.243132i
\(813\) 0 0
\(814\) 12.0000 + 20.7846i 0.420600 + 0.728500i
\(815\) −5.50000 9.52628i −0.192657 0.333691i
\(816\) 0 0
\(817\) 44.0000 76.2102i 1.53937 2.66626i
\(818\) −64.0000 −2.23771
\(819\) 0 0
\(820\) −2.00000 −0.0698430
\(821\) 4.00000 6.92820i 0.139601 0.241796i −0.787745 0.616002i \(-0.788751\pi\)
0.927346 + 0.374206i \(0.122085\pi\)
\(822\) 0 0
\(823\) 1.50000 + 2.59808i 0.0522867 + 0.0905632i 0.890984 0.454034i \(-0.150016\pi\)
−0.838697 + 0.544598i \(0.816682\pi\)
\(824\) 0 0
\(825\) 0 0
\(826\) 15.0000 25.9808i 0.521917 0.903986i
\(827\) −18.0000 −0.625921 −0.312961 0.949766i \(-0.601321\pi\)
−0.312961 + 0.949766i \(0.601321\pi\)
\(828\) 0 0
\(829\) −16.0000 −0.555703 −0.277851 0.960624i \(-0.589622\pi\)
−0.277851 + 0.960624i \(0.589622\pi\)
\(830\) 9.00000 15.5885i 0.312395 0.541083i
\(831\) 0 0
\(832\) −8.00000 13.8564i −0.277350 0.480384i
\(833\) −1.50000 2.59808i −0.0519719 0.0900180i
\(834\) 0 0
\(835\) 8.50000 14.7224i 0.294155 0.509491i
\(836\) 64.0000 2.21349
\(837\) 0 0
\(838\) 66.0000 2.27993
\(839\) 27.5000 47.6314i 0.949405 1.64442i 0.202725 0.979236i \(-0.435020\pi\)
0.746681 0.665183i \(-0.231646\pi\)
\(840\) 0 0
\(841\) 6.50000 + 11.2583i 0.224138 + 0.388218i
\(842\) 14.0000 + 24.2487i 0.482472 + 0.835666i
\(843\) 0 0
\(844\) −4.00000 + 6.92820i −0.137686 + 0.238479i
\(845\) 9.00000 0.309609
\(846\) 0 0
\(847\) −5.00000 −0.171802
\(848\) 12.0000 20.7846i 0.412082 0.713746i
\(849\) 0 0
\(850\) −12.0000 20.7846i −0.411597 0.712906i
\(851\) −9.00000 15.5885i −0.308516 0.534365i
\(852\) 0 0
\(853\) −4.00000 + 6.92820i −0.136957 + 0.237217i −0.926343 0.376680i \(-0.877066\pi\)
0.789386 + 0.613897i \(0.210399\pi\)
\(854\) 8.00000 0.273754
\(855\) 0 0
\(856\) 0 0
\(857\) −8.50000 + 14.7224i −0.290354 + 0.502909i −0.973894 0.227005i \(-0.927107\pi\)
0.683539 + 0.729914i \(0.260440\pi\)
\(858\) 0 0
\(859\) −1.00000 1.73205i −0.0341196 0.0590968i 0.848461 0.529257i \(-0.177529\pi\)
−0.882581 + 0.470160i \(0.844196\pi\)
\(860\) 11.0000 + 19.0526i 0.375097 + 0.649687i
\(861\) 0 0
\(862\) 24.0000 41.5692i 0.817443 1.41585i
\(863\) 6.00000 0.204242 0.102121 0.994772i \(-0.467437\pi\)
0.102121 + 0.994772i \(0.467437\pi\)
\(864\) 0 0
\(865\) −22.0000 −0.748022
\(866\) −2.00000 + 3.46410i −0.0679628 + 0.117715i
\(867\) 0 0
\(868\) 6.00000 + 10.3923i 0.203653 + 0.352738i
\(869\) −2.00000 3.46410i −0.0678454 0.117512i
\(870\) 0 0
\(871\) −8.00000 + 13.8564i −0.271070 + 0.469506i
\(872\) 0 0
\(873\) 0 0
\(874\) −96.0000 −3.24725
\(875\) 4.50000 7.79423i 0.152128 0.263493i
\(876\) 0 0
\(877\) −18.5000 32.0429i −0.624701 1.08201i −0.988599 0.150574i \(-0.951888\pi\)
0.363898 0.931439i \(-0.381446\pi\)
\(878\) 24.0000 + 41.5692i 0.809961 + 1.40289i
\(879\) 0 0
\(880\) 8.00000 13.8564i 0.269680 0.467099i
\(881\) 30.0000 1.01073 0.505363 0.862907i \(-0.331359\pi\)
0.505363 + 0.862907i \(0.331359\pi\)
\(882\) 0 0
\(883\) 41.0000 1.37976 0.689880 0.723924i \(-0.257663\pi\)
0.689880 + 0.723924i \(0.257663\pi\)
\(884\) 6.00000 10.3923i 0.201802 0.349531i
\(885\) 0 0
\(886\) −24.0000 41.5692i −0.806296 1.39655i
\(887\) −6.50000 11.2583i −0.218249 0.378018i 0.736024 0.676955i \(-0.236701\pi\)
−0.954273 + 0.298938i \(0.903368\pi\)
\(888\) 0 0
\(889\) −7.50000 + 12.9904i −0.251542 + 0.435683i
\(890\) 4.00000 0.134080
\(891\) 0 0
\(892\) −4.00000 −0.133930
\(893\) 36.0000 62.3538i 1.20469 2.08659i
\(894\) 0 0
\(895\) −1.00000 1.73205i −0.0334263 0.0578961i
\(896\) 0 0
\(897\) 0 0
\(898\) −6.00000 + 10.3923i −0.200223 + 0.346796i
\(899\) −24.0000 −0.800445
\(900\) 0 0
\(901\) 18.0000 0.599667
\(902\) −4.00000 + 6.92820i −0.133185 + 0.230684i
\(903\) 0 0
\(904\) 0 0
\(905\) 8.00000 + 13.8564i 0.265929 + 0.460603i
\(906\) 0 0
\(907\) −8.50000 + 14.7224i −0.282238 + 0.488850i −0.971936 0.235247i \(-0.924410\pi\)
0.689698 + 0.724097i \(0.257743\pi\)
\(908\) −48.0000 −1.59294
\(909\) 0 0
\(910\) 4.00000 0.132599
\(911\) −6.00000 + 10.3923i −0.198789 + 0.344312i −0.948136 0.317865i \(-0.897034\pi\)
0.749347 + 0.662177i \(0.230367\pi\)
\(912\) 0 0
\(913\) −18.0000 31.1769i −0.595713 1.03181i
\(914\) −14.0000 24.2487i −0.463079 0.802076i
\(915\) 0 0
\(916\) 4.00000 6.92820i 0.132164 0.228914i
\(917\) 4.00000 0.132092
\(918\) 0 0
\(919\) −43.0000 −1.41844 −0.709220 0.704988i \(-0.750953\pi\)
−0.709220 + 0.704988i \(0.750953\pi\)
\(920\) 0 0
\(921\) 0 0
\(922\) 1.00000 + 1.73205i 0.0329332 + 0.0570421i
\(923\) −12.0000 20.7846i −0.394985 0.684134i
\(924\) 0 0
\(925\) −6.00000 + 10.3923i −0.197279 + 0.341697i
\(926\) 46.0000 1.51165
\(927\) 0 0
\(928\) −32.0000 −1.05045
\(929\) 17.5000 30.3109i 0.574156 0.994468i −0.421976 0.906607i \(-0.638663\pi\)
0.996133 0.0878612i \(-0.0280032\pi\)
\(930\) 0 0
\(931\) 4.00000 + 6.92820i 0.131095 + 0.227063i
\(932\) −6.00000 10.3923i −0.196537 0.340411i
\(933\) 0 0
\(934\) 12.0000 20.7846i 0.392652 0.680093i
\(935\) 12.0000 0.392442
\(936\) 0 0
\(937\) −12.0000 −0.392023 −0.196011 0.980602i \(-0.562799\pi\)
−0.196011 + 0.980602i \(0.562799\pi\)
\(938\) 8.00000 13.8564i 0.261209 0.452428i
\(939\) 0 0
\(940\) 9.00000 + 15.5885i 0.293548 + 0.508439i
\(941\) 8.50000 + 14.7224i 0.277092 + 0.479938i 0.970661 0.240453i \(-0.0772960\pi\)
−0.693569 + 0.720390i \(0.743963\pi\)
\(942\) 0 0
\(943\) 3.00000 5.19615i 0.0976934 0.169210i
\(944\) 60.0000 1.95283
\(945\) 0 0
\(946\) 88.0000 2.86113
\(947\) −14.0000 + 24.2487i −0.454939 + 0.787977i −0.998685 0.0512727i \(-0.983672\pi\)
0.543746 + 0.839250i \(0.317006\pi\)
\(948\) 0 0
\(949\) 6.00000 + 10.3923i 0.194768 + 0.337348i
\(950\) 32.0000 + 55.4256i 1.03822 + 1.79824i
\(951\) 0 0
\(952\) 0 0
\(953\) −2.00000 −0.0647864 −0.0323932 0.999475i \(-0.510313\pi\)
−0.0323932 + 0.999475i \(0.510313\pi\)
\(954\) 0 0
\(955\) −2.00000 −0.0647185
\(956\) 18.0000 31.1769i 0.582162 1.00833i
\(957\) 0 0
\(958\) −17.0000 29.4449i −0.549245 0.951320i
\(959\) −9.00000 15.5885i −0.290625 0.503378i
\(960\) 0 0
\(961\) −2.50000 + 4.33013i −0.0806452 + 0.139682i
\(962\) −12.0000 −0.386896
\(963\) 0 0
\(964\) −20.0000 −0.644157
\(965\) −12.5000 + 21.6506i −0.402389 + 0.696959i
\(966\) 0 0
\(967\) −20.0000 34.6410i −0.643157 1.11398i −0.984724 0.174123i \(-0.944291\pi\)
0.341567 0.939857i \(-0.389042\pi\)
\(968\) 0 0
\(969\) 0 0
\(970\) −12.0000 + 20.7846i −0.385297 + 0.667354i
\(971\) −45.0000 −1.44412 −0.722059 0.691831i \(-0.756804\pi\)
−0.722059 + 0.691831i \(0.756804\pi\)
\(972\) 0 0
\(973\) 0 0
\(974\) 16.0000 27.7128i 0.512673 0.887976i
\(975\) 0 0
\(976\) 8.00000 + 13.8564i 0.256074 + 0.443533i
\(977\) 6.00000 + 10.3923i 0.191957 + 0.332479i 0.945899 0.324462i \(-0.105183\pi\)
−0.753942 + 0.656941i \(0.771850\pi\)
\(978\) 0 0
\(979\) 4.00000 6.92820i 0.127841 0.221426i
\(980\) −2.00000 −0.0638877
\(981\) 0 0
\(982\) 52.0000 1.65939
\(983\) −10.5000 + 18.1865i −0.334898 + 0.580060i −0.983465 0.181097i \(-0.942035\pi\)
0.648567 + 0.761157i \(0.275369\pi\)
\(984\) 0 0
\(985\) −2.00000 3.46410i −0.0637253 0.110375i
\(986\) −12.0000 20.7846i −0.382158 0.661917i
\(987\) 0 0
\(988\) −16.0000 + 27.7128i −0.509028 + 0.881662i
\(989\) −66.0000 −2.09868
\(990\) 0 0
\(991\) 11.0000 0.349427 0.174713 0.984619i \(-0.444100\pi\)
0.174713 + 0.984619i \(0.444100\pi\)
\(992\) −24.0000 + 41.5692i −0.762001 + 1.31982i
\(993\) 0 0
\(994\) 12.0000 + 20.7846i 0.380617 + 0.659248i
\(995\) −6.00000 10.3923i −0.190213 0.329458i
\(996\) 0 0
\(997\) −20.0000 + 34.6410i −0.633406 + 1.09709i 0.353444 + 0.935456i \(0.385010\pi\)
−0.986850 + 0.161636i \(0.948323\pi\)
\(998\) −26.0000 −0.823016
\(999\) 0 0
Display \(a_p\) with \(p\) up to: 50 250 1000 (See \(a_n\) instead) (See \(a_n\) instead) (See \(a_n\) instead) Display \(a_n\) with \(n\) up to: 50 250 1000 (See only \(a_p\)) (See only \(a_p\)) (See only \(a_p\))

Twists

       By twisting character
Char Parity Ord Type Twist Min Dim
1.1 even 1 trivial 567.2.f.h.379.1 2
3.2 odd 2 567.2.f.a.379.1 2
9.2 odd 6 189.2.a.d.1.1 yes 1
9.4 even 3 inner 567.2.f.h.190.1 2
9.5 odd 6 567.2.f.a.190.1 2
9.7 even 3 189.2.a.a.1.1 1
36.7 odd 6 3024.2.a.l.1.1 1
36.11 even 6 3024.2.a.u.1.1 1
45.29 odd 6 4725.2.a.c.1.1 1
45.34 even 6 4725.2.a.s.1.1 1
63.20 even 6 1323.2.a.r.1.1 1
63.34 odd 6 1323.2.a.b.1.1 1
    
        By twisted newform
Twist Min Dim Char Parity Ord Type
189.2.a.a.1.1 1 9.7 even 3
189.2.a.d.1.1 yes 1 9.2 odd 6
567.2.f.a.190.1 2 9.5 odd 6
567.2.f.a.379.1 2 3.2 odd 2
567.2.f.h.190.1 2 9.4 even 3 inner
567.2.f.h.379.1 2 1.1 even 1 trivial
1323.2.a.b.1.1 1 63.34 odd 6
1323.2.a.r.1.1 1 63.20 even 6
3024.2.a.l.1.1 1 36.7 odd 6
3024.2.a.u.1.1 1 36.11 even 6
4725.2.a.c.1.1 1 45.29 odd 6
4725.2.a.s.1.1 1 45.34 even 6